Binding Mode of Actin–Aplyronine A–Tubulin Heterotrimeric Complex Revealed by Molecular Dynamics Simulation

The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin. However, the detailed binding mode of the actin–ApA–tubulin heterotrimeric complex (HTC) and the molecular mechanism by which ApA inhibits MT are...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 96; no. 2; pp. 120 - 126
Main Authors Utomo, Didik Huswo, Kita, Masaki
Format Journal Article
LanguageEnglish
Published Tokyo The Chemical Society of Japan 15.02.2023
Chemical Society of Japan
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin. However, the detailed binding mode of the actin–ApA–tubulin heterotrimeric complex (HTC) and the molecular mechanism by which ApA inhibits MT are unclear. To establish the binding modes of the actin–ApA complex on the tubulin α/β-heterodimer, blind protein–protein docking and molecular dynamics simulations were performed. Two plausible HTC models having enough conformational and ligand stabilities were obtained, in which the C7 N,N,O-trimethylserine ester of ApA, an essential group for its potent cytotoxicity and PPI-inducing effect, interacted with Glu336/Asn337 or Arg123/Glu127 of β-tubulin. Based on the superposed models with the MT lattice, two possible mechanisms were proposed: the HTC would bind to the plus end of MT to potently inhibit tubulin assembly, or the actin–ApA complex would bind to the middle part of MT to form the internal HTC and destabilize MT structure. Our proposed models can explain why the actin–ApA complex inhibits MT dynamics at a much lower concentration than those of fibrous actin and tubulin proteins in cells.
AbstractList The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin. However, the detailed binding mode of the actin–ApA–tubulin heterotrimeric complex (HTC) and the molecular mechanism by which ApA inhibits MT are unclear. To establish the binding modes of the actin–ApA complex on the tubulin α/β-heterodimer, blind protein–protein docking and molecular dynamics simulations were performed. Two plausible HTC models having enough conformational and ligand stabilities were obtained, in which the C7 N,N,O-trimethylserine ester of ApA, an essential group for its potent cytotoxicity and PPI-inducing effect, interacted with Glu336/Asn337 or Arg123/Glu127 of β-tubulin. Based on the superposed models with the MT lattice, two possible mechanisms were proposed: the HTC would bind to the plus end of MT to potently inhibit tubulin assembly, or the actin–ApA complex would bind to the middle part of MT to form the internal HTC and destabilize MT structure. Our proposed models can explain why the actin–ApA complex inhibits MT dynamics at a much lower concentration than those of fibrous actin and tubulin proteins in cells.
Abstract The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin. However, the detailed binding mode of the actin–ApA–tubulin heterotrimeric complex (HTC) and the molecular mechanism by which ApA inhibits MT are unclear. To establish the binding modes of the actin–ApA complex on the tubulin α/β-heterodimer, blind protein–protein docking and molecular dynamics simulations were performed. Two plausible HTC models having enough conformational and ligand stabilities were obtained, in which the C7 N,N,O-trimethylserine ester of ApA, an essential group for its potent cytotoxicity and PPI-inducing effect, interacted with Glu336/Asn337 or Arg123/Glu127 of β-tubulin. Based on the superposed models with the MT lattice, two possible mechanisms were proposed: the HTC would bind to the plus end of MT to potently inhibit tubulin assembly, or the actin–ApA complex would bind to the middle part of MT to form the internal HTC and destabilize MT structure. Our proposed models can explain why the actin–ApA complex inhibits MT dynamics at a much lower concentration than those of fibrous actin and tubulin proteins in cells.
Author Kita, Masaki
Utomo, Didik Huswo
Author_xml – sequence: 1
  givenname: Didik Huswo
  surname: Utomo
  fullname: Utomo, Didik Huswo
– sequence: 2
  givenname: Masaki
  surname: Kita
  fullname: Kita, Masaki
BookMark eNptUE1Lw0AUXKSCbfXofcFz6n4k6cZbrB8VKoLWc9hsXnRLshs3iZib_8F_6C9xSytehAePecybYWaCRsYaQOiUkhllYXyeq3YzY4T5SZIDNKY8FAGJeThCY0JIErB4zo_QpG03HoooTMbIXmpTaPOC720B2JY4VZ02359faVMNzhptAKcervu8r7TBS-jA2c7pGpxWeGHrpoIP_AjvICsocD54pQpUX0mHrwYja61a_KRrf-i0NcfosJRVCyf7PUXPN9frxTJYPdzeLdJVoDhlXVDkMlF5ROcADFQchgUJqYiAFKxgjAspchBzKOelhLxUlPIo4iQiAsKoFBz4FJ3tdBtn33pou2xje2e8ZcYEoZSQKBaeFexYytm2dVBmjU8m3ZBRkm07zbadZr-dev7Fnv8KPphXs0pDN2xkI82fw__PP29lg34
CitedBy_id crossref_primary_10_3390_bios13020286
crossref_primary_10_1016_j_reactfunctpolym_2023_105778
crossref_primary_10_1039_D4CC01304B
Cites_doi 10.1002/prot.26280
10.1002/ange.201103802
10.1529/biophysj.107.115113
10.1021/ja00095a071
10.1039/C4NP00129J
10.1016/j.bmc.2016.04.049
10.1002/anie.201103802
10.2183/pjab.86.176
10.15252/embj.201490588
10.1021/ja00076a082
10.3390/ijms22136709
10.1016/S0040-4020(01)01206-6
10.1021/jo9606113
10.1021/acsomega.9b01099
10.1021/ja406580w
10.1039/D1CC04259A
10.1016/j.bmc.2017.09.044
10.1021/ja00095a072
10.1038/nrc1317
10.1021/ja310495p
10.1371/journal.pone.0099539
10.1002/jcc.20084
10.3389/fcell.2021.656273
10.1038/mt.2015.214
10.1039/C8CC04613A
10.3390/molecules23081899
10.1007/978-1-4939-7366-8_4
10.1039/c005060c
10.1002/cbic.201200385
10.1021/ci200227u
10.1039/B800263K
10.1038/s41598-017-15571-7
10.1038/s41392-020-00315-3
10.1016/j.jmb.2005.12.031
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright Chemical Society of Japan 2023
Copyright_xml – notice: The Chemical Society of Japan
– notice: Copyright Chemical Society of Japan 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1246/bcsj.20220299
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Binding Mode of Actin–Aplyronine A–Tubulin Heterotrimeric Complex Revealed by Molecular Dynamics Simulation
EISSN 1348-0634
EndPage 126
ExternalDocumentID 10_1246_bcsj_20220299
FullText_t_NoSnippeting true
GroupedDBID -~X
23N
5GY
6J9
8W4
ABEFU
ABFLS
ABZEH
ACCUC
ACGFO
ACIWK
ACNCT
AENEX
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
GX1
JSI
JSP
OK1
P0W
P2P
RAD
RJT
RZJ
SC5
TN5
TWZ
UPT
WH7
~02
0R~
AAPXW
AAUAY
AAYXX
ABXVV
ADIPN
BCRHZ
CITATION
KOP
OJZSN
OWPYF
ROX
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c312t-dba9cb517ee2ec644d04185e0d2d2238a8be87ef7faebfc1135530508e45f83e3
ISSN 0009-2673
IngestDate Thu Oct 10 16:09:56 EDT 2024
Thu Sep 12 18:43:18 EDT 2024
Tue Feb 21 08:41:22 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Protein–protein interactions
Antitumor agents
Molecular dynamics simulation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-dba9cb517ee2ec644d04185e0d2d2238a8be87ef7faebfc1135530508e45f83e3
OpenAccessLink http://dx.doi.org/10.1246/bcsj.20220299
PQID 2801100568
PQPubID 1996365
PageCount 7
ParticipantIDs proquest_journals_2801100568
crossref_primary_10_1246_bcsj_20220299
chemicalsocietyjapan_journals_10_1246_bcsj_20220299
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationYear 2023
Publisher The Chemical Society of Japan
Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
– name: Chemical Society of Japan
References 27R. A. Laskowski, M. B. Swindells, J. Chem. Inf. Model. 2011, 51, 2778. 10.1021/ci200227u21919503
24H. Land, M. S. Humble, Methods Mol. Biol. 2018, 1685, 43. 10.1007/978-1-4939-7366-8_429086303
4M. Kita, Y. Hirayama, K. Yoneda, K. Yamagishi, T. Chinen, T. Usui, E. Sumiya, M. Uesugi, H. Kigoshi, J. Am. Chem. Soc. 2013, 135, 18089. 10.1021/ja406580w24228690
10a) M. Kita, Y. Hirayama, K. Yamagishi, K. Yoneda, R. Fujisawa, H. Kigoshi, J. Am. Chem. Soc. 2012, 134, 20314. 10.1021/ja310495p23198778 b) M. Kita, K. Yoneda, Y. Hirayama, K. Yamagishi, Y. Saito, Y. Sugiyama, Y. Miwa, O. Ohno, M. Morita, K. Suenaga, H. Kigoshi, ChemBioChem 2012, 13, 1754. 10.1002/cbic.20120038522807378 c) M. Kita, Y. Hirayama, M. Sugiyama, H. Kigoshi, Angew. Chem. 2011, 123, 10045; 10.1002/ange.201103802 M. Kita, Y. Hirayama, M. Sugiyama, H. Kigoshi, Angew. Chem., Int. Ed. 2011, 50, 9871. 10.1002/anie.201103802
8D. H. Utomo, A. Fujieda, K. Tanaka, M. Takahashi, K. Futaki, K. Tanabe, H. Kigoshi, M. Kita, Chem. Commun. 2021, 57, 10540. 10.1039/D1CC04259A
29E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605. 10.1002/jcc.2008415264254
13K. Yamada, M. Ojika, H. Kigoshi, K. Suenaga, Nat. Prod. Rep. 2009, 26, 27. 10.1039/B800263K19374121
19J. Janin, Mol. BioSyst. 2010, 6, 2351. 10.1039/c005060c20725658
12a) K. Yamada, M. Ojika, T. Ishigaki, Y. Yoshida, H. Ekimoto, M. Arakawa, J. Am. Chem. Soc. 1993, 115, 11020. 10.1021/ja00076a082 b) M. Ojika, H. Kigoshi, T. Ishigaki, I. Tsukada, T. Tsuboi, T. Ogawa, K. Yamada, J. Am. Chem. Soc. 1994, 116, 7441. 10.1021/ja00095a071 c) H. Kigoshi, M. Ojika, T. Ishigaki, K. Suenaga, T. Mutou, A. Sakakura, T. Ogawa, K. Yamada, J. Am. Chem. Soc. 1994, 116, 7443. 10.1021/ja00095a072
2I. Petta, S. Lievens, C. Libert, J. Tavernier, K. de Bosscher, Mol. Ther. 2016, 24, 707. 10.1038/mt.2015.21426675501
18X.-X. Shi, P.-Y. Wang, H. Chen, P. Xie, Int. J. Mol. Sci. 2021, 22, 6709. 10.3390/ijms2213670934201478
17M. Morikawa, H. Yajima, R. Nitta, S. Inoue, T. Ogura, C. Sato, N. Hirokawa, EMBO J. 2015, 34, 1270. 10.15252/embj.20149058825777528
15M. A. Jordan, L. Wilson, Nat. Rev. Cancer 2004, 4, 253. 10.1038/nrc131715057285
21T. Pantsar, A. Poso, Molecules 2018, 23, 1899. 10.3390/molecules2308189930061498
26R. S. Depetris, D. Lu, Z. Polonskaya, Z. Zhang, X. Luna, A. Tankard, P. Kolahi, M. Drummond, C. Williams, M. C. C. J. C. Ebert, J. P. Patel, M. V. Poyurovsky, Proteins 2022, 90, 919. 10.1002/prot.2628034773424
14K. Yamada, M. Ojika, H. Kigoshi, K. Suenaga, Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2010, 86, 176. 10.2183/pjab.86.17620228619
16S. Nolasco, J. Bellido, M. Serna, B. Carmona, H. Soares, J. C. Zabala, Front. Cell Dev. Biol. 2021, 9, 656273. 10.3389/fcell.2021.656273
22S. Yadav, P. J. Verma, D. Panda, PLoS One 2014, 9, e99539. 10.1371/journal.pone.009953924927501
25For comparison, MD simulations of the original actin–ApA complex (PDB: 1WUA) and α/β-tubulin heterodimer (PDB: 1TUB) for 50 ns were performed. Their RMSD values were 1.21 and 4.18 Å, respectively. See Figure S9 (Supporting Information) for details.
1H. Lu, Q. Zhou, J. He, Z. Jiang, C. Peng, R. Tong, J. Shi, Signal Transduct. Target. Ther. 2020, 5, 213. 10.1038/s41392-020-00315-332968059
9a) H. Kigoshi, K. Suenaga, T. Mutou, T. Ishigaki, T. Atsumi, H. Ishiwata, A. Sakakura, T. Ogawa, M. Ojika, K. Yamada, J. Org. Chem. 1996, 61, 5326. 10.1021/jo9606113 b) T. Ohyoshi, A. Takano, M. Namiki, T. Ogura, Y. Miyazaki, Y. Ebihara, K. Takeno, I. Hayakawa, H. Kigoshi, Chem. Commun. 2018, 54, 9537. 10.1039/C8CC04613A c) K. Futaki, M. Takahashi, K. Tanabe, A. Fujieda, H. Kigoshi, M. Kita, ACS Omega 2019, 4, 8598. 10.1021/acsomega.9b0109931459949
5Y. Hirayama, K. Yamagishi, T. Suzuki, H. Kawagishi, M. Kita, H. Kigoshi, Bioorg. Med. Chem. 2016, 24, 2809. 10.1016/j.bmc.2016.04.04927161875
7H. Kigoshi, K. Suenaga, M. Takagi, A. Akao, K. Kanematsu, N. Kamei, Y. Okugawa, K. Yamada, Tetrahedron 2002, 58, 1075. 10.1016/S0040-4020(01)01206-6
6M. Kita, Y. Yamagishi, K. Tsuchiya, Y. Seguchi, H. Nakane, H. Kigoshi, Bioorg. Med. Chem. 2017, 25, 6322. 10.1016/j.bmc.2017.09.04429042221
20N. M. Hassan, A. A. Alhossary, Y. Mu, C. K. Kwoh, Sci. Rep. 2017, 7, 15451. 10.1038/s41598-017-15571-729133831
23T. Luchko, J. Torin Huzil, M. Stepanova, J. Tuszynski, Biophys. J. 2008, 94, 1971. 10.1529/biophysj.107.11511317993481
3M. Kita, H. Kigoshi, Nat. Prod. Rep. 2015, 32, 534. 10.1039/C4NP00129J25512265
11K. Hirata, S. Muraoka, K. Suenaga, T. Kuroda, K. Kato, H. Tanaka, M. Yamamoto, M. Takata, K. Yamada, H. Kigoshi, J. Mol. Biol. 2006, 356, 945. 10.1016/j.jmb.2005.12.03116406066
28The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
Pantsar (2024012105081576000_r21) 2018; 23
Kita (2024012105081576000_r10) 2011; 50
Luchko (2024012105081576000_r23) 2008; 94
Pettersen (2024012105081576000_r29) 2004; 25
Ohyoshi (2024012105081576000_r9) 2018; 54
Futaki (2024012105081576000_r9) 2019; 4
Yamada (2024012105081576000_r12) 1993; 115
Depetris (2024012105081576000_r26) 2022; 90
Kita (2024012105081576000_r6) 2017; 25
Morikawa (2024012105081576000_r17) 2015; 34
Laskowski (2024012105081576000_r27) 2011; 51
Petta (2024012105081576000_r2) 2016; 24
Kita (2024012105081576000_r10) 2011; 123
Yamada (2024012105081576000_r13) 2009; 26
Nolasco (2024012105081576000_r16) 2021; 9
Utomo (2024012105081576000_r8) 2021; 57
Hirayama (2024012105081576000_r5) 2016; 24
2024012105081576000_r28
Kita (2024012105081576000_r10) 2012; 134
Land (2024012105081576000_r24) 2018; 1685
Hirata (2024012105081576000_r11) 2006; 356
Yamada (2024012105081576000_r14) 2010; 86
2024012105081576000_r25
Yadav (2024012105081576000_r22) 2014; 9
Jordan (2024012105081576000_r15) 2004; 4
Lu (2024012105081576000_r1) 2020; 5
Hassan (2024012105081576000_r20) 2017; 7
Janin (2024012105081576000_r19) 2010; 6
Kita (2024012105081576000_r3) 2015; 32
Kita (2024012105081576000_r4) 2013; 135
Kigoshi (2024012105081576000_r7) 2002; 58
Kigoshi (2024012105081576000_r12) 1994; 116
Kita (2024012105081576000_r10) 2012; 13
Ojika (2024012105081576000_r12) 1994; 116
Kigoshi (2024012105081576000_r9) 1996; 61
Shi (2024012105081576000_r18) 2021; 22
References_xml – volume: 90
  start-page: 919
  year: 2022
  ident: 2024012105081576000_r26
  publication-title: Proteins
  doi: 10.1002/prot.26280
  contributor:
    fullname: Depetris
– volume: 123
  start-page: 10045
  year: 2011
  ident: 2024012105081576000_r10
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201103802
  contributor:
    fullname: Kita
– volume: 94
  start-page: 1971
  year: 2008
  ident: 2024012105081576000_r23
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.115113
  contributor:
    fullname: Luchko
– volume: 116
  start-page: 7441
  year: 1994
  ident: 2024012105081576000_r12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00095a071
  contributor:
    fullname: Ojika
– volume: 32
  start-page: 534
  year: 2015
  ident: 2024012105081576000_r3
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C4NP00129J
  contributor:
    fullname: Kita
– volume: 24
  start-page: 2809
  year: 2016
  ident: 2024012105081576000_r5
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2016.04.049
  contributor:
    fullname: Hirayama
– volume: 50
  start-page: 9871
  year: 2011
  ident: 2024012105081576000_r10
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201103802
  contributor:
    fullname: Kita
– volume: 86
  start-page: 176
  year: 2010
  ident: 2024012105081576000_r14
  publication-title: Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.
  doi: 10.2183/pjab.86.176
  contributor:
    fullname: Yamada
– volume: 34
  start-page: 1270
  year: 2015
  ident: 2024012105081576000_r17
  publication-title: EMBO J.
  doi: 10.15252/embj.201490588
  contributor:
    fullname: Morikawa
– volume: 115
  start-page: 11020
  year: 1993
  ident: 2024012105081576000_r12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00076a082
  contributor:
    fullname: Yamada
– volume: 22
  start-page: 6709
  year: 2021
  ident: 2024012105081576000_r18
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22136709
  contributor:
    fullname: Shi
– volume: 58
  start-page: 1075
  year: 2002
  ident: 2024012105081576000_r7
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)01206-6
  contributor:
    fullname: Kigoshi
– volume: 61
  start-page: 5326
  year: 1996
  ident: 2024012105081576000_r9
  publication-title: J. Org. Chem.
  doi: 10.1021/jo9606113
  contributor:
    fullname: Kigoshi
– volume: 4
  start-page: 8598
  year: 2019
  ident: 2024012105081576000_r9
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01099
  contributor:
    fullname: Futaki
– volume: 135
  start-page: 18089
  year: 2013
  ident: 2024012105081576000_r4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406580w
  contributor:
    fullname: Kita
– volume: 57
  start-page: 10540
  year: 2021
  ident: 2024012105081576000_r8
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC04259A
  contributor:
    fullname: Utomo
– volume: 25
  start-page: 6322
  year: 2017
  ident: 2024012105081576000_r6
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2017.09.044
  contributor:
    fullname: Kita
– volume: 116
  start-page: 7443
  year: 1994
  ident: 2024012105081576000_r12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00095a072
  contributor:
    fullname: Kigoshi
– ident: 2024012105081576000_r25
– volume: 4
  start-page: 253
  year: 2004
  ident: 2024012105081576000_r15
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1317
  contributor:
    fullname: Jordan
– volume: 134
  start-page: 20314
  year: 2012
  ident: 2024012105081576000_r10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310495p
  contributor:
    fullname: Kita
– volume: 9
  start-page: e99539
  year: 2014
  ident: 2024012105081576000_r22
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0099539
  contributor:
    fullname: Yadav
– volume: 25
  start-page: 1605
  year: 2004
  ident: 2024012105081576000_r29
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
  contributor:
    fullname: Pettersen
– volume: 9
  start-page: 656273
  year: 2021
  ident: 2024012105081576000_r16
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.656273
  contributor:
    fullname: Nolasco
– volume: 24
  start-page: 707
  year: 2016
  ident: 2024012105081576000_r2
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.214
  contributor:
    fullname: Petta
– volume: 54
  start-page: 9537
  year: 2018
  ident: 2024012105081576000_r9
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC04613A
  contributor:
    fullname: Ohyoshi
– volume: 23
  start-page: 1899
  year: 2018
  ident: 2024012105081576000_r21
  publication-title: Molecules
  doi: 10.3390/molecules23081899
  contributor:
    fullname: Pantsar
– volume: 1685
  start-page: 43
  year: 2018
  ident: 2024012105081576000_r24
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7366-8_4
  contributor:
    fullname: Land
– volume: 6
  start-page: 2351
  year: 2010
  ident: 2024012105081576000_r19
  publication-title: Mol. BioSyst.
  doi: 10.1039/c005060c
  contributor:
    fullname: Janin
– volume: 13
  start-page: 1754
  year: 2012
  ident: 2024012105081576000_r10
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201200385
  contributor:
    fullname: Kita
– volume: 51
  start-page: 2778
  year: 2011
  ident: 2024012105081576000_r27
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200227u
  contributor:
    fullname: Laskowski
– volume: 26
  start-page: 27
  year: 2009
  ident: 2024012105081576000_r13
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/B800263K
  contributor:
    fullname: Yamada
– volume: 7
  start-page: 15451
  year: 2017
  ident: 2024012105081576000_r20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15571-7
  contributor:
    fullname: Hassan
– ident: 2024012105081576000_r28
– volume: 5
  start-page: 213
  year: 2020
  ident: 2024012105081576000_r1
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-020-00315-3
  contributor:
    fullname: Lu
– volume: 356
  start-page: 945
  year: 2006
  ident: 2024012105081576000_r11
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.12.031
  contributor:
    fullname: Hirata
SSID ssj0008549
Score 2.4372098
Snippet The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and tubulin....
Abstract The antitumor macrolide aplyronine A (ApA) disturbs microtubule (MT) dynamics by inducing the protein–protein interaction (PPI) between actin and...
SourceID proquest
crossref
chemicalsocietyjapan
SourceType Aggregation Database
Publisher
StartPage 120
SubjectTerms Binding
Lattice vibration
Molecular docking
Molecular dynamics
Proteins
Toxicity
Title Binding Mode of Actin–Aplyronine A–Tubulin Heterotrimeric Complex Revealed by Molecular Dynamics Simulation
URI http://dx.doi.org/10.1246/bcsj.20220299
https://www.proquest.com/docview/2801100568
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgHIADAgZiMJAPiEuV0dhJ6hzLfqia1nGglXqLYseWOrZmIqlgnPgf-A_5S3gvtpNGKhMgVVHrVm7t99X5nv3e9wh5q3jEkxFnAdMpC6JIqyA1cR4kLE9zZkIlC9yHnJ4nk3l0uogXGyemmF1SywP1fWteyf9YFdrArpgl-w-WbTuFBngO9oUrWBiuf2XjD0ubk4IFzRpKqVASwIUv8PH15Q0q3wKNHLeNs7VcW30rmNCyRnF_jKXHZeFSf8OjAmSODSud-sq5gyNbtr4afFpeuXJfvcNgJ-Ht4w1aEQIfEgrtp3BTbnE4r8urZov2aFksPw8m6-pr2QUDWD47zSsgt5ubEgyPggOblmljg279Hr8UpwFLbB2TA21XXx6JADhTtLk824K3DoZs66rPGrljqaoLcPgZPGzNpb669vnH7GR-dpbNjhezu-QeQ2FATA5fdCFBIvbukv1pTpMVun_f6_wh2VVuhJUd4AUOrk9t-nf2hq7MHpNHzs-gYwuaJ-SOXj0l9w99eb9dUjrwUAQPLQ1twPPrx88ONnQMLx1gaB8w1AGGesBQeUNbwFAPGNoB5hmZnxzPDieBq74RKB6yOihknioZhyOtmVZAm4shCh3pYcEK4JQiF1KLkTYjk2tpVBhyrEAFfF9HsRFc8-dkZ1Wu9AtCwSlRYmhCGWkGDnIqE53keWKSsEhjYdQe4dvmM3N_tSpDTxWskKEVMm-FPfLOT3d2baVZ_vTBfW-MrksmGrXEOBEvb3_7FXnQIXyf7NRf1vo1ENFavmnQ8xtC2o88
link.rule.ids 315,783,787,27937,27938
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binding+Mode+of+Actin%E2%80%93Aplyronine+A%E2%80%93Tubulin+Heterotrimeric+Complex+Revealed+by+Molecular+Dynamics+Simulation&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Utomo%2C+Didik+Huswo&rft.au=Kita%2C+Masaki&rft.date=2023-02-15&rft.pub=Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=96&rft.issue=2&rft_id=info:doi/10.1246%2Fbcsj.20220299&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon