On a premixed NH3/O2 jet flame in hot coflow of gaseous H2O versus N2

This numerical study comparatively investigates a premixed NH3/O2 jet flame in hot coflow (JHC) of H2O (steam) versus that of N2. To differentiate physical and chemical effects of coflowing either H2O or N2, FH2O and FN2 are introduced as fictitious gases which have the same physical properties as t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 72; pp. 588 - 600
Main Authors Liu, Xiangtao, Wang, Guochang, Si, Jicang, Wu, Mengwei, Xu, Minyi, Mi, Jianchun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 27.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This numerical study comparatively investigates a premixed NH3/O2 jet flame in hot coflow (JHC) of H2O (steam) versus that of N2. To differentiate physical and chemical effects of coflowing either H2O or N2, FH2O and FN2 are introduced as fictitious gases which have the same physical properties as their real counterparts but do not participate in any chemical reaction. All present JHC flames are simulated under MILD (moderate or intense low-oxygen dilution) condition at the coflow temperature of TC = 1500 K and the equivalence ratio of ΦJ = 0.4 to 1.6. Specifically, the premixed ammonia flames are characterized by the mean temperatures, key radical concentrations and thermal efficiency, as well as their NOx formation mechanisms and emission features. It is found that the use of H2O versus N2 for dilution significantly reduces NOx emissions from the ammonia MILD combustion, albeit at the cost of reduced combustion efficiency. Interestingly, the H2O dilution affects combustion both physically and chemically, in contrast to the N2 dilution primarily impacting the process physically. Notably, the change to H2O dilution can lower peak temperatures and thus promote a more uniform temperature distribution. Furthermore, the shift from N2 to H2O for dilution influences NO emissions, primarily tied to variations in the HNO route, notably reaction R180, while boosting the DeNOx mechanism. This shift also alters the production rates of key radicals, e.g., H and O being generated more slowly with an intricate effect on OH production, depending on ΦJ. [Display omitted] •The impacts of N2 and H2O dilutions on the ammonia MILD-JHC flame are examined.•H2O dilution substantially reduces NOx emissions but lowers combustion efficiency.•Both physical and chemical factors of H2O dilution greatly influence the flame.•N2 dilution has only a strong physical effect on the flame.•H2O dilution weakens radical H and O productions, but differing OH formation in rich- and lean-fuel regions.
AbstractList This numerical study comparatively investigates a premixed NH3/O2 jet flame in hot coflow (JHC) of H2O (steam) versus that of N2. To differentiate physical and chemical effects of coflowing either H2O or N2, FH2O and FN2 are introduced as fictitious gases which have the same physical properties as their real counterparts but do not participate in any chemical reaction. All present JHC flames are simulated under MILD (moderate or intense low-oxygen dilution) condition at the coflow temperature of TC = 1500 K and the equivalence ratio of ΦJ = 0.4 to 1.6. Specifically, the premixed ammonia flames are characterized by the mean temperatures, key radical concentrations and thermal efficiency, as well as their NOx formation mechanisms and emission features. It is found that the use of H2O versus N2 for dilution significantly reduces NOx emissions from the ammonia MILD combustion, albeit at the cost of reduced combustion efficiency. Interestingly, the H2O dilution affects combustion both physically and chemically, in contrast to the N2 dilution primarily impacting the process physically. Notably, the change to H2O dilution can lower peak temperatures and thus promote a more uniform temperature distribution. Furthermore, the shift from N2 to H2O for dilution influences NO emissions, primarily tied to variations in the HNO route, notably reaction R180, while boosting the DeNOx mechanism. This shift also alters the production rates of key radicals, e.g., H and O being generated more slowly with an intricate effect on OH production, depending on ΦJ. [Display omitted] •The impacts of N2 and H2O dilutions on the ammonia MILD-JHC flame are examined.•H2O dilution substantially reduces NOx emissions but lowers combustion efficiency.•Both physical and chemical factors of H2O dilution greatly influence the flame.•N2 dilution has only a strong physical effect on the flame.•H2O dilution weakens radical H and O productions, but differing OH formation in rich- and lean-fuel regions.
Author Si, Jicang
Wu, Mengwei
Xu, Minyi
Mi, Jianchun
Liu, Xiangtao
Wang, Guochang
Author_xml – sequence: 1
  givenname: Xiangtao
  surname: Liu
  fullname: Liu, Xiangtao
  organization: College of Engineering, Peking University, Beijing, 100871, PR China
– sequence: 2
  givenname: Guochang
  orcidid: 0009-0004-9718-0489
  surname: Wang
  fullname: Wang, Guochang
  organization: State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, PR China
– sequence: 3
  givenname: Jicang
  surname: Si
  fullname: Si, Jicang
  organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China
– sequence: 4
  givenname: Mengwei
  surname: Wu
  fullname: Wu, Mengwei
  organization: College of Engineering, Peking University, Beijing, 100871, PR China
– sequence: 5
  givenname: Minyi
  surname: Xu
  fullname: Xu, Minyi
  organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China
– sequence: 6
  givenname: Jianchun
  orcidid: 0000-0002-9585-9015
  surname: Mi
  fullname: Mi, Jianchun
  email: jmi@pku.edu.cn
  organization: College of Engineering, Peking University, Beijing, 100871, PR China
BookMark eNqFkLFOwzAURT0UibbwC8g_0PTZTtJYYgBVhSJVzQKzZTsv1FEaV3Yo9O9JBSwsne5dzpXumZBR5zsk5I5BwoDl8yZxze5UYYcJB54mkCUpy0ZkDCKHmWBSXpNJjA0AW0Aqx2RVdlTTQ8C9-8KKbtdiXnLaYE_rVu-Ruo7ufE-tr1v_SX1N33VE_xHpmpf0iCEOdctvyFWt24i3vzklb0-r1-V6timfX5aPm5kVjPezKtdZJUSBzLBc2pxpYwXwzEjIcygKk1pj06qwNRdpyq3hkksJmV2AsQZqMSX5z64NPsaAtToEt9fhpBioswDVqD8B6ixAQaYGAQN4_w-0rte9810ftGsv4w8_OA7njg6DitZhZ7FyAW2vKu8uTXwDF8F-FQ
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_10_434
crossref_primary_10_1016_j_energy_2025_134455
crossref_primary_10_1016_j_ijhydene_2025_01_408
Cites_doi 10.1016/j.fuel.2023.128475
10.1016/j.ijhydene.2023.02.053
10.1016/j.combustflame.2021.111873
10.1016/j.fuel.2021.122417
10.1016/j.ijhydene.2023.10.221
10.1016/0360-1285(89)90017-8
10.1016/S0082-0784(98)80510-9
10.1016/j.pecs.2004.02.003
10.1017/S0022112061000834
10.1007/s10973-023-12512-7
10.1016/j.combustflame.2021.111699
10.1016/j.fuel.2015.09.020
10.1016/j.fuel.2022.125817
10.1016/j.fuel.2023.129509
10.1016/j.ijhydene.2022.04.190
10.1016/j.energy.2022.125613
10.1016/j.combustflame.2022.112090
10.1016/j.renene.2021.09.117
10.1016/j.fuel.2023.129523
10.1016/j.ijhydene.2024.03.035
10.1016/j.ijhydene.2021.05.105
10.1016/j.ijhydene.2023.12.119
10.1016/j.apenergy.2019.113334
10.1016/j.ijhydene.2021.09.188
10.1016/j.ijhydene.2020.12.206
10.1016/j.fuel.2022.124732
10.1021/acs.energyfuels.3c03104
10.1080/00102207408960360
10.3389/fenrg.2021.649141
10.1016/j.proci.2020.06.143
10.1016/j.fuel.2019.116059
10.1016/j.ijhydene.2023.01.091
10.2514/3.7521
10.1007/s10973-022-11883-7
10.1016/j.energy.2023.129412
10.1016/j.proci.2022.09.027
10.1016/j.combustflame.2021.111653
10.1021/ef101211p
10.1021/acs.energyfuels.3c01896
10.1016/j.fuel.2018.09.131
10.1016/j.ijhydene.2023.09.319
10.1016/j.combustflame.2022.112071
10.1016/j.ijhydene.2022.08.196
10.1016/j.combustflame.2023.112832
10.1016/j.energy.2019.115934
10.3390/en14010084
10.1016/j.jfueco.2022.100051
10.1016/j.proci.2018.07.091
10.1016/j.ijhydene.2024.01.154
10.1016/j.combustflame.2010.12.013
10.1016/j.fuel.2022.125176
10.1016/j.fuproc.2022.107652
ContentType Journal Article
Copyright 2024 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2024 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2024.05.415
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 600
ExternalDocumentID 10_1016_j_ijhydene_2024_05_415
S0360319924021256
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SSH
T9H
WUQ
ID FETCH-LOGICAL-c312t-d6a5d338e1b169c61abc3025b9066088b4cbc4d8cf23442cb2929905c70bcb0f3
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Thu Apr 24 23:02:18 EDT 2025
Tue Jul 01 03:11:36 EDT 2025
Wed Dec 04 16:49:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Jet in hot coflow (JHC)
H2O dilution
NOx formation
MILD combustion
Ammonia combustion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-d6a5d338e1b169c61abc3025b9066088b4cbc4d8cf23442cb2929905c70bcb0f3
ORCID 0009-0004-9718-0489
0000-0002-9585-9015
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2024_05_415
crossref_citationtrail_10_1016_j_ijhydene_2024_05_415
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2024_05_415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-27
PublicationDateYYYYMMDD 2024-06-27
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-27
  day: 27
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Ilbas, Kekul, Bektas, Karyeyen (bib58) 2022; 47
Osipova, Korobeinichev, Shmakov (bib44) 2021; 46
Barlow, Frank (bib26) 1998; 27
Wang, Wang, Zhang, Zhai, Hou, Tian (bib33) 2022; 324
Maab, Bathaei, Kim, Esfahani, Kim (bib19) 2022; 148
Liao, Hu, Wu, Li, Ding, Yang (bib27) 2024; 58
Yin, Johansen, Rosendahl, Kær (bib39) 2010; 24
Li, Konnov, He, Qin, Zhang (bib37) 2019; 257
Li, Zhang, Zhang (bib7) 2024; 355
Ariemma, Sorrentino, Ragucci, de Joannon, Sabia (bib14) 2022; 241
Pugh, Bowen, Valera-Medina, Giles, Runyon, Marsh (bib17) 2019; 37
Parente, Malik, Contino, Cuoci, Dally (bib31) 2016; 163
Bastani, Tabejamaat, Ashini (bib5) 2024; 49
Azarinia, Mahdavy-Moghaddam (bib29) 2021; 46
Klippenstein, Harding, Glarborg, Miller (bib57) 2011; 158
Berwal, Kumar (bib2) 2023; 37
Wang, Si, Xu, Mi (bib10) 2019; 187
Issayev, Giri, Elbaz, Shrestha, Mauss, Roberts (bib38) 2022; 181
Shi, Liu, Zou, Dai, Li, Xia (bib13) 2022; 310
Energy (bib1) 2023
Wang, Liu, Li, Shi, Cai, Liu (bib15) 2024; 355
Guteša Božo, Vigueras-Zuniga, Buffi, Seljak, Valera-Medina (bib16) 2019; 251
Fan, Liu, Cai, Brackmann, Alden, Bai (bib25) 2022; 241
Shi, Li, Li, Hu, Liu, Zhou (bib20) 2023; 285
Cao, Hoang, Luu, Bui, Tran (bib56) 2020
Pope (bib30) 1978; 16
Miller, Bowman (bib53) 1989; 15
Turns (bib47) 1996
Shrestha, Giri, Elbaz, Issayev, Roberts, Seidel (bib35) 2022; 10
Bioche, Blondeau, Bricteux (bib59) 2022; 47
Sorrentino, Sabia, Ariemma, Ragucci, de Joannon (bib11) 2021; 9
Ricou, Spalding (bib46) 1961; 11
Shahsavari, Konnov, Bai, Valera-Medina, Li, Jangi (bib6) 2023; 348
Kildare, Evans, Proud, Chin, Tian, Medwell (bib8) 2023; 48
Liu, Wang, Wang, Li, Si, Hanif (bib12) 2024; 55
Zheng, Liu, Wang, Chen, Sui, Lu (bib43) 2023; 254
Malte, Pratt (bib52) 1974; 9
Mardani, Nazari (bib28) 2022; 241
Zhu, Du, Yu, Cheng, Wang (bib48) 2023; 38
Zheng, Liu, Sui, Zhou, Lu (bib41) 2022; 235
Ariemma, Sabia, Sorrentino, Bozza, de Joannon, Ragucci (bib21) 2021; 38
Mohammadpour, Mazaheri, Alipoor (bib55) 2022; 47
Mardani, Nazari (bib9) 2022; 241
Khalil, Manias, Kyritsis, Goussis (bib18) 2020; 14
Kiani, Kohansal, Masoumi, Ashjaee, Houshfar (bib50) 2023; 148
Zhao, Zhang, Zha, Gao, Mao, Wu (bib49) 2023; 331
Kuang, Han, Xu, Wang, Wang (bib3) 2024; 54
Zhu, Yan, Gao, Qiu, Zhu, Huang (bib4) 2024; 62
Chen, Li, Li, Deng, He, Huang (bib51) 2023; 263
Li, Zhang, Zhou, Ren (bib54) 2019; 237
Zhang, Shen, Palulli, Ghobadian, Nouri, Duwig (bib23) 2023; 48
Zheng, He, Hu, Zhu, Zhou, Lu (bib42) 2022; 327
Liu, Wang, Si, Li, Wu, Mi (bib24) 2024; 7
Zhang, Moosakutty, Rajan, Younes, Sarathy (bib32) 2021; 234
Chen, Su, Sui, Chen, Zhang (bib34) 2023; 242
Pope (bib40) 1997
Cavaliere, De Joannon (bib45) 2004; 30
Zhang, Zhou, Shan, Cai, Yang (bib22) 2022; 32
Manna, Sabia, Shrestha, Seidel, Ragucci, Mauss (bib36) 2023; 39
Li (10.1016/j.ijhydene.2024.05.415_bib54) 2019; 237
Sorrentino (10.1016/j.ijhydene.2024.05.415_bib11) 2021; 9
Ariemma (10.1016/j.ijhydene.2024.05.415_bib14) 2022; 241
Zheng (10.1016/j.ijhydene.2024.05.415_bib41) 2022; 235
Zhao (10.1016/j.ijhydene.2024.05.415_bib49) 2023; 331
Zheng (10.1016/j.ijhydene.2024.05.415_bib43) 2023; 254
Cavaliere (10.1016/j.ijhydene.2024.05.415_bib45) 2004; 30
Miller (10.1016/j.ijhydene.2024.05.415_bib53) 1989; 15
Liu (10.1016/j.ijhydene.2024.05.415_bib24) 2024; 7
Kiani (10.1016/j.ijhydene.2024.05.415_bib50) 2023; 148
Ilbas (10.1016/j.ijhydene.2024.05.415_bib58) 2022; 47
Zhang (10.1016/j.ijhydene.2024.05.415_bib22) 2022; 32
Osipova (10.1016/j.ijhydene.2024.05.415_bib44) 2021; 46
Bioche (10.1016/j.ijhydene.2024.05.415_bib59) 2022; 47
Shahsavari (10.1016/j.ijhydene.2024.05.415_bib6) 2023; 348
Kildare (10.1016/j.ijhydene.2024.05.415_bib8) 2023; 48
Zhu (10.1016/j.ijhydene.2024.05.415_bib48) 2023; 38
Pugh (10.1016/j.ijhydene.2024.05.415_bib17) 2019; 37
Liao (10.1016/j.ijhydene.2024.05.415_bib27) 2024; 58
Wang (10.1016/j.ijhydene.2024.05.415_bib15) 2024; 355
Shrestha (10.1016/j.ijhydene.2024.05.415_bib35) 2022; 10
Guteša Božo (10.1016/j.ijhydene.2024.05.415_bib16) 2019; 251
Parente (10.1016/j.ijhydene.2024.05.415_bib31) 2016; 163
Malte (10.1016/j.ijhydene.2024.05.415_bib52) 1974; 9
Issayev (10.1016/j.ijhydene.2024.05.415_bib38) 2022; 181
Li (10.1016/j.ijhydene.2024.05.415_bib7) 2024; 355
Chen (10.1016/j.ijhydene.2024.05.415_bib34) 2023; 242
Berwal (10.1016/j.ijhydene.2024.05.415_bib2) 2023; 37
Zhu (10.1016/j.ijhydene.2024.05.415_bib4) 2024; 62
Wang (10.1016/j.ijhydene.2024.05.415_bib33) 2022; 324
Cao (10.1016/j.ijhydene.2024.05.415_bib56) 2020
Mardani (10.1016/j.ijhydene.2024.05.415_bib9) 2022; 241
Liu (10.1016/j.ijhydene.2024.05.415_bib12) 2024; 55
Maab (10.1016/j.ijhydene.2024.05.415_bib19) 2022; 148
Ariemma (10.1016/j.ijhydene.2024.05.415_bib21) 2021; 38
Zhang (10.1016/j.ijhydene.2024.05.415_bib32) 2021; 234
Ricou (10.1016/j.ijhydene.2024.05.415_bib46) 1961; 11
Shi (10.1016/j.ijhydene.2024.05.415_bib20) 2023; 285
Pope (10.1016/j.ijhydene.2024.05.415_bib30) 1978; 16
Chen (10.1016/j.ijhydene.2024.05.415_bib51) 2023; 263
Shi (10.1016/j.ijhydene.2024.05.415_bib13) 2022; 310
Energy (10.1016/j.ijhydene.2024.05.415_bib1) 2023
Fan (10.1016/j.ijhydene.2024.05.415_bib25) 2022; 241
Klippenstein (10.1016/j.ijhydene.2024.05.415_bib57) 2011; 158
Mardani (10.1016/j.ijhydene.2024.05.415_bib28) 2022; 241
Zheng (10.1016/j.ijhydene.2024.05.415_bib42) 2022; 327
Manna (10.1016/j.ijhydene.2024.05.415_bib36) 2023; 39
Wang (10.1016/j.ijhydene.2024.05.415_bib10) 2019; 187
Li (10.1016/j.ijhydene.2024.05.415_bib37) 2019; 257
Bastani (10.1016/j.ijhydene.2024.05.415_bib5) 2024; 49
Zhang (10.1016/j.ijhydene.2024.05.415_bib23) 2023; 48
Barlow (10.1016/j.ijhydene.2024.05.415_bib26) 1998; 27
Azarinia (10.1016/j.ijhydene.2024.05.415_bib29) 2021; 46
Yin (10.1016/j.ijhydene.2024.05.415_bib39) 2010; 24
Pope (10.1016/j.ijhydene.2024.05.415_bib40) 1997
Turns (10.1016/j.ijhydene.2024.05.415_bib47) 1996
Mohammadpour (10.1016/j.ijhydene.2024.05.415_bib55) 2022; 47
Khalil (10.1016/j.ijhydene.2024.05.415_bib18) 2020; 14
Kuang (10.1016/j.ijhydene.2024.05.415_bib3) 2024; 54
References_xml – volume: 310
  year: 2022
  ident: bib13
  article-title: Experimental study and mechanism analysis of the NOx emissions in the NH3 MILD combustion by a novel burner
  publication-title: Fuel
– volume: 254
  year: 2023
  ident: bib43
  article-title: On the roles of humidification and radiation during the ignition of ammonia–hydrogen–air mixtures
  publication-title: Combust Flame
– volume: 10
  year: 2022
  ident: bib35
  article-title: A detailed chemical insights into the kinetics of diethyl ether enhancing ammonia combustion and the importance of NOx recycling mechanism
  publication-title: Fuel Commun
– volume: 47
  start-page: 36342
  year: 2022
  end-page: 36353
  ident: bib59
  article-title: Large eddy simulation investigation of pressure and wall heat loss effects on rich ammonia-hydrogen-air combustion in a gas turbine burner
  publication-title: Int J Hydrogen Energy
– volume: 14
  start-page: 84
  year: 2020
  ident: bib18
  article-title: NO formation and autoignition dynamics during combustion of H2O-diluted NH3/H2O2 mixtures with air
  publication-title: Energies
– volume: 46
  start-page: 39942
  year: 2021
  end-page: 39954
  ident: bib44
  article-title: Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames
  publication-title: Int J Hydrogen Energy
– volume: 237
  start-page: 50
  year: 2019
  end-page: 59
  ident: bib54
  article-title: Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors
  publication-title: Fuel
– volume: 235
  year: 2022
  ident: bib41
  article-title: Effects of radiation reabsorption on laminar NH3/H2/air flames
  publication-title: Combust Flame
– volume: 48
  start-page: 16083
  year: 2023
  end-page: 16099
  ident: bib23
  article-title: Combustion characteristics of steam-diluted decomposed ammonia in multiple-nozzle direct injection burner
  publication-title: Int J Hydrogen Energy
– volume: 257
  year: 2019
  ident: bib37
  article-title: Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures
  publication-title: Fuel
– volume: 37
  start-page: 5401
  year: 2019
  end-page: 5409
  ident: bib17
  article-title: Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame
  publication-title: Proc Combust Inst
– volume: 47
  start-page: 21013
  year: 2022
  end-page: 21031
  ident: bib55
  article-title: Reaction zone characteristics, thermal performance and NOx/N2O emissions analyses of ammonia MILD combustion
  publication-title: Int J Hydrogen Energy
– volume: 30
  start-page: 329
  year: 2004
  end-page: 366
  ident: bib45
  article-title: Mild combustion
  publication-title: Prog Energy Combust Sci
– volume: 7
  year: 2024
  ident: bib24
  article-title: Distinct combustion characteristics of a one-dimensional premixed laminar flame of ammonia under various combustion regimes
  publication-title: Carbon Resour Convers
– volume: 46
  start-page: 9252
  year: 2021
  end-page: 9265
  ident: bib29
  article-title: Comprehensive numerical study of molecular diffusion effects and Eddy Dissipation Concept model in MILD combustion
  publication-title: Int J Hydrogen Energy
– year: 1997
  ident: bib40
  article-title: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation
– volume: 38
  start-page: 5147
  year: 2021
  end-page: 5154
  ident: bib21
  article-title: Influence of water addition on MILD ammonia combustion performances and emissions
  publication-title: Proc Combust Inst
– volume: 9
  year: 2021
  ident: bib11
  article-title: Reactive structures of ammonia MILD combustion in diffusion ignition processes
  publication-title: Front Energy Res
– volume: 39
  start-page: 775
  year: 2023
  end-page: 784
  ident: bib36
  article-title: NH3NO interaction at low-temperatures: an experimental and modeling study
  publication-title: Proc Combust Inst
– volume: 47
  start-page: 12317
  year: 2022
  end-page: 12337
  ident: bib58
  article-title: Oxidizer effects on ammonia combustion using a generated non-premixed burner
  publication-title: Int J Hydrogen Energy
– volume: 54
  start-page: 1403
  year: 2024
  end-page: 1409
  ident: bib3
  article-title: Numerical study on combustion characteristics of ammonia mixture under different combustion modes
  publication-title: Int J Hydrogen Energy
– volume: 181
  start-page: 1353
  year: 2022
  end-page: 1370
  ident: bib38
  article-title: Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend
  publication-title: Renew Energy
– year: 1996
  ident: bib47
  article-title: Introduction to combustion
– volume: 38
  start-page: 43
  year: 2023
  end-page: 60
  ident: bib48
  article-title: NOx emission and control in ammonia combustion: state-of-the-art review and future perspectives
  publication-title: Energy Fuels
– volume: 355
  year: 2024
  ident: bib7
  article-title: Kinetics modeling of NO emission of oxygen-enriched and rich-lean-staged ammonia combustion under gas turbine conditions
  publication-title: Fuel
– volume: 148
  start-page: 8347
  year: 2022
  end-page: 8364
  ident: bib19
  article-title: Effect of air humidity on premixed combustion of ammonia/air under engine relevant conditions: numerical investigation
  publication-title: J Therm Anal Calorim
– volume: 163
  start-page: 98
  year: 2016
  end-page: 111
  ident: bib31
  article-title: Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion
  publication-title: Fuel
– volume: 55
  start-page: 1
  year: 2024
  end-page: 13
  ident: bib12
  article-title: Classification and characteristics of ammonia combustion in well stirred reactor
  publication-title: Int J Hydrogen Energy
– volume: 27
  start-page: 1087
  year: 1998
  end-page: 1095
  ident: bib26
  article-title: Effects of turbulence on species mass fractions in methane/air jet flames
  publication-title: Symp (Int) Combustion
– volume: 241
  year: 2022
  ident: bib14
  article-title: Ammonia/Methane combustion: stability and NOx emissions
  publication-title: Combust Flame
– volume: 16
  start-page: 279
  year: 1978
  end-page: 281
  ident: bib30
  article-title: An explanation of the turbulent round-jet/plane-jet anomaly
  publication-title: AIAA J
– start-page: 1
  year: 2020
  end-page: 18
  ident: bib56
  article-title: Effects of injection pressure on the NOx and PM emission control of diesel engine: a review under the aspect of PCCI combustion condition
  publication-title: Energy Sources, Part A
– volume: 37
  start-page: 13331
  year: 2023
  end-page: 13340
  ident: bib2
  article-title: Laminar burning velocity measurement of CH4/NH3/H2–air premixed flames under engine relevant conditions
  publication-title: Energy Fuels
– volume: 49
  start-page: 1399
  year: 2024
  end-page: 1415
  ident: bib5
  article-title: Numerical and experimental study of combustion and emission characteristics of ammonia/methane fuel mixture in micro gas turbine combustor
  publication-title: Int J Hydrogen Energy
– volume: 58
  start-page: 174
  year: 2024
  end-page: 189
  ident: bib27
  article-title: Effects of H2 addition on the characteristics of the reaction zone and NO mechanisms in MILD combustion of H2-rich fuels
  publication-title: Int J Hydrogen Energy
– volume: 62
  start-page: 579
  year: 2024
  end-page: 590
  ident: bib4
  article-title: Combustion and emission characteristics of ammonia-hydrogen fueled SI engine with high compression ratio
  publication-title: Int J Hydrogen Energy
– volume: 241
  year: 2022
  ident: bib28
  article-title: Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes
  publication-title: Combust Flame
– volume: 234
  year: 2021
  ident: bib32
  article-title: Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling
  publication-title: Combust Flame
– volume: 251
  year: 2019
  ident: bib16
  article-title: Fuel rich ammonia-hydrogen injection for humidified gas turbines
  publication-title: Appl Energy
– volume: 355
  year: 2024
  ident: bib15
  article-title: MILD combustion of a premixed NH3/air jet flame in hot coflow versus its CH4/air counterpart
  publication-title: Fuel
– volume: 285
  year: 2023
  ident: bib20
  article-title: Insight into NOx formation characteristics of ammonia oxidation in N2 and H2O atmospheres
  publication-title: Energy
– volume: 15
  start-page: 287
  year: 1989
  end-page: 338
  ident: bib53
  article-title: Mechanism and modeling of nitrogen chemistry in combustion
  publication-title: Prog Energy Combust Sci
– year: 2023
  ident: bib1
  article-title: BP energy outlook 2023 edition
– volume: 348
  year: 2023
  ident: bib6
  article-title: Synergistic effects of nanosecond plasma discharge and hydrogen on ammonia combustion
  publication-title: Fuel
– volume: 331
  year: 2023
  ident: bib49
  article-title: Fuel-NO formation mechanism in MILD-oxy combustion of CH4/NH3 fuel blend
  publication-title: Fuel
– volume: 242
  year: 2023
  ident: bib34
  article-title: Flame and emission characteristics of preheated ammonia combustion based on chemical reaction network
  publication-title: Fuel Process Technol
– volume: 241
  year: 2022
  ident: bib9
  article-title: Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes
  publication-title: Combust Flame
– volume: 187
  year: 2019
  ident: bib10
  article-title: MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow
  publication-title: Energy
– volume: 324
  year: 2022
  ident: bib33
  article-title: A comparative study on the laminar C1–C4 n-alkane/NH3 premixed flame
  publication-title: Fuel
– volume: 241
  year: 2022
  ident: bib25
  article-title: Structure and scalar correlation of ammonia/air turbulent premixed flames in the distributed reaction zone regime
  publication-title: Combust Flame
– volume: 11
  start-page: 21
  year: 1961
  end-page: 32
  ident: bib46
  article-title: Measurements of entrainment by axisymmetrical turbulent jets
  publication-title: J Fluid Mech
– volume: 48
  start-page: 20059
  year: 2023
  end-page: 20076
  ident: bib8
  article-title: Characterisation of hydrogen jet flames under different pressures with varying coflow oxygen concentrations
  publication-title: Int J Hydrogen Energy
– volume: 24
  start-page: 6275
  year: 2010
  end-page: 6282
  ident: bib39
  article-title: New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy− fuel combustion: derivation, validation, and implementation
  publication-title: Energy Fuels
– volume: 32
  year: 2022
  ident: bib22
  article-title: Chemical effect of water addition on the ammonia combustion reaction
  publication-title: Therm Sci Eng Prog
– volume: 148
  start-page: 11783
  year: 2023
  end-page: 11797
  ident: bib50
  article-title: An experimental investigation on non-preheated MILD combustion of syngas/ammonia/air
  publication-title: J Therm Anal Calorim
– volume: 327
  year: 2022
  ident: bib42
  article-title: Effects of radiation reabsorption on the flame speed and NO emission of NH3/H2/air flames at various hydrogen ratios
  publication-title: Fuel
– volume: 263
  year: 2023
  ident: bib51
  article-title: Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner
  publication-title: Energy
– volume: 158
  start-page: 774
  year: 2011
  end-page: 789
  ident: bib57
  article-title: The role of NNH in NO formation and control
  publication-title: Combust Flame
– volume: 9
  start-page: 221
  year: 1974
  end-page: 231
  ident: bib52
  article-title: The role of energy-releasing kinetics in NOx formation: fuel-lean, jet-stirred CO-air combustion
  publication-title: Combust Sci Technol
– volume: 348
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib6
  article-title: Synergistic effects of nanosecond plasma discharge and hydrogen on ammonia combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.128475
– volume: 48
  start-page: 20059
  issue: 52
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib8
  article-title: Characterisation of hydrogen jet flames under different pressures with varying coflow oxygen concentrations
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.02.053
– volume: 241
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib9
  article-title: Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2021.111873
– volume: 310
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib13
  article-title: Experimental study and mechanism analysis of the NOx emissions in the NH3 MILD combustion by a novel burner
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122417
– volume: 55
  start-page: 1
  year: 2024
  ident: 10.1016/j.ijhydene.2024.05.415_bib12
  article-title: Classification and characteristics of ammonia combustion in well stirred reactor
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.10.221
– volume: 15
  start-page: 287
  issue: 4
  year: 1989
  ident: 10.1016/j.ijhydene.2024.05.415_bib53
  article-title: Mechanism and modeling of nitrogen chemistry in combustion
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/0360-1285(89)90017-8
– volume: 27
  start-page: 1087
  year: 1998
  ident: 10.1016/j.ijhydene.2024.05.415_bib26
  article-title: Effects of turbulence on species mass fractions in methane/air jet flames
  publication-title: Symp (Int) Combustion
  doi: 10.1016/S0082-0784(98)80510-9
– volume: 30
  start-page: 329
  issue: 4
  year: 2004
  ident: 10.1016/j.ijhydene.2024.05.415_bib45
  article-title: Mild combustion
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2004.02.003
– volume: 11
  start-page: 21
  issue: 1
  year: 1961
  ident: 10.1016/j.ijhydene.2024.05.415_bib46
  article-title: Measurements of entrainment by axisymmetrical turbulent jets
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112061000834
– volume: 148
  start-page: 11783
  issue: 21
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib50
  article-title: An experimental investigation on non-preheated MILD combustion of syngas/ammonia/air
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-023-12512-7
– volume: 235
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib41
  article-title: Effects of radiation reabsorption on laminar NH3/H2/air flames
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2021.111699
– volume: 163
  start-page: 98
  year: 2016
  ident: 10.1016/j.ijhydene.2024.05.415_bib31
  article-title: Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.09.020
– volume: 331
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib49
  article-title: Fuel-NO formation mechanism in MILD-oxy combustion of CH4/NH3 fuel blend
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125817
– volume: 355
  year: 2024
  ident: 10.1016/j.ijhydene.2024.05.415_bib7
  article-title: Kinetics modeling of NO emission of oxygen-enriched and rich-lean-staged ammonia combustion under gas turbine conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.129509
– volume: 241
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib28
  article-title: Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2021.111873
– volume: 47
  start-page: 21013
  issue: 48
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib55
  article-title: Reaction zone characteristics, thermal performance and NOx/N2O emissions analyses of ammonia MILD combustion
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.04.190
– volume: 263
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib51
  article-title: Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125613
– volume: 241
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib25
  article-title: Structure and scalar correlation of ammonia/air turbulent premixed flames in the distributed reaction zone regime
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2022.112090
– volume: 181
  start-page: 1353
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib38
  article-title: Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.09.117
– volume: 355
  year: 2024
  ident: 10.1016/j.ijhydene.2024.05.415_bib15
  article-title: MILD combustion of a premixed NH3/air jet flame in hot coflow versus its CH4/air counterpart
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.129523
– year: 1996
  ident: 10.1016/j.ijhydene.2024.05.415_bib47
– volume: 62
  start-page: 579
  year: 2024
  ident: 10.1016/j.ijhydene.2024.05.415_bib4
  article-title: Combustion and emission characteristics of ammonia-hydrogen fueled SI engine with high compression ratio
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.03.035
– year: 1997
  ident: 10.1016/j.ijhydene.2024.05.415_bib40
– volume: 47
  start-page: 12317
  issue: 24
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib58
  article-title: Oxidizer effects on ammonia combustion using a generated non-premixed burner
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.05.105
– volume: 54
  start-page: 1403
  year: 2024
  ident: 10.1016/j.ijhydene.2024.05.415_bib3
  article-title: Numerical study on combustion characteristics of ammonia mixture under different combustion modes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.12.119
– volume: 251
  year: 2019
  ident: 10.1016/j.ijhydene.2024.05.415_bib16
  article-title: Fuel rich ammonia-hydrogen injection for humidified gas turbines
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113334
– volume: 46
  start-page: 39942
  issue: 80
  year: 2021
  ident: 10.1016/j.ijhydene.2024.05.415_bib44
  article-title: Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.188
– volume: 32
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib22
  article-title: Chemical effect of water addition on the ammonia combustion reaction
  publication-title: Therm Sci Eng Prog
– volume: 46
  start-page: 9252
  issue: 13
  year: 2021
  ident: 10.1016/j.ijhydene.2024.05.415_bib29
  article-title: Comprehensive numerical study of molecular diffusion effects and Eddy Dissipation Concept model in MILD combustion
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.206
– volume: 324
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib33
  article-title: A comparative study on the laminar C1–C4 n-alkane/NH3 premixed flame
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.124732
– volume: 38
  start-page: 43
  issue: 1
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib48
  article-title: NOx emission and control in ammonia combustion: state-of-the-art review and future perspectives
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c03104
– volume: 9
  start-page: 221
  issue: 5–6
  year: 1974
  ident: 10.1016/j.ijhydene.2024.05.415_bib52
  article-title: The role of energy-releasing kinetics in NOx formation: fuel-lean, jet-stirred CO-air combustion
  publication-title: Combust Sci Technol
  doi: 10.1080/00102207408960360
– volume: 9
  year: 2021
  ident: 10.1016/j.ijhydene.2024.05.415_bib11
  article-title: Reactive structures of ammonia MILD combustion in diffusion ignition processes
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2021.649141
– volume: 38
  start-page: 5147
  issue: 4
  year: 2021
  ident: 10.1016/j.ijhydene.2024.05.415_bib21
  article-title: Influence of water addition on MILD ammonia combustion performances and emissions
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2020.06.143
– volume: 257
  year: 2019
  ident: 10.1016/j.ijhydene.2024.05.415_bib37
  article-title: Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116059
– volume: 7
  issue: 4
  year: 2024
  ident: 10.1016/j.ijhydene.2024.05.415_bib24
  article-title: Distinct combustion characteristics of a one-dimensional premixed laminar flame of ammonia under various combustion regimes
  publication-title: Carbon Resour Convers
– volume: 48
  start-page: 16083
  issue: 42
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib23
  article-title: Combustion characteristics of steam-diluted decomposed ammonia in multiple-nozzle direct injection burner
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.01.091
– volume: 16
  start-page: 279
  issue: 3
  year: 1978
  ident: 10.1016/j.ijhydene.2024.05.415_bib30
  article-title: An explanation of the turbulent round-jet/plane-jet anomaly
  publication-title: AIAA J
  doi: 10.2514/3.7521
– volume: 148
  start-page: 8347
  issue: 16
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib19
  article-title: Effect of air humidity on premixed combustion of ammonia/air under engine relevant conditions: numerical investigation
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-022-11883-7
– volume: 285
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib20
  article-title: Insight into NOx formation characteristics of ammonia oxidation in N2 and H2O atmospheres
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129412
– volume: 39
  start-page: 775
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib36
  article-title: NH3NO interaction at low-temperatures: an experimental and modeling study
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2022.09.027
– volume: 234
  year: 2021
  ident: 10.1016/j.ijhydene.2024.05.415_bib32
  article-title: Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2021.111653
– volume: 24
  start-page: 6275
  issue: 12
  year: 2010
  ident: 10.1016/j.ijhydene.2024.05.415_bib39
  article-title: New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy− fuel combustion: derivation, validation, and implementation
  publication-title: Energy Fuels
  doi: 10.1021/ef101211p
– volume: 37
  start-page: 13331
  issue: 17
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib2
  article-title: Laminar burning velocity measurement of CH4/NH3/H2–air premixed flames under engine relevant conditions
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c01896
– volume: 237
  start-page: 50
  year: 2019
  ident: 10.1016/j.ijhydene.2024.05.415_bib54
  article-title: Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.09.131
– start-page: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2024.05.415_bib56
  article-title: Effects of injection pressure on the NOx and PM emission control of diesel engine: a review under the aspect of PCCI combustion condition
  publication-title: Energy Sources, Part A
– volume: 49
  start-page: 1399
  year: 2024
  ident: 10.1016/j.ijhydene.2024.05.415_bib5
  article-title: Numerical and experimental study of combustion and emission characteristics of ammonia/methane fuel mixture in micro gas turbine combustor
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.09.319
– volume: 241
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib14
  article-title: Ammonia/Methane combustion: stability and NOx emissions
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2022.112071
– volume: 47
  start-page: 36342
  issue: 85
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib59
  article-title: Large eddy simulation investigation of pressure and wall heat loss effects on rich ammonia-hydrogen-air combustion in a gas turbine burner
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.08.196
– volume: 254
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib43
  article-title: On the roles of humidification and radiation during the ignition of ammonia–hydrogen–air mixtures
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2023.112832
– year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib1
– volume: 187
  year: 2019
  ident: 10.1016/j.ijhydene.2024.05.415_bib10
  article-title: MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115934
– volume: 14
  start-page: 84
  issue: 1
  year: 2020
  ident: 10.1016/j.ijhydene.2024.05.415_bib18
  article-title: NO formation and autoignition dynamics during combustion of H2O-diluted NH3/H2O2 mixtures with air
  publication-title: Energies
  doi: 10.3390/en14010084
– volume: 10
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib35
  article-title: A detailed chemical insights into the kinetics of diethyl ether enhancing ammonia combustion and the importance of NOx recycling mechanism
  publication-title: Fuel Commun
  doi: 10.1016/j.jfueco.2022.100051
– volume: 37
  start-page: 5401
  issue: 4
  year: 2019
  ident: 10.1016/j.ijhydene.2024.05.415_bib17
  article-title: Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2018.07.091
– volume: 58
  start-page: 174
  year: 2024
  ident: 10.1016/j.ijhydene.2024.05.415_bib27
  article-title: Effects of H2 addition on the characteristics of the reaction zone and NO mechanisms in MILD combustion of H2-rich fuels
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.01.154
– volume: 158
  start-page: 774
  issue: 4
  year: 2011
  ident: 10.1016/j.ijhydene.2024.05.415_bib57
  article-title: The role of NNH in NO formation and control
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2010.12.013
– volume: 327
  year: 2022
  ident: 10.1016/j.ijhydene.2024.05.415_bib42
  article-title: Effects of radiation reabsorption on the flame speed and NO emission of NH3/H2/air flames at various hydrogen ratios
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125176
– volume: 242
  year: 2023
  ident: 10.1016/j.ijhydene.2024.05.415_bib34
  article-title: Flame and emission characteristics of preheated ammonia combustion based on chemical reaction network
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2022.107652
SSID ssj0017049
Score 2.4859195
Snippet This numerical study comparatively investigates a premixed NH3/O2 jet flame in hot coflow (JHC) of H2O (steam) versus that of N2. To differentiate physical and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 588
SubjectTerms Ammonia combustion
H2O dilution
Jet in hot coflow (JHC)
MILD combustion
NOx formation
Title On a premixed NH3/O2 jet flame in hot coflow of gaseous H2O versus N2
URI https://dx.doi.org/10.1016/j.ijhydene.2024.05.415
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68pkl2N0lzLKUlKrYHLfQWdjcbm1KTUiLqxd_uTJuUCkIP3pKwA-HL7DzIN98Scse5gqTAHcuRsJuE7wgrTJVvMeNzpZDUJnA4-WnoR2PxMPEmDdKrZ2GQVlnF_nVMX0Xr6oldoWkvssx-htiLIzgh_h-ANI2y20IE6OXt7w3Nww2qEhgWW7h6a0p41s5m0y_Y3iiXyQQqeAo8HvevBLWVdAbH5KiqFml3_UInpGHyU3K4pSF4RvqjnEq6WJq37NMkdBhxe8TozJQ0hY9taJbTaVFSXaTz4oMWKX2FvAXtPo3YiCInAy6H7JyMB_2XXmRVZyNYmrustBJfegm0l8ZVrh9q35VKc6hfVAg1BEQOJbTSIunolHEhmFYsxMTj6cBRWjkpvyB7eZGbS0Khh-LGCG0CnQollUyk1CjS00lRwlg2iVcDEutKOBzPr5jHNUNsFtdAxghk7HgxANkk9sZusZbO2GkR1njHv5wghvi-w_bqH7bX5ADvkAHGghuyVy7fzS3UGqVqrZypRfa794_R8AeNIdGt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8Ylvc_Ba203Srj3KslJf3YMK3kKSptplbRepqP_eGbeVFQQP3krbgfI1mW-GzHwDcCyEQVIQgRdo3E0yCqQX5ybyuIuEMVTUJqk5-SaNknt5-RA-zEG_7YWhssrG9099-pe3bu74DZr-pCj8W_S91IIT0_kA0nQ0DwukThV2YOHs4ipJvw8Tek0UjO97ZDDTKDw6KUZPH7jDSTGTSxLxlDQh9zeOmuGd81VYaQJGdjb9pjWYc-U6LM_ICG7AYFgyzSYv7rl4dxlLE-EPORu5muX4vx0rSvZU1cxW-bh6Y1XOHpG6MONnCR8yKsvAy5Rvwv354K6feM14BM-KLq-9LNJhhhmm65puFNuoq40VGMKYGMMIdB5GWmNldmpzLqTk1vCYuCe0vcBYE-RiCzplVbptYJhGCeekdT2bS6ONzrS2pNNzmpOKsd6BsAVE2UY7nEZYjFVbJDZSLZCKgFRBqBDIHfC_7SZT9Yw_LeIWb_VjHSh08X_Y7v7D9ggWk7uba3V9kV7twRI9oYIw3tuHTv3y6g4w9KjNYbO0PgHN79Re
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+premixed+NH3%2FO2+jet+flame+in+hot+coflow+of+gaseous+H2O+versus+N2&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Liu%2C+Xiangtao&rft.au=Wang%2C+Guochang&rft.au=Si%2C+Jicang&rft.au=Wu%2C+Mengwei&rft.date=2024-06-27&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=72&rft.spage=588&rft.epage=600&rft_id=info:doi/10.1016%2Fj.ijhydene.2024.05.415&rft.externalDocID=S0360319924021256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon