Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network

The pipeline is a major approach to achieving large-scale hydrogen transportation. Hydrogen damage can deteriorate the material performance of the pipe steel, like ductility and plasticity reduction. Corrosion is dominating damage that impairs a pipeline's bearing capacity and structural reliab...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 47; no. 7; pp. 4741 - 4758
Main Authors Zhang, Han, Tian, Zhigang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 22.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The pipeline is a major approach to achieving large-scale hydrogen transportation. Hydrogen damage can deteriorate the material performance of the pipe steel, like ductility and plasticity reduction. Corrosion is dominating damage that impairs a pipeline's bearing capacity and structural reliability. However, previous research barely investigated the effect of hydrogen damage on failure behaviors, residual strength and interacting effect between adjacent corrosions of corroded high-strength pipelines transporting hydrogen. Besides, hardly any burst pressure model considers hydrogen damage. In this paper, several approaches, including the finite element method (FEM), regression analysis, the orthogonal test method, and the artificial neural network method, are applied to fill the gap. First, a series of finite element models with different geometric features and hydrogen damage is established to investigate the effects of hydrogen damage and corrosion on failure behaviors and residual strength. The results show that hydrogen damage can change the corroded pipeline's failure behaviors and reduce the residual strength. Second, based on the simulation results and regression analysis, a new burst model is developed to consider the hydrogen damage and improve the estimation accuracy. Third, based on the genetic algorithm (GA), a GA-BP neural network is established and trained for accurate and efficient residual strength estimation considering hydrogen damage. Furthermore, an orthogonal test is designed and performed to investigate the effects of critical parameters on the burst pressure of the corroded pipeline after hydrogen damage. The results indicate that hydrogen damage and corrosion length have similar contributions to the residual strength. Finally, the simulation results of pipelines with multiple corrosions show that hydrogen damage has a significant impact on the interacting effect between adjacent corrosions. The results obtained are valuable for further integrity management of steel pipelines carrying hydrogen. •Failure analysis of corroded high-strength pipeline subject to hydrogen damage.•FEM and artificial neural network are used.•The interacting effect between adjacent corrosions is considered.•A new burst model considering hydrogen damage is developed.
AbstractList The pipeline is a major approach to achieving large-scale hydrogen transportation. Hydrogen damage can deteriorate the material performance of the pipe steel, like ductility and plasticity reduction. Corrosion is dominating damage that impairs a pipeline's bearing capacity and structural reliability. However, previous research barely investigated the effect of hydrogen damage on failure behaviors, residual strength and interacting effect between adjacent corrosions of corroded high-strength pipelines transporting hydrogen. Besides, hardly any burst pressure model considers hydrogen damage. In this paper, several approaches, including the finite element method (FEM), regression analysis, the orthogonal test method, and the artificial neural network method, are applied to fill the gap. First, a series of finite element models with different geometric features and hydrogen damage is established to investigate the effects of hydrogen damage and corrosion on failure behaviors and residual strength. The results show that hydrogen damage can change the corroded pipeline's failure behaviors and reduce the residual strength. Second, based on the simulation results and regression analysis, a new burst model is developed to consider the hydrogen damage and improve the estimation accuracy. Third, based on the genetic algorithm (GA), a GA-BP neural network is established and trained for accurate and efficient residual strength estimation considering hydrogen damage. Furthermore, an orthogonal test is designed and performed to investigate the effects of critical parameters on the burst pressure of the corroded pipeline after hydrogen damage. The results indicate that hydrogen damage and corrosion length have similar contributions to the residual strength. Finally, the simulation results of pipelines with multiple corrosions show that hydrogen damage has a significant impact on the interacting effect between adjacent corrosions. The results obtained are valuable for further integrity management of steel pipelines carrying hydrogen. •Failure analysis of corroded high-strength pipeline subject to hydrogen damage.•FEM and artificial neural network are used.•The interacting effect between adjacent corrosions is considered.•A new burst model considering hydrogen damage is developed.
Author Zhang, Han
Tian, Zhigang
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0003-1054-3837
  surname: Zhang
  fullname: Zhang, Han
– sequence: 2
  givenname: Zhigang
  orcidid: 0000-0002-1546-2924
  surname: Tian
  fullname: Tian, Zhigang
  email: ztian@ualberta.ca
BookMark eNqFkM1OAyEURonRxFp9BcMLzMjPdDokLvyJVRONLnRNGLi0jCM0QDV9ezHVjRtX3-qcm3uO0L4PHhA6paSmhLZnQ-2G1daAh5oRRmtKa9KxPTSh3VxUvOnm-2hCeEsqToU4REcpDYTQOWnEBOWFcuMmAlZejdvkEg4W6xBjMGDwyi1XVcoR_DKv8NqtYXQecNr0A-iMc8DlcAxL8Niod7UE3KtUuODx4uaxOA2-vayunrGHTVRjmfwZ4tsxOrBqTHDys1P0urh5ub6rHp5u768vHyrNKcsVMGKsFXbGiGhm0HHdGiaUbfq-7XvGFG06AVr0SuueN5S3lrfcdg1tuDF2xqeo3Xl1DClFsHId3buKW0mJ_G4nB_nbTn63k5TK0q6A539A7bLKLvgcS6__8YsdDuW5DwdRJu3AazAulm7SBPef4guK55Op
CitedBy_id crossref_primary_10_1016_j_matdes_2023_112527
crossref_primary_10_3390_ma17133237
crossref_primary_10_1080_19942060_2024_2302906
crossref_primary_10_1038_s41529_025_00573_y
crossref_primary_10_1051_smdo_2023022
crossref_primary_10_1016_j_istruc_2023_05_010
crossref_primary_10_1016_j_ijhydene_2024_11_285
crossref_primary_10_3390_su15097455
crossref_primary_10_1061_JPSEA2_PSENG_1569
crossref_primary_10_3233_JCM_247290
crossref_primary_10_3390_en15228694
crossref_primary_10_1016_j_engfailanal_2023_107722
crossref_primary_10_1016_j_engfailanal_2024_108898
crossref_primary_10_1016_j_ijhydene_2023_04_352
crossref_primary_10_1016_j_ress_2023_109369
crossref_primary_10_1680_jsmic_23_00019
crossref_primary_10_2174_0124055204294716240306065810
crossref_primary_10_1016_j_psep_2023_10_021
crossref_primary_10_1016_j_ijhydene_2024_01_106
crossref_primary_10_1016_j_ijhydene_2024_10_384
crossref_primary_10_1016_j_ijhydene_2023_12_018
crossref_primary_10_3390_pr11061794
crossref_primary_10_1002_cpe_8228
crossref_primary_10_1177_10567895241280369
crossref_primary_10_1016_j_jiec_2023_03_007
crossref_primary_10_1016_j_tust_2023_105389
crossref_primary_10_1108_IJSI_10_2024_0177
crossref_primary_10_1038_s41598_025_86957_1
crossref_primary_10_1080_21681015_2023_2288956
crossref_primary_10_1016_j_iswa_2023_200293
crossref_primary_10_1016_j_ijhydene_2023_08_357
crossref_primary_10_1016_j_ijpvp_2024_105251
crossref_primary_10_1016_j_engappai_2022_105308
crossref_primary_10_1016_j_apenergy_2023_122374
crossref_primary_10_1016_j_prostr_2022_05_043
crossref_primary_10_1016_j_heliyon_2024_e27396
crossref_primary_10_1016_j_ijhydene_2023_06_334
crossref_primary_10_1016_j_ijhydene_2023_09_215
crossref_primary_10_1016_j_energy_2025_135463
crossref_primary_10_1016_j_psep_2024_02_052
Cites_doi 10.1016/j.ijhydene.2020.06.129
10.1016/j.ress.2017.06.025
10.1016/j.engfailanal.2017.06.050
10.1016/j.ijpvp.2012.06.005
10.1016/j.scs.2018.01.021
10.1016/j.advengsoft.2017.05.006
10.1016/j.ijhydene.2019.01.077
10.1016/j.ijhydene.2012.02.009
10.1016/j.ijhydene.2019.06.159
10.1016/j.engfailanal.2019.01.064
10.1016/j.ijhydene.2013.08.118
10.1016/j.engstruct.2018.03.040
10.1016/j.corsci.2013.04.020
10.1016/j.ijhydene.2018.06.064
10.1016/S0921-5093(00)00793-0
10.1016/j.ijpvp.2008.11.011
10.1016/j.corsci.2012.01.028
10.1016/j.ijhydene.2019.02.216
10.3390/met11020373
10.20964/2016.06.6
10.1146/annurev.energy.24.1.227
10.4028/www.scientific.net/AMR.308-310.1016
10.3390/ma12091409
10.1016/j.engfailanal.2011.12.002
10.1007/s10853-018-2291-7
10.1139/cjce-2016-0602
10.1016/j.ijhydene.2014.12.040
ContentType Journal Article
Copyright 2021 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2021 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2021.11.082
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 4758
ExternalDocumentID 10_1016_j_ijhydene_2021_11_082
S0360319921044712
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c312t-e20dff9f520945e83c6d29af4bb6bb22a1489ec9baccb34136f363f84143ddf53
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Tue Jul 01 02:02:08 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Fri Feb 23 02:41:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Burst model
Interacting corrosions
Hydrogen pipeline
Hydrogen damage
Artificial neural networks
Residual strength
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-e20dff9f520945e83c6d29af4bb6bb22a1489ec9baccb34136f363f84143ddf53
ORCID 0000-0002-1546-2924
0000-0003-1054-3837
PageCount 18
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2021_11_082
crossref_citationtrail_10_1016_j_ijhydene_2021_11_082
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2021_11_082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-22
PublicationDateYYYYMMDD 2022-01-22
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-22
  day: 22
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dadfarnia, Sofronis, Brouwer, Sosa (bib6) 2019; 44
Ogden (bib5) 1999; 24
Zhang, Zhou, Qin (bib14) 2013; 73
Mah, Ho, Bong, Hassim, Liew, Asli (bib3) 2019; 44
Chen, Chen, Wang, Lu, Yang, Zhu (bib20) 2020; 45
Chiodo, Ruggieri (bib42) 2009; 86
Benjamin, Cunha (bib25) 2007
Fekete, Varga (bib41) 2012; 21
Titov, Lun-Fu, Gayvaronskiy, Bubenchikov, Bubenchikov, Lider (bib38) 2019; 12
Kiefner, Vieth (bib30) 1989
Benjamin, Freire, Vieira, Diniz, de Andrade (bib44) 2008
Xu, Li, Choung, Lee (bib21) 2017; 112
Han, Zhang, Zhang (bib23) 2016; 11
Shuai, Shuai, Xu (bib28) 2017; 81
Xie, Tian (bib43) 2018; 38
Taskin, Utsumi, Kato (bib7) 2019; 44
Melaina, Antonia, Penev (bib8) 2013
Nanninga, Levy, Drexler, Condon, Stevenson, Slifka (bib11) 2012; 59
Tiwari, Bose, Chakravartty, Wadekar, Totlani, Arya (bib37) 2000; 286
Uson, Aguarta, Elu, Burkhalter, Hermosilla (bib4) 2008; vol. 1
Ohaeri, Eduok, Szpunar (bib19) 2018; 43
Vijaya Kumar, Karuppanan, Ovinis (bib22) 2021; 11
Wang (bib40) 2017
Yıldırım (bib9) 2011
Zhou, Xiang, Hong (bib16) 2017; 167
Briottet, Batisse, de Dinechin, Langlois, Thiers (bib18) 2012; 37
Mondal, Dhar (bib26) 2017
Capelle, Dmytrakh, Azari, Pluvinage (bib36) 2013; 38
Barrera, Bombac, Chen, Daff, Galindo-Nava, Gong (bib39) 2018; 53
Leis, Stephens (bib33) 1997
(bib32) 2010
Sun, Cheng (bib24) 2018; 165
Elazzizi, Hadj Meliani, Khelil, Pluvinage, Matvienko (bib10) 2015; 40
Chebaro, Zhou (bib31) 2010
Klever, Stewart (bib34) 1995
Council (bib1) 2017
Looney (bib2) 2020
Benjamin, Andrade (bib35) 2003
Li, Yang, Yan, Wang (bib45) 2014
Amaya-Gómez, Sánchez-Silva, Bastidas-Arteaga, Schoefs, Muñoz (bib12) 2019; 98
Zhang, Tian (bib27) 2020
Liu, Mu (bib17) 2011; 308–310
Zhou, Hong, Zhang (bib13) 2012; 96–97
Heidary, Gabriel, Modarres, Groth, Vahdati (bib15) 2018; 9
(bib29) 2012
Amaya-Gómez (10.1016/j.ijhydene.2021.11.082_bib12) 2019; 98
Li (10.1016/j.ijhydene.2021.11.082_bib45) 2014
Uson (10.1016/j.ijhydene.2021.11.082_bib4) 2008; vol. 1
Vijaya Kumar (10.1016/j.ijhydene.2021.11.082_bib22) 2021; 11
Chiodo (10.1016/j.ijhydene.2021.11.082_bib42) 2009; 86
Benjamin (10.1016/j.ijhydene.2021.11.082_bib44) 2008
Wang (10.1016/j.ijhydene.2021.11.082_bib40) 2017
Taskin (10.1016/j.ijhydene.2021.11.082_bib7) 2019; 44
Elazzizi (10.1016/j.ijhydene.2021.11.082_bib10) 2015; 40
Heidary (10.1016/j.ijhydene.2021.11.082_bib15) 2018; 9
Melaina (10.1016/j.ijhydene.2021.11.082_bib8) 2013
Zhou (10.1016/j.ijhydene.2021.11.082_bib13) 2012; 96–97
Capelle (10.1016/j.ijhydene.2021.11.082_bib36) 2013; 38
(10.1016/j.ijhydene.2021.11.082_bib32) 2010
Fekete (10.1016/j.ijhydene.2021.11.082_bib41) 2012; 21
Dadfarnia (10.1016/j.ijhydene.2021.11.082_bib6) 2019; 44
Mondal (10.1016/j.ijhydene.2021.11.082_bib26) 2017
Council (10.1016/j.ijhydene.2021.11.082_bib1) 2017
Chen (10.1016/j.ijhydene.2021.11.082_bib20) 2020; 45
Klever (10.1016/j.ijhydene.2021.11.082_bib34) 1995
Tiwari (10.1016/j.ijhydene.2021.11.082_bib37) 2000; 286
Liu (10.1016/j.ijhydene.2021.11.082_bib17) 2011; 308–310
Zhang (10.1016/j.ijhydene.2021.11.082_bib14) 2013; 73
Xie (10.1016/j.ijhydene.2021.11.082_bib43) 2018; 38
Xu (10.1016/j.ijhydene.2021.11.082_bib21) 2017; 112
Leis (10.1016/j.ijhydene.2021.11.082_bib33) 1997
Ohaeri (10.1016/j.ijhydene.2021.11.082_bib19) 2018; 43
(10.1016/j.ijhydene.2021.11.082_bib29) 2012
Benjamin (10.1016/j.ijhydene.2021.11.082_bib25) 2007
Mah (10.1016/j.ijhydene.2021.11.082_bib3) 2019; 44
Ogden (10.1016/j.ijhydene.2021.11.082_bib5) 1999; 24
Benjamin (10.1016/j.ijhydene.2021.11.082_bib35) 2003
Nanninga (10.1016/j.ijhydene.2021.11.082_bib11) 2012; 59
Kiefner (10.1016/j.ijhydene.2021.11.082_bib30) 1989
Chebaro (10.1016/j.ijhydene.2021.11.082_bib31) 2010
Looney (10.1016/j.ijhydene.2021.11.082_bib2) 2020
Barrera (10.1016/j.ijhydene.2021.11.082_bib39) 2018; 53
Sun (10.1016/j.ijhydene.2021.11.082_bib24) 2018; 165
Yıldırım (10.1016/j.ijhydene.2021.11.082_bib9) 2011
Shuai (10.1016/j.ijhydene.2021.11.082_bib28) 2017; 81
Briottet (10.1016/j.ijhydene.2021.11.082_bib18) 2012; 37
Zhang (10.1016/j.ijhydene.2021.11.082_bib27) 2020
Zhou (10.1016/j.ijhydene.2021.11.082_bib16) 2017; 167
Titov (10.1016/j.ijhydene.2021.11.082_bib38) 2019; 12
Han (10.1016/j.ijhydene.2021.11.082_bib23) 2016; 11
References_xml – volume: 73
  start-page: 309
  year: 2013
  end-page: 320
  ident: bib14
  article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data
  publication-title: Corrosion Sci
– volume: 11
  start-page: 5046
  year: 2016
  end-page: 5062
  ident: bib23
  article-title: Failure pressure analysis of the pipe with inner corrosion defects by FEM
  publication-title: Int J Electrochem Sci
– year: 2012
  ident: bib29
  article-title: Manual for determining the remaining strength of corroded pipelines
– year: 2020
  ident: bib2
  article-title: Statistical review of world energy
– volume: 38
  start-page: 14356
  year: 2013
  end-page: 14363
  ident: bib36
  article-title: Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52
  publication-title: Int J Hydrogen Energy
– year: 1995
  ident: bib34
  article-title: New developments in burst strength predictions for locally corroded pipelines
– year: 2017
  ident: bib26
  article-title: Interaction of multiple corrosion defects on burst pressure of pipelines
  publication-title: Can J Civ Eng
– volume: 286
  start-page: 269
  year: 2000
  end-page: 281
  ident: bib37
  article-title: A study of internal hydrogen embrittlement of steels
  publication-title: Mater Sci Eng, A
– volume: 86
  start-page: 164
  year: 2009
  end-page: 176
  ident: bib42
  article-title: Failure assessments of corroded pipelines with axial defects using stress-based criteria: numerical studies and verification analyses
  publication-title: Int J Pres Ves Pip
– volume: 9
  year: 2018
  ident: bib15
  article-title: A review of data-driven oil and gas pipeline pitting corrosion growth models applicable for prognostic and health management
  publication-title: Int J Prognostics Health Manag
– volume: 37
  start-page: 9423
  year: 2012
  end-page: 9430
  ident: bib18
  article-title: Recommendations on X80 steel for the design of hydrogen gas transmission pipelines
  publication-title: Int J Hydrogen Energy
– volume: 11
  start-page: 373
  year: 2021
  ident: bib22
  article-title: Failure pressure prediction of high toughness pipeline with a single corrosion defect subjected to combined loadings using artificial neural network (ANN)
  publication-title: Metals
– volume: 53
  start-page: 10593
  year: 2018
  end-page: 10594
  ident: bib39
  article-title: Correction to: understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum
  publication-title: J Mater Sci
– volume: 165
  start-page: 278
  year: 2018
  end-page: 286
  ident: bib24
  article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines
  publication-title: Eng Struct
– volume: 24
  start-page: 227
  year: 1999
  end-page: 279
  ident: bib5
  article-title: Prospects for building a hydrogen energy infrastructure
  publication-title: Annu Rev Energy Environ
– year: 2003
  ident: bib35
  article-title: Modified method for the assessment of the remaining strength of corroded pipelines
– volume: 21
  start-page: 21
  year: 2012
  end-page: 30
  ident: bib41
  article-title: The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipelines
  publication-title: Eng Fail Anal
– year: 2017
  ident: bib1
  article-title: Study how hydrogen empowers the energy transition
– year: 2007
  ident: bib25
  article-title: New method for the prediction of the failure pressure of interacting corrosion defects
– volume: 96–97
  start-page: 68
  year: 2012
  end-page: 77
  ident: bib13
  article-title: Impact of dependent stochastic defect growth on system reliability of corroding pipelines
  publication-title: Int J Pres Ves Pip
– volume: 112
  start-page: 255
  year: 2017
  end-page: 266
  ident: bib21
  article-title: Corroded pipeline failure analysis using artificial neural network scheme
  publication-title: Adv Eng Software
– volume: 12
  start-page: 1409
  year: 2019
  ident: bib38
  article-title: Hydrogen accumulation and distribution in pipeline steel in intensified corrosion conditions
  publication-title: Materials
– start-page: 403
  year: 2008
  end-page: 417
  ident: bib44
  article-title: Burst tests on pipeline containing interacting corrosion defects
– start-page: 511
  year: 2010
  end-page: 517
  ident: bib31
  article-title: A limit state function for pipelines containing long corrosion defects
– year: 2017
  ident: bib40
  article-title: Study on the hydrogen embrittlement susceptibility of X100 pipeline steel
– volume: 43
  start-page: 14584
  year: 2018
  end-page: 14617
  ident: bib19
  article-title: Hydrogen related degradation in pipeline steel: a review
  publication-title: Int J Hydrogen Energy
– start-page: 673156
  year: 2014
  ident: bib45
  article-title: The application and research of the GA-BP neural network algorithm in the MBR membrane fouling
  publication-title: Abstr Appl Anal
– year: 2010
  ident: bib32
  article-title: Corroded pipelines. Høvik, Norway
– year: 1989
  ident: bib30
  article-title: A modified criterion for evaluating the remaining strength of corroded pipe
– volume: 45
  start-page: 23142
  year: 2020
  end-page: 23150
  ident: bib20
  article-title: Failure pressure analysis of hydrogen storage pipeline under low temperature and high pressure
  publication-title: Int J Hydrogen Energy
– volume: vol. 1
  start-page: 206
  year: 2008
  end-page: 209
  ident: bib4
  article-title: Green hydrogen from wind and solar: Design
  publication-title: Construction and one year operation of the ITHER project
– year: 1997
  ident: bib33
  article-title: An alternative approach to assess the integrity of corroded line pipe - Part I: current status
– volume: 44
  start-page: 5661
  year: 2019
  end-page: 5675
  ident: bib3
  article-title: Review of hydrogen economy in Malaysia and its way forward
  publication-title: Int J Hydrogen Energy
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib27
  article-title: Reliability assessment of corroded pipeline considering multiple defects interaction based on an artificial neural network method. 2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM)
– year: 2011
  ident: bib9
  article-title: NATURALHY (the potential of existing natural gas network for hydrogen delivery) project objectives and some results
– volume: 40
  start-page: 2295
  year: 2015
  end-page: 2302
  ident: bib10
  article-title: The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 746
  year: 2018
  end-page: 757
  ident: bib43
  article-title: Risk-based pipeline re-assessment optimization considering corrosion defects
  publication-title: Sustain Cities Soc
– year: 2013
  ident: bib8
  article-title: Blending hydrogen into natural gas pipeline networks: a review of key issues
– volume: 44
  start-page: 10808
  year: 2019
  end-page: 10822
  ident: bib6
  article-title: Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen
  publication-title: Int J Hydrogen Energy
– volume: 81
  start-page: 216
  year: 2017
  end-page: 233
  ident: bib28
  article-title: Probabilistic analysis of corroded pipelines based on a new failure pressure model
  publication-title: Eng Fail Anal
– volume: 98
  start-page: 190
  year: 2019
  end-page: 214
  ident: bib12
  article-title: Reliability assessments of corroded pipelines based on internal pressure – a review
  publication-title: Eng Fail Anal
– volume: 44
  start-page: 23503
  year: 2019
  end-page: 23512
  ident: bib7
  article-title: Observation of ultrasonic signal and measurement of H2 concentration from the exterior of a metal pipe
  publication-title: Int J Hydrogen Energy
– volume: 167
  start-page: 428
  year: 2017
  end-page: 438
  ident: bib16
  article-title: Sensitivity of system reliability of corroding pipelines to modeling of stochastic growth of corrosion defects
  publication-title: Reliab Eng Syst Saf
– volume: 308–310
  start-page: 1016
  year: 2011
  end-page: 1022
  ident: bib17
  article-title: Research on aircraft LY12CZ aluminum alloy corrosion damage prediction based on ARIMA model
  publication-title: Adv Mater Res
– volume: 59
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib11
  article-title: Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments
  publication-title: Corrosion Sci
– volume: 45
  start-page: 23142
  year: 2020
  ident: 10.1016/j.ijhydene.2021.11.082_bib20
  article-title: Failure pressure analysis of hydrogen storage pipeline under low temperature and high pressure
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.06.129
– start-page: 511
  year: 2010
  ident: 10.1016/j.ijhydene.2021.11.082_bib31
– volume: 9
  year: 2018
  ident: 10.1016/j.ijhydene.2021.11.082_bib15
  article-title: A review of data-driven oil and gas pipeline pitting corrosion growth models applicable for prognostic and health management
  publication-title: Int J Prognostics Health Manag
– volume: 167
  start-page: 428
  year: 2017
  ident: 10.1016/j.ijhydene.2021.11.082_bib16
  article-title: Sensitivity of system reliability of corroding pipelines to modeling of stochastic growth of corrosion defects
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.06.025
– year: 2011
  ident: 10.1016/j.ijhydene.2021.11.082_bib9
– volume: 81
  start-page: 216
  year: 2017
  ident: 10.1016/j.ijhydene.2021.11.082_bib28
  article-title: Probabilistic analysis of corroded pipelines based on a new failure pressure model
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2017.06.050
– volume: 96–97
  start-page: 68
  year: 2012
  ident: 10.1016/j.ijhydene.2021.11.082_bib13
  article-title: Impact of dependent stochastic defect growth on system reliability of corroding pipelines
  publication-title: Int J Pres Ves Pip
  doi: 10.1016/j.ijpvp.2012.06.005
– volume: 38
  start-page: 746
  year: 2018
  ident: 10.1016/j.ijhydene.2021.11.082_bib43
  article-title: Risk-based pipeline re-assessment optimization considering corrosion defects
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2018.01.021
– volume: 112
  start-page: 255
  year: 2017
  ident: 10.1016/j.ijhydene.2021.11.082_bib21
  article-title: Corroded pipeline failure analysis using artificial neural network scheme
  publication-title: Adv Eng Software
  doi: 10.1016/j.advengsoft.2017.05.006
– volume: 44
  start-page: 5661
  year: 2019
  ident: 10.1016/j.ijhydene.2021.11.082_bib3
  article-title: Review of hydrogen economy in Malaysia and its way forward
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.077
– volume: 37
  start-page: 9423
  year: 2012
  ident: 10.1016/j.ijhydene.2021.11.082_bib18
  article-title: Recommendations on X80 steel for the design of hydrogen gas transmission pipelines
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.009
– volume: 44
  start-page: 23503
  year: 2019
  ident: 10.1016/j.ijhydene.2021.11.082_bib7
  article-title: Observation of ultrasonic signal and measurement of H2 concentration from the exterior of a metal pipe
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.06.159
– volume: 98
  start-page: 190
  year: 2019
  ident: 10.1016/j.ijhydene.2021.11.082_bib12
  article-title: Reliability assessments of corroded pipelines based on internal pressure – a review
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2019.01.064
– year: 2012
  ident: 10.1016/j.ijhydene.2021.11.082_bib29
– volume: 38
  start-page: 14356
  year: 2013
  ident: 10.1016/j.ijhydene.2021.11.082_bib36
  article-title: Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.08.118
– year: 1989
  ident: 10.1016/j.ijhydene.2021.11.082_bib30
– year: 1995
  ident: 10.1016/j.ijhydene.2021.11.082_bib34
– volume: 165
  start-page: 278
  year: 2018
  ident: 10.1016/j.ijhydene.2021.11.082_bib24
  article-title: Assessment by finite element modeling of the interaction of multiple corrosion defects and the effect on failure pressure of corroded pipelines
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.03.040
– year: 2010
  ident: 10.1016/j.ijhydene.2021.11.082_bib32
– volume: 73
  start-page: 309
  year: 2013
  ident: 10.1016/j.ijhydene.2021.11.082_bib14
  article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2013.04.020
– volume: 43
  start-page: 14584
  year: 2018
  ident: 10.1016/j.ijhydene.2021.11.082_bib19
  article-title: Hydrogen related degradation in pipeline steel: a review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.064
– year: 2013
  ident: 10.1016/j.ijhydene.2021.11.082_bib8
– volume: 286
  start-page: 269
  year: 2000
  ident: 10.1016/j.ijhydene.2021.11.082_bib37
  article-title: A study of internal hydrogen embrittlement of steels
  publication-title: Mater Sci Eng, A
  doi: 10.1016/S0921-5093(00)00793-0
– year: 2007
  ident: 10.1016/j.ijhydene.2021.11.082_bib25
– year: 2017
  ident: 10.1016/j.ijhydene.2021.11.082_bib40
– volume: 86
  start-page: 164
  year: 2009
  ident: 10.1016/j.ijhydene.2021.11.082_bib42
  article-title: Failure assessments of corroded pipelines with axial defects using stress-based criteria: numerical studies and verification analyses
  publication-title: Int J Pres Ves Pip
  doi: 10.1016/j.ijpvp.2008.11.011
– volume: 59
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijhydene.2021.11.082_bib11
  article-title: Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2012.01.028
– volume: 44
  start-page: 10808
  year: 2019
  ident: 10.1016/j.ijhydene.2021.11.082_bib6
  article-title: Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.216
– start-page: 673156
  year: 2014
  ident: 10.1016/j.ijhydene.2021.11.082_bib45
  article-title: The application and research of the GA-BP neural network algorithm in the MBR membrane fouling
  publication-title: Abstr Appl Anal
– year: 2017
  ident: 10.1016/j.ijhydene.2021.11.082_bib1
– start-page: 403
  year: 2008
  ident: 10.1016/j.ijhydene.2021.11.082_bib44
– volume: 11
  start-page: 373
  year: 2021
  ident: 10.1016/j.ijhydene.2021.11.082_bib22
  article-title: Failure pressure prediction of high toughness pipeline with a single corrosion defect subjected to combined loadings using artificial neural network (ANN)
  publication-title: Metals
  doi: 10.3390/met11020373
– volume: vol. 1
  start-page: 206
  year: 2008
  ident: 10.1016/j.ijhydene.2021.11.082_bib4
  article-title: Green hydrogen from wind and solar: Design
– volume: 11
  start-page: 5046
  year: 2016
  ident: 10.1016/j.ijhydene.2021.11.082_bib23
  article-title: Failure pressure analysis of the pipe with inner corrosion defects by FEM
  publication-title: Int J Electrochem Sci
  doi: 10.20964/2016.06.6
– volume: 24
  start-page: 227
  year: 1999
  ident: 10.1016/j.ijhydene.2021.11.082_bib5
  article-title: Prospects for building a hydrogen energy infrastructure
  publication-title: Annu Rev Energy Environ
  doi: 10.1146/annurev.energy.24.1.227
– volume: 308–310
  start-page: 1016
  year: 2011
  ident: 10.1016/j.ijhydene.2021.11.082_bib17
  article-title: Research on aircraft LY12CZ aluminum alloy corrosion damage prediction based on ARIMA model
  publication-title: Adv Mater Res
  doi: 10.4028/www.scientific.net/AMR.308-310.1016
– year: 1997
  ident: 10.1016/j.ijhydene.2021.11.082_bib33
– year: 2003
  ident: 10.1016/j.ijhydene.2021.11.082_bib35
– volume: 12
  start-page: 1409
  year: 2019
  ident: 10.1016/j.ijhydene.2021.11.082_bib38
  article-title: Hydrogen accumulation and distribution in pipeline steel in intensified corrosion conditions
  publication-title: Materials
  doi: 10.3390/ma12091409
– volume: 21
  start-page: 21
  year: 2012
  ident: 10.1016/j.ijhydene.2021.11.082_bib41
  article-title: The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipelines
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2011.12.002
– year: 2020
  ident: 10.1016/j.ijhydene.2021.11.082_bib2
– volume: 53
  start-page: 10593
  year: 2018
  ident: 10.1016/j.ijhydene.2021.11.082_bib39
  article-title: Correction to: understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum
  publication-title: J Mater Sci
  doi: 10.1007/s10853-018-2291-7
– year: 2017
  ident: 10.1016/j.ijhydene.2021.11.082_bib26
  article-title: Interaction of multiple corrosion defects on burst pressure of pipelines
  publication-title: Can J Civ Eng
  doi: 10.1139/cjce-2016-0602
– volume: 40
  start-page: 2295
  year: 2015
  ident: 10.1016/j.ijhydene.2021.11.082_bib10
  article-title: The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.12.040
– start-page: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2021.11.082_bib27
SSID ssj0017049
Score 2.5714724
Snippet The pipeline is a major approach to achieving large-scale hydrogen transportation. Hydrogen damage can deteriorate the material performance of the pipe steel,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 4741
SubjectTerms Artificial neural networks
Burst model
Hydrogen damage
Hydrogen pipeline
Interacting corrosions
Residual strength
Title Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network
URI https://dx.doi.org/10.1016/j.ijhydene.2021.11.082
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn_gse_C6bbPZpNljLa1VUQQteAv71BRNSk0PXvztzrSJVBB68BQIO2GZTL6ZCfN9S8gFYH4UGy-Z7LQ7TOiww5TCWMYA8jqJhELu8N19PByJm-foeY30ai4MjlVW2L_A9DlaV3dalTdbkyxrPQL2IgVHQtMiAGIRh-GKUd78-hnzCDpVCQyLGa5eYgmPm9n49RM-b5TL5EFzrubJ_05QS0lnsEO2q2qRdhcb2iVrLt8jW0sagvukHKgMR8upquRFaOEptJQAjM5SVCNmyAfJX8pXOskmSD939GOm8f8LLQsKW5sWEEXUqnfAFoppzdIip4P-HTzT0qsuu3ygqHsJO8kXU-MHZDToP_WGrDpKgZkw4CVzvG29lx6HXkTkktDElkvlhdax1pwr6IqkM1IrYzQmttiHcegTAeWUtT4KD8l6XuTuiFCTJAaP54h0DH6XQtq2dDY0YaJEFKjkmES1_1JT6YzjcRdvaT1QNk5rv6fod2hCUvD7MWn92E0WShsrLWT9etJfMZNCOlhhe_IP21OyyZEE0Q4Y52dkvZzO3DmUJqVuzGOvQTa617fD-2_QO-Rm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADD5VMAAD4ine3MB6bXO5pLkREKVAi5AAiS26J6SCpCrpwMJvx24TVCQkBtboHFmO77Md2Z8JOQHMj2LjJZOddocJHXaYUujL6EBeJ5FQODs8uI17j-L6KXpqkPN6FgbbKivsn2H6FK2rJ63Kmq1RlrXuAXtxBEdC0SIAYgGHFwVcX1xj0Pz87vMIOlUODKcZHp8bEx42s-HLB9xv5MvkQXNK58l_j1BzUae7RlardJGezjRaJw2Xb5CVORLBTVJ2VYa95VRV_CK08BRqSkBGZynSETMcCMmfyxc6ykY4f-7o-0TjDxhaFhRUGxfgRtSqNwAXinHN0iKn3YsBvNPSy1N2dkeR-BI0yWdt41vksXvxcN5j1S4FZsKAl8zxtvVeeux6EZFLQhNbLpUXWsdac66gLJLOSK2M0RjZYh_GoU8E5FPW-ijcJgt5kbsdQk2SGNzPEekYDC-FtG3pbGjCRIkoUMkuiWr7paYiGsd9F69p3VE2TGu7p2h3qEJSsPsuaX3LjWZUG39KyPrzpD-cJoV48Ifs3j9kj8lS72HQT_tXtzf7ZJnjREQ7YJwfkIVyPHGHkKeU-mjqh18bGOX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+analysis+of+corroded+high-strength+pipeline+subject+to+hydrogen+damage+based+on+FEM+and+GA-BP+neural+network&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhang%2C+Han&rft.au=Tian%2C+Zhigang&rft.date=2022-01-22&rft.issn=0360-3199&rft.volume=47&rft.issue=7&rft.spage=4741&rft.epage=4758&rft_id=info:doi/10.1016%2Fj.ijhydene.2021.11.082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2021_11_082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon