BAYESIAN NON-HOMOGENEOUS HIDDEN MARKOV MODEL WITH VARIABLE SELECTION FOR INVESTIGATING DRIVERS OF SEIZURE RISK CYCLING

A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, traditional approaches to seizure forecasting and risk assessment in epilepsy rely heavily on raw seizure frequencies, which are a stochastic measurement of seizure risk. We consider a Bayesian non-homogen...

Full description

Saved in:
Bibliographic Details
Published inThe annals of applied statistics Vol. 17; no. 1; p. 333
Main Authors Wang, Emily T, Chiang, Sharon, Haneef, Zulfi, Rao, Vikram R, Moss, Robert, Vannucci, Marina
Format Journal Article
LanguageEnglish
Published United States 01.03.2023
Subjects
Online AccessGet more information

Cover

Loading…
Abstract A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, traditional approaches to seizure forecasting and risk assessment in epilepsy rely heavily on raw seizure frequencies, which are a stochastic measurement of seizure risk. We consider a Bayesian non-homogeneous hidden Markov model for unsupervised clustering of zero-inflated seizure count data. The proposed model allows for a probabilistic estimate of the sequence of seizure risk states at the individual level. It also offers significant improvement over prior approaches by incorporating a variable selection prior for the identification of clinical covariates that drive seizure risk changes and accommodating highly granular data. For inference, we implement an efficient sampler that employs stochastic search and data augmentation techniques. We evaluate model performance on simulated seizure count data. We then demonstrate the clinical utility of the proposed model by analyzing daily seizure count data from 133 patients with Dravet syndrome collected through the system, a patient-reported electronic seizure diary. We report on the dynamics of seizure risk cycling, including validation of several known pharmacologic relationships. We also uncover novel findings characterizing the presence and volatility of risk states in Dravet syndrome, which may directly inform counseling to reduce the unpredictability of seizures for patients with this devastating cause of epilepsy.
AbstractList A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, traditional approaches to seizure forecasting and risk assessment in epilepsy rely heavily on raw seizure frequencies, which are a stochastic measurement of seizure risk. We consider a Bayesian non-homogeneous hidden Markov model for unsupervised clustering of zero-inflated seizure count data. The proposed model allows for a probabilistic estimate of the sequence of seizure risk states at the individual level. It also offers significant improvement over prior approaches by incorporating a variable selection prior for the identification of clinical covariates that drive seizure risk changes and accommodating highly granular data. For inference, we implement an efficient sampler that employs stochastic search and data augmentation techniques. We evaluate model performance on simulated seizure count data. We then demonstrate the clinical utility of the proposed model by analyzing daily seizure count data from 133 patients with Dravet syndrome collected through the system, a patient-reported electronic seizure diary. We report on the dynamics of seizure risk cycling, including validation of several known pharmacologic relationships. We also uncover novel findings characterizing the presence and volatility of risk states in Dravet syndrome, which may directly inform counseling to reduce the unpredictability of seizures for patients with this devastating cause of epilepsy.
Author Rao, Vikram R
Haneef, Zulfi
Chiang, Sharon
Wang, Emily T
Vannucci, Marina
Moss, Robert
Author_xml – sequence: 1
  givenname: Emily T
  surname: Wang
  fullname: Wang, Emily T
  organization: Rice University
– sequence: 2
  givenname: Sharon
  surname: Chiang
  fullname: Chiang, Sharon
  organization: University of California, San Francisco
– sequence: 3
  givenname: Zulfi
  surname: Haneef
  fullname: Haneef, Zulfi
  organization: Baylor College of Medicine
– sequence: 4
  givenname: Vikram R
  surname: Rao
  fullname: Rao, Vikram R
  organization: University of California, San Francisco
– sequence: 5
  givenname: Robert
  surname: Moss
  fullname: Moss, Robert
  organization: SeizureTracker LLC
– sequence: 6
  givenname: Marina
  surname: Vannucci
  fullname: Vannucci, Marina
  organization: Rice University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38486612$$D View this record in MEDLINE/PubMed
BookMark eNo1kLtOwzAART0U0QdM7Mg_EPAzSUc3cROrqS0laVBZKjtxJBB9qClI_D2VgOkM9-gOZwpGh-PBA_CA0RMmmD0TEtijHXBI0QhM8JySIMQ8GoPpMLwjxFnM8C0Y05jFYYjJBHwtxFZWSmiojQ5yszaZ1NJsKpirNJUarkW5Mg1cm1QW8EXVOWxEqcSikLCShUxqZTRcmhIq3ciqVpmolc5gWqpGlhU0y6umXjelhKWqVjDZJsV1vwM3vf0Y_P0fZ2CzlHWSB4XJVCKKoKWYXIKu6zieO-Q7y3zfcRt7GvWEto7OI06cYz3FlLuw5e4qIsuZ7yIUImqpZ6wlM_D4-3v6dHvf7U7nt709f-_-A5Afy9xTjw
CitedBy_id crossref_primary_10_1093_brain_awae240
crossref_primary_10_1111_jfr3_12942
ContentType Journal Article
DBID NPM
DOI 10.1214/22-aoas1630
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 38486612
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R25 NS070680
– fundername: NLM NIH HHS
  grantid: T15 LM007093
GroupedDBID 123
23M
2AX
6J9
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ABZEH
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CS3
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HQ6
HVGLF
IPSME
J9A
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
P2P
PUASD
RBU
RNS
RPE
SA0
SJN
TN5
WHG
WS9
ID FETCH-LOGICAL-c312t-ddd519b0eda4efd5a8e37f23cb39752bb4f3135b6c5b5190a54ed70603a3e44c2
ISSN 1932-6157
IngestDate Tue Jun 10 08:58:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Count data
Epilepsy
Markov chain Monte Carlo
Dravet syndrome
Zero-inflation
Hidden Markov Models
Seizure risk
Bayesian inference
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-ddd519b0eda4efd5a8e37f23cb39752bb4f3135b6c5b5190a54ed70603a3e44c2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10939012
PMID 38486612
ParticipantIDs pubmed_primary_38486612
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The annals of applied statistics
PublicationTitleAlternate Ann Appl Stat
PublicationYear 2023
SSID ssj0054841
Score 2.3273447
Snippet A major issue in the clinical management of epilepsy is the unpredictability of seizures. Yet, traditional approaches to seizure forecasting and risk...
SourceID pubmed
SourceType Index Database
StartPage 333
Title BAYESIAN NON-HOMOGENEOUS HIDDEN MARKOV MODEL WITH VARIABLE SELECTION FOR INVESTIGATING DRIVERS OF SEIZURE RISK CYCLING
URI https://www.ncbi.nlm.nih.gov/pubmed/38486612
Volume 17
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF45rVSlh6rvd7WH3hAt3uWVI7FxobFBMhgluUS7sChpEidKnB76U_prO8su4Dqt-rggxK4QZj5m5xvPfIvQe5fSyoOVweSU16btVpbJ3Zqb1N0pK1g-SM2aKt_EjRb2531nfzD4vla1dLPiH8pvv-wr-R-rwjWwq-yS_QfLdjeFC3AO9oUjWBiOf2Xj3eAgzOIgMRJwiFE6S2UhWrrIjCgej8PEmAXzvbQwZuk4nAJVzyOjCOZxsDsNjSychk39iAE00IiTIszy-FOQy-TVeB4XsvMgncC0-FDWRczjbM8YHYymrQDVlx5lrNNgZjqklV1KSgC6z9crnxI26ZS-MPv4pM1XH7OrviIgYkshGrnIw5sz1Vms_oxqErvFyekVO9eljjpjQWhfsqWdLMSMQFmVMHXnhb1baFMulSqhjFuungxt2c1CTHbBriGqtNZngZ0uzxurU9_2IQYhfx7d0N1uh7bQFjAQuaWqzAOpNR5oXrMnavdLdOcnPNPHtSfaRvfau2ywliZ6yR-iB5p24EBh6BEaiOVjdH_WafZeP0FfWzThDTRhhSas0IQbNGGJJtyiCXdowoAm_BOasEYTTidYowlLNGGNpqdoMQnzUWTqXTnMkg7JyqyqCqJ-bomK2aKuHOYL6tWElhxCW4dwbtd0SB3ulg6HiRZzbFFJjSbKqLDtkjxDd5YXS_ECYZ8yiwqyU_leCYEkZ57tlhwYR82BttPyJXquXtrRpZJeOWpf56vfjrxG2z3m3qC7NXwB4i0Ejiv-rrHhD93fWg4
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BAYESIAN+NON-HOMOGENEOUS+HIDDEN+MARKOV+MODEL+WITH+VARIABLE+SELECTION+FOR+INVESTIGATING+DRIVERS+OF+SEIZURE+RISK+CYCLING&rft.jtitle=The+annals+of+applied+statistics&rft.au=Wang%2C+Emily+T&rft.au=Chiang%2C+Sharon&rft.au=Haneef%2C+Zulfi&rft.au=Rao%2C+Vikram+R&rft.date=2023-03-01&rft.issn=1932-6157&rft.volume=17&rft.issue=1&rft.spage=333&rft_id=info:doi/10.1214%2F22-aoas1630&rft_id=info%3Apmid%2F38486612&rft_id=info%3Apmid%2F38486612&rft.externalDocID=38486612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon