Damage mechanism of composite laminates under multiple ice impacts at high velocity
•Different impact schemes including single-point and multi-point impact were carried out.•Three routes including visual analysis, C-Scan analysis and X-ray tomography were used to observe the intralaminar and interlaminar damage patterns.•An innovative damage category induced by multiple ice impacts...
Saved in:
Published in | International journal of impact engineering Vol. 168; p. 104296 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Different impact schemes including single-point and multi-point impact were carried out.•Three routes including visual analysis, C-Scan analysis and X-ray tomography were used to observe the intralaminar and interlaminar damage patterns.•An innovative damage category induced by multiple ice impacts were summarized.•The sequence and morphology of delamination damage between plies are different in single-point and multi-point impact.•A strain-rate dependent continuum damage model with interlayer cohesive element was successfully used to evaluate the damage behavior in CFRP laminates.
Unlike most research on ice impact threats with single impact and multiple repeated impact, different impact schemes such as single-point repeated impact and multi-point sequential impact were carried out in this article, considering the actual circumstance of hail impacts on aerospace structures. To study the response of CFRP laminates to multiple ice impacts, ice projectiles with a diameter of 25 mm were projected onto laminates. Three different routes, including visual analysis, C-Scan analysis and X-ray tomography, were then used to observe the intralaminar and interlaminar damage patterns. An innovative damage category induced by different impact schemes was summarized from the whole experimental results through the visual analysis. The extent of delamination damage was characterized by C-Scan and CT. Both the damage mode and the area of delamination are not only related to the magnitude of single impact energy, but also to the density of impact points. For numerical approach, a strain-rate dependent continuum damage model with interlayer cohesive element was used to predict the damage evolution in CFRP laminates. It was first verified and then combined with the test data to reveal different damage mechanisms of single-point repeated impact and multi-point sequential impact. |
---|---|
AbstractList | •Different impact schemes including single-point and multi-point impact were carried out.•Three routes including visual analysis, C-Scan analysis and X-ray tomography were used to observe the intralaminar and interlaminar damage patterns.•An innovative damage category induced by multiple ice impacts were summarized.•The sequence and morphology of delamination damage between plies are different in single-point and multi-point impact.•A strain-rate dependent continuum damage model with interlayer cohesive element was successfully used to evaluate the damage behavior in CFRP laminates.
Unlike most research on ice impact threats with single impact and multiple repeated impact, different impact schemes such as single-point repeated impact and multi-point sequential impact were carried out in this article, considering the actual circumstance of hail impacts on aerospace structures. To study the response of CFRP laminates to multiple ice impacts, ice projectiles with a diameter of 25 mm were projected onto laminates. Three different routes, including visual analysis, C-Scan analysis and X-ray tomography, were then used to observe the intralaminar and interlaminar damage patterns. An innovative damage category induced by different impact schemes was summarized from the whole experimental results through the visual analysis. The extent of delamination damage was characterized by C-Scan and CT. Both the damage mode and the area of delamination are not only related to the magnitude of single impact energy, but also to the density of impact points. For numerical approach, a strain-rate dependent continuum damage model with interlayer cohesive element was used to predict the damage evolution in CFRP laminates. It was first verified and then combined with the test data to reveal different damage mechanisms of single-point repeated impact and multi-point sequential impact. |
ArticleNumber | 104296 |
Author | Chen, Wei Fu, Xinqiang Zhao, Zhenhua Xu, Kailong Zhu, Xinying Luo, Gang Liu, Lulu |
Author_xml | – sequence: 1 givenname: Xinying surname: Zhu fullname: Zhu, Xinying organization: Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of aeronautics and Astronautics, China – sequence: 2 givenname: Xinqiang surname: Fu fullname: Fu, Xinqiang organization: Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of aeronautics and Astronautics, China – sequence: 3 givenname: Lulu surname: Liu fullname: Liu, Lulu email: liululu@nuaa.edu.cn organization: Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of aeronautics and Astronautics, China – sequence: 4 givenname: Kailong surname: Xu fullname: Xu, Kailong organization: Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of aeronautics and Astronautics, China – sequence: 5 givenname: Gang surname: Luo fullname: Luo, Gang organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, China – sequence: 6 givenname: Zhenhua surname: Zhao fullname: Zhao, Zhenhua organization: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, China – sequence: 7 givenname: Wei surname: Chen fullname: Chen, Wei organization: Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of aeronautics and Astronautics, China |
BookMark | eNqFkMtKAzEUhoNUsFZfQfICU3NpJh1wodQrFFyo4C5kMmfalEkyJGmhb--U6sZNF4cfDnz_4XyXaOSDB4RuKJlSQsvbzdRurOvBr6aMMDYsZ6wqz9CYzmVVcEGqERoTyWeFnPHvC3SZ0oYQKokgY_TxqJ1eAXZg1trb5HBosQmuD8lmwJ121usMCW99AxG7bZdt3wG2ZhjXa5MT1hmv7WqNd9AFY_P-Cp23uktw_ZsT9PX89Ll4LZbvL2-Lh2VhOGW5AK6Bi7rlHASlDChrWs1pzauWSsNBVoJpYoQ0sqnnMDcVo1Louq55aWrB-QTdHXtNDClFaNVwXWcbfI7adooSdRCkNupPkDoIUkdBA17-w_tonY770-D9EYThuZ2FqJKx4A00NoLJqgn2VMUPOiqITg |
CitedBy_id | crossref_primary_10_1016_j_compstruct_2025_119055 crossref_primary_10_1080_15376494_2023_2166169 crossref_primary_10_1016_j_cja_2024_05_017 crossref_primary_10_1016_j_jmrt_2024_12_258 crossref_primary_10_3390_en16093906 crossref_primary_10_1016_j_compscitech_2024_111023 crossref_primary_10_1016_j_engfailanal_2025_109522 crossref_primary_10_1016_j_oceaneng_2024_116790 crossref_primary_10_1016_j_tws_2024_111969 crossref_primary_10_1016_j_tws_2024_111875 crossref_primary_10_1016_j_compstruct_2023_117194 crossref_primary_10_1016_j_engfailanal_2024_108125 crossref_primary_10_1007_s11665_023_08870_w crossref_primary_10_1016_j_ijimpeng_2023_104631 crossref_primary_10_1016_j_ijimpeng_2023_104675 crossref_primary_10_1016_j_ijimpeng_2023_104830 crossref_primary_10_1016_j_ijimpeng_2024_104994 crossref_primary_10_1016_j_compscitech_2025_111139 crossref_primary_10_1016_j_engfailanal_2025_109396 crossref_primary_10_3390_en18020425 crossref_primary_10_3390_polym15244633 crossref_primary_10_1016_j_engstruct_2023_116729 crossref_primary_10_1016_j_ast_2024_109845 crossref_primary_10_1016_j_compstruct_2022_116305 crossref_primary_10_1016_j_compositesb_2024_112002 crossref_primary_10_1016_j_ijmecsci_2023_108108 crossref_primary_10_3390_en17246285 crossref_primary_10_1002_pc_28953 |
Cites_doi | 10.1016/j.commatsci.2012.05.036 10.1016/j.compositesa.2013.08.003 10.1016/j.ijimpeng.2013.01.013 10.1016/j.jmrt.2019.09.035 10.1016/j.compstruct.2017.04.017 10.1016/j.engfracmech.2018.12.003 10.1016/j.compstruct.2011.04.029 10.1007/s13726-014-0242-y 10.1016/j.compstruct.2005.09.001 10.1016/j.compositesb.2014.01.037 10.1016/j.conbuildmat.2016.04.003 10.1016/j.matdes.2017.12.044 10.1016/S0013-7944(01)00037-6 10.1016/j.compstruct.2018.06.046 10.1016/j.compositesa.2012.02.017 10.1016/j.compositesb.2018.12.043 10.1007/BF03218746 10.1016/j.engfracmech.2017.03.019 10.1016/0956-7151(90)90308-4 10.4028/www.scientific.net/KEM.525-526.265 10.1016/j.ijimpeng.2009.08.005 10.1016/j.ijsolstr.2012.03.038 10.1016/j.compstruct.2020.112945 10.1115/1.3153664 10.1016/0266-3538(96)00005-X 10.1016/j.compscitech.2010.11.028 10.1016/j.compositesa.2015.01.025 10.2514/2.1099 10.1016/j.compscitech.2009.02.015 10.1016/0167-6636(94)00053-0 10.1108/AEAT-02-2018-0089 10.1016/S1359-835X(02)00258-0 10.1016/j.ijsolstr.2006.04.005 10.1016/j.compstruct.2012.03.039 10.1016/j.compositesa.2012.11.020 10.1016/j.wear.2019.06.001 10.1016/j.compositesb.2019.107626 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijimpeng.2022.104296 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
ExternalDocumentID | 10_1016_j_ijimpeng_2022_104296 S0734743X22001427 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-e3ae35bf33e5112e12dfa31b39f17c3e7952a0c57c7db8e8c92175abbb36cb533 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Tue Jul 01 03:54:32 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Fri Feb 23 02:40:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multiple ice impacts Laminate Multi-point sequential impact Single-point repeated impact Damage mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-e3ae35bf33e5112e12dfa31b39f17c3e7952a0c57c7db8e8c92175abbb36cb533 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijimpeng_2022_104296 crossref_primary_10_1016_j_ijimpeng_2022_104296 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2022_104296 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Li, Li, Yao (bib0043) 2012; 525–526 Tuo, Lu, Ma, Zhang, Chen (bib0027) 2019; 167 Tang, Wang, Han, Chen (bib0005) 2019; 8 Matzenmiller, Lubliner, Taylor (bib0033) 1995; 20 Tan, Falzon, Chiu, Price (bib0028) 2015; 71 Kustron, Horak, Doubrava, Goraj (bib0023) 2019 Kim, Kedward (bib0001) 1999 Kim, Welch, Kedward (bib0003) 2003; 34 Zhang, Hao, Shi, Cui, Zhang (bib0021) 2016; 114 Zhang, Duodu, Gu (bib0016) 2017; 173 Rivallant, Bouvet, Hongkarnjanakul (bib0029) 2013; 55 Phadnis, Makhdum, Roy, Silberschmidt (bib0015) 2013; 47 Appleby-Thomas, Hazell, Dahini (bib0009) 2011; 93 Jordan, Naito, Haque (bib0019) 2014; 61 Seo, Jang, Han (bib0025) 2007; 15 Coles, Roy, Sazhenkov, Voronov, Nikhamkin, Silberschmidt (bib0006) 2020; 225 Schulson (bib0036) 2001; 68 Keune (bib0038) 2004 Schulson (bib0035) 1990; 38 Park, Kim (bib0039) 2006; vol. 3 Kim, Kedward (bib0002) 2000; 38 Dolati, Fereidoon, Sabet (bib0010) 2014; 23 Haque B.Z.G.. A progressive composite damage model for unidirectional and woven fabric composites. Materials Science Corporation (MSC) and University of Delaware Center for Composite Materials (UD-CCM)2015;. Xiao, Gama, Gillespie (bib0018) 2007; 78 Pernas-Sánchez, Artero-Guerrero, López-Puente, Varas (bib0022) 2018; 141 Pernas-Snchez, Pedroche, Varas, Lpez-Puente, Zaera (bib0037) 2012; 49 Joglekar, Ranatunga, Pankow (bib0026) 2021; 255 Wang, Zhao, Hong, Zhang (bib0042) 2018; 201 Lopes, Camanho, Gȭrdal, Maimȡ, Gonzlez (bib0012) 2009; 69 Tippmann, Kim, Rhymer (bib0041) 2013; 57 Carney, Benson, DuBois, Lee (bib0040) 2006; 43 Ullah, Harland, Silberschmidt (bib0014) 2012; 64 Field P.R., Hand W., Cappelluti G., McMillan A., Foreman A., Stubbs D., Willows M., Hail threat standardisation - final report. 2008. Hashin (bib0030) 1980; 47 Rhymer, Kim, Roach (bib0007) 2012; 43 Shi, Swait, Soutis (bib0013) 2012; 94 Benzeggagh, Kenane (bib0034) 1996; 56 Park, Kim (bib0004) 2010; 37 Almudaihesh, Holford, Pullin, Eaton (bib0024) 2020; 182 Higuchi, Okabe, Yoshimura, Tay (bib0017) 2017; 178 Murakami (bib0032) 2012 Macdonald, Nash, Stack (bib0011) 2019; 432 Daniel, Werner, Fenner (bib0020) 2011; 71 Appleby-Thomas (10.1016/j.ijimpeng.2022.104296_bib0009) 2011; 93 Carney (10.1016/j.ijimpeng.2022.104296_bib0040) 2006; 43 Keune (10.1016/j.ijimpeng.2022.104296_bib0038) 2004 Kim (10.1016/j.ijimpeng.2022.104296_bib0003) 2003; 34 Kim (10.1016/j.ijimpeng.2022.104296_bib0001) 1999 Almudaihesh (10.1016/j.ijimpeng.2022.104296_bib0024) 2020; 182 Lopes (10.1016/j.ijimpeng.2022.104296_bib0012) 2009; 69 Tuo (10.1016/j.ijimpeng.2022.104296_bib0027) 2019; 167 10.1016/j.ijimpeng.2022.104296_bib0008 Pernas-Sánchez (10.1016/j.ijimpeng.2022.104296_bib0022) 2018; 141 Rivallant (10.1016/j.ijimpeng.2022.104296_bib0029) 2013; 55 Dolati (10.1016/j.ijimpeng.2022.104296_bib0010) 2014; 23 Coles (10.1016/j.ijimpeng.2022.104296_bib0006) 2020; 225 Ullah (10.1016/j.ijimpeng.2022.104296_bib0014) 2012; 64 Pernas-Snchez (10.1016/j.ijimpeng.2022.104296_bib0037) 2012; 49 Joglekar (10.1016/j.ijimpeng.2022.104296_bib0026) 2021; 255 Daniel (10.1016/j.ijimpeng.2022.104296_bib0020) 2011; 71 Zhang (10.1016/j.ijimpeng.2022.104296_bib0016) 2017; 173 Matzenmiller (10.1016/j.ijimpeng.2022.104296_bib0033) 1995; 20 Park (10.1016/j.ijimpeng.2022.104296_bib0004) 2010; 37 Rhymer (10.1016/j.ijimpeng.2022.104296_bib0007) 2012; 43 Murakami (10.1016/j.ijimpeng.2022.104296_bib0032) 2012 Hashin (10.1016/j.ijimpeng.2022.104296_bib0030) 1980; 47 Zhang (10.1016/j.ijimpeng.2022.104296_bib0021) 2016; 114 Tang (10.1016/j.ijimpeng.2022.104296_bib0005) 2019; 8 Jordan (10.1016/j.ijimpeng.2022.104296_bib0019) 2014; 61 Macdonald (10.1016/j.ijimpeng.2022.104296_bib0011) 2019; 432 Seo (10.1016/j.ijimpeng.2022.104296_bib0025) 2007; 15 Benzeggagh (10.1016/j.ijimpeng.2022.104296_bib0034) 1996; 56 Kustron (10.1016/j.ijimpeng.2022.104296_bib0023) 2019 Shi (10.1016/j.ijimpeng.2022.104296_bib0013) 2012; 94 Schulson (10.1016/j.ijimpeng.2022.104296_bib0035) 1990; 38 Wang (10.1016/j.ijimpeng.2022.104296_bib0042) 2018; 201 Kim (10.1016/j.ijimpeng.2022.104296_bib0002) 2000; 38 10.1016/j.ijimpeng.2022.104296_bib0031 Phadnis (10.1016/j.ijimpeng.2022.104296_bib0015) 2013; 47 Xiao (10.1016/j.ijimpeng.2022.104296_bib0018) 2007; 78 Higuchi (10.1016/j.ijimpeng.2022.104296_bib0017) 2017; 178 Tan (10.1016/j.ijimpeng.2022.104296_bib0028) 2015; 71 Tippmann (10.1016/j.ijimpeng.2022.104296_bib0041) 2013; 57 Schulson (10.1016/j.ijimpeng.2022.104296_bib0036) 2001; 68 Park (10.1016/j.ijimpeng.2022.104296_bib0039) 2006; vol. 3 Li (10.1016/j.ijimpeng.2022.104296_bib0043) 2012; 525–526 |
References_xml | – volume: 43 start-page: 7820 year: 2006 end-page: 7839 ident: bib0040 article-title: A phenomenological high strain rate model with failure for ice publication-title: Int J Solids Struct – volume: 37 start-page: 177 year: 2010 end-page: 184 ident: bib0004 article-title: Damage resistance of single lap adhesive composite joints by transverse ice impact publication-title: Int J Impact Eng – volume: 55 start-page: 83 year: 2013 end-page: 93 ident: bib0029 article-title: Failure analysis of CFRP laminates subjected to compression after impact: Fe simulation using discrete interface elements publication-title: Compos Part A Appl SciManuf – volume: 71 start-page: 357 year: 2011 end-page: 364 ident: bib0020 article-title: Strain-rate-dependent failure criteria for composites publication-title: Compos Sci Technol – volume: 255 start-page: 112945 year: 2021 ident: bib0026 article-title: Validation of an efficient finite element analysis approach for simulation of low velocity impact and compression strength after impact response publication-title: Compos Struct – volume: 20 start-page: 125 year: 1995 end-page: 152 ident: bib0033 article-title: A constitutive model for anisotropic damage in fiber-composites publication-title: Mech Mater – volume: 64 start-page: 130 year: 2012 end-page: 135 ident: bib0014 article-title: Damage modelling in woven-fabric CFRP laminates under large-deflection bending publication-title: Comput Mater Sci – volume: 49 start-page: 1919 year: 2012 end-page: 1927 ident: bib0037 article-title: Numerical modeling of ice behavior under high velocity impacts publication-title: Int J Solids Struct – volume: 34 start-page: 25 year: 2003 end-page: 41 ident: bib0003 article-title: Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels publication-title: Compos Part A Appl SciManuf – volume: 173 start-page: 219 year: 2017 end-page: 227 ident: bib0016 article-title: Finite element modeling of damage development in cross-ply composite laminates subjected to low velocity impact publication-title: Compos Struct – volume: 38 start-page: 1278 year: 2000 end-page: 1288 ident: bib0002 article-title: Modeling hail ice impacts and predicting impact damage initiation in composite structures publication-title: AIAA J – volume: 23 start-page: 477 year: 2014 end-page: 486 ident: bib0010 article-title: Experimental investigation into glass fiber/epoxy composite laminates subjected to single and repeated high-velocity impacts of ice publication-title: Iran Polym J – volume: 69 start-page: 937 year: 2009 end-page: 947 ident: bib0012 article-title: Low-velocity impact damage on dispersed stacking sequence laminates. Part II: numerical simulations publication-title: Compos Sci Technol – volume: 47 start-page: 41 year: 2013 end-page: 51 ident: bib0015 article-title: Drilling in carbon/epoxy composites: experimental investigations and finite element implementation publication-title: Compos Part A Appl SciManuf – volume: 8 start-page: 5671 year: 2019 end-page: 5686 ident: bib0005 article-title: Microscopic damage modes and physical mechanisms of CFRP laminates impacted by ice projectile at high velocity publication-title: J Mater Res Technol – volume: 71 start-page: 212 year: 2015 end-page: 226 ident: bib0028 article-title: Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates publication-title: Compos Part A Appl SciManuf – volume: 525–526 start-page: 265 year: 2012 end-page: 268 ident: bib0043 article-title: Numerical simulation of compression-after-impact process of composite laminates publication-title: Key Eng Mater – reference: Field P.R., Hand W., Cappelluti G., McMillan A., Foreman A., Stubbs D., Willows M., Hail threat standardisation - final report. 2008. – volume: vol. 3 start-page: 1187 year: 2006 end-page: 1204 ident: bib0039 article-title: Resistance of adhesively bonded composite lap joints to damage by transverse ice impact publication-title: American society for composites - 21st Technical conference of the American society for composites 2006 – volume: 94 start-page: 2902 year: 2012 end-page: 2913 ident: bib0013 article-title: Modelling damage evolution in composite laminates subjected to low velocity impact publication-title: Compos Struct – volume: 182 start-page: 107626 year: 2020 ident: bib0024 article-title: The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance publication-title: Compos Part B Eng – volume: 56 start-page: 439 year: 1996 end-page: 449 ident: bib0034 article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus publication-title: Compos Sci Technol – volume: 167 start-page: 329 year: 2019 end-page: 341 ident: bib0027 article-title: An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates publication-title: Compos Part B Eng – volume: 114 start-page: 638 year: 2016 end-page: 649 ident: bib0021 article-title: Static and dynamic material properties of CFRP/epoxy laminates publication-title: Constr Build Mater – volume: 78 start-page: 182 year: 2007 end-page: 196 ident: bib0018 article-title: Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading publication-title: Compos Struct – volume: 93 start-page: 2619 year: 2011 end-page: 2627 ident: bib0009 article-title: On the response of two commercially-important CFRP structures to multiple ice impacts publication-title: Compos Struct – reference: Haque B.Z.G.. A progressive composite damage model for unidirectional and woven fabric composites. Materials Science Corporation (MSC) and University of Delaware Center for Composite Materials (UD-CCM)2015;. – volume: 61 start-page: 315 year: 2014 end-page: 323 ident: bib0019 article-title: Progressive damage modeling of plain weave E-glass/phenolic composites publication-title: Compos Part B Eng – volume: 57 start-page: 43 year: 2013 end-page: 54 ident: bib0041 article-title: Experimentally validated strain rate dependent material model for spherical ice impact simulation publication-title: Int J Impact Eng – volume: 47 start-page: 329 year: 1980 end-page: 334 ident: bib0030 article-title: Failure criteria for unidirectional fiber composites publication-title: J Appl Mech – year: 2004 ident: bib0038 publication-title: Development of a hail ice impact model and the dynamic compressive strength properties of ice – volume: 43 start-page: 1134 year: 2012 end-page: 1144 ident: bib0007 article-title: The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice publication-title: Compos Part A Appl SciManuf – year: 2019 ident: bib0023 article-title: New hail impact simulation models on composite laminated wing leading edge publication-title: Aircr Eng Aerosp Technol – volume: 178 start-page: 346 year: 2017 end-page: 361 ident: bib0017 article-title: Progressive failure under high-velocity impact on composite laminates: experiment and phenomenological mesomodeling publication-title: Eng Fract Mech – volume: 201 start-page: 995 year: 2018 end-page: 1003 ident: bib0042 article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates publication-title: Compos Struct – volume: 225 start-page: 106270 year: 2020 ident: bib0006 article-title: Ice vs. steel: ballistic impact of woven carbon/epoxy composites. Part I–deformation and damage behaviour publication-title: Eng Fract Mech – volume: 432 start-page: 102926 year: 2019 ident: bib0011 article-title: Repeated impact of simulated hail ice on glass fibre composite materials publication-title: Wear – volume: 68 start-page: 1839 year: 2001 end-page: 1887 ident: bib0036 article-title: Brittle failure of ice publication-title: Eng Fract Mech – start-page: 1366 year: 1999 ident: bib0001 article-title: Experimental and numerical analysis correlation of hail ice impacting composite structures publication-title: 40th Structures, structural dynamics, and materials conference and exhibit – volume: 141 start-page: 350 year: 2018 end-page: 360 ident: bib0022 article-title: Numerical methodology to analyze the ice impact threat: application to composite structures publication-title: Mater Des – volume: 15 start-page: 10 year: 2007 end-page: 16 ident: bib0025 article-title: Thermal properties and water sorption behaviors of epoxy and bismaleimide composites publication-title: Macromol Res – year: 2012 ident: bib0032 article-title: Continuum damage mechanics – volume: 38 start-page: 1963 year: 1990 end-page: 1976 ident: bib0035 article-title: The brittle compressive fracture of ice publication-title: Acta Metall Mater – volume: 64 start-page: 130 year: 2012 ident: 10.1016/j.ijimpeng.2022.104296_bib0014 article-title: Damage modelling in woven-fabric CFRP laminates under large-deflection bending publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2012.05.036 – volume: 55 start-page: 83 year: 2013 ident: 10.1016/j.ijimpeng.2022.104296_bib0029 article-title: Failure analysis of CFRP laminates subjected to compression after impact: Fe simulation using discrete interface elements publication-title: Compos Part A Appl SciManuf doi: 10.1016/j.compositesa.2013.08.003 – volume: 57 start-page: 43 year: 2013 ident: 10.1016/j.ijimpeng.2022.104296_bib0041 article-title: Experimentally validated strain rate dependent material model for spherical ice impact simulation publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.01.013 – start-page: 1366 year: 1999 ident: 10.1016/j.ijimpeng.2022.104296_bib0001 article-title: Experimental and numerical analysis correlation of hail ice impacting composite structures – volume: 8 start-page: 5671 issue: 6 year: 2019 ident: 10.1016/j.ijimpeng.2022.104296_bib0005 article-title: Microscopic damage modes and physical mechanisms of CFRP laminates impacted by ice projectile at high velocity publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2019.09.035 – volume: 173 start-page: 219 year: 2017 ident: 10.1016/j.ijimpeng.2022.104296_bib0016 article-title: Finite element modeling of damage development in cross-ply composite laminates subjected to low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.04.017 – volume: 225 start-page: 106270 year: 2020 ident: 10.1016/j.ijimpeng.2022.104296_bib0006 article-title: Ice vs. steel: ballistic impact of woven carbon/epoxy composites. Part I–deformation and damage behaviour publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2018.12.003 – volume: 93 start-page: 2619 issue: 10 year: 2011 ident: 10.1016/j.ijimpeng.2022.104296_bib0009 article-title: On the response of two commercially-important CFRP structures to multiple ice impacts publication-title: Compos Struct doi: 10.1016/j.compstruct.2011.04.029 – volume: 23 start-page: 477 year: 2014 ident: 10.1016/j.ijimpeng.2022.104296_bib0010 article-title: Experimental investigation into glass fiber/epoxy composite laminates subjected to single and repeated high-velocity impacts of ice publication-title: Iran Polym J doi: 10.1007/s13726-014-0242-y – year: 2012 ident: 10.1016/j.ijimpeng.2022.104296_bib0032 – year: 2004 ident: 10.1016/j.ijimpeng.2022.104296_bib0038 – volume: 78 start-page: 182 issue: 2 year: 2007 ident: 10.1016/j.ijimpeng.2022.104296_bib0018 article-title: Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading publication-title: Compos Struct doi: 10.1016/j.compstruct.2005.09.001 – volume: 61 start-page: 315 year: 2014 ident: 10.1016/j.ijimpeng.2022.104296_bib0019 article-title: Progressive damage modeling of plain weave E-glass/phenolic composites publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2014.01.037 – volume: 114 start-page: 638 year: 2016 ident: 10.1016/j.ijimpeng.2022.104296_bib0021 article-title: Static and dynamic material properties of CFRP/epoxy laminates publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.04.003 – volume: 141 start-page: 350 year: 2018 ident: 10.1016/j.ijimpeng.2022.104296_bib0022 article-title: Numerical methodology to analyze the ice impact threat: application to composite structures publication-title: Mater Des doi: 10.1016/j.matdes.2017.12.044 – volume: 68 start-page: 1839 issue: 17 year: 2001 ident: 10.1016/j.ijimpeng.2022.104296_bib0036 article-title: Brittle failure of ice publication-title: Eng Fract Mech doi: 10.1016/S0013-7944(01)00037-6 – volume: 201 start-page: 995 year: 2018 ident: 10.1016/j.ijimpeng.2022.104296_bib0042 article-title: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.06.046 – volume: 43 start-page: 1134 issue: 7 year: 2012 ident: 10.1016/j.ijimpeng.2022.104296_bib0007 article-title: The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice publication-title: Compos Part A Appl SciManuf doi: 10.1016/j.compositesa.2012.02.017 – volume: 167 start-page: 329 year: 2019 ident: 10.1016/j.ijimpeng.2022.104296_bib0027 article-title: An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2018.12.043 – volume: 15 start-page: 10 issue: 1 year: 2007 ident: 10.1016/j.ijimpeng.2022.104296_bib0025 article-title: Thermal properties and water sorption behaviors of epoxy and bismaleimide composites publication-title: Macromol Res doi: 10.1007/BF03218746 – volume: 178 start-page: 346 year: 2017 ident: 10.1016/j.ijimpeng.2022.104296_bib0017 article-title: Progressive failure under high-velocity impact on composite laminates: experiment and phenomenological mesomodeling publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.03.019 – ident: 10.1016/j.ijimpeng.2022.104296_bib0031 – volume: 38 start-page: 1963 issue: 10 year: 1990 ident: 10.1016/j.ijimpeng.2022.104296_bib0035 article-title: The brittle compressive fracture of ice publication-title: Acta Metall Mater doi: 10.1016/0956-7151(90)90308-4 – ident: 10.1016/j.ijimpeng.2022.104296_bib0008 – volume: 525–526 start-page: 265 year: 2012 ident: 10.1016/j.ijimpeng.2022.104296_bib0043 article-title: Numerical simulation of compression-after-impact process of composite laminates publication-title: Key Eng Mater doi: 10.4028/www.scientific.net/KEM.525-526.265 – volume: 37 start-page: 177 issue: 2 year: 2010 ident: 10.1016/j.ijimpeng.2022.104296_bib0004 article-title: Damage resistance of single lap adhesive composite joints by transverse ice impact publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.08.005 – volume: 49 start-page: 1919 issue: 14 year: 2012 ident: 10.1016/j.ijimpeng.2022.104296_bib0037 article-title: Numerical modeling of ice behavior under high velocity impacts publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2012.03.038 – volume: 255 start-page: 112945 year: 2021 ident: 10.1016/j.ijimpeng.2022.104296_bib0026 article-title: Validation of an efficient finite element analysis approach for simulation of low velocity impact and compression strength after impact response publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.112945 – volume: 47 start-page: 329 issue: 2 year: 1980 ident: 10.1016/j.ijimpeng.2022.104296_bib0030 article-title: Failure criteria for unidirectional fiber composites publication-title: J Appl Mech doi: 10.1115/1.3153664 – volume: 56 start-page: 439 issue: 4 year: 1996 ident: 10.1016/j.ijimpeng.2022.104296_bib0034 article-title: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus publication-title: Compos Sci Technol doi: 10.1016/0266-3538(96)00005-X – volume: 71 start-page: 357 issue: 3 year: 2011 ident: 10.1016/j.ijimpeng.2022.104296_bib0020 article-title: Strain-rate-dependent failure criteria for composites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2010.11.028 – volume: 71 start-page: 212 year: 2015 ident: 10.1016/j.ijimpeng.2022.104296_bib0028 article-title: Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates publication-title: Compos Part A Appl SciManuf doi: 10.1016/j.compositesa.2015.01.025 – volume: 38 start-page: 1278 issue: 7 year: 2000 ident: 10.1016/j.ijimpeng.2022.104296_bib0002 article-title: Modeling hail ice impacts and predicting impact damage initiation in composite structures publication-title: AIAA J doi: 10.2514/2.1099 – volume: 69 start-page: 937 issue: 7 year: 2009 ident: 10.1016/j.ijimpeng.2022.104296_bib0012 article-title: Low-velocity impact damage on dispersed stacking sequence laminates. Part II: numerical simulations publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2009.02.015 – volume: 20 start-page: 125 issue: 2 year: 1995 ident: 10.1016/j.ijimpeng.2022.104296_bib0033 article-title: A constitutive model for anisotropic damage in fiber-composites publication-title: Mech Mater doi: 10.1016/0167-6636(94)00053-0 – year: 2019 ident: 10.1016/j.ijimpeng.2022.104296_bib0023 article-title: New hail impact simulation models on composite laminated wing leading edge publication-title: Aircr Eng Aerosp Technol doi: 10.1108/AEAT-02-2018-0089 – volume: 34 start-page: 25 issue: 1 year: 2003 ident: 10.1016/j.ijimpeng.2022.104296_bib0003 article-title: Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels publication-title: Compos Part A Appl SciManuf doi: 10.1016/S1359-835X(02)00258-0 – volume: vol. 3 start-page: 1187 year: 2006 ident: 10.1016/j.ijimpeng.2022.104296_bib0039 article-title: Resistance of adhesively bonded composite lap joints to damage by transverse ice impact – volume: 43 start-page: 7820 issue: 25 year: 2006 ident: 10.1016/j.ijimpeng.2022.104296_bib0040 article-title: A phenomenological high strain rate model with failure for ice publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2006.04.005 – volume: 94 start-page: 2902 issue: 9 year: 2012 ident: 10.1016/j.ijimpeng.2022.104296_bib0013 article-title: Modelling damage evolution in composite laminates subjected to low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2012.03.039 – volume: 47 start-page: 41 year: 2013 ident: 10.1016/j.ijimpeng.2022.104296_bib0015 article-title: Drilling in carbon/epoxy composites: experimental investigations and finite element implementation publication-title: Compos Part A Appl SciManuf doi: 10.1016/j.compositesa.2012.11.020 – volume: 432 start-page: 102926 year: 2019 ident: 10.1016/j.ijimpeng.2022.104296_bib0011 article-title: Repeated impact of simulated hail ice on glass fibre composite materials publication-title: Wear doi: 10.1016/j.wear.2019.06.001 – volume: 182 start-page: 107626 year: 2020 ident: 10.1016/j.ijimpeng.2022.104296_bib0024 article-title: The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2019.107626 |
SSID | ssj0017050 |
Score | 2.5126443 |
Snippet | •Different impact schemes including single-point and multi-point impact were carried out.•Three routes including visual analysis, C-Scan analysis and X-ray... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104296 |
SubjectTerms | Damage mechanism Laminate Multi-point sequential impact Multiple ice impacts Single-point repeated impact |
Title | Damage mechanism of composite laminates under multiple ice impacts at high velocity |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2022.104296 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IXvRg_BlBJT14HWNtt25HghLUyAVJuC1t15kRGQTm1b_d99hGMDHh4HFLX7K8vr1-3b7vKyEPgQoN2sA5NjXKEakUTiRTeN1h7lnSEzwxKHB-GwejqXiZ-bMGGdRaGKRVVr2_7Onbbl3dcatsuqsscydQnALWvxlDWpBgqCgXQmKVd793NA90i9l-Z4HBDo7eUwnPu9k8A3Caf8A-kTH83cnQvP-vBWpv0RmekdMKLdJ--UDnpGHzC3Ky5yF4SSaPagE9gS4sanizzYIuU4pEcWRjWQoTnuWIJymqxda0JhBSaBC0lEhuqCoo2hZT5A8ZgOVXZDp8eh-MnOqkBMdwjxWO5cpyX6ecWwRQ1mNJqrineZR60nArI5-pnvGlkYkObWgi2In4SmvNA6MB8V2TZr7M7Q2h2lOKIXXNMi6MlaEG0KdMGBk_0LDzbhG_Tk9sKhtxPM3iM675YvO4TmuMaY3LtLaIu4tblUYaByOiOvvxr5KIodsfiG3_I_aWHONVydi7I81i_WXvAXkUurMtrQ456j-_jsY_r_jaQA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b8IwELYoHdoOVZ8qfXroGkJs5zVWtIi2wAJIbJHtOFVQCQjStb-9dyRBVKrE0DXxSdbZvvsu-e4zIY-eDDTKwFkm0dISiS-s0E_guMPas7gleKyxwbk_8Lpj8TZxJzXSrnphkFZZxv4ipq-jdfnELr1pL9LUHsLmFJD_JgxpQYL5e2RfwPHFawya3xueB8rFrD-0wGgLh2-1CU-b6TQFdJp9QKHIGP7vZKje_1eG2so6nRNyXMJF-lTM6JTUTHZGjrZEBM_J8FnOICjQmcEm3nQ1o_OEIlMc6ViGwoqnGQJKiu1iS1oxCClECFr0SK6ozCnqFlMkEGnA5Rdk3HkZtbtWeVWCpbnDcstwabirEs4NIijjsDiR3FE8TBxfc-OHLpMt7fraj1VgAh1CKeJKpRT3tALId0nq2TwzV4QqR0qG3DXDuNDGDxSgPqmDULuegtK7QdzKPZEudcTxOovPqCKMTaPKrRG6NSrc2iD2xm5RKGnstAgr70e_9kQE4X6H7fU_bB_IQXfU70W918H7DTnENwV975bU8-WXuQMYkqv79Tb7AcyK284 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+mechanism+of+composite+laminates+under+multiple+ice+impacts+at+high+velocity&rft.jtitle=International+journal+of+impact+engineering&rft.au=Zhu%2C+Xinying&rft.au=Fu%2C+Xinqiang&rft.au=Liu%2C+Lulu&rft.au=Xu%2C+Kailong&rft.date=2022-10-01&rft.issn=0734-743X&rft.volume=168&rft.spage=104296&rft_id=info:doi/10.1016%2Fj.ijimpeng.2022.104296&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2022_104296 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |