Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network
The pipeline is a major approach to achieving large-scale hydrogen transportation. Hydrogen damage can deteriorate the material performance of the pipe steel, like ductility and plasticity reduction. Corrosion is dominating damage that impairs a pipeline's bearing capacity and structural reliab...
Saved in:
Published in | International journal of hydrogen energy Vol. 47; no. 7; pp. 4741 - 4758 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
22.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pipeline is a major approach to achieving large-scale hydrogen transportation. Hydrogen damage can deteriorate the material performance of the pipe steel, like ductility and plasticity reduction. Corrosion is dominating damage that impairs a pipeline's bearing capacity and structural reliability. However, previous research barely investigated the effect of hydrogen damage on failure behaviors, residual strength and interacting effect between adjacent corrosions of corroded high-strength pipelines transporting hydrogen. Besides, hardly any burst pressure model considers hydrogen damage. In this paper, several approaches, including the finite element method (FEM), regression analysis, the orthogonal test method, and the artificial neural network method, are applied to fill the gap. First, a series of finite element models with different geometric features and hydrogen damage is established to investigate the effects of hydrogen damage and corrosion on failure behaviors and residual strength. The results show that hydrogen damage can change the corroded pipeline's failure behaviors and reduce the residual strength. Second, based on the simulation results and regression analysis, a new burst model is developed to consider the hydrogen damage and improve the estimation accuracy. Third, based on the genetic algorithm (GA), a GA-BP neural network is established and trained for accurate and efficient residual strength estimation considering hydrogen damage. Furthermore, an orthogonal test is designed and performed to investigate the effects of critical parameters on the burst pressure of the corroded pipeline after hydrogen damage. The results indicate that hydrogen damage and corrosion length have similar contributions to the residual strength. Finally, the simulation results of pipelines with multiple corrosions show that hydrogen damage has a significant impact on the interacting effect between adjacent corrosions. The results obtained are valuable for further integrity management of steel pipelines carrying hydrogen.
•Failure analysis of corroded high-strength pipeline subject to hydrogen damage.•FEM and artificial neural network are used.•The interacting effect between adjacent corrosions is considered.•A new burst model considering hydrogen damage is developed. |
---|---|
AbstractList | The pipeline is a major approach to achieving large-scale hydrogen transportation. Hydrogen damage can deteriorate the material performance of the pipe steel, like ductility and plasticity reduction. Corrosion is dominating damage that impairs a pipeline's bearing capacity and structural reliability. However, previous research barely investigated the effect of hydrogen damage on failure behaviors, residual strength and interacting effect between adjacent corrosions of corroded high-strength pipelines transporting hydrogen. Besides, hardly any burst pressure model considers hydrogen damage. In this paper, several approaches, including the finite element method (FEM), regression analysis, the orthogonal test method, and the artificial neural network method, are applied to fill the gap. First, a series of finite element models with different geometric features and hydrogen damage is established to investigate the effects of hydrogen damage and corrosion on failure behaviors and residual strength. The results show that hydrogen damage can change the corroded pipeline's failure behaviors and reduce the residual strength. Second, based on the simulation results and regression analysis, a new burst model is developed to consider the hydrogen damage and improve the estimation accuracy. Third, based on the genetic algorithm (GA), a GA-BP neural network is established and trained for accurate and efficient residual strength estimation considering hydrogen damage. Furthermore, an orthogonal test is designed and performed to investigate the effects of critical parameters on the burst pressure of the corroded pipeline after hydrogen damage. The results indicate that hydrogen damage and corrosion length have similar contributions to the residual strength. Finally, the simulation results of pipelines with multiple corrosions show that hydrogen damage has a significant impact on the interacting effect between adjacent corrosions. The results obtained are valuable for further integrity management of steel pipelines carrying hydrogen.
•Failure analysis of corroded high-strength pipeline subject to hydrogen damage.•FEM and artificial neural network are used.•The interacting effect between adjacent corrosions is considered.•A new burst model considering hydrogen damage is developed. |
Author | Zhang, Han Tian, Zhigang |
Author_xml | – sequence: 1 givenname: Han orcidid: 0000-0003-1054-3837 surname: Zhang fullname: Zhang, Han – sequence: 2 givenname: Zhigang orcidid: 0000-0002-1546-2924 surname: Tian fullname: Tian, Zhigang email: ztian@ualberta.ca |
BookMark | eNqFkM1OAyEURonRxFp9BcMLzMjPdDokLvyJVRONLnRNGLi0jCM0QDV9ezHVjRtX3-qcm3uO0L4PHhA6paSmhLZnQ-2G1daAh5oRRmtKa9KxPTSh3VxUvOnm-2hCeEsqToU4REcpDYTQOWnEBOWFcuMmAlZejdvkEg4W6xBjMGDwyi1XVcoR_DKv8NqtYXQecNr0A-iMc8DlcAxL8Niod7UE3KtUuODx4uaxOA2-vayunrGHTVRjmfwZ4tsxOrBqTHDys1P0urh5ub6rHp5u768vHyrNKcsVMGKsFXbGiGhm0HHdGiaUbfq-7XvGFG06AVr0SuueN5S3lrfcdg1tuDF2xqeo3Xl1DClFsHId3buKW0mJ_G4nB_nbTn63k5TK0q6A539A7bLKLvgcS6__8YsdDuW5DwdRJu3AazAulm7SBPef4guK55Op |
CitedBy_id | crossref_primary_10_1016_j_matdes_2023_112527 crossref_primary_10_3390_ma17133237 crossref_primary_10_1080_19942060_2024_2302906 crossref_primary_10_1038_s41529_025_00573_y crossref_primary_10_1051_smdo_2023022 crossref_primary_10_1016_j_istruc_2023_05_010 crossref_primary_10_1016_j_ijhydene_2024_11_285 crossref_primary_10_3390_su15097455 crossref_primary_10_1061_JPSEA2_PSENG_1569 crossref_primary_10_3233_JCM_247290 crossref_primary_10_3390_en15228694 crossref_primary_10_1016_j_engfailanal_2023_107722 crossref_primary_10_1016_j_engfailanal_2024_108898 crossref_primary_10_1016_j_ijhydene_2023_04_352 crossref_primary_10_1016_j_ress_2023_109369 crossref_primary_10_1680_jsmic_23_00019 crossref_primary_10_2174_0124055204294716240306065810 crossref_primary_10_1016_j_psep_2023_10_021 crossref_primary_10_1016_j_ijhydene_2024_01_106 crossref_primary_10_1016_j_ijhydene_2024_10_384 crossref_primary_10_1016_j_ijhydene_2023_12_018 crossref_primary_10_3390_pr11061794 crossref_primary_10_1002_cpe_8228 crossref_primary_10_1177_10567895241280369 crossref_primary_10_1016_j_jiec_2023_03_007 crossref_primary_10_1016_j_tust_2023_105389 crossref_primary_10_1108_IJSI_10_2024_0177 crossref_primary_10_1038_s41598_025_86957_1 crossref_primary_10_1080_21681015_2023_2288956 crossref_primary_10_1016_j_iswa_2023_200293 crossref_primary_10_1016_j_ijhydene_2023_08_357 crossref_primary_10_1016_j_ijpvp_2024_105251 crossref_primary_10_1016_j_engappai_2022_105308 crossref_primary_10_1016_j_apenergy_2023_122374 crossref_primary_10_1016_j_prostr_2022_05_043 crossref_primary_10_1016_j_heliyon_2024_e27396 crossref_primary_10_1016_j_ijhydene_2023_06_334 crossref_primary_10_1016_j_ijhydene_2023_09_215 crossref_primary_10_1016_j_energy_2025_135463 crossref_primary_10_1016_j_psep_2024_02_052 |
Cites_doi | 10.1016/j.ijhydene.2020.06.129 10.1016/j.ress.2017.06.025 10.1016/j.engfailanal.2017.06.050 10.1016/j.ijpvp.2012.06.005 10.1016/j.scs.2018.01.021 10.1016/j.advengsoft.2017.05.006 10.1016/j.ijhydene.2019.01.077 10.1016/j.ijhydene.2012.02.009 10.1016/j.ijhydene.2019.06.159 10.1016/j.engfailanal.2019.01.064 10.1016/j.ijhydene.2013.08.118 10.1016/j.engstruct.2018.03.040 10.1016/j.corsci.2013.04.020 10.1016/j.ijhydene.2018.06.064 10.1016/S0921-5093(00)00793-0 10.1016/j.ijpvp.2008.11.011 10.1016/j.corsci.2012.01.028 10.1016/j.ijhydene.2019.02.216 10.3390/met11020373 10.20964/2016.06.6 10.1146/annurev.energy.24.1.227 10.4028/www.scientific.net/AMR.308-310.1016 10.3390/ma12091409 10.1016/j.engfailanal.2011.12.002 10.1007/s10853-018-2291-7 10.1139/cjce-2016-0602 10.1016/j.ijhydene.2014.12.040 |
ContentType | Journal Article |
Copyright | 2021 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2021 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2021.11.082 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 4758 |
ExternalDocumentID | 10_1016_j_ijhydene_2021_11_082 S0360319921044712 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c312t-e20dff9f520945e83c6d29af4bb6bb22a1489ec9baccb34136f363f84143ddf53 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Tue Jul 01 02:02:08 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Fri Feb 23 02:41:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Burst model Interacting corrosions Hydrogen pipeline Hydrogen damage Artificial neural networks Residual strength |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-e20dff9f520945e83c6d29af4bb6bb22a1489ec9baccb34136f363f84143ddf53 |
ORCID | 0000-0002-1546-2924 0000-0003-1054-3837 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2021_11_082 crossref_citationtrail_10_1016_j_ijhydene_2021_11_082 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2021_11_082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-22 |
PublicationDateYYYYMMDD | 2022-01-22 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dadfarnia, Sofronis, Brouwer, Sosa (bib6) 2019; 44 Ogden (bib5) 1999; 24 Zhang, Zhou, Qin (bib14) 2013; 73 Mah, Ho, Bong, Hassim, Liew, Asli (bib3) 2019; 44 Chen, Chen, Wang, Lu, Yang, Zhu (bib20) 2020; 45 Chiodo, Ruggieri (bib42) 2009; 86 Benjamin, Cunha (bib25) 2007 Fekete, Varga (bib41) 2012; 21 Titov, Lun-Fu, Gayvaronskiy, Bubenchikov, Bubenchikov, Lider (bib38) 2019; 12 Kiefner, Vieth (bib30) 1989 Benjamin, Freire, Vieira, Diniz, de Andrade (bib44) 2008 Xu, Li, Choung, Lee (bib21) 2017; 112 Han, Zhang, Zhang (bib23) 2016; 11 Shuai, Shuai, Xu (bib28) 2017; 81 Xie, Tian (bib43) 2018; 38 Taskin, Utsumi, Kato (bib7) 2019; 44 Melaina, Antonia, Penev (bib8) 2013 Nanninga, Levy, Drexler, Condon, Stevenson, Slifka (bib11) 2012; 59 Tiwari, Bose, Chakravartty, Wadekar, Totlani, Arya (bib37) 2000; 286 Uson, Aguarta, Elu, Burkhalter, Hermosilla (bib4) 2008; vol. 1 Ohaeri, Eduok, Szpunar (bib19) 2018; 43 Vijaya Kumar, Karuppanan, Ovinis (bib22) 2021; 11 Wang (bib40) 2017 Yıldırım (bib9) 2011 Zhou, Xiang, Hong (bib16) 2017; 167 Briottet, Batisse, de Dinechin, Langlois, Thiers (bib18) 2012; 37 Mondal, Dhar (bib26) 2017 Capelle, Dmytrakh, Azari, Pluvinage (bib36) 2013; 38 Barrera, Bombac, Chen, Daff, Galindo-Nava, Gong (bib39) 2018; 53 Leis, Stephens (bib33) 1997 (bib32) 2010 Sun, Cheng (bib24) 2018; 165 Elazzizi, Hadj Meliani, Khelil, Pluvinage, Matvienko (bib10) 2015; 40 Chebaro, Zhou (bib31) 2010 Klever, Stewart (bib34) 1995 Council (bib1) 2017 Looney (bib2) 2020 Benjamin, Andrade (bib35) 2003 Li, Yang, Yan, Wang (bib45) 2014 Amaya-Gómez, Sánchez-Silva, Bastidas-Arteaga, Schoefs, Muñoz (bib12) 2019; 98 Zhang, Tian (bib27) 2020 Liu, Mu (bib17) 2011; 308–310 Zhou, Hong, Zhang (bib13) 2012; 96–97 Heidary, Gabriel, Modarres, Groth, Vahdati (bib15) 2018; 9 (bib29) 2012 Amaya-Gómez (10.1016/j.ijhydene.2021.11.082_bib12) 2019; 98 Li (10.1016/j.ijhydene.2021.11.082_bib45) 2014 Uson (10.1016/j.ijhydene.2021.11.082_bib4) 2008; vol. 1 Vijaya Kumar (10.1016/j.ijhydene.2021.11.082_bib22) 2021; 11 Chiodo (10.1016/j.ijhydene.2021.11.082_bib42) 2009; 86 Benjamin (10.1016/j.ijhydene.2021.11.082_bib44) 2008 Wang (10.1016/j.ijhydene.2021.11.082_bib40) 2017 Taskin (10.1016/j.ijhydene.2021.11.082_bib7) 2019; 44 Elazzizi (10.1016/j.ijhydene.2021.11.082_bib10) 2015; 40 Heidary (10.1016/j.ijhydene.2021.11.082_bib15) 2018; 9 Melaina (10.1016/j.ijhydene.2021.11.082_bib8) 2013 Zhou (10.1016/j.ijhydene.2021.11.082_bib13) 2012; 96–97 Capelle (10.1016/j.ijhydene.2021.11.082_bib36) 2013; 38 (10.1016/j.ijhydene.2021.11.082_bib32) 2010 Fekete (10.1016/j.ijhydene.2021.11.082_bib41) 2012; 21 Dadfarnia (10.1016/j.ijhydene.2021.11.082_bib6) 2019; 44 Mondal (10.1016/j.ijhydene.2021.11.082_bib26) 2017 Council (10.1016/j.ijhydene.2021.11.082_bib1) 2017 Chen (10.1016/j.ijhydene.2021.11.082_bib20) 2020; 45 Klever (10.1016/j.ijhydene.2021.11.082_bib34) 1995 Tiwari (10.1016/j.ijhydene.2021.11.082_bib37) 2000; 286 Liu (10.1016/j.ijhydene.2021.11.082_bib17) 2011; 308–310 Zhang (10.1016/j.ijhydene.2021.11.082_bib14) 2013; 73 Xie (10.1016/j.ijhydene.2021.11.082_bib43) 2018; 38 Xu (10.1016/j.ijhydene.2021.11.082_bib21) 2017; 112 Leis (10.1016/j.ijhydene.2021.11.082_bib33) 1997 Ohaeri (10.1016/j.ijhydene.2021.11.082_bib19) 2018; 43 (10.1016/j.ijhydene.2021.11.082_bib29) 2012 Benjamin (10.1016/j.ijhydene.2021.11.082_bib25) 2007 Mah (10.1016/j.ijhydene.2021.11.082_bib3) 2019; 44 Ogden (10.1016/j.ijhydene.2021.11.082_bib5) 1999; 24 Benjamin (10.1016/j.ijhydene.2021.11.082_bib35) 2003 Nanninga (10.1016/j.ijhydene.2021.11.082_bib11) 2012; 59 Kiefner (10.1016/j.ijhydene.2021.11.082_bib30) 1989 Chebaro (10.1016/j.ijhydene.2021.11.082_bib31) 2010 Looney (10.1016/j.ijhydene.2021.11.082_bib2) 2020 Barrera (10.1016/j.ijhydene.2021.11.082_bib39) 2018; 53 Sun (10.1016/j.ijhydene.2021.11.082_bib24) 2018; 165 Yıldırım (10.1016/j.ijhydene.2021.11.082_bib9) 2011 Shuai (10.1016/j.ijhydene.2021.11.082_bib28) 2017; 81 Briottet (10.1016/j.ijhydene.2021.11.082_bib18) 2012; 37 Zhang (10.1016/j.ijhydene.2021.11.082_bib27) 2020 Zhou (10.1016/j.ijhydene.2021.11.082_bib16) 2017; 167 Titov (10.1016/j.ijhydene.2021.11.082_bib38) 2019; 12 Han (10.1016/j.ijhydene.2021.11.082_bib23) 2016; 11 |
References_xml | – volume: 73 start-page: 309 year: 2013 end-page: 320 ident: bib14 article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data publication-title: Corrosion Sci – volume: 11 start-page: 5046 year: 2016 end-page: 5062 ident: bib23 article-title: Failure pressure analysis of the pipe with inner corrosion defects by FEM publication-title: Int J Electrochem Sci – year: 2012 ident: bib29 article-title: Manual for determining the remaining strength of corroded pipelines – year: 2020 ident: bib2 article-title: Statistical review of world energy – volume: 38 start-page: 14356 year: 2013 end-page: 14363 ident: bib36 article-title: Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52 publication-title: Int J Hydrogen Energy – year: 1995 ident: bib34 article-title: New developments in burst strength predictions for locally corroded pipelines – year: 2017 ident: bib26 article-title: Interaction of multiple corrosion defects on burst pressure of pipelines publication-title: Can J Civ Eng – volume: 286 start-page: 269 year: 2000 end-page: 281 ident: bib37 article-title: A study of internal hydrogen embrittlement of steels publication-title: Mater Sci Eng, A – volume: 86 start-page: 164 year: 2009 end-page: 176 ident: bib42 article-title: Failure assessments of corroded pipelines with axial defects using stress-based criteria: numerical studies and verification analyses publication-title: Int J Pres Ves Pip – volume: 9 year: 2018 ident: bib15 article-title: A review of data-driven oil and gas pipeline pitting corrosion growth models applicable for prognostic and health management publication-title: Int J Prognostics Health Manag – volume: 37 start-page: 9423 year: 2012 end-page: 9430 ident: bib18 article-title: Recommendations on X80 steel for the design of hydrogen gas transmission pipelines publication-title: Int J Hydrogen Energy – volume: 11 start-page: 373 year: 2021 ident: bib22 article-title: Failure pressure prediction of high toughness pipeline with a single corrosion defect subjected to combined loadings using artificial neural network (ANN) publication-title: Metals – volume: 53 start-page: 10593 year: 2018 end-page: 10594 ident: bib39 article-title: Correction to: understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum publication-title: J Mater Sci – volume: 165 start-page: 278 year: 2018 end-page: 286 ident: bib24 article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines publication-title: Eng Struct – volume: 24 start-page: 227 year: 1999 end-page: 279 ident: bib5 article-title: Prospects for building a hydrogen energy infrastructure publication-title: Annu Rev Energy Environ – year: 2003 ident: bib35 article-title: Modified method for the assessment of the remaining strength of corroded pipelines – volume: 21 start-page: 21 year: 2012 end-page: 30 ident: bib41 article-title: The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipelines publication-title: Eng Fail Anal – year: 2017 ident: bib1 article-title: Study how hydrogen empowers the energy transition – year: 2007 ident: bib25 article-title: New method for the prediction of the failure pressure of interacting corrosion defects – volume: 96–97 start-page: 68 year: 2012 end-page: 77 ident: bib13 article-title: Impact of dependent stochastic defect growth on system reliability of corroding pipelines publication-title: Int J Pres Ves Pip – volume: 112 start-page: 255 year: 2017 end-page: 266 ident: bib21 article-title: Corroded pipeline failure analysis using artificial neural network scheme publication-title: Adv Eng Software – volume: 12 start-page: 1409 year: 2019 ident: bib38 article-title: Hydrogen accumulation and distribution in pipeline steel in intensified corrosion conditions publication-title: Materials – start-page: 403 year: 2008 end-page: 417 ident: bib44 article-title: Burst tests on pipeline containing interacting corrosion defects – start-page: 511 year: 2010 end-page: 517 ident: bib31 article-title: A limit state function for pipelines containing long corrosion defects – year: 2017 ident: bib40 article-title: Study on the hydrogen embrittlement susceptibility of X100 pipeline steel – volume: 43 start-page: 14584 year: 2018 end-page: 14617 ident: bib19 article-title: Hydrogen related degradation in pipeline steel: a review publication-title: Int J Hydrogen Energy – start-page: 673156 year: 2014 ident: bib45 article-title: The application and research of the GA-BP neural network algorithm in the MBR membrane fouling publication-title: Abstr Appl Anal – year: 2010 ident: bib32 article-title: Corroded pipelines. Høvik, Norway – year: 1989 ident: bib30 article-title: A modified criterion for evaluating the remaining strength of corroded pipe – volume: 45 start-page: 23142 year: 2020 end-page: 23150 ident: bib20 article-title: Failure pressure analysis of hydrogen storage pipeline under low temperature and high pressure publication-title: Int J Hydrogen Energy – volume: vol. 1 start-page: 206 year: 2008 end-page: 209 ident: bib4 article-title: Green hydrogen from wind and solar: Design publication-title: Construction and one year operation of the ITHER project – year: 1997 ident: bib33 article-title: An alternative approach to assess the integrity of corroded line pipe - Part I: current status – volume: 44 start-page: 5661 year: 2019 end-page: 5675 ident: bib3 article-title: Review of hydrogen economy in Malaysia and its way forward publication-title: Int J Hydrogen Energy – start-page: 1 year: 2020 end-page: 6 ident: bib27 article-title: Reliability assessment of corroded pipeline considering multiple defects interaction based on an artificial neural network method. 2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM) – year: 2011 ident: bib9 article-title: NATURALHY (the potential of existing natural gas network for hydrogen delivery) project objectives and some results – volume: 40 start-page: 2295 year: 2015 end-page: 2302 ident: bib10 article-title: The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement publication-title: Int J Hydrogen Energy – volume: 38 start-page: 746 year: 2018 end-page: 757 ident: bib43 article-title: Risk-based pipeline re-assessment optimization considering corrosion defects publication-title: Sustain Cities Soc – year: 2013 ident: bib8 article-title: Blending hydrogen into natural gas pipeline networks: a review of key issues – volume: 44 start-page: 10808 year: 2019 end-page: 10822 ident: bib6 article-title: Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen publication-title: Int J Hydrogen Energy – volume: 81 start-page: 216 year: 2017 end-page: 233 ident: bib28 article-title: Probabilistic analysis of corroded pipelines based on a new failure pressure model publication-title: Eng Fail Anal – volume: 98 start-page: 190 year: 2019 end-page: 214 ident: bib12 article-title: Reliability assessments of corroded pipelines based on internal pressure – a review publication-title: Eng Fail Anal – volume: 44 start-page: 23503 year: 2019 end-page: 23512 ident: bib7 article-title: Observation of ultrasonic signal and measurement of H2 concentration from the exterior of a metal pipe publication-title: Int J Hydrogen Energy – volume: 167 start-page: 428 year: 2017 end-page: 438 ident: bib16 article-title: Sensitivity of system reliability of corroding pipelines to modeling of stochastic growth of corrosion defects publication-title: Reliab Eng Syst Saf – volume: 308–310 start-page: 1016 year: 2011 end-page: 1022 ident: bib17 article-title: Research on aircraft LY12CZ aluminum alloy corrosion damage prediction based on ARIMA model publication-title: Adv Mater Res – volume: 59 start-page: 1 year: 2012 end-page: 9 ident: bib11 article-title: Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments publication-title: Corrosion Sci – volume: 45 start-page: 23142 year: 2020 ident: 10.1016/j.ijhydene.2021.11.082_bib20 article-title: Failure pressure analysis of hydrogen storage pipeline under low temperature and high pressure publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.06.129 – start-page: 511 year: 2010 ident: 10.1016/j.ijhydene.2021.11.082_bib31 – volume: 9 year: 2018 ident: 10.1016/j.ijhydene.2021.11.082_bib15 article-title: A review of data-driven oil and gas pipeline pitting corrosion growth models applicable for prognostic and health management publication-title: Int J Prognostics Health Manag – volume: 167 start-page: 428 year: 2017 ident: 10.1016/j.ijhydene.2021.11.082_bib16 article-title: Sensitivity of system reliability of corroding pipelines to modeling of stochastic growth of corrosion defects publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.06.025 – year: 2011 ident: 10.1016/j.ijhydene.2021.11.082_bib9 – volume: 81 start-page: 216 year: 2017 ident: 10.1016/j.ijhydene.2021.11.082_bib28 article-title: Probabilistic analysis of corroded pipelines based on a new failure pressure model publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2017.06.050 – volume: 96–97 start-page: 68 year: 2012 ident: 10.1016/j.ijhydene.2021.11.082_bib13 article-title: Impact of dependent stochastic defect growth on system reliability of corroding pipelines publication-title: Int J Pres Ves Pip doi: 10.1016/j.ijpvp.2012.06.005 – volume: 38 start-page: 746 year: 2018 ident: 10.1016/j.ijhydene.2021.11.082_bib43 article-title: Risk-based pipeline re-assessment optimization considering corrosion defects publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2018.01.021 – volume: 112 start-page: 255 year: 2017 ident: 10.1016/j.ijhydene.2021.11.082_bib21 article-title: Corroded pipeline failure analysis using artificial neural network scheme publication-title: Adv Eng Software doi: 10.1016/j.advengsoft.2017.05.006 – volume: 44 start-page: 5661 year: 2019 ident: 10.1016/j.ijhydene.2021.11.082_bib3 article-title: Review of hydrogen economy in Malaysia and its way forward publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.077 – volume: 37 start-page: 9423 year: 2012 ident: 10.1016/j.ijhydene.2021.11.082_bib18 article-title: Recommendations on X80 steel for the design of hydrogen gas transmission pipelines publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.009 – volume: 44 start-page: 23503 year: 2019 ident: 10.1016/j.ijhydene.2021.11.082_bib7 article-title: Observation of ultrasonic signal and measurement of H2 concentration from the exterior of a metal pipe publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.06.159 – volume: 98 start-page: 190 year: 2019 ident: 10.1016/j.ijhydene.2021.11.082_bib12 article-title: Reliability assessments of corroded pipelines based on internal pressure – a review publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2019.01.064 – year: 2012 ident: 10.1016/j.ijhydene.2021.11.082_bib29 – volume: 38 start-page: 14356 year: 2013 ident: 10.1016/j.ijhydene.2021.11.082_bib36 article-title: Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.08.118 – year: 1989 ident: 10.1016/j.ijhydene.2021.11.082_bib30 – year: 1995 ident: 10.1016/j.ijhydene.2021.11.082_bib34 – volume: 165 start-page: 278 year: 2018 ident: 10.1016/j.ijhydene.2021.11.082_bib24 article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.03.040 – year: 2010 ident: 10.1016/j.ijhydene.2021.11.082_bib32 – volume: 73 start-page: 309 year: 2013 ident: 10.1016/j.ijhydene.2021.11.082_bib14 article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data publication-title: Corrosion Sci doi: 10.1016/j.corsci.2013.04.020 – volume: 43 start-page: 14584 year: 2018 ident: 10.1016/j.ijhydene.2021.11.082_bib19 article-title: Hydrogen related degradation in pipeline steel: a review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.06.064 – year: 2013 ident: 10.1016/j.ijhydene.2021.11.082_bib8 – volume: 286 start-page: 269 year: 2000 ident: 10.1016/j.ijhydene.2021.11.082_bib37 article-title: A study of internal hydrogen embrittlement of steels publication-title: Mater Sci Eng, A doi: 10.1016/S0921-5093(00)00793-0 – year: 2007 ident: 10.1016/j.ijhydene.2021.11.082_bib25 – year: 2017 ident: 10.1016/j.ijhydene.2021.11.082_bib40 – volume: 86 start-page: 164 year: 2009 ident: 10.1016/j.ijhydene.2021.11.082_bib42 article-title: Failure assessments of corroded pipelines with axial defects using stress-based criteria: numerical studies and verification analyses publication-title: Int J Pres Ves Pip doi: 10.1016/j.ijpvp.2008.11.011 – volume: 59 start-page: 1 year: 2012 ident: 10.1016/j.ijhydene.2021.11.082_bib11 article-title: Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments publication-title: Corrosion Sci doi: 10.1016/j.corsci.2012.01.028 – volume: 44 start-page: 10808 year: 2019 ident: 10.1016/j.ijhydene.2021.11.082_bib6 article-title: Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.216 – start-page: 673156 year: 2014 ident: 10.1016/j.ijhydene.2021.11.082_bib45 article-title: The application and research of the GA-BP neural network algorithm in the MBR membrane fouling publication-title: Abstr Appl Anal – year: 2017 ident: 10.1016/j.ijhydene.2021.11.082_bib1 – start-page: 403 year: 2008 ident: 10.1016/j.ijhydene.2021.11.082_bib44 – volume: 11 start-page: 373 year: 2021 ident: 10.1016/j.ijhydene.2021.11.082_bib22 article-title: Failure pressure prediction of high toughness pipeline with a single corrosion defect subjected to combined loadings using artificial neural network (ANN) publication-title: Metals doi: 10.3390/met11020373 – volume: vol. 1 start-page: 206 year: 2008 ident: 10.1016/j.ijhydene.2021.11.082_bib4 article-title: Green hydrogen from wind and solar: Design – volume: 11 start-page: 5046 year: 2016 ident: 10.1016/j.ijhydene.2021.11.082_bib23 article-title: Failure pressure analysis of the pipe with inner corrosion defects by FEM publication-title: Int J Electrochem Sci doi: 10.20964/2016.06.6 – volume: 24 start-page: 227 year: 1999 ident: 10.1016/j.ijhydene.2021.11.082_bib5 article-title: Prospects for building a hydrogen energy infrastructure publication-title: Annu Rev Energy Environ doi: 10.1146/annurev.energy.24.1.227 – volume: 308–310 start-page: 1016 year: 2011 ident: 10.1016/j.ijhydene.2021.11.082_bib17 article-title: Research on aircraft LY12CZ aluminum alloy corrosion damage prediction based on ARIMA model publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.308-310.1016 – year: 1997 ident: 10.1016/j.ijhydene.2021.11.082_bib33 – year: 2003 ident: 10.1016/j.ijhydene.2021.11.082_bib35 – volume: 12 start-page: 1409 year: 2019 ident: 10.1016/j.ijhydene.2021.11.082_bib38 article-title: Hydrogen accumulation and distribution in pipeline steel in intensified corrosion conditions publication-title: Materials doi: 10.3390/ma12091409 – volume: 21 start-page: 21 year: 2012 ident: 10.1016/j.ijhydene.2021.11.082_bib41 article-title: The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipelines publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2011.12.002 – year: 2020 ident: 10.1016/j.ijhydene.2021.11.082_bib2 – volume: 53 start-page: 10593 year: 2018 ident: 10.1016/j.ijhydene.2021.11.082_bib39 article-title: Correction to: understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum publication-title: J Mater Sci doi: 10.1007/s10853-018-2291-7 – year: 2017 ident: 10.1016/j.ijhydene.2021.11.082_bib26 article-title: Interaction of multiple corrosion defects on burst pressure of pipelines publication-title: Can J Civ Eng doi: 10.1139/cjce-2016-0602 – volume: 40 start-page: 2295 year: 2015 ident: 10.1016/j.ijhydene.2021.11.082_bib10 article-title: The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.12.040 – start-page: 1 year: 2020 ident: 10.1016/j.ijhydene.2021.11.082_bib27 |
SSID | ssj0017049 |
Score | 2.5714724 |
Snippet | The pipeline is a major approach to achieving large-scale hydrogen transportation. Hydrogen damage can deteriorate the material performance of the pipe steel,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4741 |
SubjectTerms | Artificial neural networks Burst model Hydrogen damage Hydrogen pipeline Interacting corrosions Residual strength |
Title | Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network |
URI | https://dx.doi.org/10.1016/j.ijhydene.2021.11.082 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn_gse_C6bbPZpNljLa1VUQQteAv71BRNSk0PXvztzrSJVBB68BQIO2GZTL6ZCfN9S8gFYH4UGy-Z7LQ7TOiww5TCWMYA8jqJhELu8N19PByJm-foeY30ai4MjlVW2L_A9DlaV3dalTdbkyxrPQL2IgVHQtMiAGIRh-GKUd78-hnzCDpVCQyLGa5eYgmPm9n49RM-b5TL5EFzrubJ_05QS0lnsEO2q2qRdhcb2iVrLt8jW0sagvukHKgMR8upquRFaOEptJQAjM5SVCNmyAfJX8pXOskmSD939GOm8f8LLQsKW5sWEEXUqnfAFoppzdIip4P-HTzT0qsuu3ygqHsJO8kXU-MHZDToP_WGrDpKgZkw4CVzvG29lx6HXkTkktDElkvlhdax1pwr6IqkM1IrYzQmttiHcegTAeWUtT4KD8l6XuTuiFCTJAaP54h0DH6XQtq2dDY0YaJEFKjkmES1_1JT6YzjcRdvaT1QNk5rv6fod2hCUvD7MWn92E0WShsrLWT9etJfMZNCOlhhe_IP21OyyZEE0Q4Y52dkvZzO3DmUJqVuzGOvQTa617fD-2_QO-Rm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADD5VMAAD4ine3MB6bXO5pLkREKVAi5AAiS26J6SCpCrpwMJvx24TVCQkBtboHFmO77Md2Z8JOQHMj2LjJZOddocJHXaYUujL6EBeJ5FQODs8uI17j-L6KXpqkPN6FgbbKivsn2H6FK2rJ63Kmq1RlrXuAXtxBEdC0SIAYgGHFwVcX1xj0Pz87vMIOlUODKcZHp8bEx42s-HLB9xv5MvkQXNK58l_j1BzUae7RlardJGezjRaJw2Xb5CVORLBTVJ2VYa95VRV_CK08BRqSkBGZynSETMcCMmfyxc6ykY4f-7o-0TjDxhaFhRUGxfgRtSqNwAXinHN0iKn3YsBvNPSy1N2dkeR-BI0yWdt41vksXvxcN5j1S4FZsKAl8zxtvVeeux6EZFLQhNbLpUXWsdac66gLJLOSK2M0RjZYh_GoU8E5FPW-ijcJgt5kbsdQk2SGNzPEekYDC-FtG3pbGjCRIkoUMkuiWr7paYiGsd9F69p3VE2TGu7p2h3qEJSsPsuaX3LjWZUG39KyPrzpD-cJoV48Ifs3j9kj8lS72HQT_tXtzf7ZJnjREQ7YJwfkIVyPHGHkKeU-mjqh18bGOX0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+analysis+of+corroded+high-strength+pipeline+subject+to+hydrogen+damage+based+on+FEM+and+GA-BP+neural+network&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhang%2C+Han&rft.au=Tian%2C+Zhigang&rft.date=2022-01-22&rft.issn=0360-3199&rft.volume=47&rft.issue=7&rft.spage=4741&rft.epage=4758&rft_id=info:doi/10.1016%2Fj.ijhydene.2021.11.082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2021_11_082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |