Impact of environmental factors on the coevolution of information–emotions–epidemic dynamics in activity-driven multiplex networks

During public health emergencies, the diffusion of negative information can exacerbate the transmission of adverse emotions, such as fear and anxiety. These emotions can adversely affect immune function and, consequently, influence the spread of the epidemic. In this study, we established a coupled...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 12; pp. 128903 - 615
Main Authors Huo, Liang’an, Liu, Bingjie, Zhao, Xiaomin
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.12.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ad7df5

Cover

Abstract During public health emergencies, the diffusion of negative information can exacerbate the transmission of adverse emotions, such as fear and anxiety. These emotions can adversely affect immune function and, consequently, influence the spread of the epidemic. In this study, we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information–emotions–epidemic dynamics in activity-driven multiplex networks. In this model, environmental factors refer to the external conditions or pressures that affect the spread of information, emotions, and epidemics. These factors include media coverage, public opinion, and the prevalence of diseases in the neighborhood. These layers are dynamically cross-coupled, where the environmental factors in the information layer are influenced by the emotional layer; the higher the levels of anxious states among neighboring individuals, the greater the likelihood of information diffusion. Although environmental factors in the emotional layer are influenced by both the information and epidemic layers, they come from the factors of global information and the proportion of local infections among surrounding neighbors. Subsequently, we utilized the microscopic Markov chain approach to describe the dynamic processes, thereby obtaining the epidemic threshold. Finally, conclusions are drawn through numerical modeling and analysis. The conclusions suggest that when negative information increases, the probability of the transmission of anxious states across the population increases. The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold. Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic. Our findings can provide a reference for improving public health awareness and behavioral decision-making, mitigating the adverse impacts of anxious states, and ultimately controlling the spread of epidemics.
AbstractList During public health emergencies, the diffusion of negative information can exacerbate the transmission of adverse emotions, such as fear and anxiety. These emotions can adversely affect immune function and, consequently, influence the spread of the epidemic. In this study, we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information–emotions–epidemic dynamics in activity-driven multiplex networks. In this model, environmental factors refer to the external conditions or pressures that affect the spread of information, emotions, and epidemics. These factors include media coverage, public opinion, and the prevalence of diseases in the neighborhood. These layers are dynamically cross-coupled, where the environmental factors in the information layer are influenced by the emotional layer; the higher the levels of anxious states among neighboring individuals, the greater the likelihood of information diffusion. Although environmental factors in the emotional layer are influenced by both the information and epidemic layers, they come from the factors of global information and the proportion of local infections among surrounding neighbors. Subsequently, we utilized the microscopic Markov chain approach to describe the dynamic processes, thereby obtaining the epidemic threshold. Finally, conclusions are drawn through numerical modeling and analysis. The conclusions suggest that when negative information increases, the probability of the transmission of anxious states across the population increases. The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold. Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic. Our findings can provide a reference for improving public health awareness and behavioral decision-making, mitigating the adverse impacts of anxious states, and ultimately controlling the spread of epidemics.
During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,influence the spread of the epidemic.In this study,we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information-emotions-epidemic dynamics in activity-driven multiplex networks.In this model,environmental factors refer to the external conditions or pressures that affect the spread of information,emotions,and epidemics.These factors include media coverage,public opinion,and the prevalence of diseases in the neighborhood.These layers are dynamically cross-coupled,where the environmental factors in the information layer are influenced by the emotional layer;the higher the levels of anxious states among neighboring individuals,the greater the likelihood of information diffusion.Although environmental factors in the emotional layer are influenced by both the information and epidemic layers,they come from the factors of global information and the proportion of local infections among surrounding neighbors.Subsequently,we utilized the microscopic Markov chain approach to describe the dynamic processes,thereby obtaining the epidemic threshold.Finally,conclusions are drawn through numerical modeling and analysis.The conclu-sions suggest that when negative information increases,the probability of the transmission of anxious states across the population increases.The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold.Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for con-trolling the scale of the spread of the epidemic.Our findings can provide a reference for improving public health awareness and behavioral decision-making,mitigating the adverse impacts of anxious states,and ultimately controlling the spread of epidemics.
Author Liu, Bingjie
Zhao, Xiaomin
Huo, Liang’an
Author_xml – sequence: 1
  givenname: Liang’an
  surname: Huo
  fullname: Huo, Liang’an
  organization: University of Shanghai for Science and Technology School of Intelligent Emergency Management, Shanghai 200093, China
– sequence: 2
  givenname: Bingjie
  surname: Liu
  fullname: Liu, Bingjie
  organization: University of Shanghai for Science and Technology Business School, Shanghai 200093, China
– sequence: 3
  givenname: Xiaomin
  surname: Zhao
  fullname: Zhao, Xiaomin
  organization: Shanghai University School of Management, Shanghai 200444, China
BookMark eNp9kD1v2zAQhokiAep87B25dakafkiUNBZG0xgIkCU7QZDHhI5ECiRt150y5Q_0H-aXlKqLBCiQTHfHe9473nuCjnzwgNAnSr5S0nUXVLR1RUkjLpRpjW0-oAUjTVfxjtdHaPHS_ohOUloTIihhfIGeVuOkdMbBYvBbF4MfwWc1YFteQ0w4eJzvAesA2zBssit1YZ23IY5qLp8ff8MY5izN6eQMjE5js_eqxFRQXEa5rcv7ykS3BY_HzZDdNMBP7CHvQnxIZ-jYqiHB-b94im4vv98ur6rrmx-r5bfrSnPKcmX6htddC0S0ve4ay2jP-5Za1RjNWFdDY4hR0Ope9FQIMMC7lqveGMpsTfgp-nwYu1PeKn8n12ETfVkof93tBgmMsJoyIkQhxYHUMaQUwUrt8t97c1RukJTI2XY5-ypnX-XB9iIk_wmn6EYV9-9JvhwkLkyvP3oT_wOotZu7
CitedBy_id crossref_primary_10_1088_1674_1056_adaade
Cites_doi 10.1016/j.matcom.2023.10.026
10.1016/j.ijdrr.2023.104226
10.1016/j.heliyon.2023.e21934
10.1103/PhysRevE.90.012808
10.1016/j.ins.2022.02.029
10.7498/aps
10.1088/1674-1056/acea65
10.1016/j.chb.2023.108055
10.1016/j.cnsns.2016.08.007
10.1016/j.amc.2023.127850
10.1016/j.lanwpc.2023.100969
10.1073/pnas.2009911117
10.1103/PhysRevLett.111.128701
10.1016/j.physa.2018.07.025
10.1007/s11071-022-07640-y
10.1016/j.plrev.2015.11.002
10.1109/TNSE.2022.3187775
10.1098/rspa.1932.0171
10.1016/j.amc.2023.128233
10.1016/j.amc.2021.126497
10.1088/1674-1056/ad39c7
10.1088/1674-1056/ad0114
10.1016/j.chb.2022.107439
10.1111/1467-8721.ep10770953
10.1016/j.aml.2022.108231
10.1016/j.mhp.2023.200272
10.1016/j.eswa.2023.121225
10.1016/j.amc.2023.128507
10.1016/j.chaos.2023.114014
10.1016/S2213-2600(21)00559-2
10.1038/s41562-020-0931-9
10.1016/j.jad.2023.12.037
10.20961/placentum.v9i2
10.3389/fphy.2022.964883
10.1016/j.ijid.2020.11.189
10.1007/s11071-023-08793-0
10.1016/j.chaos.2020.110123
10.1016/j.chaos.2019.01.035
10.1016/j.physa.2016.09.059
10.1016/j.physa.2022.128323
10.1016/j.amc.2022.127537
10.1088/1674-1056/acb9f4
10.1016/j.scs.2024.105403
10.1007/bf02464423
10.1016/j.plrev.2015.07.006
10.1007/978-981-16-4675-1_7
10.1016/j.chaos.2023.113601
10.1136/bmj.m1036
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ad7df5
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 615
ExternalDocumentID zgwl_e202412066
10_1088_1674_1056_ad7df5
cpb_33_12_128903
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
Q--
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c312t-d953487e0679c85f2193971fa5dc2284e5d0dae7c969166ede3873a9dd12f403
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Thu Apr 24 22:52:53 EDT 2025
Tue Jul 01 02:13:16 EDT 2025
Tue Dec 10 22:54:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords epidemic spreading
activity-driven multiplex networks
emotional transmission
environmental factors
information diffusion
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-d953487e0679c85f2193971fa5dc2284e5d0dae7c969166ede3873a9dd12f403
PageCount 16
ParticipantIDs crossref_primary_10_1088_1674_1056_ad7df5
iop_journals_10_1088_1674_1056_ad7df5
wanfang_journals_zgwl_e202412066
crossref_citationtrail_10_1088_1674_1056_ad7df5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – sequence: 0
  name: Chinese Physical Society and IOP Publishing Ltd
References Zhao (cpb_33_12_128903bib34) 2024; 107
Xu (cpb_33_12_128903bib31) 2022; 110
Mahase (cpb_33_12_128903bib1) 2020; 368
Kan (cpb_33_12_128903bib14) 2017; 44
Li (cpb_33_12_128903bib38) 2023; 458
Mueller (cpb_33_12_128903bib50) 2023; 348
Chen (cpb_33_12_128903bib42) 2021; 411
Zhang (cpb_33_12_128903bib24) 2019; 121
Kermack (cpb_33_12_128903bib8) 1991; 53
Wang (cpb_33_12_128903bib17) 2024; 468
Zhang (cpb_33_12_128903bib27) 2022
Li (cpb_33_12_128903bib45) 2017; 467
Yin (cpb_33_12_128903bib35) 2022; 594
Huo (cpb_33_12_128903bib18) 2024; 33
Dharmawan (cpb_33_12_128903bib36) 2021; 9
Pandey (cpb_33_12_128903bib49) 2023; 9
Chai (cpb_33_12_128903bib16) 2023; 32
Weitz (cpb_33_12_128903bib15) 2020; 117
Wang (cpb_33_12_128903bib44) 2010; 18
Yang (cpb_33_12_128903bib3) 2024; 33
Wang (cpb_33_12_128903bib25) 2023; 437
Yang (cpb_33_12_128903bib6) 2024; 43
Huo (cpb_33_12_128903bib19) 2023; 32
Burki (cpb_33_12_128903bib9) 2022; 10
Granell (cpb_33_12_128903bib21) 2013; 111
Wang (cpb_33_12_128903bib5) 2024; 217
Song (cpb_33_12_128903bib12) 2023; 138
Yin (cpb_33_12_128903bib28) 2022; 133
Huo (cpb_33_12_128903bib29) 2023; 609
Hatfield (cpb_33_12_128903bib43) 1993; 2
Chen (cpb_33_12_128903bib26) 2022; 10
Du (cpb_33_12_128903bib23) 2024; 235
Zhang (cpb_33_12_128903bib40) 2023; 173
Wang (cpb_33_12_128903bib32) 2015; 15
Velavan (cpb_33_12_128903bib10) 2021; 103
Granell (cpb_33_12_128903bib22) 2014; 90
Li (cpb_33_12_128903bib47) 2013; 62
Wang (cpb_33_12_128903bib13) 2015; 15
Li (cpb_33_12_128903bib4) 2024; 152
Kumar (cpb_33_12_128903bib41) 2023; 175
Chen (cpb_33_12_128903bib2) 2024; 101
You (cpb_33_12_128903bib20) 2023; 111
Hou (cpb_33_12_128903bib39) 2023; 446
Kermack (cpb_33_12_128903bib7) 1932; 138
Li (cpb_33_12_128903bib46) 2018; 510
Jain (cpb_33_12_128903bib30) 2022; 10
Zhang (cpb_33_12_128903bib37) 2020; 10
Zhu (cpb_33_12_128903bib33) 2020; 140
Aleta (cpb_33_12_128903bib11) 2020; 4
Doan (cpb_33_12_128903bib48) 2023; 30
References_xml – volume: 217
  start-page: 374
  year: 2024
  ident: cpb_33_12_128903bib5
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2023.10.026
– volume: 101
  year: 2024
  ident: cpb_33_12_128903bib2
  publication-title: International Journal of Disaster Risk Reduction
  doi: 10.1016/j.ijdrr.2023.104226
– volume: 9
  year: 2023
  ident: cpb_33_12_128903bib49
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e21934
– volume: 90
  year: 2014
  ident: cpb_33_12_128903bib22
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.012808
– volume: 594
  start-page: 118
  year: 2022
  ident: cpb_33_12_128903bib35
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.02.029
– volume: 62
  year: 2013
  ident: cpb_33_12_128903bib47
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps
– volume: 32
  year: 2023
  ident: cpb_33_12_128903bib19
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/acea65
– volume: 152
  year: 2024
  ident: cpb_33_12_128903bib4
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2023.108055
– volume: 44
  start-page: 193
  year: 2017
  ident: cpb_33_12_128903bib14
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2016.08.007
– volume: 446
  year: 2023
  ident: cpb_33_12_128903bib39
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2023.127850
– volume: 43
  year: 2024
  ident: cpb_33_12_128903bib6
  publication-title: The Lancet Regional Health-Western Pacific
  doi: 10.1016/j.lanwpc.2023.100969
– volume: 117
  year: 2020
  ident: cpb_33_12_128903bib15
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2009911117
– volume: 111
  year: 2013
  ident: cpb_33_12_128903bib21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.128701
– volume: 510
  start-page: 713
  year: 2018
  ident: cpb_33_12_128903bib46
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.07.025
– volume: 110
  start-page: 901
  year: 2022
  ident: cpb_33_12_128903bib31
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07640-y
– volume: 15
  start-page: 57
  year: 2015
  ident: cpb_33_12_128903bib13
  publication-title: Physics of Life Reviews
  doi: 10.1016/j.plrev.2015.11.002
– volume: 10
  start-page: 20
  year: 2022
  ident: cpb_33_12_128903bib30
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2022.3187775
– volume: 138
  start-page: 55
  year: 1932
  ident: cpb_33_12_128903bib7
  publication-title: Proceedings of the Royal Society of London Series A
  doi: 10.1098/rspa.1932.0171
– volume: 18
  start-page: 1236
  year: 2010
  ident: cpb_33_12_128903bib44
  publication-title: Advances in Psychological Science
– volume: 458
  year: 2023
  ident: cpb_33_12_128903bib38
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2023.128233
– volume: 411
  year: 2021
  ident: cpb_33_12_128903bib42
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2021.126497
– volume: 33
  year: 2024
  ident: cpb_33_12_128903bib3
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ad39c7
– volume: 33
  year: 2024
  ident: cpb_33_12_128903bib18
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ad0114
– volume: 138
  year: 2023
  ident: cpb_33_12_128903bib12
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2022.107439
– volume: 2
  start-page: 96
  year: 1993
  ident: cpb_33_12_128903bib43
  publication-title: Current Directions in Psychological Science
  doi: 10.1111/1467-8721.ep10770953
– volume: 133
  year: 2022
  ident: cpb_33_12_128903bib28
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2022.108231
– volume: 30
  year: 2023
  ident: cpb_33_12_128903bib48
  publication-title: Mental Health & Prevention
  doi: 10.1016/j.mhp.2023.200272
– volume: 235
  year: 2024
  ident: cpb_33_12_128903bib23
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121225
– volume: 468
  year: 2024
  ident: cpb_33_12_128903bib17
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2023.128507
– volume: 175
  year: 2023
  ident: cpb_33_12_128903bib41
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2023.114014
– volume: 10
  start-page: e17
  year: 2022
  ident: cpb_33_12_128903bib9
  publication-title: The Lancet Respiratory Medicine
  doi: 10.1016/S2213-2600(21)00559-2
– volume: 4
  start-page: 964
  year: 2020
  ident: cpb_33_12_128903bib11
  publication-title: Nature Human Behavior
  doi: 10.1038/s41562-020-0931-9
– volume: 348
  start-page: 398
  year: 2023
  ident: cpb_33_12_128903bib50
  publication-title: Journal of Affective Disorders
  doi: 10.1016/j.jad.2023.12.037
– volume: 9
  start-page: 16
  year: 2021
  ident: cpb_33_12_128903bib36
  publication-title: PLACENTUM: Jurnal Ilmiah Kesehatan dan Aplikasinya
  doi: 10.20961/placentum.v9i2
– volume: 10
  year: 2022
  ident: cpb_33_12_128903bib26
  publication-title: Frontiers in Physics
  doi: 10.3389/fphy.2022.964883
– volume: 103
  start-page: 278
  year: 2021
  ident: cpb_33_12_128903bib10
  publication-title: International Journal of Infectious Diseases
  doi: 10.1016/j.ijid.2020.11.189
– volume: 111
  year: 2023
  ident: cpb_33_12_128903bib20
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08793-0
– volume: 140
  year: 2020
  ident: cpb_33_12_128903bib33
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110123
– volume: 121
  start-page: 168
  year: 2019
  ident: cpb_33_12_128903bib24
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2019.01.035
– volume: 467
  start-page: 30
  year: 2017
  ident: cpb_33_12_128903bib45
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.09.059
– volume: 609
  year: 2023
  ident: cpb_33_12_128903bib29
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.128323
– volume: 10
  start-page: 1294
  year: 2020
  ident: cpb_33_12_128903bib37
  publication-title: American journal of cancer research
– volume: 437
  year: 2023
  ident: cpb_33_12_128903bib25
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2022.127537
– volume: 32
  year: 2023
  ident: cpb_33_12_128903bib16
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/acb9f4
– volume: 107
  year: 2024
  ident: cpb_33_12_128903bib34
  publication-title: Sustainable Cities and Society
  doi: 10.1016/j.scs.2024.105403
– volume: 53
  start-page: 33
  year: 1991
  ident: cpb_33_12_128903bib8
  publication-title: Bulletin of Mathematical Biology
  doi: 10.1007/bf02464423
– volume: 15
  start-page: 1
  year: 2015
  ident: cpb_33_12_128903bib32
  publication-title: Physics of Life Reviews
  doi: 10.1016/j.plrev.2015.07.006
– start-page: 155
  year: 2022
  ident: cpb_33_12_128903bib27
  doi: 10.1007/978-981-16-4675-1_7
– volume: 173
  year: 2023
  ident: cpb_33_12_128903bib40
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2023.113601
– volume: 368
  year: 2020
  ident: cpb_33_12_128903bib1
  publication-title: Bmj
  doi: 10.1136/bmj.m1036
SSID ssj0061023
Score 2.3566206
Snippet During public health emergencies, the diffusion of negative information can exacerbate the transmission of adverse emotions, such as fear and anxiety. These...
During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128903
SubjectTerms activity-driven multiplex networks
emotional transmission
environmental factors
epidemic spreading
information diffusion
Title Impact of environmental factors on the coevolution of information–emotions–epidemic dynamics in activity-driven multiplex networks
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad7df5
https://d.wanfangdata.com.cn/periodical/zgwl-e202412066
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELXaIiQu7IiyyQc4cHDbLE4TcUKICpBYDiBxQIpc2-mBKkEkZemJEz_AH_IlzMQOmxBCnOJIM1nGzizxzBtCNhMIjXkkNXPB1jEfXHQWucpjmvdDDD86vASePz4JDi78o0t-WSM777Uw2Y1V_S0YGqBgI0KbEBe2MW-eYcP4tlBdlfA6mcDGlbi8D0_PKjUcICYBRlsVtd2j_OkKX2xSHe5bVvCkiUgHn4xNb4ZcVY9pckyuW6Oi35LjbwiO_3yPWTJtnVC6a0jnSE2n82SyTAaV-QJ5PixLJ2mW0E91cMBgm_PQLKXgN1KZ6Tu7cpHWYrDi6evTizb9gXIcmi60kqrHVMAxB1KKBRXYt4KpW1S4tMpsfKCpyUzPF8l5b_9874DZfg1Meo5bMBVxD-Ifjf-mZMgTUIbg7TiJ4Eq6YAY1Vx0ldFdGATilgVbaC7ueiJRy3MTveEukkWapXiZUKC1AU7h-EoH1FH4fGFUQ-ohOJ5TDm6RdTVgsLZY5ttQYxuWeehjGKNwYhRsb4TbJ9jvHjcHx-IV2C-Ysth9z_gsdtavkg3Y8uB_G2gXPx0Gg_JU_XmqVTCGPyZNZI43idqTXwdsp-hvlqn4D7u78FQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4BKLhRty4gILCu5vD2aREwIrlLkCiC14fFKBkRZazouIH-EO-hJnY4RJCSFRxpJkcY2eOeOYNIasGQmOeSM18sHUsBBedJb4KmOadGMOPBi-B5w8Oo53TcPeMn7k-p2UtTN51qr8GQwsUbEXoEuLiOubNM2wYXxeqqQyvd5XpJ4McVDHmdLWPjitVHCEuAUZcFYfbp_zpKl_sUj_cu6ziyYzILj4ZnNYYOa8e1eaZXNZuep2afPyG4viPdxkno84ZpRuWfIL06WySDJVJobKYIs_tsoSS5oZ-qocDBtekh-YZBf-RylzfuhWMtA6LFU9fn1607RNU4NB2o5VUPWQCjgWQUiyswP4VTF2j4qVVhuM9zWyGejFNTlrbJ5s7zPVtYDLw_B5TCQ8gDtL4j0rG3IBSBK_HM4Ir6YM51Fw1lNBNmUTgnEZa6SBuBiJRyvNN2AhmyECWZ3qWUKG0AI3hhyYBKyrCDjCqKA4RpU4oj8-RejVpqXSY5tha4yot99bjOEUBpyjg1Ap4jqy_c3QtnscvtGswb6n7qItf6KhbKR-0jxd3V6n2wQPyEDB__o-XWiHDx1utdL99uLdARpDdps4skoHe9Y1eAgeo11kuF_kb4yoBiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+environmental+factors+on+the+coevolution+of+information-emotions-epidemic+dynamics+in+activity-driven+multiplex+networks&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Liang%27an+Huo&rft.au=Bingjie+Liu&rft.au=Xiaomin+Zhao&rft.date=2024-12-01&rft.issn=1674-1056&rft.volume=33&rft.issue=12&rft.spage=599&rft.epage=615&rft_id=info:doi/10.1088%2F1674-1056%2Fad7df5&rft.externalDocID=zgwl_e202412066
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg