On a premixed NH3/O2 jet flame in hot coflow of gaseous H2O versus N2
This numerical study comparatively investigates a premixed NH3/O2 jet flame in hot coflow (JHC) of H2O (steam) versus that of N2. To differentiate physical and chemical effects of coflowing either H2O or N2, FH2O and FN2 are introduced as fictitious gases which have the same physical properties as t...
Saved in:
Published in | International journal of hydrogen energy Vol. 72; pp. 588 - 600 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
27.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This numerical study comparatively investigates a premixed NH3/O2 jet flame in hot coflow (JHC) of H2O (steam) versus that of N2. To differentiate physical and chemical effects of coflowing either H2O or N2, FH2O and FN2 are introduced as fictitious gases which have the same physical properties as their real counterparts but do not participate in any chemical reaction. All present JHC flames are simulated under MILD (moderate or intense low-oxygen dilution) condition at the coflow temperature of TC = 1500 K and the equivalence ratio of ΦJ = 0.4 to 1.6. Specifically, the premixed ammonia flames are characterized by the mean temperatures, key radical concentrations and thermal efficiency, as well as their NOx formation mechanisms and emission features.
It is found that the use of H2O versus N2 for dilution significantly reduces NOx emissions from the ammonia MILD combustion, albeit at the cost of reduced combustion efficiency. Interestingly, the H2O dilution affects combustion both physically and chemically, in contrast to the N2 dilution primarily impacting the process physically. Notably, the change to H2O dilution can lower peak temperatures and thus promote a more uniform temperature distribution. Furthermore, the shift from N2 to H2O for dilution influences NO emissions, primarily tied to variations in the HNO route, notably reaction R180, while boosting the DeNOx mechanism. This shift also alters the production rates of key radicals, e.g., H and O being generated more slowly with an intricate effect on OH production, depending on ΦJ.
[Display omitted]
•The impacts of N2 and H2O dilutions on the ammonia MILD-JHC flame are examined.•H2O dilution substantially reduces NOx emissions but lowers combustion efficiency.•Both physical and chemical factors of H2O dilution greatly influence the flame.•N2 dilution has only a strong physical effect on the flame.•H2O dilution weakens radical H and O productions, but differing OH formation in rich- and lean-fuel regions. |
---|---|
AbstractList | This numerical study comparatively investigates a premixed NH3/O2 jet flame in hot coflow (JHC) of H2O (steam) versus that of N2. To differentiate physical and chemical effects of coflowing either H2O or N2, FH2O and FN2 are introduced as fictitious gases which have the same physical properties as their real counterparts but do not participate in any chemical reaction. All present JHC flames are simulated under MILD (moderate or intense low-oxygen dilution) condition at the coflow temperature of TC = 1500 K and the equivalence ratio of ΦJ = 0.4 to 1.6. Specifically, the premixed ammonia flames are characterized by the mean temperatures, key radical concentrations and thermal efficiency, as well as their NOx formation mechanisms and emission features.
It is found that the use of H2O versus N2 for dilution significantly reduces NOx emissions from the ammonia MILD combustion, albeit at the cost of reduced combustion efficiency. Interestingly, the H2O dilution affects combustion both physically and chemically, in contrast to the N2 dilution primarily impacting the process physically. Notably, the change to H2O dilution can lower peak temperatures and thus promote a more uniform temperature distribution. Furthermore, the shift from N2 to H2O for dilution influences NO emissions, primarily tied to variations in the HNO route, notably reaction R180, while boosting the DeNOx mechanism. This shift also alters the production rates of key radicals, e.g., H and O being generated more slowly with an intricate effect on OH production, depending on ΦJ.
[Display omitted]
•The impacts of N2 and H2O dilutions on the ammonia MILD-JHC flame are examined.•H2O dilution substantially reduces NOx emissions but lowers combustion efficiency.•Both physical and chemical factors of H2O dilution greatly influence the flame.•N2 dilution has only a strong physical effect on the flame.•H2O dilution weakens radical H and O productions, but differing OH formation in rich- and lean-fuel regions. |
Author | Si, Jicang Wu, Mengwei Xu, Minyi Mi, Jianchun Liu, Xiangtao Wang, Guochang |
Author_xml | – sequence: 1 givenname: Xiangtao surname: Liu fullname: Liu, Xiangtao organization: College of Engineering, Peking University, Beijing, 100871, PR China – sequence: 2 givenname: Guochang orcidid: 0009-0004-9718-0489 surname: Wang fullname: Wang, Guochang organization: State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, PR China – sequence: 3 givenname: Jicang surname: Si fullname: Si, Jicang organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China – sequence: 4 givenname: Mengwei surname: Wu fullname: Wu, Mengwei organization: College of Engineering, Peking University, Beijing, 100871, PR China – sequence: 5 givenname: Minyi surname: Xu fullname: Xu, Minyi organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China – sequence: 6 givenname: Jianchun orcidid: 0000-0002-9585-9015 surname: Mi fullname: Mi, Jianchun email: jmi@pku.edu.cn organization: College of Engineering, Peking University, Beijing, 100871, PR China |
BookMark | eNqFkLFOwzAURT0UibbwC8g_0PTZTtJYYgBVhSJVzQKzZTsv1FEaV3Yo9O9JBSwsne5dzpXumZBR5zsk5I5BwoDl8yZxze5UYYcJB54mkCUpy0ZkDCKHmWBSXpNJjA0AW0Aqx2RVdlTTQ8C9-8KKbtdiXnLaYE_rVu-Ruo7ufE-tr1v_SX1N33VE_xHpmpf0iCEOdctvyFWt24i3vzklb0-r1-V6timfX5aPm5kVjPezKtdZJUSBzLBc2pxpYwXwzEjIcygKk1pj06qwNRdpyq3hkksJmV2AsQZqMSX5z64NPsaAtToEt9fhpBioswDVqD8B6ixAQaYGAQN4_w-0rte9810ftGsv4w8_OA7njg6DitZhZ7FyAW2vKu8uTXwDF8F-FQ |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_10_434 crossref_primary_10_1016_j_energy_2025_134455 crossref_primary_10_1016_j_ijhydene_2025_01_408 |
Cites_doi | 10.1016/j.fuel.2023.128475 10.1016/j.ijhydene.2023.02.053 10.1016/j.combustflame.2021.111873 10.1016/j.fuel.2021.122417 10.1016/j.ijhydene.2023.10.221 10.1016/0360-1285(89)90017-8 10.1016/S0082-0784(98)80510-9 10.1016/j.pecs.2004.02.003 10.1017/S0022112061000834 10.1007/s10973-023-12512-7 10.1016/j.combustflame.2021.111699 10.1016/j.fuel.2015.09.020 10.1016/j.fuel.2022.125817 10.1016/j.fuel.2023.129509 10.1016/j.ijhydene.2022.04.190 10.1016/j.energy.2022.125613 10.1016/j.combustflame.2022.112090 10.1016/j.renene.2021.09.117 10.1016/j.fuel.2023.129523 10.1016/j.ijhydene.2024.03.035 10.1016/j.ijhydene.2021.05.105 10.1016/j.ijhydene.2023.12.119 10.1016/j.apenergy.2019.113334 10.1016/j.ijhydene.2021.09.188 10.1016/j.ijhydene.2020.12.206 10.1016/j.fuel.2022.124732 10.1021/acs.energyfuels.3c03104 10.1080/00102207408960360 10.3389/fenrg.2021.649141 10.1016/j.proci.2020.06.143 10.1016/j.fuel.2019.116059 10.1016/j.ijhydene.2023.01.091 10.2514/3.7521 10.1007/s10973-022-11883-7 10.1016/j.energy.2023.129412 10.1016/j.proci.2022.09.027 10.1016/j.combustflame.2021.111653 10.1021/ef101211p 10.1021/acs.energyfuels.3c01896 10.1016/j.fuel.2018.09.131 10.1016/j.ijhydene.2023.09.319 10.1016/j.combustflame.2022.112071 10.1016/j.ijhydene.2022.08.196 10.1016/j.combustflame.2023.112832 10.1016/j.energy.2019.115934 10.3390/en14010084 10.1016/j.jfueco.2022.100051 10.1016/j.proci.2018.07.091 10.1016/j.ijhydene.2024.01.154 10.1016/j.combustflame.2010.12.013 10.1016/j.fuel.2022.125176 10.1016/j.fuproc.2022.107652 |
ContentType | Journal Article |
Copyright | 2024 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2024 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2024.05.415 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 600 |
ExternalDocumentID | 10_1016_j_ijhydene_2024_05_415 S0360319924021256 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SSH T9H WUQ |
ID | FETCH-LOGICAL-c312t-d6a5d338e1b169c61abc3025b9066088b4cbc4d8cf23442cb2929905c70bcb0f3 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Thu Apr 24 23:02:18 EDT 2025 Tue Jul 01 03:11:36 EDT 2025 Wed Dec 04 16:49:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Jet in hot coflow (JHC) H2O dilution NOx formation MILD combustion Ammonia combustion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-d6a5d338e1b169c61abc3025b9066088b4cbc4d8cf23442cb2929905c70bcb0f3 |
ORCID | 0009-0004-9718-0489 0000-0002-9585-9015 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2024_05_415 crossref_citationtrail_10_1016_j_ijhydene_2024_05_415 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2024_05_415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-27 |
PublicationDateYYYYMMDD | 2024-06-27 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – sequence: 0 name: Elsevier Ltd |
References | Ilbas, Kekul, Bektas, Karyeyen (bib58) 2022; 47 Osipova, Korobeinichev, Shmakov (bib44) 2021; 46 Barlow, Frank (bib26) 1998; 27 Wang, Wang, Zhang, Zhai, Hou, Tian (bib33) 2022; 324 Maab, Bathaei, Kim, Esfahani, Kim (bib19) 2022; 148 Liao, Hu, Wu, Li, Ding, Yang (bib27) 2024; 58 Yin, Johansen, Rosendahl, Kær (bib39) 2010; 24 Li, Konnov, He, Qin, Zhang (bib37) 2019; 257 Li, Zhang, Zhang (bib7) 2024; 355 Ariemma, Sorrentino, Ragucci, de Joannon, Sabia (bib14) 2022; 241 Pugh, Bowen, Valera-Medina, Giles, Runyon, Marsh (bib17) 2019; 37 Parente, Malik, Contino, Cuoci, Dally (bib31) 2016; 163 Bastani, Tabejamaat, Ashini (bib5) 2024; 49 Azarinia, Mahdavy-Moghaddam (bib29) 2021; 46 Klippenstein, Harding, Glarborg, Miller (bib57) 2011; 158 Berwal, Kumar (bib2) 2023; 37 Wang, Si, Xu, Mi (bib10) 2019; 187 Issayev, Giri, Elbaz, Shrestha, Mauss, Roberts (bib38) 2022; 181 Shi, Liu, Zou, Dai, Li, Xia (bib13) 2022; 310 Energy (bib1) 2023 Wang, Liu, Li, Shi, Cai, Liu (bib15) 2024; 355 Guteša Božo, Vigueras-Zuniga, Buffi, Seljak, Valera-Medina (bib16) 2019; 251 Fan, Liu, Cai, Brackmann, Alden, Bai (bib25) 2022; 241 Shi, Li, Li, Hu, Liu, Zhou (bib20) 2023; 285 Cao, Hoang, Luu, Bui, Tran (bib56) 2020 Pope (bib30) 1978; 16 Miller, Bowman (bib53) 1989; 15 Turns (bib47) 1996 Shrestha, Giri, Elbaz, Issayev, Roberts, Seidel (bib35) 2022; 10 Bioche, Blondeau, Bricteux (bib59) 2022; 47 Sorrentino, Sabia, Ariemma, Ragucci, de Joannon (bib11) 2021; 9 Ricou, Spalding (bib46) 1961; 11 Shahsavari, Konnov, Bai, Valera-Medina, Li, Jangi (bib6) 2023; 348 Kildare, Evans, Proud, Chin, Tian, Medwell (bib8) 2023; 48 Liu, Wang, Wang, Li, Si, Hanif (bib12) 2024; 55 Zheng, Liu, Wang, Chen, Sui, Lu (bib43) 2023; 254 Malte, Pratt (bib52) 1974; 9 Mardani, Nazari (bib28) 2022; 241 Zhu, Du, Yu, Cheng, Wang (bib48) 2023; 38 Zheng, Liu, Sui, Zhou, Lu (bib41) 2022; 235 Ariemma, Sabia, Sorrentino, Bozza, de Joannon, Ragucci (bib21) 2021; 38 Mohammadpour, Mazaheri, Alipoor (bib55) 2022; 47 Mardani, Nazari (bib9) 2022; 241 Khalil, Manias, Kyritsis, Goussis (bib18) 2020; 14 Kiani, Kohansal, Masoumi, Ashjaee, Houshfar (bib50) 2023; 148 Zhao, Zhang, Zha, Gao, Mao, Wu (bib49) 2023; 331 Kuang, Han, Xu, Wang, Wang (bib3) 2024; 54 Zhu, Yan, Gao, Qiu, Zhu, Huang (bib4) 2024; 62 Chen, Li, Li, Deng, He, Huang (bib51) 2023; 263 Li, Zhang, Zhou, Ren (bib54) 2019; 237 Zhang, Shen, Palulli, Ghobadian, Nouri, Duwig (bib23) 2023; 48 Zheng, He, Hu, Zhu, Zhou, Lu (bib42) 2022; 327 Liu, Wang, Si, Li, Wu, Mi (bib24) 2024; 7 Zhang, Moosakutty, Rajan, Younes, Sarathy (bib32) 2021; 234 Chen, Su, Sui, Chen, Zhang (bib34) 2023; 242 Pope (bib40) 1997 Cavaliere, De Joannon (bib45) 2004; 30 Zhang, Zhou, Shan, Cai, Yang (bib22) 2022; 32 Manna, Sabia, Shrestha, Seidel, Ragucci, Mauss (bib36) 2023; 39 Li (10.1016/j.ijhydene.2024.05.415_bib54) 2019; 237 Sorrentino (10.1016/j.ijhydene.2024.05.415_bib11) 2021; 9 Ariemma (10.1016/j.ijhydene.2024.05.415_bib14) 2022; 241 Zheng (10.1016/j.ijhydene.2024.05.415_bib41) 2022; 235 Zhao (10.1016/j.ijhydene.2024.05.415_bib49) 2023; 331 Zheng (10.1016/j.ijhydene.2024.05.415_bib43) 2023; 254 Cavaliere (10.1016/j.ijhydene.2024.05.415_bib45) 2004; 30 Miller (10.1016/j.ijhydene.2024.05.415_bib53) 1989; 15 Liu (10.1016/j.ijhydene.2024.05.415_bib24) 2024; 7 Kiani (10.1016/j.ijhydene.2024.05.415_bib50) 2023; 148 Ilbas (10.1016/j.ijhydene.2024.05.415_bib58) 2022; 47 Zhang (10.1016/j.ijhydene.2024.05.415_bib22) 2022; 32 Osipova (10.1016/j.ijhydene.2024.05.415_bib44) 2021; 46 Bioche (10.1016/j.ijhydene.2024.05.415_bib59) 2022; 47 Shahsavari (10.1016/j.ijhydene.2024.05.415_bib6) 2023; 348 Kildare (10.1016/j.ijhydene.2024.05.415_bib8) 2023; 48 Zhu (10.1016/j.ijhydene.2024.05.415_bib48) 2023; 38 Pugh (10.1016/j.ijhydene.2024.05.415_bib17) 2019; 37 Liao (10.1016/j.ijhydene.2024.05.415_bib27) 2024; 58 Wang (10.1016/j.ijhydene.2024.05.415_bib15) 2024; 355 Shrestha (10.1016/j.ijhydene.2024.05.415_bib35) 2022; 10 Guteša Božo (10.1016/j.ijhydene.2024.05.415_bib16) 2019; 251 Parente (10.1016/j.ijhydene.2024.05.415_bib31) 2016; 163 Malte (10.1016/j.ijhydene.2024.05.415_bib52) 1974; 9 Issayev (10.1016/j.ijhydene.2024.05.415_bib38) 2022; 181 Li (10.1016/j.ijhydene.2024.05.415_bib7) 2024; 355 Chen (10.1016/j.ijhydene.2024.05.415_bib34) 2023; 242 Berwal (10.1016/j.ijhydene.2024.05.415_bib2) 2023; 37 Zhu (10.1016/j.ijhydene.2024.05.415_bib4) 2024; 62 Wang (10.1016/j.ijhydene.2024.05.415_bib33) 2022; 324 Cao (10.1016/j.ijhydene.2024.05.415_bib56) 2020 Mardani (10.1016/j.ijhydene.2024.05.415_bib9) 2022; 241 Liu (10.1016/j.ijhydene.2024.05.415_bib12) 2024; 55 Maab (10.1016/j.ijhydene.2024.05.415_bib19) 2022; 148 Ariemma (10.1016/j.ijhydene.2024.05.415_bib21) 2021; 38 Zhang (10.1016/j.ijhydene.2024.05.415_bib32) 2021; 234 Ricou (10.1016/j.ijhydene.2024.05.415_bib46) 1961; 11 Shi (10.1016/j.ijhydene.2024.05.415_bib20) 2023; 285 Pope (10.1016/j.ijhydene.2024.05.415_bib30) 1978; 16 Chen (10.1016/j.ijhydene.2024.05.415_bib51) 2023; 263 Shi (10.1016/j.ijhydene.2024.05.415_bib13) 2022; 310 Energy (10.1016/j.ijhydene.2024.05.415_bib1) 2023 Fan (10.1016/j.ijhydene.2024.05.415_bib25) 2022; 241 Klippenstein (10.1016/j.ijhydene.2024.05.415_bib57) 2011; 158 Mardani (10.1016/j.ijhydene.2024.05.415_bib28) 2022; 241 Zheng (10.1016/j.ijhydene.2024.05.415_bib42) 2022; 327 Manna (10.1016/j.ijhydene.2024.05.415_bib36) 2023; 39 Wang (10.1016/j.ijhydene.2024.05.415_bib10) 2019; 187 Li (10.1016/j.ijhydene.2024.05.415_bib37) 2019; 257 Bastani (10.1016/j.ijhydene.2024.05.415_bib5) 2024; 49 Zhang (10.1016/j.ijhydene.2024.05.415_bib23) 2023; 48 Barlow (10.1016/j.ijhydene.2024.05.415_bib26) 1998; 27 Azarinia (10.1016/j.ijhydene.2024.05.415_bib29) 2021; 46 Yin (10.1016/j.ijhydene.2024.05.415_bib39) 2010; 24 Pope (10.1016/j.ijhydene.2024.05.415_bib40) 1997 Turns (10.1016/j.ijhydene.2024.05.415_bib47) 1996 Mohammadpour (10.1016/j.ijhydene.2024.05.415_bib55) 2022; 47 Khalil (10.1016/j.ijhydene.2024.05.415_bib18) 2020; 14 Kuang (10.1016/j.ijhydene.2024.05.415_bib3) 2024; 54 |
References_xml | – volume: 310 year: 2022 ident: bib13 article-title: Experimental study and mechanism analysis of the NOx emissions in the NH3 MILD combustion by a novel burner publication-title: Fuel – volume: 254 year: 2023 ident: bib43 article-title: On the roles of humidification and radiation during the ignition of ammonia–hydrogen–air mixtures publication-title: Combust Flame – volume: 10 year: 2022 ident: bib35 article-title: A detailed chemical insights into the kinetics of diethyl ether enhancing ammonia combustion and the importance of NOx recycling mechanism publication-title: Fuel Commun – volume: 47 start-page: 36342 year: 2022 end-page: 36353 ident: bib59 article-title: Large eddy simulation investigation of pressure and wall heat loss effects on rich ammonia-hydrogen-air combustion in a gas turbine burner publication-title: Int J Hydrogen Energy – volume: 14 start-page: 84 year: 2020 ident: bib18 article-title: NO formation and autoignition dynamics during combustion of H2O-diluted NH3/H2O2 mixtures with air publication-title: Energies – volume: 46 start-page: 39942 year: 2021 end-page: 39954 ident: bib44 article-title: Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames publication-title: Int J Hydrogen Energy – volume: 237 start-page: 50 year: 2019 end-page: 59 ident: bib54 article-title: Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors publication-title: Fuel – volume: 235 year: 2022 ident: bib41 article-title: Effects of radiation reabsorption on laminar NH3/H2/air flames publication-title: Combust Flame – volume: 48 start-page: 16083 year: 2023 end-page: 16099 ident: bib23 article-title: Combustion characteristics of steam-diluted decomposed ammonia in multiple-nozzle direct injection burner publication-title: Int J Hydrogen Energy – volume: 257 year: 2019 ident: bib37 article-title: Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures publication-title: Fuel – volume: 37 start-page: 5401 year: 2019 end-page: 5409 ident: bib17 article-title: Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame publication-title: Proc Combust Inst – volume: 47 start-page: 21013 year: 2022 end-page: 21031 ident: bib55 article-title: Reaction zone characteristics, thermal performance and NOx/N2O emissions analyses of ammonia MILD combustion publication-title: Int J Hydrogen Energy – volume: 30 start-page: 329 year: 2004 end-page: 366 ident: bib45 article-title: Mild combustion publication-title: Prog Energy Combust Sci – volume: 7 year: 2024 ident: bib24 article-title: Distinct combustion characteristics of a one-dimensional premixed laminar flame of ammonia under various combustion regimes publication-title: Carbon Resour Convers – volume: 46 start-page: 9252 year: 2021 end-page: 9265 ident: bib29 article-title: Comprehensive numerical study of molecular diffusion effects and Eddy Dissipation Concept model in MILD combustion publication-title: Int J Hydrogen Energy – year: 1997 ident: bib40 article-title: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation – volume: 38 start-page: 5147 year: 2021 end-page: 5154 ident: bib21 article-title: Influence of water addition on MILD ammonia combustion performances and emissions publication-title: Proc Combust Inst – volume: 9 year: 2021 ident: bib11 article-title: Reactive structures of ammonia MILD combustion in diffusion ignition processes publication-title: Front Energy Res – volume: 39 start-page: 775 year: 2023 end-page: 784 ident: bib36 article-title: NH3NO interaction at low-temperatures: an experimental and modeling study publication-title: Proc Combust Inst – volume: 47 start-page: 12317 year: 2022 end-page: 12337 ident: bib58 article-title: Oxidizer effects on ammonia combustion using a generated non-premixed burner publication-title: Int J Hydrogen Energy – volume: 54 start-page: 1403 year: 2024 end-page: 1409 ident: bib3 article-title: Numerical study on combustion characteristics of ammonia mixture under different combustion modes publication-title: Int J Hydrogen Energy – volume: 181 start-page: 1353 year: 2022 end-page: 1370 ident: bib38 article-title: Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend publication-title: Renew Energy – year: 1996 ident: bib47 article-title: Introduction to combustion – volume: 38 start-page: 43 year: 2023 end-page: 60 ident: bib48 article-title: NOx emission and control in ammonia combustion: state-of-the-art review and future perspectives publication-title: Energy Fuels – volume: 355 year: 2024 ident: bib7 article-title: Kinetics modeling of NO emission of oxygen-enriched and rich-lean-staged ammonia combustion under gas turbine conditions publication-title: Fuel – volume: 148 start-page: 8347 year: 2022 end-page: 8364 ident: bib19 article-title: Effect of air humidity on premixed combustion of ammonia/air under engine relevant conditions: numerical investigation publication-title: J Therm Anal Calorim – volume: 163 start-page: 98 year: 2016 end-page: 111 ident: bib31 article-title: Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion publication-title: Fuel – volume: 55 start-page: 1 year: 2024 end-page: 13 ident: bib12 article-title: Classification and characteristics of ammonia combustion in well stirred reactor publication-title: Int J Hydrogen Energy – volume: 27 start-page: 1087 year: 1998 end-page: 1095 ident: bib26 article-title: Effects of turbulence on species mass fractions in methane/air jet flames publication-title: Symp (Int) Combustion – volume: 241 year: 2022 ident: bib14 article-title: Ammonia/Methane combustion: stability and NOx emissions publication-title: Combust Flame – volume: 16 start-page: 279 year: 1978 end-page: 281 ident: bib30 article-title: An explanation of the turbulent round-jet/plane-jet anomaly publication-title: AIAA J – start-page: 1 year: 2020 end-page: 18 ident: bib56 article-title: Effects of injection pressure on the NOx and PM emission control of diesel engine: a review under the aspect of PCCI combustion condition publication-title: Energy Sources, Part A – volume: 37 start-page: 13331 year: 2023 end-page: 13340 ident: bib2 article-title: Laminar burning velocity measurement of CH4/NH3/H2–air premixed flames under engine relevant conditions publication-title: Energy Fuels – volume: 49 start-page: 1399 year: 2024 end-page: 1415 ident: bib5 article-title: Numerical and experimental study of combustion and emission characteristics of ammonia/methane fuel mixture in micro gas turbine combustor publication-title: Int J Hydrogen Energy – volume: 58 start-page: 174 year: 2024 end-page: 189 ident: bib27 article-title: Effects of H2 addition on the characteristics of the reaction zone and NO mechanisms in MILD combustion of H2-rich fuels publication-title: Int J Hydrogen Energy – volume: 62 start-page: 579 year: 2024 end-page: 590 ident: bib4 article-title: Combustion and emission characteristics of ammonia-hydrogen fueled SI engine with high compression ratio publication-title: Int J Hydrogen Energy – volume: 241 year: 2022 ident: bib28 article-title: Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes publication-title: Combust Flame – volume: 234 year: 2021 ident: bib32 article-title: Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling publication-title: Combust Flame – volume: 251 year: 2019 ident: bib16 article-title: Fuel rich ammonia-hydrogen injection for humidified gas turbines publication-title: Appl Energy – volume: 355 year: 2024 ident: bib15 article-title: MILD combustion of a premixed NH3/air jet flame in hot coflow versus its CH4/air counterpart publication-title: Fuel – volume: 285 year: 2023 ident: bib20 article-title: Insight into NOx formation characteristics of ammonia oxidation in N2 and H2O atmospheres publication-title: Energy – volume: 15 start-page: 287 year: 1989 end-page: 338 ident: bib53 article-title: Mechanism and modeling of nitrogen chemistry in combustion publication-title: Prog Energy Combust Sci – year: 2023 ident: bib1 article-title: BP energy outlook 2023 edition – volume: 348 year: 2023 ident: bib6 article-title: Synergistic effects of nanosecond plasma discharge and hydrogen on ammonia combustion publication-title: Fuel – volume: 331 year: 2023 ident: bib49 article-title: Fuel-NO formation mechanism in MILD-oxy combustion of CH4/NH3 fuel blend publication-title: Fuel – volume: 242 year: 2023 ident: bib34 article-title: Flame and emission characteristics of preheated ammonia combustion based on chemical reaction network publication-title: Fuel Process Technol – volume: 241 year: 2022 ident: bib9 article-title: Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes publication-title: Combust Flame – volume: 187 year: 2019 ident: bib10 article-title: MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow publication-title: Energy – volume: 324 year: 2022 ident: bib33 article-title: A comparative study on the laminar C1–C4 n-alkane/NH3 premixed flame publication-title: Fuel – volume: 241 year: 2022 ident: bib25 article-title: Structure and scalar correlation of ammonia/air turbulent premixed flames in the distributed reaction zone regime publication-title: Combust Flame – volume: 11 start-page: 21 year: 1961 end-page: 32 ident: bib46 article-title: Measurements of entrainment by axisymmetrical turbulent jets publication-title: J Fluid Mech – volume: 48 start-page: 20059 year: 2023 end-page: 20076 ident: bib8 article-title: Characterisation of hydrogen jet flames under different pressures with varying coflow oxygen concentrations publication-title: Int J Hydrogen Energy – volume: 24 start-page: 6275 year: 2010 end-page: 6282 ident: bib39 article-title: New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy− fuel combustion: derivation, validation, and implementation publication-title: Energy Fuels – volume: 32 year: 2022 ident: bib22 article-title: Chemical effect of water addition on the ammonia combustion reaction publication-title: Therm Sci Eng Prog – volume: 148 start-page: 11783 year: 2023 end-page: 11797 ident: bib50 article-title: An experimental investigation on non-preheated MILD combustion of syngas/ammonia/air publication-title: J Therm Anal Calorim – volume: 327 year: 2022 ident: bib42 article-title: Effects of radiation reabsorption on the flame speed and NO emission of NH3/H2/air flames at various hydrogen ratios publication-title: Fuel – volume: 263 year: 2023 ident: bib51 article-title: Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner publication-title: Energy – volume: 158 start-page: 774 year: 2011 end-page: 789 ident: bib57 article-title: The role of NNH in NO formation and control publication-title: Combust Flame – volume: 9 start-page: 221 year: 1974 end-page: 231 ident: bib52 article-title: The role of energy-releasing kinetics in NOx formation: fuel-lean, jet-stirred CO-air combustion publication-title: Combust Sci Technol – volume: 348 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib6 article-title: Synergistic effects of nanosecond plasma discharge and hydrogen on ammonia combustion publication-title: Fuel doi: 10.1016/j.fuel.2023.128475 – volume: 48 start-page: 20059 issue: 52 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib8 article-title: Characterisation of hydrogen jet flames under different pressures with varying coflow oxygen concentrations publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.02.053 – volume: 241 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib9 article-title: Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes publication-title: Combust Flame doi: 10.1016/j.combustflame.2021.111873 – volume: 310 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib13 article-title: Experimental study and mechanism analysis of the NOx emissions in the NH3 MILD combustion by a novel burner publication-title: Fuel doi: 10.1016/j.fuel.2021.122417 – volume: 55 start-page: 1 year: 2024 ident: 10.1016/j.ijhydene.2024.05.415_bib12 article-title: Classification and characteristics of ammonia combustion in well stirred reactor publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.10.221 – volume: 15 start-page: 287 issue: 4 year: 1989 ident: 10.1016/j.ijhydene.2024.05.415_bib53 article-title: Mechanism and modeling of nitrogen chemistry in combustion publication-title: Prog Energy Combust Sci doi: 10.1016/0360-1285(89)90017-8 – volume: 27 start-page: 1087 year: 1998 ident: 10.1016/j.ijhydene.2024.05.415_bib26 article-title: Effects of turbulence on species mass fractions in methane/air jet flames publication-title: Symp (Int) Combustion doi: 10.1016/S0082-0784(98)80510-9 – volume: 30 start-page: 329 issue: 4 year: 2004 ident: 10.1016/j.ijhydene.2024.05.415_bib45 article-title: Mild combustion publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2004.02.003 – volume: 11 start-page: 21 issue: 1 year: 1961 ident: 10.1016/j.ijhydene.2024.05.415_bib46 article-title: Measurements of entrainment by axisymmetrical turbulent jets publication-title: J Fluid Mech doi: 10.1017/S0022112061000834 – volume: 148 start-page: 11783 issue: 21 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib50 article-title: An experimental investigation on non-preheated MILD combustion of syngas/ammonia/air publication-title: J Therm Anal Calorim doi: 10.1007/s10973-023-12512-7 – volume: 235 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib41 article-title: Effects of radiation reabsorption on laminar NH3/H2/air flames publication-title: Combust Flame doi: 10.1016/j.combustflame.2021.111699 – volume: 163 start-page: 98 year: 2016 ident: 10.1016/j.ijhydene.2024.05.415_bib31 article-title: Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion publication-title: Fuel doi: 10.1016/j.fuel.2015.09.020 – volume: 331 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib49 article-title: Fuel-NO formation mechanism in MILD-oxy combustion of CH4/NH3 fuel blend publication-title: Fuel doi: 10.1016/j.fuel.2022.125817 – volume: 355 year: 2024 ident: 10.1016/j.ijhydene.2024.05.415_bib7 article-title: Kinetics modeling of NO emission of oxygen-enriched and rich-lean-staged ammonia combustion under gas turbine conditions publication-title: Fuel doi: 10.1016/j.fuel.2023.129509 – volume: 241 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib28 article-title: Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes publication-title: Combust Flame doi: 10.1016/j.combustflame.2021.111873 – volume: 47 start-page: 21013 issue: 48 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib55 article-title: Reaction zone characteristics, thermal performance and NOx/N2O emissions analyses of ammonia MILD combustion publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.04.190 – volume: 263 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib51 article-title: Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner publication-title: Energy doi: 10.1016/j.energy.2022.125613 – volume: 241 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib25 article-title: Structure and scalar correlation of ammonia/air turbulent premixed flames in the distributed reaction zone regime publication-title: Combust Flame doi: 10.1016/j.combustflame.2022.112090 – volume: 181 start-page: 1353 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib38 article-title: Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend publication-title: Renew Energy doi: 10.1016/j.renene.2021.09.117 – volume: 355 year: 2024 ident: 10.1016/j.ijhydene.2024.05.415_bib15 article-title: MILD combustion of a premixed NH3/air jet flame in hot coflow versus its CH4/air counterpart publication-title: Fuel doi: 10.1016/j.fuel.2023.129523 – year: 1996 ident: 10.1016/j.ijhydene.2024.05.415_bib47 – volume: 62 start-page: 579 year: 2024 ident: 10.1016/j.ijhydene.2024.05.415_bib4 article-title: Combustion and emission characteristics of ammonia-hydrogen fueled SI engine with high compression ratio publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.03.035 – year: 1997 ident: 10.1016/j.ijhydene.2024.05.415_bib40 – volume: 47 start-page: 12317 issue: 24 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib58 article-title: Oxidizer effects on ammonia combustion using a generated non-premixed burner publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.05.105 – volume: 54 start-page: 1403 year: 2024 ident: 10.1016/j.ijhydene.2024.05.415_bib3 article-title: Numerical study on combustion characteristics of ammonia mixture under different combustion modes publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.12.119 – volume: 251 year: 2019 ident: 10.1016/j.ijhydene.2024.05.415_bib16 article-title: Fuel rich ammonia-hydrogen injection for humidified gas turbines publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113334 – volume: 46 start-page: 39942 issue: 80 year: 2021 ident: 10.1016/j.ijhydene.2024.05.415_bib44 article-title: Chemical structure and laminar burning velocity of atmospheric pressure premixed ammonia/hydrogen flames publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.188 – volume: 32 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib22 article-title: Chemical effect of water addition on the ammonia combustion reaction publication-title: Therm Sci Eng Prog – volume: 46 start-page: 9252 issue: 13 year: 2021 ident: 10.1016/j.ijhydene.2024.05.415_bib29 article-title: Comprehensive numerical study of molecular diffusion effects and Eddy Dissipation Concept model in MILD combustion publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.206 – volume: 324 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib33 article-title: A comparative study on the laminar C1–C4 n-alkane/NH3 premixed flame publication-title: Fuel doi: 10.1016/j.fuel.2022.124732 – volume: 38 start-page: 43 issue: 1 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib48 article-title: NOx emission and control in ammonia combustion: state-of-the-art review and future perspectives publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c03104 – volume: 9 start-page: 221 issue: 5–6 year: 1974 ident: 10.1016/j.ijhydene.2024.05.415_bib52 article-title: The role of energy-releasing kinetics in NOx formation: fuel-lean, jet-stirred CO-air combustion publication-title: Combust Sci Technol doi: 10.1080/00102207408960360 – volume: 9 year: 2021 ident: 10.1016/j.ijhydene.2024.05.415_bib11 article-title: Reactive structures of ammonia MILD combustion in diffusion ignition processes publication-title: Front Energy Res doi: 10.3389/fenrg.2021.649141 – volume: 38 start-page: 5147 issue: 4 year: 2021 ident: 10.1016/j.ijhydene.2024.05.415_bib21 article-title: Influence of water addition on MILD ammonia combustion performances and emissions publication-title: Proc Combust Inst doi: 10.1016/j.proci.2020.06.143 – volume: 257 year: 2019 ident: 10.1016/j.ijhydene.2024.05.415_bib37 article-title: Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures publication-title: Fuel doi: 10.1016/j.fuel.2019.116059 – volume: 7 issue: 4 year: 2024 ident: 10.1016/j.ijhydene.2024.05.415_bib24 article-title: Distinct combustion characteristics of a one-dimensional premixed laminar flame of ammonia under various combustion regimes publication-title: Carbon Resour Convers – volume: 48 start-page: 16083 issue: 42 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib23 article-title: Combustion characteristics of steam-diluted decomposed ammonia in multiple-nozzle direct injection burner publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.01.091 – volume: 16 start-page: 279 issue: 3 year: 1978 ident: 10.1016/j.ijhydene.2024.05.415_bib30 article-title: An explanation of the turbulent round-jet/plane-jet anomaly publication-title: AIAA J doi: 10.2514/3.7521 – volume: 148 start-page: 8347 issue: 16 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib19 article-title: Effect of air humidity on premixed combustion of ammonia/air under engine relevant conditions: numerical investigation publication-title: J Therm Anal Calorim doi: 10.1007/s10973-022-11883-7 – volume: 285 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib20 article-title: Insight into NOx formation characteristics of ammonia oxidation in N2 and H2O atmospheres publication-title: Energy doi: 10.1016/j.energy.2023.129412 – volume: 39 start-page: 775 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib36 article-title: NH3NO interaction at low-temperatures: an experimental and modeling study publication-title: Proc Combust Inst doi: 10.1016/j.proci.2022.09.027 – volume: 234 year: 2021 ident: 10.1016/j.ijhydene.2024.05.415_bib32 article-title: Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling publication-title: Combust Flame doi: 10.1016/j.combustflame.2021.111653 – volume: 24 start-page: 6275 issue: 12 year: 2010 ident: 10.1016/j.ijhydene.2024.05.415_bib39 article-title: New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy− fuel combustion: derivation, validation, and implementation publication-title: Energy Fuels doi: 10.1021/ef101211p – volume: 37 start-page: 13331 issue: 17 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib2 article-title: Laminar burning velocity measurement of CH4/NH3/H2–air premixed flames under engine relevant conditions publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c01896 – volume: 237 start-page: 50 year: 2019 ident: 10.1016/j.ijhydene.2024.05.415_bib54 article-title: Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors publication-title: Fuel doi: 10.1016/j.fuel.2018.09.131 – start-page: 1 year: 2020 ident: 10.1016/j.ijhydene.2024.05.415_bib56 article-title: Effects of injection pressure on the NOx and PM emission control of diesel engine: a review under the aspect of PCCI combustion condition publication-title: Energy Sources, Part A – volume: 49 start-page: 1399 year: 2024 ident: 10.1016/j.ijhydene.2024.05.415_bib5 article-title: Numerical and experimental study of combustion and emission characteristics of ammonia/methane fuel mixture in micro gas turbine combustor publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.09.319 – volume: 241 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib14 article-title: Ammonia/Methane combustion: stability and NOx emissions publication-title: Combust Flame doi: 10.1016/j.combustflame.2022.112071 – volume: 47 start-page: 36342 issue: 85 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib59 article-title: Large eddy simulation investigation of pressure and wall heat loss effects on rich ammonia-hydrogen-air combustion in a gas turbine burner publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.08.196 – volume: 254 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib43 article-title: On the roles of humidification and radiation during the ignition of ammonia–hydrogen–air mixtures publication-title: Combust Flame doi: 10.1016/j.combustflame.2023.112832 – year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib1 – volume: 187 year: 2019 ident: 10.1016/j.ijhydene.2024.05.415_bib10 article-title: MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow publication-title: Energy doi: 10.1016/j.energy.2019.115934 – volume: 14 start-page: 84 issue: 1 year: 2020 ident: 10.1016/j.ijhydene.2024.05.415_bib18 article-title: NO formation and autoignition dynamics during combustion of H2O-diluted NH3/H2O2 mixtures with air publication-title: Energies doi: 10.3390/en14010084 – volume: 10 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib35 article-title: A detailed chemical insights into the kinetics of diethyl ether enhancing ammonia combustion and the importance of NOx recycling mechanism publication-title: Fuel Commun doi: 10.1016/j.jfueco.2022.100051 – volume: 37 start-page: 5401 issue: 4 year: 2019 ident: 10.1016/j.ijhydene.2024.05.415_bib17 article-title: Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame publication-title: Proc Combust Inst doi: 10.1016/j.proci.2018.07.091 – volume: 58 start-page: 174 year: 2024 ident: 10.1016/j.ijhydene.2024.05.415_bib27 article-title: Effects of H2 addition on the characteristics of the reaction zone and NO mechanisms in MILD combustion of H2-rich fuels publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.01.154 – volume: 158 start-page: 774 issue: 4 year: 2011 ident: 10.1016/j.ijhydene.2024.05.415_bib57 article-title: The role of NNH in NO formation and control publication-title: Combust Flame doi: 10.1016/j.combustflame.2010.12.013 – volume: 327 year: 2022 ident: 10.1016/j.ijhydene.2024.05.415_bib42 article-title: Effects of radiation reabsorption on the flame speed and NO emission of NH3/H2/air flames at various hydrogen ratios publication-title: Fuel doi: 10.1016/j.fuel.2022.125176 – volume: 242 year: 2023 ident: 10.1016/j.ijhydene.2024.05.415_bib34 article-title: Flame and emission characteristics of preheated ammonia combustion based on chemical reaction network publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2022.107652 |
SSID | ssj0017049 |
Score | 2.4859195 |
Snippet | This numerical study comparatively investigates a premixed NH3/O2 jet flame in hot coflow (JHC) of H2O (steam) versus that of N2. To differentiate physical and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 588 |
SubjectTerms | Ammonia combustion H2O dilution Jet in hot coflow (JHC) MILD combustion NOx formation |
Title | On a premixed NH3/O2 jet flame in hot coflow of gaseous H2O versus N2 |
URI | https://dx.doi.org/10.1016/j.ijhydene.2024.05.415 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KXvQgPrE-yh68pkl2N0lzLKUlKrYHLfQWdjcbm1KTUiLqxd_uTJuUCkIP3pKwA-HL7DzIN98Scse5gqTAHcuRsJuE7wgrTJVvMeNzpZDUJnA4-WnoR2PxMPEmDdKrZ2GQVlnF_nVMX0Xr6oldoWkvssx-htiLIzgh_h-ANI2y20IE6OXt7w3Nww2qEhgWW7h6a0p41s5m0y_Y3iiXyQQqeAo8HvevBLWVdAbH5KiqFml3_UInpGHyU3K4pSF4RvqjnEq6WJq37NMkdBhxe8TozJQ0hY9taJbTaVFSXaTz4oMWKX2FvAXtPo3YiCInAy6H7JyMB_2XXmRVZyNYmrustBJfegm0l8ZVrh9q35VKc6hfVAg1BEQOJbTSIunolHEhmFYsxMTj6cBRWjkpvyB7eZGbS0Khh-LGCG0CnQollUyk1CjS00lRwlg2iVcDEutKOBzPr5jHNUNsFtdAxghk7HgxANkk9sZusZbO2GkR1njHv5wghvi-w_bqH7bX5ADvkAHGghuyVy7fzS3UGqVqrZypRfa794_R8AeNIdGt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8Ylvc_Ba203Srj3KslJf3YMK3kKSptplbRepqP_eGbeVFQQP3krbgfI1mW-GzHwDcCyEQVIQgRdo3E0yCqQX5ybyuIuEMVTUJqk5-SaNknt5-RA-zEG_7YWhssrG9099-pe3bu74DZr-pCj8W_S91IIT0_kA0nQ0DwukThV2YOHs4ipJvw8Tek0UjO97ZDDTKDw6KUZPH7jDSTGTSxLxlDQh9zeOmuGd81VYaQJGdjb9pjWYc-U6LM_ICG7AYFgyzSYv7rl4dxlLE-EPORu5muX4vx0rSvZU1cxW-bh6Y1XOHpG6MONnCR8yKsvAy5Rvwv354K6feM14BM-KLq-9LNJhhhmm65puFNuoq40VGMKYGMMIdB5GWmNldmpzLqTk1vCYuCe0vcBYE-RiCzplVbptYJhGCeekdT2bS6ONzrS2pNNzmpOKsd6BsAVE2UY7nEZYjFVbJDZSLZCKgFRBqBDIHfC_7SZT9Yw_LeIWb_VjHSh08X_Y7v7D9ggWk7uba3V9kV7twRI9oYIw3tuHTv3y6g4w9KjNYbO0PgHN79Re |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+premixed+NH3%2FO2+jet+flame+in+hot+coflow+of+gaseous+H2O+versus+N2&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Liu%2C+Xiangtao&rft.au=Wang%2C+Guochang&rft.au=Si%2C+Jicang&rft.au=Wu%2C+Mengwei&rft.date=2024-06-27&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=72&rft.spage=588&rft.epage=600&rft_id=info:doi/10.1016%2Fj.ijhydene.2024.05.415&rft.externalDocID=S0360319924021256 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |