Effect of wave spectral variability on the dynamic response of offshore wind turbine considering soil-pile-structure interaction

The accurate assessment of the dynamic response of the offshore wind turbine is fundamental to its economical and safe design, where the precise characterization of the incident wind and waves is essential. While reliable aerodynamic models can accurately reproduce wind characteristics, the widely-u...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 267; p. 113222
Main Authors Yang, Shanghui, Deng, Xiaowei, Zhang, Mingming, Xu, Yixiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The accurate assessment of the dynamic response of the offshore wind turbine is fundamental to its economical and safe design, where the precise characterization of the incident wind and waves is essential. While reliable aerodynamic models can accurately reproduce wind characteristics, the widely-used empirical JONSWAP spectrum in wave field simulation may not capture the multi-modal feature of the mixed wave field near the wind farm. In this study, the stochastic structural responses based on an integrated FE model of the soil-pile-structure system are assessed employing the empirical and actual wave spectra, along with discussions on the impacts of wave theory and wave-structure interaction. The main conclusions are: (1) The empirical wave spectrum can overestimate the dynamic responses compared with the measured swell-dominant one, but the dominant wind load weakens its influence on displacement. (2) When the wave serves as the decisive loading, using the empirical spectrum overestimates the dynamic performance for the swell-dominant wave spectrum while underestimating it for the wind-induced-wave-dominant one. The approximation of the actual wave spectrum to the JONSWAP spectrum is only recommended when the coupling effect of wind and wave is inapparent. (3) The wave theory imposes an evident effect on the dynamic behavior of the offshore wind turbine subject to joint wind and wave loading, where the JONSWAP wave spectrum is more sensitive. (4) The influence of water-monopile interaction is negligible when using the JONSWAP wave spectrum but prominent for the simulation's actual wave spectrum. •An integrated FE model considering soil-pile-structure interaction is developed.•Response discrepancies induced by JONSWAP and actual wave spectra are analyzed.•Influence of spectral disparities induced by inhomogeneous wave field is discussed.•Sensitivities of spectrum influence to wave theory and wave-structure interaction are studied.
AbstractList The accurate assessment of the dynamic response of the offshore wind turbine is fundamental to its economical and safe design, where the precise characterization of the incident wind and waves is essential. While reliable aerodynamic models can accurately reproduce wind characteristics, the widely-used empirical JONSWAP spectrum in wave field simulation may not capture the multi-modal feature of the mixed wave field near the wind farm. In this study, the stochastic structural responses based on an integrated FE model of the soil-pile-structure system are assessed employing the empirical and actual wave spectra, along with discussions on the impacts of wave theory and wave-structure interaction. The main conclusions are: (1) The empirical wave spectrum can overestimate the dynamic responses compared with the measured swell-dominant one, but the dominant wind load weakens its influence on displacement. (2) When the wave serves as the decisive loading, using the empirical spectrum overestimates the dynamic performance for the swell-dominant wave spectrum while underestimating it for the wind-induced-wave-dominant one. The approximation of the actual wave spectrum to the JONSWAP spectrum is only recommended when the coupling effect of wind and wave is inapparent. (3) The wave theory imposes an evident effect on the dynamic behavior of the offshore wind turbine subject to joint wind and wave loading, where the JONSWAP wave spectrum is more sensitive. (4) The influence of water-monopile interaction is negligible when using the JONSWAP wave spectrum but prominent for the simulation's actual wave spectrum. •An integrated FE model considering soil-pile-structure interaction is developed.•Response discrepancies induced by JONSWAP and actual wave spectra are analyzed.•Influence of spectral disparities induced by inhomogeneous wave field is discussed.•Sensitivities of spectrum influence to wave theory and wave-structure interaction are studied.
ArticleNumber 113222
Author Yang, Shanghui
Xu, Yixiang
Deng, Xiaowei
Zhang, Mingming
Author_xml – sequence: 1
  givenname: Shanghui
  surname: Yang
  fullname: Yang, Shanghui
  organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
– sequence: 2
  givenname: Xiaowei
  orcidid: 0000-0001-7634-5257
  surname: Deng
  fullname: Deng, Xiaowei
  email: xwdeng@hku.hk
  organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
– sequence: 3
  givenname: Mingming
  surname: Zhang
  fullname: Zhang, Mingming
  organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, China
– sequence: 4
  givenname: Yixiang
  orcidid: 0000-0003-2216-2847
  surname: Xu
  fullname: Xu, Yixiang
  organization: School of Aerospace, UNNC-NFTZ Blockchain Laboratory, The University of Nottingham Ningbo China, Ningbo, 315000, China
BookMark eNqFkM9KAzEQh3NQ0KqvIHmBrZPsut2CB6XUP1DwoueQTSbtlG1SkrSlNx_dXaoXL56GYeb7MfON2JkPHhm7FTAWIOq79TgY1B79cixByrEQpZTyjF0CyGnRgGgu2CilNQDUNZSX7GvuHJrMg-MHvUeetn0Xdcf3OpJuqaN85MHzvEJuj15vyPCIaRt8wgEKzqVViMgP5C3Pu9iSR276MVmM5Jc8BeqKLXVYpBx3pl9BTj5j1CZT8Nfs3Oku4c1PvWKfz_OP2WuxeH95mz0tClMKmQt7r02l24mtRdVaMBVULQCaiXC2LKfaukZYQCmdFs4Jhw1WOK0arSVYUTflFatPuSaGlCI6tY200fGoBKjBnVqrX3dqcKdO7nrw4Q9oKOvh9N4Tdf_jjycc--f2hFElQ-gNWoq9amUD_RfxDXR1mBg
CitedBy_id crossref_primary_10_1016_j_renene_2024_120161
crossref_primary_10_1016_j_oceaneng_2023_114654
crossref_primary_10_1016_j_apor_2024_103918
crossref_primary_10_1016_j_engstruct_2023_117027
crossref_primary_10_1016_j_oceaneng_2023_116564
crossref_primary_10_1016_j_energy_2025_134849
crossref_primary_10_1016_j_renene_2024_121185
crossref_primary_10_1016_j_jer_2025_03_002
crossref_primary_10_1016_j_oceaneng_2024_119671
crossref_primary_10_1016_j_enconman_2023_116949
crossref_primary_10_1177_10775463231186708
crossref_primary_10_1016_j_awe_2025_100041
crossref_primary_10_3390_su15086590
Cites_doi 10.1016/j.soildyn.2014.03.006
10.1016/0022-460X(72)90600-1
10.1016/j.oceaneng.2017.03.019
10.1029/98JC02622
10.1016/j.oceaneng.2021.110351
10.1016/j.rser.2018.11.002
10.1016/j.jweia.2010.12.015
10.1016/j.apenergy.2021.117947
10.1142/S0578563413500010
10.1016/j.compgeo.2014.05.008
10.1016/j.renene.2021.12.066
10.5194/os-13-365-2017
10.1016/j.cma.2012.12.005
10.1016/j.jrmge.2017.11.010
10.1016/j.egypro.2017.10.337
10.1680/jgeot.19.TI.034
10.1016/j.engstruct.2017.12.001
10.1016/j.apor.2011.02.001
10.1061/(ASCE)1090-0241(2003)129:4(296)
10.1175/BAMS-D-11-00170.1
10.1016/j.jweia.2013.09.003
10.1029/JZ069i024p05181
10.1016/j.soildyn.2015.12.008
10.1002/we.2218
10.1061/(ASCE)BE.1943-5592.0001517
10.1016/0029-8018(84)90019-2
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2022.113222
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2022_113222
S0029801822025057
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
WUQ
ID FETCH-LOGICAL-c312t-d5ac4ab7d614bd0c404b00ec71fd339adf81d0e22fa1ff1fe8e4e948aa20d1683
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 02:15:04 EDT 2025
Sun Apr 06 06:54:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Stochastic response
Offshore wind turbine
Wave-structure interaction
Wave spectrum
Wave theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-d5ac4ab7d614bd0c404b00ec71fd339adf81d0e22fa1ff1fe8e4e948aa20d1683
ORCID 0000-0003-2216-2847
0000-0001-7634-5257
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2022_113222
crossref_citationtrail_10_1016_j_oceaneng_2022_113222
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_113222
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ma, Yang, Chen (bib22) 2017; 136
Booij, Ris, Holthuijsen (bib6) 1999; 104
Torsethaugen (bib38) 1993
Bhattacharya (bib4) 2014; 1
Ewans, Hansen, Zeeberg (bib11) 2022; 246
Igwemezie, Mehmanparast, Kolios (bib16) 2019; 101
Jonkman, Buhl (bib19) 2005
Bouzid, Bhattacharya, Otsmane (bib7) 2018; 10
Musial, Butterfield, Ram (bib26) 2006
Chen, Duffour (bib9) 2018; 21
Marino, Borri, Peil (bib23) 2011; 99
Zuo, Bi, Hao (bib43) 2018; 157
Shinozuka, Jan (bib34) 1972; 25
Zilong, Wei (bib42) 2022; 306
Agarwal, Manuel (bib2) 2011; 33
Institute (bib17) 1989
Ochi, Hubble (bib28) 1976; 1977
Cavaleri, Fox-Kemper, Hemer (bib8) 2012; 93
Strömblad (bib36) 2014
Ti, Wei, Li, Xu (bib37) 2020; 25
Hasselmann (bib14) 1973
Soares (bib35) 1984; 11
Sharma (bib32) 1979
Marino, Lugni, Borri (bib25) 2013; 123
Yang, Deng, Yang (bib41) 2022; 186
Aboobacker, Vethamony, Samiksha, Rashmi, Jyoti (bib1) 2013; 55
Institute (bib18) 2000
Nikitas, Vimalan, Bhattacharya (bib27) 2016; 82
Haiderali, Madabhushi (bib12) 2012
Paik, Salgado, Lee, Kim (bib30) 2003; 129
Shinozuka, Deodatis (bib33) 1991
Marino, Lugni, Borri (bib24) 2013; 255
Jostad, Dahl, Page, Sivasithamparam, Sturm (bib20) 2020; 70
Pierson, Moskowitz (bib31) 1964; 69
van der Laan, Sørensen, Réthoré, Mann, Kelly, Schepers (bib39) 2013
Anjali Nair, Sanil Kumar (bib3) 2017; 13
Veritas (bib40) 2004
Henderson, Zaaijer (bib15) 2004
Hansen (bib13) 2015
Bisoi, Haldar (bib5) 2014; 63
Damgaard, Bayat, Andersen, Ibsen (bib10) 2014; 61
Page, Skau, Jostad, Eiksund (bib29) 2017; 137
Kaimal, Wyngaard, Izumi, Coté (bib21) 1972; 98
Aboobacker (10.1016/j.oceaneng.2022.113222_bib1) 2013; 55
van der Laan (10.1016/j.oceaneng.2022.113222_bib39) 2013
Bouzid (10.1016/j.oceaneng.2022.113222_bib7) 2018; 10
Kaimal (10.1016/j.oceaneng.2022.113222_bib21) 1972; 98
Ti (10.1016/j.oceaneng.2022.113222_bib37) 2020; 25
Igwemezie (10.1016/j.oceaneng.2022.113222_bib16) 2019; 101
Yang (10.1016/j.oceaneng.2022.113222_bib41) 2022; 186
Damgaard (10.1016/j.oceaneng.2022.113222_bib10) 2014; 61
Marino (10.1016/j.oceaneng.2022.113222_bib24) 2013; 255
Veritas (10.1016/j.oceaneng.2022.113222_bib40) 2004
Ewans (10.1016/j.oceaneng.2022.113222_bib11) 2022; 246
Hasselmann (10.1016/j.oceaneng.2022.113222_bib14) 1973
Jonkman (10.1016/j.oceaneng.2022.113222_bib19) 2005
Jostad (10.1016/j.oceaneng.2022.113222_bib20) 2020; 70
Institute (10.1016/j.oceaneng.2022.113222_bib18) 2000
Shinozuka (10.1016/j.oceaneng.2022.113222_bib34) 1972; 25
Anjali Nair (10.1016/j.oceaneng.2022.113222_bib3) 2017; 13
Booij (10.1016/j.oceaneng.2022.113222_bib6) 1999; 104
Torsethaugen (10.1016/j.oceaneng.2022.113222_bib38) 1993
Marino (10.1016/j.oceaneng.2022.113222_bib23) 2011; 99
Pierson (10.1016/j.oceaneng.2022.113222_bib31) 1964; 69
Shinozuka (10.1016/j.oceaneng.2022.113222_bib33) 1991
Henderson (10.1016/j.oceaneng.2022.113222_bib15) 2004
Institute (10.1016/j.oceaneng.2022.113222_bib17) 1989
Ochi (10.1016/j.oceaneng.2022.113222_bib28) 1976; 1977
Sharma (10.1016/j.oceaneng.2022.113222_bib32) 1979
Bhattacharya (10.1016/j.oceaneng.2022.113222_bib4) 2014; 1
Soares (10.1016/j.oceaneng.2022.113222_bib35) 1984; 11
Strömblad (10.1016/j.oceaneng.2022.113222_bib36) 2014
Cavaleri (10.1016/j.oceaneng.2022.113222_bib8) 2012; 93
Chen (10.1016/j.oceaneng.2022.113222_bib9) 2018; 21
Zuo (10.1016/j.oceaneng.2022.113222_bib43) 2018; 157
Agarwal (10.1016/j.oceaneng.2022.113222_bib2) 2011; 33
Paik (10.1016/j.oceaneng.2022.113222_bib30) 2003; 129
Bisoi (10.1016/j.oceaneng.2022.113222_bib5) 2014; 63
Page (10.1016/j.oceaneng.2022.113222_bib29) 2017; 137
Marino (10.1016/j.oceaneng.2022.113222_bib25) 2013; 123
Zilong (10.1016/j.oceaneng.2022.113222_bib42) 2022; 306
Hansen (10.1016/j.oceaneng.2022.113222_bib13) 2015
Ma (10.1016/j.oceaneng.2022.113222_bib22) 2017; 136
Nikitas (10.1016/j.oceaneng.2022.113222_bib27) 2016; 82
Haiderali (10.1016/j.oceaneng.2022.113222_bib12) 2012
Musial (10.1016/j.oceaneng.2022.113222_bib26) 2006
References_xml – volume: 255
  start-page: 275
  year: 2013
  end-page: 288
  ident: bib24
  article-title: A novel numerical strategy for the simulation of irregular nonlinear waves and their effects on the dynamic response of offshore wind turbines
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 129
  start-page: 296
  year: 2003
  end-page: 306
  ident: bib30
  article-title: Behavior of open-and closed-ended piles driven into sands
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 82
  start-page: 154
  year: 2016
  end-page: 160
  ident: bib27
  article-title: An innovative cyclic loading device to study long term performance of offshore wind turbines
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 157
  start-page: 42
  year: 2018
  end-page: 62
  ident: bib43
  article-title: Dynamic analyses of operating offshore wind turbines including soil-structure interaction
  publication-title: Eng. Struct.
– year: 2015
  ident: bib13
  article-title: Aerodynamics of Wind Turbines
– volume: 21
  start-page: 1121
  year: 2018
  end-page: 1140
  ident: bib9
  article-title: Modelling damping sources in monopile-supported offshore wind turbines
  publication-title: Wind Energy
– volume: 55
  year: 2013
  ident: bib1
  article-title: Wave transformation and attenuation along the west coast of India: measurements and numerical simulations
  publication-title: Coast Eng. J.
– year: 2005
  ident: bib19
  article-title: FAST User's Guide
– year: 2004
  ident: bib15
  article-title: Hydrodynamic loading on offshore wind turbines
  publication-title: The Fourteenth International Offshore and Polar Engineering Conference
– volume: 98
  start-page: 563
  year: 1972
  end-page: 589
  ident: bib21
  article-title: Spectral characteristics of surface-layer turbulence
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 25
  start-page: 111
  year: 1972
  end-page: 128
  ident: bib34
  article-title: Digital simulation of random processes and its applications
  publication-title: J. Sound Vib.
– volume: 11
  start-page: 185
  year: 1984
  end-page: 207
  ident: bib35
  article-title: Representation of double-peaked sea wave spectra
  publication-title: Ocean Eng.
– volume: 99
  start-page: 483
  year: 2011
  end-page: 490
  ident: bib23
  article-title: A fully nonlinear wave model to account for breaking wave impact loads on offshore wind turbines
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 104
  start-page: 7649
  year: 1999
  end-page: 7666
  ident: bib6
  article-title: A third-generation wave model for coastal regions: 1. Model description and validation
  publication-title: J. Geophys. Res.: Oceans
– volume: 93
  start-page: 1651
  year: 2012
  end-page: 1661
  ident: bib8
  article-title: Wind waves in the coupled climate system
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 246
  year: 2022
  ident: bib11
  article-title: A spectral description for extreme sea states offshore Denmark Part I: power spectrum
  publication-title: Ocean Eng.
– volume: 69
  start-page: 5181
  year: 1964
  end-page: 5190
  ident: bib31
  article-title: A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii
  publication-title: J. Geophys. Res.
– volume: 61
  start-page: 116
  year: 2014
  end-page: 126
  ident: bib10
  article-title: Assessment of the dynamic behaviour of saturated soil subjected to cyclic loading from offshore monopile wind turbine foundations
  publication-title: Comput. Geotech.
– start-page: 3277
  year: 2012
  end-page: 3295
  ident: bib12
  article-title: Three-dimensional finite element modelling of monopiles for offshore wind turbines
  publication-title: Proceedings of the World Congress on Advances in Civil, Environmental, and Materials Research
– year: 1973
  ident: bib14
  article-title: Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP)
– volume: 70
  start-page: 682
  year: 2020
  end-page: 699
  ident: bib20
  article-title: Evaluation of soil models for improved design of offshore wind turbine foundations in dense sand
  publication-title: Geotechnique
– volume: 186
  start-page: 394
  year: 2022
  end-page: 410
  ident: bib41
  article-title: Modeling of soil-pile-structure interaction for dynamic response of standalone wind turbines
  publication-title: Renew. Energy
– volume: 123
  start-page: 363
  year: 2013
  end-page: 376
  ident: bib25
  article-title: The role of the nonlinear wave kinematics on the global responses of an OWT in parked and operating conditions
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 10
  start-page: 333
  year: 2018
  end-page: 346
  ident: bib7
  article-title: Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction
  publication-title: J. Rock Mech. Geotech. Eng.
– year: 2004
  ident: bib40
  article-title: Design of Offshore Wind Turbine Structure
– volume: 101
  start-page: 181
  year: 2019
  end-page: 196
  ident: bib16
  article-title: Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures–A review
  publication-title: Renew. Sustain. Energy Rev.
– year: 2006
  ident: bib26
  article-title: Energy from offshore wind
  publication-title: Offshore Technology Conference
– year: 2000
  ident: bib18
  article-title: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design: Upstream Segment
– volume: 63
  start-page: 19
  year: 2014
  end-page: 35
  ident: bib5
  article-title: Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction
  publication-title: Soil Dynam. Earthq. Eng.
– volume: 1977
  start-page: 301
  year: 1976
  end-page: 328
  ident: bib28
  article-title: Six-parameter wave spectra
  publication-title: Coast. Eng.
– start-page: 514
  year: 2013
  end-page: 525
  ident: bib39
  article-title: Nonlinear eddy viscosity models applied to wind turbine wakes
  publication-title: Proceedings for the ICOWES2013
– year: 1991
  ident: bib33
  article-title: Simulation of Stochastic Processes by Spectral Representation
– year: 2014
  ident: bib36
  article-title: Modeling of Soil and Structure Interaction Subsea
– volume: 306
  year: 2022
  ident: bib42
  article-title: Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads
  publication-title: Appl. Energy
– year: 1993
  ident: bib38
  article-title: A Two Peak Wave Spectrum Model
– volume: 33
  start-page: 215
  year: 2011
  end-page: 227
  ident: bib2
  article-title: Incorporating irregular nonlinear waves in coupled simulation and reliability studies of offshore wind turbines
  publication-title: Appl. Ocean Res.
– volume: 1
  start-page: 922
  year: 2014
  ident: bib4
  article-title: Challenges in design of foundations for offshore wind turbines
  publication-title: Eng. Technol. Ref
– year: 1989
  ident: bib17
  article-title: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms
– volume: 136
  start-page: 94
  year: 2017
  end-page: 105
  ident: bib22
  article-title: Numerical analysis of the long-term performance of offshore wind turbines supported by monopiles
  publication-title: Ocean Eng.
– volume: 13
  start-page: 365
  year: 2017
  end-page: 378
  ident: bib3
  article-title: Wave spectral shapes in the coastal waters based on measured data off Karwar on the western coast of India
  publication-title: Ocean Sci.
– volume: 25
  year: 2020
  ident: bib37
  article-title: Effect of wave spectral variability on stochastic response of a long-span bridge subjected to random waves during tropical cyclones
  publication-title: J. Bridge Eng.
– volume: 137
  start-page: 100
  year: 2017
  end-page: 107
  ident: bib29
  article-title: A new foundation model for integrated analyses of monopile-based offshore wind turbines
  publication-title: Energy Proc.
– year: 1979
  ident: bib32
  article-title: Development And Evaluation Of A Procedure For Simulating A Random Directional Second-Order Sea Surface And Associated Wave Forces
– year: 2000
  ident: 10.1016/j.oceaneng.2022.113222_bib18
– year: 2004
  ident: 10.1016/j.oceaneng.2022.113222_bib40
– volume: 63
  start-page: 19
  year: 2014
  ident: 10.1016/j.oceaneng.2022.113222_bib5
  article-title: Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2014.03.006
– volume: 25
  start-page: 111
  issue: 1
  year: 1972
  ident: 10.1016/j.oceaneng.2022.113222_bib34
  article-title: Digital simulation of random processes and its applications
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(72)90600-1
– volume: 136
  start-page: 94
  year: 2017
  ident: 10.1016/j.oceaneng.2022.113222_bib22
  article-title: Numerical analysis of the long-term performance of offshore wind turbines supported by monopiles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.03.019
– volume: 104
  start-page: 7649
  issue: C4
  year: 1999
  ident: 10.1016/j.oceaneng.2022.113222_bib6
  article-title: A third-generation wave model for coastal regions: 1. Model description and validation
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/98JC02622
– year: 1989
  ident: 10.1016/j.oceaneng.2022.113222_bib17
– volume: 246
  year: 2022
  ident: 10.1016/j.oceaneng.2022.113222_bib11
  article-title: A spectral description for extreme sea states offshore Denmark Part I: power spectrum
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110351
– volume: 101
  start-page: 181
  year: 2019
  ident: 10.1016/j.oceaneng.2022.113222_bib16
  article-title: Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures–A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.11.002
– year: 2005
  ident: 10.1016/j.oceaneng.2022.113222_bib19
– year: 1973
  ident: 10.1016/j.oceaneng.2022.113222_bib14
– start-page: 3277
  year: 2012
  ident: 10.1016/j.oceaneng.2022.113222_bib12
  article-title: Three-dimensional finite element modelling of monopiles for offshore wind turbines
– year: 2015
  ident: 10.1016/j.oceaneng.2022.113222_bib13
– volume: 99
  start-page: 483
  issue: 4
  year: 2011
  ident: 10.1016/j.oceaneng.2022.113222_bib23
  article-title: A fully nonlinear wave model to account for breaking wave impact loads on offshore wind turbines
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2010.12.015
– volume: 306
  year: 2022
  ident: 10.1016/j.oceaneng.2022.113222_bib42
  article-title: Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117947
– year: 2004
  ident: 10.1016/j.oceaneng.2022.113222_bib15
  article-title: Hydrodynamic loading on offshore wind turbines
– volume: 55
  issue: 1
  year: 2013
  ident: 10.1016/j.oceaneng.2022.113222_bib1
  article-title: Wave transformation and attenuation along the west coast of India: measurements and numerical simulations
  publication-title: Coast Eng. J.
  doi: 10.1142/S0578563413500010
– volume: 61
  start-page: 116
  year: 2014
  ident: 10.1016/j.oceaneng.2022.113222_bib10
  article-title: Assessment of the dynamic behaviour of saturated soil subjected to cyclic loading from offshore monopile wind turbine foundations
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2014.05.008
– volume: 186
  start-page: 394
  year: 2022
  ident: 10.1016/j.oceaneng.2022.113222_bib41
  article-title: Modeling of soil-pile-structure interaction for dynamic response of standalone wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.12.066
– volume: 13
  start-page: 365
  issue: 3
  year: 2017
  ident: 10.1016/j.oceaneng.2022.113222_bib3
  article-title: Wave spectral shapes in the coastal waters based on measured data off Karwar on the western coast of India
  publication-title: Ocean Sci.
  doi: 10.5194/os-13-365-2017
– volume: 255
  start-page: 275
  year: 2013
  ident: 10.1016/j.oceaneng.2022.113222_bib24
  article-title: A novel numerical strategy for the simulation of irregular nonlinear waves and their effects on the dynamic response of offshore wind turbines
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.12.005
– year: 1993
  ident: 10.1016/j.oceaneng.2022.113222_bib38
– volume: 98
  start-page: 563
  issue: 417
  year: 1972
  ident: 10.1016/j.oceaneng.2022.113222_bib21
  article-title: Spectral characteristics of surface-layer turbulence
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 1
  start-page: 922
  issue: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2022.113222_bib4
  article-title: Challenges in design of foundations for offshore wind turbines
  publication-title: Eng. Technol. Ref
– volume: 10
  start-page: 333
  issue: 2
  year: 2018
  ident: 10.1016/j.oceaneng.2022.113222_bib7
  article-title: Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2017.11.010
– volume: 137
  start-page: 100
  year: 2017
  ident: 10.1016/j.oceaneng.2022.113222_bib29
  article-title: A new foundation model for integrated analyses of monopile-based offshore wind turbines
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2017.10.337
– volume: 70
  start-page: 682
  issue: 8
  year: 2020
  ident: 10.1016/j.oceaneng.2022.113222_bib20
  article-title: Evaluation of soil models for improved design of offshore wind turbine foundations in dense sand
  publication-title: Geotechnique
  doi: 10.1680/jgeot.19.TI.034
– volume: 157
  start-page: 42
  year: 2018
  ident: 10.1016/j.oceaneng.2022.113222_bib43
  article-title: Dynamic analyses of operating offshore wind turbines including soil-structure interaction
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.12.001
– volume: 33
  start-page: 215
  issue: 3
  year: 2011
  ident: 10.1016/j.oceaneng.2022.113222_bib2
  article-title: Incorporating irregular nonlinear waves in coupled simulation and reliability studies of offshore wind turbines
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2011.02.001
– volume: 1977
  start-page: 301
  year: 1976
  ident: 10.1016/j.oceaneng.2022.113222_bib28
  article-title: Six-parameter wave spectra
  publication-title: Coast. Eng.
– volume: 129
  start-page: 296
  issue: 4
  year: 2003
  ident: 10.1016/j.oceaneng.2022.113222_bib30
  article-title: Behavior of open-and closed-ended piles driven into sands
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2003)129:4(296)
– volume: 93
  start-page: 1651
  issue: 11
  year: 2012
  ident: 10.1016/j.oceaneng.2022.113222_bib8
  article-title: Wind waves in the coupled climate system
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00170.1
– year: 2006
  ident: 10.1016/j.oceaneng.2022.113222_bib26
  article-title: Energy from offshore wind
– volume: 123
  start-page: 363
  year: 2013
  ident: 10.1016/j.oceaneng.2022.113222_bib25
  article-title: The role of the nonlinear wave kinematics on the global responses of an OWT in parked and operating conditions
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2013.09.003
– year: 2014
  ident: 10.1016/j.oceaneng.2022.113222_bib36
– volume: 69
  start-page: 5181
  issue: 24
  year: 1964
  ident: 10.1016/j.oceaneng.2022.113222_bib31
  article-title: A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii
  publication-title: J. Geophys. Res.
  doi: 10.1029/JZ069i024p05181
– year: 1979
  ident: 10.1016/j.oceaneng.2022.113222_bib32
– volume: 82
  start-page: 154
  year: 2016
  ident: 10.1016/j.oceaneng.2022.113222_bib27
  article-title: An innovative cyclic loading device to study long term performance of offshore wind turbines
  publication-title: Soil Dynam. Earthq. Eng.
  doi: 10.1016/j.soildyn.2015.12.008
– volume: 21
  start-page: 1121
  issue: 11
  year: 2018
  ident: 10.1016/j.oceaneng.2022.113222_bib9
  article-title: Modelling damping sources in monopile-supported offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.2218
– start-page: 514
  year: 2013
  ident: 10.1016/j.oceaneng.2022.113222_bib39
  article-title: Nonlinear eddy viscosity models applied to wind turbine wakes
– volume: 25
  issue: 1
  year: 2020
  ident: 10.1016/j.oceaneng.2022.113222_bib37
  article-title: Effect of wave spectral variability on stochastic response of a long-span bridge subjected to random waves during tropical cyclones
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001517
– year: 1991
  ident: 10.1016/j.oceaneng.2022.113222_bib33
– volume: 11
  start-page: 185
  issue: 2
  year: 1984
  ident: 10.1016/j.oceaneng.2022.113222_bib35
  article-title: Representation of double-peaked sea wave spectra
  publication-title: Ocean Eng.
  doi: 10.1016/0029-8018(84)90019-2
SSID ssj0006603
Score 2.41783
Snippet The accurate assessment of the dynamic response of the offshore wind turbine is fundamental to its economical and safe design, where the precise...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113222
SubjectTerms Offshore wind turbine
Stochastic response
Wave spectrum
Wave theory
Wave-structure interaction
Title Effect of wave spectral variability on the dynamic response of offshore wind turbine considering soil-pile-structure interaction
URI https://dx.doi.org/10.1016/j.oceaneng.2022.113222
Volume 267
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KXlQQrYr1o-zBa9pkd_N1LMVSFevFQm9hk8xqS0lKW1u8iD_d2WyiFYQevIadTchs5s2EeW8IubF5yhG4tRSiF1oCQm5J6QvLs5VKlORJ7Gii8OPA6w_F_cgd1Ui34sLotsoy9puYXkTr8kq7fJvt2XisOb4sxPiKCFfguGaUC-HrU976-Gnz8DybV20eevUGS3jSQoiQGWQvWCcypsebMMb-BqgN0OkdkcMyW6Qd80DHpAZZnexvaAjWycGT3r0Unj4hn0aOmOaKruUKaMGknOMeKyyKjSb3O80zinkfTc00ejo3fbKgjXKlFq_5HOgai3WKeISVM9CkHOuJd6SLfDy1ZhhMLKM9-4aLtejE3FAkTsmwd_vc7VvllAUr4Q5bWqkrEyFjP0WgjlM7EbbATxES31Ep56FMFaa0NjCmpKOUoyAAdKkIpGR26ngBPyM7WZ7BOaG-HUhQylOhjIUnVAiYb4ILDoAfCAkN4lavNkpKCXI9CWMaVb1mk6hySaRdEhmXNEj7225mRDi2WoSV56JfxylCpNhie_EP20uyp-fRm380V2QH_QDXmLUs42ZxLJtkt3P30B98AdlP8So
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HnyA-MS3e_Aam-xuXsciSn3Vi4K3sElmtSJJaavFmz_d2e5GKggevIbMJuy3mW8mzHwDcOKLUhBxGynEKPUkpsJTKpZe5GtdaCWKPDCNwre9qPsgrx7Dxzk4a3phTFml8_3Wp0-9tbvSdrvZHvT7pseXp-RfieGmPB7Pw4JRpwpbsNC5vO72vh1yFPmiqfQwBjONwi-nxBKqwuqJUkXOzYQTzvnvHDXDOxdrsOoCRtax77QOc1htwPKMjOAGrNyZ1Z329CZ8WkViVms2Ue_Ips2UQ1rjnfJiK8v9weqKUejHSjuQng1tqSwao1rr0XM9RDahfJ0RJVHyjKxwkz3piWxU91-9AfkTz8rPvtHNRndiaLsktuDh4vz-rOu5QQteIQI-9spQFVLlcUlcnZd-IX1JXyMWcaBLIVJVaopqfeRcq0DrQGOChKpMlOJ-GUSJ2IZWVVe4Ayz2E4VaRzpVuYykTpFCTgwxQIwTqXAXwmZrs8KpkJthGK9ZU272kjWQZAaSzEKyC-1vu4HV4fjTIm2Qy36cqIzI4g_bvX_YHsNi9_72Jru57F3vw5IZT29_2RxAizDBQwpixvmRO6RfE2Dz2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+wave+spectral+variability+on+the+dynamic+response+of+offshore+wind+turbine+considering+soil-pile-structure+interaction&rft.jtitle=Ocean+engineering&rft.au=Yang%2C+Shanghui&rft.au=Deng%2C+Xiaowei&rft.au=Zhang%2C+Mingming&rft.au=Xu%2C+Yixiang&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=267&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.113222&rft.externalDocID=S0029801822025057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon