BAYESIAN NON-HOMOGENEOUS HIDDEN MARKOV MODEL WITH VARIABLE SELECTION FOR INVESTIGATING DRIVERS OF SEIZURE RISK CYCLING
A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, traditional approaches to seizure forecasting and risk assessment in epilepsy rely heavily on raw seizure frequencies, which are a stochastic measurement of seizure risk. We consider a Bayesian non-homogen...
Saved in:
Published in | The annals of applied statistics Vol. 17; no. 1; p. 333 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2023
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, traditional approaches to seizure forecasting and risk assessment in epilepsy rely heavily on raw seizure frequencies, which are a stochastic measurement of seizure risk. We consider a Bayesian non-homogeneous hidden Markov model for unsupervised clustering of zero-inflated seizure count data. The proposed model allows for a probabilistic estimate of the sequence of seizure risk states at the individual level. It also offers significant improvement over prior approaches by incorporating a variable selection prior for the identification of clinical covariates that drive seizure risk changes and accommodating highly granular data. For inference, we implement an efficient sampler that employs stochastic search and data augmentation techniques. We evaluate model performance on simulated seizure count data. We then demonstrate the clinical utility of the proposed model by analyzing daily seizure count data from 133 patients with Dravet syndrome collected through the
system, a patient-reported electronic seizure diary. We report on the dynamics of seizure risk cycling, including validation of several known pharmacologic relationships. We also uncover novel findings characterizing the presence and volatility of risk states in Dravet syndrome, which may directly inform counseling to reduce the unpredictability of seizures for patients with this devastating cause of epilepsy. |
---|---|
AbstractList | A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, traditional approaches to seizure forecasting and risk assessment in epilepsy rely heavily on raw seizure frequencies, which are a stochastic measurement of seizure risk. We consider a Bayesian non-homogeneous hidden Markov model for unsupervised clustering of zero-inflated seizure count data. The proposed model allows for a probabilistic estimate of the sequence of seizure risk states at the individual level. It also offers significant improvement over prior approaches by incorporating a variable selection prior for the identification of clinical covariates that drive seizure risk changes and accommodating highly granular data. For inference, we implement an efficient sampler that employs stochastic search and data augmentation techniques. We evaluate model performance on simulated seizure count data. We then demonstrate the clinical utility of the proposed model by analyzing daily seizure count data from 133 patients with Dravet syndrome collected through the
system, a patient-reported electronic seizure diary. We report on the dynamics of seizure risk cycling, including validation of several known pharmacologic relationships. We also uncover novel findings characterizing the presence and volatility of risk states in Dravet syndrome, which may directly inform counseling to reduce the unpredictability of seizures for patients with this devastating cause of epilepsy. |
Author | Rao, Vikram R Haneef, Zulfi Chiang, Sharon Wang, Emily T Vannucci, Marina Moss, Robert |
Author_xml | – sequence: 1 givenname: Emily T surname: Wang fullname: Wang, Emily T organization: Rice University – sequence: 2 givenname: Sharon surname: Chiang fullname: Chiang, Sharon organization: University of California, San Francisco – sequence: 3 givenname: Zulfi surname: Haneef fullname: Haneef, Zulfi organization: Baylor College of Medicine – sequence: 4 givenname: Vikram R surname: Rao fullname: Rao, Vikram R organization: University of California, San Francisco – sequence: 5 givenname: Robert surname: Moss fullname: Moss, Robert organization: SeizureTracker LLC – sequence: 6 givenname: Marina surname: Vannucci fullname: Vannucci, Marina organization: Rice University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38486612$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kLtOwzAART0U0QdM7Mg_EPAzSUc3cROrqS0laVBZKjtxJBB9qClI_D2VgOkM9-gOZwpGh-PBA_CA0RMmmD0TEtijHXBI0QhM8JySIMQ8GoPpMLwjxFnM8C0Y05jFYYjJBHwtxFZWSmiojQ5yszaZ1NJsKpirNJUarkW5Mg1cm1QW8EXVOWxEqcSikLCShUxqZTRcmhIq3ciqVpmolc5gWqpGlhU0y6umXjelhKWqVjDZJsV1vwM3vf0Y_P0fZ2CzlHWSB4XJVCKKoKWYXIKu6zieO-Q7y3zfcRt7GvWEto7OI06cYz3FlLuw5e4qIsuZ7yIUImqpZ6wlM_D4-3v6dHvf7U7nt709f-_-A5Afy9xTjw |
CitedBy_id | crossref_primary_10_1093_brain_awae240 crossref_primary_10_1111_jfr3_12942 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1214/22-aoas1630 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 38486612 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R25 NS070680 – fundername: NLM NIH HHS grantid: T15 LM007093 |
GroupedDBID | 123 23M 2AX 6J9 AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ABZEH ACDIW ACGFO ACHJO ACMTB ACTMH ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CS3 DQDLB DSRWC EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HQ6 HVGLF IPSME J9A JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 P2P PUASD RBU RNS RPE SA0 SJN TN5 WHG WS9 |
ID | FETCH-LOGICAL-c312t-ddd519b0eda4efd5a8e37f23cb39752bb4f3135b6c5b5190a54ed70603a3e44c2 |
ISSN | 1932-6157 |
IngestDate | Tue Jun 10 08:58:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Count data Epilepsy Markov chain Monte Carlo Dravet syndrome Zero-inflation Hidden Markov Models Seizure risk Bayesian inference |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-ddd519b0eda4efd5a8e37f23cb39752bb4f3135b6c5b5190a54ed70603a3e44c2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10939012 |
PMID | 38486612 |
ParticipantIDs | pubmed_primary_38486612 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The annals of applied statistics |
PublicationTitleAlternate | Ann Appl Stat |
PublicationYear | 2023 |
SSID | ssj0054841 |
Score | 2.3273447 |
Snippet | A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, traditional approaches to seizure forecasting and risk... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 333 |
Title | BAYESIAN NON-HOMOGENEOUS HIDDEN MARKOV MODEL WITH VARIABLE SELECTION FOR INVESTIGATING DRIVERS OF SEIZURE RISK CYCLING |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38486612 |
Volume | 17 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF45rVSlh6rvd7WH3hAt3uWVI7FxobFBMhgluUS7sChpEidKnB76U_prO8su4Dqt-rggxK4QZj5m5xvPfIvQe5fSyoOVweSU16btVpbJ3Zqb1N0pK1g-SM2aKt_EjRb2531nfzD4vla1dLPiH8pvv-wr-R-rwjWwq-yS_QfLdjeFC3AO9oUjWBiOf2Xj3eAgzOIgMRJwiFE6S2UhWrrIjCgej8PEmAXzvbQwZuk4nAJVzyOjCOZxsDsNjSychk39iAE00IiTIszy-FOQy-TVeB4XsvMgncC0-FDWRczjbM8YHYymrQDVlx5lrNNgZjqklV1KSgC6z9crnxI26ZS-MPv4pM1XH7OrviIgYkshGrnIw5sz1Vms_oxqErvFyekVO9eljjpjQWhfsqWdLMSMQFmVMHXnhb1baFMulSqhjFuungxt2c1CTHbBriGqtNZngZ0uzxurU9_2IQYhfx7d0N1uh7bQFjAQuaWqzAOpNR5oXrMnavdLdOcnPNPHtSfaRvfau2ywliZ6yR-iB5p24EBh6BEaiOVjdH_WafZeP0FfWzThDTRhhSas0IQbNGGJJtyiCXdowoAm_BOasEYTTidYowlLNGGNpqdoMQnzUWTqXTnMkg7JyqyqCqJ-bomK2aKuHOYL6tWElhxCW4dwbtd0SB3ulg6HiRZzbFFJjSbKqLDtkjxDd5YXS_ECYZ8yiwqyU_leCYEkZ57tlhwYR82BttPyJXquXtrRpZJeOWpf56vfjrxG2z3m3qC7NXwB4i0Ejiv-rrHhD93fWg4 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BAYESIAN+NON-HOMOGENEOUS+HIDDEN+MARKOV+MODEL+WITH+VARIABLE+SELECTION+FOR+INVESTIGATING+DRIVERS+OF+SEIZURE+RISK+CYCLING&rft.jtitle=The+annals+of+applied+statistics&rft.au=Wang%2C+Emily+T&rft.au=Chiang%2C+Sharon&rft.au=Haneef%2C+Zulfi&rft.au=Rao%2C+Vikram+R&rft.date=2023-03-01&rft.issn=1932-6157&rft.volume=17&rft.issue=1&rft.spage=333&rft_id=info:doi/10.1214%2F22-aoas1630&rft_id=info%3Apmid%2F38486612&rft_id=info%3Apmid%2F38486612&rft.externalDocID=38486612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon |