Binding Mode of Actin–Aplyronine A–Tubulin Heterotrimeric Complex Revealed by Molecular Dynamics Simulation
The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin. However, the detailed binding mode of the actin–ApA–tubulin heterotrimeric complex (HTC) and the molecular mechanism by which ApA inhibits MT are...
Saved in:
Published in | Bulletin of the Chemical Society of Japan Vol. 96; no. 2; pp. 120 - 126 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Chemical Society of Japan
15.02.2023
Chemical Society of Japan |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin. However, the detailed binding mode of the actin–ApA–tubulin heterotrimeric complex (HTC) and the molecular mechanism by which ApA inhibits MT are unclear. To establish the binding modes of the actin–ApA complex on the tubulin α/β-heterodimer, blind protein–protein docking and molecular dynamics simulations were performed. Two plausible HTC models having enough conformational and ligand stabilities were obtained, in which the C7 N,N,O-trimethylserine ester of ApA, an essential group for its potent cytotoxicity and PPI-inducing effect, interacted with Glu336/Asn337 or Arg123/Glu127 of β-tubulin. Based on the superposed models with the MT lattice, two possible mechanisms were proposed: the HTC would bind to the plus end of MT to potently inhibit tubulin assembly, or the actin–ApA complex would bind to the middle part of MT to form the internal HTC and destabilize MT structure. Our proposed models can explain why the actin–ApA complex inhibits MT dynamics at a much lower concentration than those of fibrous actin and tubulin proteins in cells. |
---|---|
AbstractList | The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin. However, the detailed binding mode of the actin–ApA–tubulin heterotrimeric complex (HTC) and the molecular mechanism by which ApA inhibits MT are unclear. To establish the binding modes of the actin–ApA complex on the tubulin α/β-heterodimer, blind protein–protein docking and molecular dynamics simulations were performed. Two plausible HTC models having enough conformational and ligand stabilities were obtained, in which the C7 N,N,O-trimethylserine ester of ApA, an essential group for its potent cytotoxicity and PPI-inducing effect, interacted with Glu336/Asn337 or Arg123/Glu127 of β-tubulin. Based on the superposed models with the MT lattice, two possible mechanisms were proposed: the HTC would bind to the plus end of MT to potently inhibit tubulin assembly, or the actin–ApA complex would bind to the middle part of MT to form the internal HTC and destabilize MT structure. Our proposed models can explain why the actin–ApA complex inhibits MT dynamics at a much lower concentration than those of fibrous actin and tubulin proteins in cells. Abstract The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin. However, the detailed binding mode of the actin–ApA–tubulin heterotrimeric complex (HTC) and the molecular mechanism by which ApA inhibits MT are unclear. To establish the binding modes of the actin–ApA complex on the tubulin α/β-heterodimer, blind protein–protein docking and molecular dynamics simulations were performed. Two plausible HTC models having enough conformational and ligand stabilities were obtained, in which the C7 N,N,O-trimethylserine ester of ApA, an essential group for its potent cytotoxicity and PPI-inducing effect, interacted with Glu336/Asn337 or Arg123/Glu127 of β-tubulin. Based on the superposed models with the MT lattice, two possible mechanisms were proposed: the HTC would bind to the plus end of MT to potently inhibit tubulin assembly, or the actin–ApA complex would bind to the middle part of MT to form the internal HTC and destabilize MT structure. Our proposed models can explain why the actin–ApA complex inhibits MT dynamics at a much lower concentration than those of fibrous actin and tubulin proteins in cells. |
Author | Kita, Masaki Utomo, Didik Huswo |
Author_xml | – sequence: 1 givenname: Didik Huswo surname: Utomo fullname: Utomo, Didik Huswo – sequence: 2 givenname: Masaki surname: Kita fullname: Kita, Masaki |
BookMark | eNptUE1Lw0AUXKSCbfXofcFz6n4k6cZbrB8VKoLWc9hsXnRLshs3iZib_8F_6C9xSytehAePecybYWaCRsYaQOiUkhllYXyeq3YzY4T5SZIDNKY8FAGJeThCY0JIErB4zo_QpG03HoooTMbIXmpTaPOC720B2JY4VZ02359faVMNzhptAKcervu8r7TBS-jA2c7pGpxWeGHrpoIP_AjvICsocD54pQpUX0mHrwYja61a_KRrf-i0NcfosJRVCyf7PUXPN9frxTJYPdzeLdJVoDhlXVDkMlF5ROcADFQchgUJqYiAFKxgjAspchBzKOelhLxUlPIo4iQiAsKoFBz4FJ3tdBtn33pou2xje2e8ZcYEoZSQKBaeFexYytm2dVBmjU8m3ZBRkm07zbadZr-dev7Fnv8KPphXs0pDN2xkI82fw__PP29lg34 |
CitedBy_id | crossref_primary_10_3390_bios13020286 crossref_primary_10_1016_j_reactfunctpolym_2023_105778 crossref_primary_10_1039_D4CC01304B |
Cites_doi | 10.1002/prot.26280 10.1002/ange.201103802 10.1529/biophysj.107.115113 10.1021/ja00095a071 10.1039/C4NP00129J 10.1016/j.bmc.2016.04.049 10.1002/anie.201103802 10.2183/pjab.86.176 10.15252/embj.201490588 10.1021/ja00076a082 10.3390/ijms22136709 10.1016/S0040-4020(01)01206-6 10.1021/jo9606113 10.1021/acsomega.9b01099 10.1021/ja406580w 10.1039/D1CC04259A 10.1016/j.bmc.2017.09.044 10.1021/ja00095a072 10.1038/nrc1317 10.1021/ja310495p 10.1371/journal.pone.0099539 10.1002/jcc.20084 10.3389/fcell.2021.656273 10.1038/mt.2015.214 10.1039/C8CC04613A 10.3390/molecules23081899 10.1007/978-1-4939-7366-8_4 10.1039/c005060c 10.1002/cbic.201200385 10.1021/ci200227u 10.1039/B800263K 10.1038/s41598-017-15571-7 10.1038/s41392-020-00315-3 10.1016/j.jmb.2005.12.031 |
ContentType | Journal Article |
Copyright | The Chemical Society of Japan Copyright Chemical Society of Japan 2023 |
Copyright_xml | – notice: The Chemical Society of Japan – notice: Copyright Chemical Society of Japan 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1246/bcsj.20220299 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Binding Mode of Actin–Aplyronine A–Tubulin Heterotrimeric Complex Revealed by Molecular Dynamics Simulation |
EISSN | 1348-0634 |
EndPage | 126 |
ExternalDocumentID | 10_1246_bcsj_20220299 |
FullText_t_NoSnippeting | true |
GroupedDBID | -~X 23N 5GY 6J9 8W4 ABEFU ABFLS ABZEH ACCUC ACGFO ACIWK ACNCT AENEX AFFNX AIDUJ ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P GX1 JSI JSP OK1 P0W P2P RAD RJT RZJ SC5 TN5 TWZ UPT WH7 ~02 0R~ AAPXW AAUAY AAYXX ABXVV ADIPN BCRHZ CITATION KOP OJZSN OWPYF ROX 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c312t-dba9cb517ee2ec644d04185e0d2d2238a8be87ef7faebfc1135530508e45f83e3 |
ISSN | 0009-2673 |
IngestDate | Thu Oct 10 16:09:56 EDT 2024 Thu Sep 12 18:43:18 EDT 2024 Tue Feb 21 08:41:22 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Protein–protein interactions Antitumor agents Molecular dynamics simulation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-dba9cb517ee2ec644d04185e0d2d2238a8be87ef7faebfc1135530508e45f83e3 |
OpenAccessLink | http://dx.doi.org/10.1246/bcsj.20220299 |
PQID | 2801100568 |
PQPubID | 1996365 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2801100568 crossref_primary_10_1246_bcsj_20220299 chemicalsocietyjapan_journals_10_1246_bcsj_20220299 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-15 |
PublicationDateYYYYMMDD | 2023-02-15 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Bulletin of the Chemical Society of Japan |
PublicationYear | 2023 |
Publisher | The Chemical Society of Japan Chemical Society of Japan |
Publisher_xml | – name: The Chemical Society of Japan – name: Chemical Society of Japan |
References | 27R. A. Laskowski, M. B. Swindells, J. Chem. Inf. Model. 2011, 51, 2778. 10.1021/ci200227u21919503 24H. Land, M. S. Humble, Methods Mol. Biol. 2018, 1685, 43. 10.1007/978-1-4939-7366-8_429086303 4M. Kita, Y. Hirayama, K. Yoneda, K. Yamagishi, T. Chinen, T. Usui, E. Sumiya, M. Uesugi, H. Kigoshi, J. Am. Chem. Soc. 2013, 135, 18089. 10.1021/ja406580w24228690 10a) M. Kita, Y. Hirayama, K. Yamagishi, K. Yoneda, R. Fujisawa, H. Kigoshi, J. Am. Chem. Soc. 2012, 134, 20314. 10.1021/ja310495p23198778 b) M. Kita, K. Yoneda, Y. Hirayama, K. Yamagishi, Y. Saito, Y. Sugiyama, Y. Miwa, O. Ohno, M. Morita, K. Suenaga, H. Kigoshi, ChemBioChem 2012, 13, 1754. 10.1002/cbic.20120038522807378 c) M. Kita, Y. Hirayama, M. Sugiyama, H. Kigoshi, Angew. Chem. 2011, 123, 10045; 10.1002/ange.201103802 M. Kita, Y. Hirayama, M. Sugiyama, H. Kigoshi, Angew. Chem., Int. Ed. 2011, 50, 9871. 10.1002/anie.201103802 8D. H. Utomo, A. Fujieda, K. Tanaka, M. Takahashi, K. Futaki, K. Tanabe, H. Kigoshi, M. Kita, Chem. Commun. 2021, 57, 10540. 10.1039/D1CC04259A 29E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605. 10.1002/jcc.2008415264254 13K. Yamada, M. Ojika, H. Kigoshi, K. Suenaga, Nat. Prod. Rep. 2009, 26, 27. 10.1039/B800263K19374121 19J. Janin, Mol. BioSyst. 2010, 6, 2351. 10.1039/c005060c20725658 12a) K. Yamada, M. Ojika, T. Ishigaki, Y. Yoshida, H. Ekimoto, M. Arakawa, J. Am. Chem. Soc. 1993, 115, 11020. 10.1021/ja00076a082 b) M. Ojika, H. Kigoshi, T. Ishigaki, I. Tsukada, T. Tsuboi, T. Ogawa, K. Yamada, J. Am. Chem. Soc. 1994, 116, 7441. 10.1021/ja00095a071 c) H. Kigoshi, M. Ojika, T. Ishigaki, K. Suenaga, T. Mutou, A. Sakakura, T. Ogawa, K. Yamada, J. Am. Chem. Soc. 1994, 116, 7443. 10.1021/ja00095a072 2I. Petta, S. Lievens, C. Libert, J. Tavernier, K. de Bosscher, Mol. Ther. 2016, 24, 707. 10.1038/mt.2015.21426675501 18X.-X. Shi, P.-Y. Wang, H. Chen, P. Xie, Int. J. Mol. Sci. 2021, 22, 6709. 10.3390/ijms2213670934201478 17M. Morikawa, H. Yajima, R. Nitta, S. Inoue, T. Ogura, C. Sato, N. Hirokawa, EMBO J. 2015, 34, 1270. 10.15252/embj.20149058825777528 15M. A. Jordan, L. Wilson, Nat. Rev. Cancer 2004, 4, 253. 10.1038/nrc131715057285 21T. Pantsar, A. Poso, Molecules 2018, 23, 1899. 10.3390/molecules2308189930061498 26R. S. Depetris, D. Lu, Z. Polonskaya, Z. Zhang, X. Luna, A. Tankard, P. Kolahi, M. Drummond, C. Williams, M. C. C. J. C. Ebert, J. P. Patel, M. V. Poyurovsky, Proteins 2022, 90, 919. 10.1002/prot.2628034773424 14K. Yamada, M. Ojika, H. Kigoshi, K. Suenaga, Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2010, 86, 176. 10.2183/pjab.86.17620228619 16S. Nolasco, J. Bellido, M. Serna, B. Carmona, H. Soares, J. C. Zabala, Front. Cell Dev. Biol. 2021, 9, 656273. 10.3389/fcell.2021.656273 22S. Yadav, P. J. Verma, D. Panda, PLoS One 2014, 9, e99539. 10.1371/journal.pone.009953924927501 25For comparison, MD simulations of the original actin–ApA complex (PDB: 1WUA) and α/β-tubulin heterodimer (PDB: 1TUB) for 50 ns were performed. Their RMSD values were 1.21 and 4.18 Å, respectively. See Figure S9 (Supporting Information) for details. 1H. Lu, Q. Zhou, J. He, Z. Jiang, C. Peng, R. Tong, J. Shi, Signal Transduct. Target. Ther. 2020, 5, 213. 10.1038/s41392-020-00315-332968059 9a) H. Kigoshi, K. Suenaga, T. Mutou, T. Ishigaki, T. Atsumi, H. Ishiwata, A. Sakakura, T. Ogawa, M. Ojika, K. Yamada, J. Org. Chem. 1996, 61, 5326. 10.1021/jo9606113 b) T. Ohyoshi, A. Takano, M. Namiki, T. Ogura, Y. Miyazaki, Y. Ebihara, K. Takeno, I. Hayakawa, H. Kigoshi, Chem. Commun. 2018, 54, 9537. 10.1039/C8CC04613A c) K. Futaki, M. Takahashi, K. Tanabe, A. Fujieda, H. Kigoshi, M. Kita, ACS Omega 2019, 4, 8598. 10.1021/acsomega.9b0109931459949 5Y. Hirayama, K. Yamagishi, T. Suzuki, H. Kawagishi, M. Kita, H. Kigoshi, Bioorg. Med. Chem. 2016, 24, 2809. 10.1016/j.bmc.2016.04.04927161875 7H. Kigoshi, K. Suenaga, M. Takagi, A. Akao, K. Kanematsu, N. Kamei, Y. Okugawa, K. Yamada, Tetrahedron 2002, 58, 1075. 10.1016/S0040-4020(01)01206-6 6M. Kita, Y. Yamagishi, K. Tsuchiya, Y. Seguchi, H. Nakane, H. Kigoshi, Bioorg. Med. Chem. 2017, 25, 6322. 10.1016/j.bmc.2017.09.04429042221 20N. M. Hassan, A. A. Alhossary, Y. Mu, C. K. Kwoh, Sci. Rep. 2017, 7, 15451. 10.1038/s41598-017-15571-729133831 23T. Luchko, J. Torin Huzil, M. Stepanova, J. Tuszynski, Biophys. J. 2008, 94, 1971. 10.1529/biophysj.107.11511317993481 3M. Kita, H. Kigoshi, Nat. Prod. Rep. 2015, 32, 534. 10.1039/C4NP00129J25512265 11K. Hirata, S. Muraoka, K. Suenaga, T. Kuroda, K. Kato, H. Tanaka, M. Yamamoto, M. Takata, K. Yamada, H. Kigoshi, J. Mol. Biol. 2006, 356, 945. 10.1016/j.jmb.2005.12.03116406066 28The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. Pantsar (2024012105081576000_r21) 2018; 23 Kita (2024012105081576000_r10) 2011; 50 Luchko (2024012105081576000_r23) 2008; 94 Pettersen (2024012105081576000_r29) 2004; 25 Ohyoshi (2024012105081576000_r9) 2018; 54 Futaki (2024012105081576000_r9) 2019; 4 Yamada (2024012105081576000_r12) 1993; 115 Depetris (2024012105081576000_r26) 2022; 90 Kita (2024012105081576000_r6) 2017; 25 Morikawa (2024012105081576000_r17) 2015; 34 Laskowski (2024012105081576000_r27) 2011; 51 Petta (2024012105081576000_r2) 2016; 24 Kita (2024012105081576000_r10) 2011; 123 Yamada (2024012105081576000_r13) 2009; 26 Nolasco (2024012105081576000_r16) 2021; 9 Utomo (2024012105081576000_r8) 2021; 57 Hirayama (2024012105081576000_r5) 2016; 24 2024012105081576000_r28 Kita (2024012105081576000_r10) 2012; 134 Land (2024012105081576000_r24) 2018; 1685 Hirata (2024012105081576000_r11) 2006; 356 Yamada (2024012105081576000_r14) 2010; 86 2024012105081576000_r25 Yadav (2024012105081576000_r22) 2014; 9 Jordan (2024012105081576000_r15) 2004; 4 Lu (2024012105081576000_r1) 2020; 5 Hassan (2024012105081576000_r20) 2017; 7 Janin (2024012105081576000_r19) 2010; 6 Kita (2024012105081576000_r3) 2015; 32 Kita (2024012105081576000_r4) 2013; 135 Kigoshi (2024012105081576000_r7) 2002; 58 Kigoshi (2024012105081576000_r12) 1994; 116 Kita (2024012105081576000_r10) 2012; 13 Ojika (2024012105081576000_r12) 1994; 116 Kigoshi (2024012105081576000_r9) 1996; 61 Shi (2024012105081576000_r18) 2021; 22 |
References_xml | – volume: 90 start-page: 919 year: 2022 ident: 2024012105081576000_r26 publication-title: Proteins doi: 10.1002/prot.26280 contributor: fullname: Depetris – volume: 123 start-page: 10045 year: 2011 ident: 2024012105081576000_r10 publication-title: Angew. Chem. doi: 10.1002/ange.201103802 contributor: fullname: Kita – volume: 94 start-page: 1971 year: 2008 ident: 2024012105081576000_r23 publication-title: Biophys. J. doi: 10.1529/biophysj.107.115113 contributor: fullname: Luchko – volume: 116 start-page: 7441 year: 1994 ident: 2024012105081576000_r12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00095a071 contributor: fullname: Ojika – volume: 32 start-page: 534 year: 2015 ident: 2024012105081576000_r3 publication-title: Nat. Prod. Rep. doi: 10.1039/C4NP00129J contributor: fullname: Kita – volume: 24 start-page: 2809 year: 2016 ident: 2024012105081576000_r5 publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2016.04.049 contributor: fullname: Hirayama – volume: 50 start-page: 9871 year: 2011 ident: 2024012105081576000_r10 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201103802 contributor: fullname: Kita – volume: 86 start-page: 176 year: 2010 ident: 2024012105081576000_r14 publication-title: Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. doi: 10.2183/pjab.86.176 contributor: fullname: Yamada – volume: 34 start-page: 1270 year: 2015 ident: 2024012105081576000_r17 publication-title: EMBO J. doi: 10.15252/embj.201490588 contributor: fullname: Morikawa – volume: 115 start-page: 11020 year: 1993 ident: 2024012105081576000_r12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00076a082 contributor: fullname: Yamada – volume: 22 start-page: 6709 year: 2021 ident: 2024012105081576000_r18 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22136709 contributor: fullname: Shi – volume: 58 start-page: 1075 year: 2002 ident: 2024012105081576000_r7 publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)01206-6 contributor: fullname: Kigoshi – volume: 61 start-page: 5326 year: 1996 ident: 2024012105081576000_r9 publication-title: J. Org. Chem. doi: 10.1021/jo9606113 contributor: fullname: Kigoshi – volume: 4 start-page: 8598 year: 2019 ident: 2024012105081576000_r9 publication-title: ACS Omega doi: 10.1021/acsomega.9b01099 contributor: fullname: Futaki – volume: 135 start-page: 18089 year: 2013 ident: 2024012105081576000_r4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406580w contributor: fullname: Kita – volume: 57 start-page: 10540 year: 2021 ident: 2024012105081576000_r8 publication-title: Chem. Commun. doi: 10.1039/D1CC04259A contributor: fullname: Utomo – volume: 25 start-page: 6322 year: 2017 ident: 2024012105081576000_r6 publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2017.09.044 contributor: fullname: Kita – volume: 116 start-page: 7443 year: 1994 ident: 2024012105081576000_r12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00095a072 contributor: fullname: Kigoshi – ident: 2024012105081576000_r25 – volume: 4 start-page: 253 year: 2004 ident: 2024012105081576000_r15 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1317 contributor: fullname: Jordan – volume: 134 start-page: 20314 year: 2012 ident: 2024012105081576000_r10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310495p contributor: fullname: Kita – volume: 9 start-page: e99539 year: 2014 ident: 2024012105081576000_r22 publication-title: PLoS One doi: 10.1371/journal.pone.0099539 contributor: fullname: Yadav – volume: 25 start-page: 1605 year: 2004 ident: 2024012105081576000_r29 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 contributor: fullname: Pettersen – volume: 9 start-page: 656273 year: 2021 ident: 2024012105081576000_r16 publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.656273 contributor: fullname: Nolasco – volume: 24 start-page: 707 year: 2016 ident: 2024012105081576000_r2 publication-title: Mol. Ther. doi: 10.1038/mt.2015.214 contributor: fullname: Petta – volume: 54 start-page: 9537 year: 2018 ident: 2024012105081576000_r9 publication-title: Chem. Commun. doi: 10.1039/C8CC04613A contributor: fullname: Ohyoshi – volume: 23 start-page: 1899 year: 2018 ident: 2024012105081576000_r21 publication-title: Molecules doi: 10.3390/molecules23081899 contributor: fullname: Pantsar – volume: 1685 start-page: 43 year: 2018 ident: 2024012105081576000_r24 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7366-8_4 contributor: fullname: Land – volume: 6 start-page: 2351 year: 2010 ident: 2024012105081576000_r19 publication-title: Mol. BioSyst. doi: 10.1039/c005060c contributor: fullname: Janin – volume: 13 start-page: 1754 year: 2012 ident: 2024012105081576000_r10 publication-title: ChemBioChem doi: 10.1002/cbic.201200385 contributor: fullname: Kita – volume: 51 start-page: 2778 year: 2011 ident: 2024012105081576000_r27 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200227u contributor: fullname: Laskowski – volume: 26 start-page: 27 year: 2009 ident: 2024012105081576000_r13 publication-title: Nat. Prod. Rep. doi: 10.1039/B800263K contributor: fullname: Yamada – volume: 7 start-page: 15451 year: 2017 ident: 2024012105081576000_r20 publication-title: Sci. Rep. doi: 10.1038/s41598-017-15571-7 contributor: fullname: Hassan – ident: 2024012105081576000_r28 – volume: 5 start-page: 213 year: 2020 ident: 2024012105081576000_r1 publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-00315-3 contributor: fullname: Lu – volume: 356 start-page: 945 year: 2006 ident: 2024012105081576000_r11 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.12.031 contributor: fullname: Hirata |
SSID | ssj0008549 |
Score | 2.4372098 |
Snippet | The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin.... Abstract The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and... |
SourceID | proquest crossref chemicalsocietyjapan |
SourceType | Aggregation Database Publisher |
StartPage | 120 |
SubjectTerms | Binding Lattice vibration Molecular docking Molecular dynamics Proteins Toxicity |
Title | Binding Mode of Actin–Aplyronine A–Tubulin Heterotrimeric Complex Revealed by Molecular Dynamics Simulation |
URI | http://dx.doi.org/10.1246/bcsj.20220299 https://www.proquest.com/docview/2801100568 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgHIADAgZiMJAPiEuV0dhJ6hzLfqia1nGglXqLYseWOrZmIqlgnPgf-A_5S3gvtpNGKhMgVVHrVm7t99X5nv3e9wh5q3jEkxFnAdMpC6JIqyA1cR4kLE9zZkIlC9yHnJ4nk3l0uogXGyemmF1SywP1fWteyf9YFdrArpgl-w-WbTuFBngO9oUrWBiuf2XjD0ubk4IFzRpKqVASwIUv8PH15Q0q3wKNHLeNs7VcW30rmNCyRnF_jKXHZeFSf8OjAmSODSud-sq5gyNbtr4afFpeuXJfvcNgJ-Ht4w1aEQIfEgrtp3BTbnE4r8urZov2aFksPw8m6-pr2QUDWD47zSsgt5ubEgyPggOblmljg279Hr8UpwFLbB2TA21XXx6JADhTtLk824K3DoZs66rPGrljqaoLcPgZPGzNpb669vnH7GR-dpbNjhezu-QeQ2FATA5fdCFBIvbukv1pTpMVun_f6_wh2VVuhJUd4AUOrk9t-nf2hq7MHpNHzs-gYwuaJ-SOXj0l9w99eb9dUjrwUAQPLQ1twPPrx88ONnQMLx1gaB8w1AGGesBQeUNbwFAPGNoB5hmZnxzPDieBq74RKB6yOihknioZhyOtmVZAm4shCh3pYcEK4JQiF1KLkTYjk2tpVBhyrEAFfF9HsRFc8-dkZ1Wu9AtCwSlRYmhCGWkGDnIqE53keWKSsEhjYdQe4dvmM3N_tSpDTxWskKEVMm-FPfLOT3d2baVZ_vTBfW-MrksmGrXEOBEvb3_7FXnQIXyf7NRf1vo1ENFavmnQ8xtC2o88 |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binding+Mode+of+Actin%E2%80%93Aplyronine+A%E2%80%93Tubulin+Heterotrimeric+Complex+Revealed+by+Molecular+Dynamics+Simulation&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Utomo%2C+Didik+Huswo&rft.au=Kita%2C+Masaki&rft.date=2023-02-15&rft.pub=Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=96&rft.issue=2&rft_id=info:doi/10.1246%2Fbcsj.20220299&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon |