Impact of environmental factors on the coevolution of information–emotions–epidemic dynamics in activity-driven multiplex networks
During public health emergencies, the diffusion of negative information can exacerbate the transmission of adverse emotions, such as fear and anxiety. These emotions can adversely affect immune function and, consequently, influence the spread of the epidemic. In this study, we established a coupled...
Saved in:
Published in | Chinese physics B Vol. 33; no. 12; pp. 128903 - 615 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad7df5 |
Cover
Abstract | During public health emergencies, the diffusion of negative information can exacerbate the transmission of adverse emotions, such as fear and anxiety. These emotions can adversely affect immune function and, consequently, influence the spread of the epidemic. In this study, we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information–emotions–epidemic dynamics in activity-driven multiplex networks. In this model, environmental factors refer to the external conditions or pressures that affect the spread of information, emotions, and epidemics. These factors include media coverage, public opinion, and the prevalence of diseases in the neighborhood. These layers are dynamically cross-coupled, where the environmental factors in the information layer are influenced by the emotional layer; the higher the levels of anxious states among neighboring individuals, the greater the likelihood of information diffusion. Although environmental factors in the emotional layer are influenced by both the information and epidemic layers, they come from the factors of global information and the proportion of local infections among surrounding neighbors. Subsequently, we utilized the microscopic Markov chain approach to describe the dynamic processes, thereby obtaining the epidemic threshold. Finally, conclusions are drawn through numerical modeling and analysis. The conclusions suggest that when negative information increases, the probability of the transmission of anxious states across the population increases. The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold. Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic. Our findings can provide a reference for improving public health awareness and behavioral decision-making, mitigating the adverse impacts of anxious states, and ultimately controlling the spread of epidemics. |
---|---|
AbstractList | During public health emergencies, the diffusion of negative information can exacerbate the transmission of adverse emotions, such as fear and anxiety. These emotions can adversely affect immune function and, consequently, influence the spread of the epidemic. In this study, we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information–emotions–epidemic dynamics in activity-driven multiplex networks. In this model, environmental factors refer to the external conditions or pressures that affect the spread of information, emotions, and epidemics. These factors include media coverage, public opinion, and the prevalence of diseases in the neighborhood. These layers are dynamically cross-coupled, where the environmental factors in the information layer are influenced by the emotional layer; the higher the levels of anxious states among neighboring individuals, the greater the likelihood of information diffusion. Although environmental factors in the emotional layer are influenced by both the information and epidemic layers, they come from the factors of global information and the proportion of local infections among surrounding neighbors. Subsequently, we utilized the microscopic Markov chain approach to describe the dynamic processes, thereby obtaining the epidemic threshold. Finally, conclusions are drawn through numerical modeling and analysis. The conclusions suggest that when negative information increases, the probability of the transmission of anxious states across the population increases. The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold. Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for controlling the scale of the spread of the epidemic. Our findings can provide a reference for improving public health awareness and behavioral decision-making, mitigating the adverse impacts of anxious states, and ultimately controlling the spread of epidemics. During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These emotions can adversely affect immune function and,consequently,influence the spread of the epidemic.In this study,we established a coupled model incorporating environmental factors to explore the coevolution dynamic process of information-emotions-epidemic dynamics in activity-driven multiplex networks.In this model,environmental factors refer to the external conditions or pressures that affect the spread of information,emotions,and epidemics.These factors include media coverage,public opinion,and the prevalence of diseases in the neighborhood.These layers are dynamically cross-coupled,where the environmental factors in the information layer are influenced by the emotional layer;the higher the levels of anxious states among neighboring individuals,the greater the likelihood of information diffusion.Although environmental factors in the emotional layer are influenced by both the information and epidemic layers,they come from the factors of global information and the proportion of local infections among surrounding neighbors.Subsequently,we utilized the microscopic Markov chain approach to describe the dynamic processes,thereby obtaining the epidemic threshold.Finally,conclusions are drawn through numerical modeling and analysis.The conclu-sions suggest that when negative information increases,the probability of the transmission of anxious states across the population increases.The transmission of anxious states increases the final size of the disease and decreases its outbreak threshold.Reducing the impact of environmental factors at both the informational and emotional levels is beneficial for con-trolling the scale of the spread of the epidemic.Our findings can provide a reference for improving public health awareness and behavioral decision-making,mitigating the adverse impacts of anxious states,and ultimately controlling the spread of epidemics. |
Author | Liu, Bingjie Zhao, Xiaomin Huo, Liang’an |
Author_xml | – sequence: 1 givenname: Liang’an surname: Huo fullname: Huo, Liang’an organization: University of Shanghai for Science and Technology School of Intelligent Emergency Management, Shanghai 200093, China – sequence: 2 givenname: Bingjie surname: Liu fullname: Liu, Bingjie organization: University of Shanghai for Science and Technology Business School, Shanghai 200093, China – sequence: 3 givenname: Xiaomin surname: Zhao fullname: Zhao, Xiaomin organization: Shanghai University School of Management, Shanghai 200444, China |
BookMark | eNp9kD1v2zAQhokiAep87B25dakafkiUNBZG0xgIkCU7QZDHhI5ECiRt150y5Q_0H-aXlKqLBCiQTHfHe9473nuCjnzwgNAnSr5S0nUXVLR1RUkjLpRpjW0-oAUjTVfxjtdHaPHS_ohOUloTIihhfIGeVuOkdMbBYvBbF4MfwWc1YFteQ0w4eJzvAesA2zBssit1YZ23IY5qLp8ff8MY5izN6eQMjE5js_eqxFRQXEa5rcv7ykS3BY_HzZDdNMBP7CHvQnxIZ-jYqiHB-b94im4vv98ur6rrmx-r5bfrSnPKcmX6htddC0S0ve4ay2jP-5Za1RjNWFdDY4hR0Ope9FQIMMC7lqveGMpsTfgp-nwYu1PeKn8n12ETfVkof93tBgmMsJoyIkQhxYHUMaQUwUrt8t97c1RukJTI2XY5-ypnX-XB9iIk_wmn6EYV9-9JvhwkLkyvP3oT_wOotZu7 |
CitedBy_id | crossref_primary_10_1088_1674_1056_adaade |
Cites_doi | 10.1016/j.matcom.2023.10.026 10.1016/j.ijdrr.2023.104226 10.1016/j.heliyon.2023.e21934 10.1103/PhysRevE.90.012808 10.1016/j.ins.2022.02.029 10.7498/aps 10.1088/1674-1056/acea65 10.1016/j.chb.2023.108055 10.1016/j.cnsns.2016.08.007 10.1016/j.amc.2023.127850 10.1016/j.lanwpc.2023.100969 10.1073/pnas.2009911117 10.1103/PhysRevLett.111.128701 10.1016/j.physa.2018.07.025 10.1007/s11071-022-07640-y 10.1016/j.plrev.2015.11.002 10.1109/TNSE.2022.3187775 10.1098/rspa.1932.0171 10.1016/j.amc.2023.128233 10.1016/j.amc.2021.126497 10.1088/1674-1056/ad39c7 10.1088/1674-1056/ad0114 10.1016/j.chb.2022.107439 10.1111/1467-8721.ep10770953 10.1016/j.aml.2022.108231 10.1016/j.mhp.2023.200272 10.1016/j.eswa.2023.121225 10.1016/j.amc.2023.128507 10.1016/j.chaos.2023.114014 10.1016/S2213-2600(21)00559-2 10.1038/s41562-020-0931-9 10.1016/j.jad.2023.12.037 10.20961/placentum.v9i2 10.3389/fphy.2022.964883 10.1016/j.ijid.2020.11.189 10.1007/s11071-023-08793-0 10.1016/j.chaos.2020.110123 10.1016/j.chaos.2019.01.035 10.1016/j.physa.2016.09.059 10.1016/j.physa.2022.128323 10.1016/j.amc.2022.127537 10.1088/1674-1056/acb9f4 10.1016/j.scs.2024.105403 10.1007/bf02464423 10.1016/j.plrev.2015.07.006 10.1007/978-981-16-4675-1_7 10.1016/j.chaos.2023.113601 10.1136/bmj.m1036 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad7df5 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 615 |
ExternalDocumentID | zgwl_e202412066 10_1088_1674_1056_ad7df5 cpb_33_12_128903 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION Q-- 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c312t-d953487e0679c85f2193971fa5dc2284e5d0dae7c969166ede3873a9dd12f403 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Thu Apr 24 22:52:53 EDT 2025 Tue Jul 01 02:13:16 EDT 2025 Tue Dec 10 22:54:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | epidemic spreading activity-driven multiplex networks emotional transmission environmental factors information diffusion |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-d953487e0679c85f2193971fa5dc2284e5d0dae7c969166ede3873a9dd12f403 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_ad7df5 iop_journals_10_1088_1674_1056_ad7df5 wanfang_journals_zgwl_e202412066 crossref_citationtrail_10_1088_1674_1056_ad7df5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – sequence: 0 name: Chinese Physical Society and IOP Publishing Ltd |
References | Zhao (cpb_33_12_128903bib34) 2024; 107 Xu (cpb_33_12_128903bib31) 2022; 110 Mahase (cpb_33_12_128903bib1) 2020; 368 Kan (cpb_33_12_128903bib14) 2017; 44 Li (cpb_33_12_128903bib38) 2023; 458 Mueller (cpb_33_12_128903bib50) 2023; 348 Chen (cpb_33_12_128903bib42) 2021; 411 Zhang (cpb_33_12_128903bib24) 2019; 121 Kermack (cpb_33_12_128903bib8) 1991; 53 Wang (cpb_33_12_128903bib17) 2024; 468 Zhang (cpb_33_12_128903bib27) 2022 Li (cpb_33_12_128903bib45) 2017; 467 Yin (cpb_33_12_128903bib35) 2022; 594 Huo (cpb_33_12_128903bib18) 2024; 33 Dharmawan (cpb_33_12_128903bib36) 2021; 9 Pandey (cpb_33_12_128903bib49) 2023; 9 Chai (cpb_33_12_128903bib16) 2023; 32 Weitz (cpb_33_12_128903bib15) 2020; 117 Wang (cpb_33_12_128903bib44) 2010; 18 Yang (cpb_33_12_128903bib3) 2024; 33 Wang (cpb_33_12_128903bib25) 2023; 437 Yang (cpb_33_12_128903bib6) 2024; 43 Huo (cpb_33_12_128903bib19) 2023; 32 Burki (cpb_33_12_128903bib9) 2022; 10 Granell (cpb_33_12_128903bib21) 2013; 111 Wang (cpb_33_12_128903bib5) 2024; 217 Song (cpb_33_12_128903bib12) 2023; 138 Yin (cpb_33_12_128903bib28) 2022; 133 Huo (cpb_33_12_128903bib29) 2023; 609 Hatfield (cpb_33_12_128903bib43) 1993; 2 Chen (cpb_33_12_128903bib26) 2022; 10 Du (cpb_33_12_128903bib23) 2024; 235 Zhang (cpb_33_12_128903bib40) 2023; 173 Wang (cpb_33_12_128903bib32) 2015; 15 Velavan (cpb_33_12_128903bib10) 2021; 103 Granell (cpb_33_12_128903bib22) 2014; 90 Li (cpb_33_12_128903bib47) 2013; 62 Wang (cpb_33_12_128903bib13) 2015; 15 Li (cpb_33_12_128903bib4) 2024; 152 Kumar (cpb_33_12_128903bib41) 2023; 175 Chen (cpb_33_12_128903bib2) 2024; 101 You (cpb_33_12_128903bib20) 2023; 111 Hou (cpb_33_12_128903bib39) 2023; 446 Kermack (cpb_33_12_128903bib7) 1932; 138 Li (cpb_33_12_128903bib46) 2018; 510 Jain (cpb_33_12_128903bib30) 2022; 10 Zhang (cpb_33_12_128903bib37) 2020; 10 Zhu (cpb_33_12_128903bib33) 2020; 140 Aleta (cpb_33_12_128903bib11) 2020; 4 Doan (cpb_33_12_128903bib48) 2023; 30 |
References_xml | – volume: 217 start-page: 374 year: 2024 ident: cpb_33_12_128903bib5 publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2023.10.026 – volume: 101 year: 2024 ident: cpb_33_12_128903bib2 publication-title: International Journal of Disaster Risk Reduction doi: 10.1016/j.ijdrr.2023.104226 – volume: 9 year: 2023 ident: cpb_33_12_128903bib49 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e21934 – volume: 90 year: 2014 ident: cpb_33_12_128903bib22 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.012808 – volume: 594 start-page: 118 year: 2022 ident: cpb_33_12_128903bib35 publication-title: Information Sciences doi: 10.1016/j.ins.2022.02.029 – volume: 62 year: 2013 ident: cpb_33_12_128903bib47 publication-title: Acta Phys. Sin. doi: 10.7498/aps – volume: 32 year: 2023 ident: cpb_33_12_128903bib19 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/acea65 – volume: 152 year: 2024 ident: cpb_33_12_128903bib4 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2023.108055 – volume: 44 start-page: 193 year: 2017 ident: cpb_33_12_128903bib14 publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2016.08.007 – volume: 446 year: 2023 ident: cpb_33_12_128903bib39 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2023.127850 – volume: 43 year: 2024 ident: cpb_33_12_128903bib6 publication-title: The Lancet Regional Health-Western Pacific doi: 10.1016/j.lanwpc.2023.100969 – volume: 117 year: 2020 ident: cpb_33_12_128903bib15 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2009911117 – volume: 111 year: 2013 ident: cpb_33_12_128903bib21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.128701 – volume: 510 start-page: 713 year: 2018 ident: cpb_33_12_128903bib46 publication-title: Physica A doi: 10.1016/j.physa.2018.07.025 – volume: 110 start-page: 901 year: 2022 ident: cpb_33_12_128903bib31 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07640-y – volume: 15 start-page: 57 year: 2015 ident: cpb_33_12_128903bib13 publication-title: Physics of Life Reviews doi: 10.1016/j.plrev.2015.11.002 – volume: 10 start-page: 20 year: 2022 ident: cpb_33_12_128903bib30 publication-title: IEEE Transactions on Network Science and Engineering doi: 10.1109/TNSE.2022.3187775 – volume: 138 start-page: 55 year: 1932 ident: cpb_33_12_128903bib7 publication-title: Proceedings of the Royal Society of London Series A doi: 10.1098/rspa.1932.0171 – volume: 18 start-page: 1236 year: 2010 ident: cpb_33_12_128903bib44 publication-title: Advances in Psychological Science – volume: 458 year: 2023 ident: cpb_33_12_128903bib38 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2023.128233 – volume: 411 year: 2021 ident: cpb_33_12_128903bib42 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2021.126497 – volume: 33 year: 2024 ident: cpb_33_12_128903bib3 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ad39c7 – volume: 33 year: 2024 ident: cpb_33_12_128903bib18 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ad0114 – volume: 138 year: 2023 ident: cpb_33_12_128903bib12 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2022.107439 – volume: 2 start-page: 96 year: 1993 ident: cpb_33_12_128903bib43 publication-title: Current Directions in Psychological Science doi: 10.1111/1467-8721.ep10770953 – volume: 133 year: 2022 ident: cpb_33_12_128903bib28 publication-title: Applied Mathematics Letters doi: 10.1016/j.aml.2022.108231 – volume: 30 year: 2023 ident: cpb_33_12_128903bib48 publication-title: Mental Health & Prevention doi: 10.1016/j.mhp.2023.200272 – volume: 235 year: 2024 ident: cpb_33_12_128903bib23 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121225 – volume: 468 year: 2024 ident: cpb_33_12_128903bib17 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2023.128507 – volume: 175 year: 2023 ident: cpb_33_12_128903bib41 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2023.114014 – volume: 10 start-page: e17 year: 2022 ident: cpb_33_12_128903bib9 publication-title: The Lancet Respiratory Medicine doi: 10.1016/S2213-2600(21)00559-2 – volume: 4 start-page: 964 year: 2020 ident: cpb_33_12_128903bib11 publication-title: Nature Human Behavior doi: 10.1038/s41562-020-0931-9 – volume: 348 start-page: 398 year: 2023 ident: cpb_33_12_128903bib50 publication-title: Journal of Affective Disorders doi: 10.1016/j.jad.2023.12.037 – volume: 9 start-page: 16 year: 2021 ident: cpb_33_12_128903bib36 publication-title: PLACENTUM: Jurnal Ilmiah Kesehatan dan Aplikasinya doi: 10.20961/placentum.v9i2 – volume: 10 year: 2022 ident: cpb_33_12_128903bib26 publication-title: Frontiers in Physics doi: 10.3389/fphy.2022.964883 – volume: 103 start-page: 278 year: 2021 ident: cpb_33_12_128903bib10 publication-title: International Journal of Infectious Diseases doi: 10.1016/j.ijid.2020.11.189 – volume: 111 year: 2023 ident: cpb_33_12_128903bib20 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08793-0 – volume: 140 year: 2020 ident: cpb_33_12_128903bib33 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110123 – volume: 121 start-page: 168 year: 2019 ident: cpb_33_12_128903bib24 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2019.01.035 – volume: 467 start-page: 30 year: 2017 ident: cpb_33_12_128903bib45 publication-title: Physica A doi: 10.1016/j.physa.2016.09.059 – volume: 609 year: 2023 ident: cpb_33_12_128903bib29 publication-title: Physica A doi: 10.1016/j.physa.2022.128323 – volume: 10 start-page: 1294 year: 2020 ident: cpb_33_12_128903bib37 publication-title: American journal of cancer research – volume: 437 year: 2023 ident: cpb_33_12_128903bib25 publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2022.127537 – volume: 32 year: 2023 ident: cpb_33_12_128903bib16 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/acb9f4 – volume: 107 year: 2024 ident: cpb_33_12_128903bib34 publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2024.105403 – volume: 53 start-page: 33 year: 1991 ident: cpb_33_12_128903bib8 publication-title: Bulletin of Mathematical Biology doi: 10.1007/bf02464423 – volume: 15 start-page: 1 year: 2015 ident: cpb_33_12_128903bib32 publication-title: Physics of Life Reviews doi: 10.1016/j.plrev.2015.07.006 – start-page: 155 year: 2022 ident: cpb_33_12_128903bib27 doi: 10.1007/978-981-16-4675-1_7 – volume: 173 year: 2023 ident: cpb_33_12_128903bib40 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2023.113601 – volume: 368 year: 2020 ident: cpb_33_12_128903bib1 publication-title: Bmj doi: 10.1136/bmj.m1036 |
SSID | ssj0061023 |
Score | 2.3566206 |
Snippet | During public health emergencies, the diffusion of negative information can exacerbate the transmission of adverse emotions, such as fear and anxiety. These... During public health emergencies,the diffusion of negative information can exacerbate the transmission of adverse emotions,such as fear and anxiety.These... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128903 |
SubjectTerms | activity-driven multiplex networks emotional transmission environmental factors epidemic spreading information diffusion |
Title | Impact of environmental factors on the coevolution of information–emotions–epidemic dynamics in activity-driven multiplex networks |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad7df5 https://d.wanfangdata.com.cn/periodical/zgwl-e202412066 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELXaIiQu7IiyyQc4cHDbLE4TcUKICpBYDiBxQIpc2-mBKkEkZemJEz_AH_IlzMQOmxBCnOJIM1nGzizxzBtCNhMIjXkkNXPB1jEfXHQWucpjmvdDDD86vASePz4JDi78o0t-WSM777Uw2Y1V_S0YGqBgI0KbEBe2MW-eYcP4tlBdlfA6mcDGlbi8D0_PKjUcICYBRlsVtd2j_OkKX2xSHe5bVvCkiUgHn4xNb4ZcVY9pckyuW6Oi35LjbwiO_3yPWTJtnVC6a0jnSE2n82SyTAaV-QJ5PixLJ2mW0E91cMBgm_PQLKXgN1KZ6Tu7cpHWYrDi6evTizb9gXIcmi60kqrHVMAxB1KKBRXYt4KpW1S4tMpsfKCpyUzPF8l5b_9874DZfg1Meo5bMBVxD-Ifjf-mZMgTUIbg7TiJ4Eq6YAY1Vx0ldFdGATilgVbaC7ueiJRy3MTveEukkWapXiZUKC1AU7h-EoH1FH4fGFUQ-ohOJ5TDm6RdTVgsLZY5ttQYxuWeehjGKNwYhRsb4TbJ9jvHjcHx-IV2C-Ysth9z_gsdtavkg3Y8uB_G2gXPx0Gg_JU_XmqVTCGPyZNZI43idqTXwdsp-hvlqn4D7u78FQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4BKLhRty4gILCu5vD2aREwIrlLkCiC14fFKBkRZazouIH-EO-hJnY4RJCSFRxpJkcY2eOeOYNIasGQmOeSM18sHUsBBedJb4KmOadGMOPBi-B5w8Oo53TcPeMn7k-p2UtTN51qr8GQwsUbEXoEuLiOubNM2wYXxeqqQyvd5XpJ4McVDHmdLWPjitVHCEuAUZcFYfbp_zpKl_sUj_cu6ziyYzILj4ZnNYYOa8e1eaZXNZuep2afPyG4viPdxkno84ZpRuWfIL06WySDJVJobKYIs_tsoSS5oZ-qocDBtekh-YZBf-RylzfuhWMtA6LFU9fn1607RNU4NB2o5VUPWQCjgWQUiyswP4VTF2j4qVVhuM9zWyGejFNTlrbJ5s7zPVtYDLw_B5TCQ8gDtL4j0rG3IBSBK_HM4Ir6YM51Fw1lNBNmUTgnEZa6SBuBiJRyvNN2AhmyECWZ3qWUKG0AI3hhyYBKyrCDjCqKA4RpU4oj8-RejVpqXSY5tha4yot99bjOEUBpyjg1Ap4jqy_c3QtnscvtGswb6n7qItf6KhbKR-0jxd3V6n2wQPyEDB__o-XWiHDx1utdL99uLdARpDdps4skoHe9Y1eAgeo11kuF_kb4yoBiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+environmental+factors+on+the+coevolution+of+information-emotions-epidemic+dynamics+in+activity-driven+multiplex+networks&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Liang%27an+Huo&rft.au=Bingjie+Liu&rft.au=Xiaomin+Zhao&rft.date=2024-12-01&rft.issn=1674-1056&rft.volume=33&rft.issue=12&rft.spage=599&rft.epage=615&rft_id=info:doi/10.1088%2F1674-1056%2Fad7df5&rft.externalDocID=zgwl_e202412066 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |