Effect of wave spectral variability on the dynamic response of offshore wind turbine considering soil-pile-structure interaction
The accurate assessment of the dynamic response of the offshore wind turbine is fundamental to its economical and safe design, where the precise characterization of the incident wind and waves is essential. While reliable aerodynamic models can accurately reproduce wind characteristics, the widely-u...
Saved in:
Published in | Ocean engineering Vol. 267; p. 113222 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The accurate assessment of the dynamic response of the offshore wind turbine is fundamental to its economical and safe design, where the precise characterization of the incident wind and waves is essential. While reliable aerodynamic models can accurately reproduce wind characteristics, the widely-used empirical JONSWAP spectrum in wave field simulation may not capture the multi-modal feature of the mixed wave field near the wind farm. In this study, the stochastic structural responses based on an integrated FE model of the soil-pile-structure system are assessed employing the empirical and actual wave spectra, along with discussions on the impacts of wave theory and wave-structure interaction. The main conclusions are: (1) The empirical wave spectrum can overestimate the dynamic responses compared with the measured swell-dominant one, but the dominant wind load weakens its influence on displacement. (2) When the wave serves as the decisive loading, using the empirical spectrum overestimates the dynamic performance for the swell-dominant wave spectrum while underestimating it for the wind-induced-wave-dominant one. The approximation of the actual wave spectrum to the JONSWAP spectrum is only recommended when the coupling effect of wind and wave is inapparent. (3) The wave theory imposes an evident effect on the dynamic behavior of the offshore wind turbine subject to joint wind and wave loading, where the JONSWAP wave spectrum is more sensitive. (4) The influence of water-monopile interaction is negligible when using the JONSWAP wave spectrum but prominent for the simulation's actual wave spectrum.
•An integrated FE model considering soil-pile-structure interaction is developed.•Response discrepancies induced by JONSWAP and actual wave spectra are analyzed.•Influence of spectral disparities induced by inhomogeneous wave field is discussed.•Sensitivities of spectrum influence to wave theory and wave-structure interaction are studied. |
---|---|
AbstractList | The accurate assessment of the dynamic response of the offshore wind turbine is fundamental to its economical and safe design, where the precise characterization of the incident wind and waves is essential. While reliable aerodynamic models can accurately reproduce wind characteristics, the widely-used empirical JONSWAP spectrum in wave field simulation may not capture the multi-modal feature of the mixed wave field near the wind farm. In this study, the stochastic structural responses based on an integrated FE model of the soil-pile-structure system are assessed employing the empirical and actual wave spectra, along with discussions on the impacts of wave theory and wave-structure interaction. The main conclusions are: (1) The empirical wave spectrum can overestimate the dynamic responses compared with the measured swell-dominant one, but the dominant wind load weakens its influence on displacement. (2) When the wave serves as the decisive loading, using the empirical spectrum overestimates the dynamic performance for the swell-dominant wave spectrum while underestimating it for the wind-induced-wave-dominant one. The approximation of the actual wave spectrum to the JONSWAP spectrum is only recommended when the coupling effect of wind and wave is inapparent. (3) The wave theory imposes an evident effect on the dynamic behavior of the offshore wind turbine subject to joint wind and wave loading, where the JONSWAP wave spectrum is more sensitive. (4) The influence of water-monopile interaction is negligible when using the JONSWAP wave spectrum but prominent for the simulation's actual wave spectrum.
•An integrated FE model considering soil-pile-structure interaction is developed.•Response discrepancies induced by JONSWAP and actual wave spectra are analyzed.•Influence of spectral disparities induced by inhomogeneous wave field is discussed.•Sensitivities of spectrum influence to wave theory and wave-structure interaction are studied. |
ArticleNumber | 113222 |
Author | Yang, Shanghui Xu, Yixiang Deng, Xiaowei Zhang, Mingming |
Author_xml | – sequence: 1 givenname: Shanghui surname: Yang fullname: Yang, Shanghui organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China – sequence: 2 givenname: Xiaowei orcidid: 0000-0001-7634-5257 surname: Deng fullname: Deng, Xiaowei email: xwdeng@hku.hk organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China – sequence: 3 givenname: Mingming surname: Zhang fullname: Zhang, Mingming organization: School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, China – sequence: 4 givenname: Yixiang orcidid: 0000-0003-2216-2847 surname: Xu fullname: Xu, Yixiang organization: School of Aerospace, UNNC-NFTZ Blockchain Laboratory, The University of Nottingham Ningbo China, Ningbo, 315000, China |
BookMark | eNqFkM9KAzEQh3NQ0KqvIHmBrZPsut2CB6XUP1DwoueQTSbtlG1SkrSlNx_dXaoXL56GYeb7MfON2JkPHhm7FTAWIOq79TgY1B79cixByrEQpZTyjF0CyGnRgGgu2CilNQDUNZSX7GvuHJrMg-MHvUeetn0Xdcf3OpJuqaN85MHzvEJuj15vyPCIaRt8wgEKzqVViMgP5C3Pu9iSR276MVmM5Jc8BeqKLXVYpBx3pl9BTj5j1CZT8Nfs3Oku4c1PvWKfz_OP2WuxeH95mz0tClMKmQt7r02l24mtRdVaMBVULQCaiXC2LKfaukZYQCmdFs4Jhw1WOK0arSVYUTflFatPuSaGlCI6tY200fGoBKjBnVqrX3dqcKdO7nrw4Q9oKOvh9N4Tdf_jjycc--f2hFElQ-gNWoq9amUD_RfxDXR1mBg |
CitedBy_id | crossref_primary_10_1016_j_renene_2024_120161 crossref_primary_10_1016_j_oceaneng_2023_114654 crossref_primary_10_1016_j_apor_2024_103918 crossref_primary_10_1016_j_engstruct_2023_117027 crossref_primary_10_1016_j_oceaneng_2023_116564 crossref_primary_10_1016_j_energy_2025_134849 crossref_primary_10_1016_j_renene_2024_121185 crossref_primary_10_1016_j_jer_2025_03_002 crossref_primary_10_1016_j_oceaneng_2024_119671 crossref_primary_10_1016_j_enconman_2023_116949 crossref_primary_10_1177_10775463231186708 crossref_primary_10_1016_j_awe_2025_100041 crossref_primary_10_3390_su15086590 |
Cites_doi | 10.1016/j.soildyn.2014.03.006 10.1016/0022-460X(72)90600-1 10.1016/j.oceaneng.2017.03.019 10.1029/98JC02622 10.1016/j.oceaneng.2021.110351 10.1016/j.rser.2018.11.002 10.1016/j.jweia.2010.12.015 10.1016/j.apenergy.2021.117947 10.1142/S0578563413500010 10.1016/j.compgeo.2014.05.008 10.1016/j.renene.2021.12.066 10.5194/os-13-365-2017 10.1016/j.cma.2012.12.005 10.1016/j.jrmge.2017.11.010 10.1016/j.egypro.2017.10.337 10.1680/jgeot.19.TI.034 10.1016/j.engstruct.2017.12.001 10.1016/j.apor.2011.02.001 10.1061/(ASCE)1090-0241(2003)129:4(296) 10.1175/BAMS-D-11-00170.1 10.1016/j.jweia.2013.09.003 10.1029/JZ069i024p05181 10.1016/j.soildyn.2015.12.008 10.1002/we.2218 10.1061/(ASCE)BE.1943-5592.0001517 10.1016/0029-8018(84)90019-2 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2022.113222 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
ExternalDocumentID | 10_1016_j_oceaneng_2022_113222 S0029801822025057 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSH SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW WUQ |
ID | FETCH-LOGICAL-c312t-d5ac4ab7d614bd0c404b00ec71fd339adf81d0e22fa1ff1fe8e4e948aa20d1683 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 02:15:04 EDT 2025 Sun Apr 06 06:54:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stochastic response Offshore wind turbine Wave-structure interaction Wave spectrum Wave theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-d5ac4ab7d614bd0c404b00ec71fd339adf81d0e22fa1ff1fe8e4e948aa20d1683 |
ORCID | 0000-0003-2216-2847 0000-0001-7634-5257 |
ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2022_113222 crossref_citationtrail_10_1016_j_oceaneng_2022_113222 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_113222 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ma, Yang, Chen (bib22) 2017; 136 Booij, Ris, Holthuijsen (bib6) 1999; 104 Torsethaugen (bib38) 1993 Bhattacharya (bib4) 2014; 1 Ewans, Hansen, Zeeberg (bib11) 2022; 246 Igwemezie, Mehmanparast, Kolios (bib16) 2019; 101 Jonkman, Buhl (bib19) 2005 Bouzid, Bhattacharya, Otsmane (bib7) 2018; 10 Musial, Butterfield, Ram (bib26) 2006 Chen, Duffour (bib9) 2018; 21 Marino, Borri, Peil (bib23) 2011; 99 Zuo, Bi, Hao (bib43) 2018; 157 Shinozuka, Jan (bib34) 1972; 25 Zilong, Wei (bib42) 2022; 306 Agarwal, Manuel (bib2) 2011; 33 Institute (bib17) 1989 Ochi, Hubble (bib28) 1976; 1977 Cavaleri, Fox-Kemper, Hemer (bib8) 2012; 93 Strömblad (bib36) 2014 Ti, Wei, Li, Xu (bib37) 2020; 25 Hasselmann (bib14) 1973 Soares (bib35) 1984; 11 Sharma (bib32) 1979 Marino, Lugni, Borri (bib25) 2013; 123 Yang, Deng, Yang (bib41) 2022; 186 Aboobacker, Vethamony, Samiksha, Rashmi, Jyoti (bib1) 2013; 55 Institute (bib18) 2000 Nikitas, Vimalan, Bhattacharya (bib27) 2016; 82 Haiderali, Madabhushi (bib12) 2012 Paik, Salgado, Lee, Kim (bib30) 2003; 129 Shinozuka, Deodatis (bib33) 1991 Marino, Lugni, Borri (bib24) 2013; 255 Jostad, Dahl, Page, Sivasithamparam, Sturm (bib20) 2020; 70 Pierson, Moskowitz (bib31) 1964; 69 van der Laan, Sørensen, Réthoré, Mann, Kelly, Schepers (bib39) 2013 Anjali Nair, Sanil Kumar (bib3) 2017; 13 Veritas (bib40) 2004 Henderson, Zaaijer (bib15) 2004 Hansen (bib13) 2015 Bisoi, Haldar (bib5) 2014; 63 Damgaard, Bayat, Andersen, Ibsen (bib10) 2014; 61 Page, Skau, Jostad, Eiksund (bib29) 2017; 137 Kaimal, Wyngaard, Izumi, Coté (bib21) 1972; 98 Aboobacker (10.1016/j.oceaneng.2022.113222_bib1) 2013; 55 van der Laan (10.1016/j.oceaneng.2022.113222_bib39) 2013 Bouzid (10.1016/j.oceaneng.2022.113222_bib7) 2018; 10 Kaimal (10.1016/j.oceaneng.2022.113222_bib21) 1972; 98 Ti (10.1016/j.oceaneng.2022.113222_bib37) 2020; 25 Igwemezie (10.1016/j.oceaneng.2022.113222_bib16) 2019; 101 Yang (10.1016/j.oceaneng.2022.113222_bib41) 2022; 186 Damgaard (10.1016/j.oceaneng.2022.113222_bib10) 2014; 61 Marino (10.1016/j.oceaneng.2022.113222_bib24) 2013; 255 Veritas (10.1016/j.oceaneng.2022.113222_bib40) 2004 Ewans (10.1016/j.oceaneng.2022.113222_bib11) 2022; 246 Hasselmann (10.1016/j.oceaneng.2022.113222_bib14) 1973 Jonkman (10.1016/j.oceaneng.2022.113222_bib19) 2005 Jostad (10.1016/j.oceaneng.2022.113222_bib20) 2020; 70 Institute (10.1016/j.oceaneng.2022.113222_bib18) 2000 Shinozuka (10.1016/j.oceaneng.2022.113222_bib34) 1972; 25 Anjali Nair (10.1016/j.oceaneng.2022.113222_bib3) 2017; 13 Booij (10.1016/j.oceaneng.2022.113222_bib6) 1999; 104 Torsethaugen (10.1016/j.oceaneng.2022.113222_bib38) 1993 Marino (10.1016/j.oceaneng.2022.113222_bib23) 2011; 99 Pierson (10.1016/j.oceaneng.2022.113222_bib31) 1964; 69 Shinozuka (10.1016/j.oceaneng.2022.113222_bib33) 1991 Henderson (10.1016/j.oceaneng.2022.113222_bib15) 2004 Institute (10.1016/j.oceaneng.2022.113222_bib17) 1989 Ochi (10.1016/j.oceaneng.2022.113222_bib28) 1976; 1977 Sharma (10.1016/j.oceaneng.2022.113222_bib32) 1979 Bhattacharya (10.1016/j.oceaneng.2022.113222_bib4) 2014; 1 Soares (10.1016/j.oceaneng.2022.113222_bib35) 1984; 11 Strömblad (10.1016/j.oceaneng.2022.113222_bib36) 2014 Cavaleri (10.1016/j.oceaneng.2022.113222_bib8) 2012; 93 Chen (10.1016/j.oceaneng.2022.113222_bib9) 2018; 21 Zuo (10.1016/j.oceaneng.2022.113222_bib43) 2018; 157 Agarwal (10.1016/j.oceaneng.2022.113222_bib2) 2011; 33 Paik (10.1016/j.oceaneng.2022.113222_bib30) 2003; 129 Bisoi (10.1016/j.oceaneng.2022.113222_bib5) 2014; 63 Page (10.1016/j.oceaneng.2022.113222_bib29) 2017; 137 Marino (10.1016/j.oceaneng.2022.113222_bib25) 2013; 123 Zilong (10.1016/j.oceaneng.2022.113222_bib42) 2022; 306 Hansen (10.1016/j.oceaneng.2022.113222_bib13) 2015 Ma (10.1016/j.oceaneng.2022.113222_bib22) 2017; 136 Nikitas (10.1016/j.oceaneng.2022.113222_bib27) 2016; 82 Haiderali (10.1016/j.oceaneng.2022.113222_bib12) 2012 Musial (10.1016/j.oceaneng.2022.113222_bib26) 2006 |
References_xml | – volume: 255 start-page: 275 year: 2013 end-page: 288 ident: bib24 article-title: A novel numerical strategy for the simulation of irregular nonlinear waves and their effects on the dynamic response of offshore wind turbines publication-title: Comput. Methods Appl. Mech. Eng. – volume: 129 start-page: 296 year: 2003 end-page: 306 ident: bib30 article-title: Behavior of open-and closed-ended piles driven into sands publication-title: J. Geotech. Geoenviron. Eng. – volume: 82 start-page: 154 year: 2016 end-page: 160 ident: bib27 article-title: An innovative cyclic loading device to study long term performance of offshore wind turbines publication-title: Soil Dynam. Earthq. Eng. – volume: 157 start-page: 42 year: 2018 end-page: 62 ident: bib43 article-title: Dynamic analyses of operating offshore wind turbines including soil-structure interaction publication-title: Eng. Struct. – year: 2015 ident: bib13 article-title: Aerodynamics of Wind Turbines – volume: 21 start-page: 1121 year: 2018 end-page: 1140 ident: bib9 article-title: Modelling damping sources in monopile-supported offshore wind turbines publication-title: Wind Energy – volume: 55 year: 2013 ident: bib1 article-title: Wave transformation and attenuation along the west coast of India: measurements and numerical simulations publication-title: Coast Eng. J. – year: 2005 ident: bib19 article-title: FAST User's Guide – year: 2004 ident: bib15 article-title: Hydrodynamic loading on offshore wind turbines publication-title: The Fourteenth International Offshore and Polar Engineering Conference – volume: 98 start-page: 563 year: 1972 end-page: 589 ident: bib21 article-title: Spectral characteristics of surface-layer turbulence publication-title: Q. J. R. Meteorol. Soc. – volume: 25 start-page: 111 year: 1972 end-page: 128 ident: bib34 article-title: Digital simulation of random processes and its applications publication-title: J. Sound Vib. – volume: 11 start-page: 185 year: 1984 end-page: 207 ident: bib35 article-title: Representation of double-peaked sea wave spectra publication-title: Ocean Eng. – volume: 99 start-page: 483 year: 2011 end-page: 490 ident: bib23 article-title: A fully nonlinear wave model to account for breaking wave impact loads on offshore wind turbines publication-title: J. Wind Eng. Ind. Aerod. – volume: 104 start-page: 7649 year: 1999 end-page: 7666 ident: bib6 article-title: A third-generation wave model for coastal regions: 1. Model description and validation publication-title: J. Geophys. Res.: Oceans – volume: 93 start-page: 1651 year: 2012 end-page: 1661 ident: bib8 article-title: Wind waves in the coupled climate system publication-title: Bull. Am. Meteorol. Soc. – volume: 246 year: 2022 ident: bib11 article-title: A spectral description for extreme sea states offshore Denmark Part I: power spectrum publication-title: Ocean Eng. – volume: 69 start-page: 5181 year: 1964 end-page: 5190 ident: bib31 article-title: A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii publication-title: J. Geophys. Res. – volume: 61 start-page: 116 year: 2014 end-page: 126 ident: bib10 article-title: Assessment of the dynamic behaviour of saturated soil subjected to cyclic loading from offshore monopile wind turbine foundations publication-title: Comput. Geotech. – start-page: 3277 year: 2012 end-page: 3295 ident: bib12 article-title: Three-dimensional finite element modelling of monopiles for offshore wind turbines publication-title: Proceedings of the World Congress on Advances in Civil, Environmental, and Materials Research – year: 1973 ident: bib14 article-title: Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP) – volume: 70 start-page: 682 year: 2020 end-page: 699 ident: bib20 article-title: Evaluation of soil models for improved design of offshore wind turbine foundations in dense sand publication-title: Geotechnique – volume: 186 start-page: 394 year: 2022 end-page: 410 ident: bib41 article-title: Modeling of soil-pile-structure interaction for dynamic response of standalone wind turbines publication-title: Renew. Energy – volume: 123 start-page: 363 year: 2013 end-page: 376 ident: bib25 article-title: The role of the nonlinear wave kinematics on the global responses of an OWT in parked and operating conditions publication-title: J. Wind Eng. Ind. Aerod. – volume: 10 start-page: 333 year: 2018 end-page: 346 ident: bib7 article-title: Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction publication-title: J. Rock Mech. Geotech. Eng. – year: 2004 ident: bib40 article-title: Design of Offshore Wind Turbine Structure – volume: 101 start-page: 181 year: 2019 end-page: 196 ident: bib16 article-title: Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures–A review publication-title: Renew. Sustain. Energy Rev. – year: 2006 ident: bib26 article-title: Energy from offshore wind publication-title: Offshore Technology Conference – year: 2000 ident: bib18 article-title: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design: Upstream Segment – volume: 63 start-page: 19 year: 2014 end-page: 35 ident: bib5 article-title: Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction publication-title: Soil Dynam. Earthq. Eng. – volume: 1977 start-page: 301 year: 1976 end-page: 328 ident: bib28 article-title: Six-parameter wave spectra publication-title: Coast. Eng. – start-page: 514 year: 2013 end-page: 525 ident: bib39 article-title: Nonlinear eddy viscosity models applied to wind turbine wakes publication-title: Proceedings for the ICOWES2013 – year: 1991 ident: bib33 article-title: Simulation of Stochastic Processes by Spectral Representation – year: 2014 ident: bib36 article-title: Modeling of Soil and Structure Interaction Subsea – volume: 306 year: 2022 ident: bib42 article-title: Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads publication-title: Appl. Energy – year: 1993 ident: bib38 article-title: A Two Peak Wave Spectrum Model – volume: 33 start-page: 215 year: 2011 end-page: 227 ident: bib2 article-title: Incorporating irregular nonlinear waves in coupled simulation and reliability studies of offshore wind turbines publication-title: Appl. Ocean Res. – volume: 1 start-page: 922 year: 2014 ident: bib4 article-title: Challenges in design of foundations for offshore wind turbines publication-title: Eng. Technol. Ref – year: 1989 ident: bib17 article-title: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms – volume: 136 start-page: 94 year: 2017 end-page: 105 ident: bib22 article-title: Numerical analysis of the long-term performance of offshore wind turbines supported by monopiles publication-title: Ocean Eng. – volume: 13 start-page: 365 year: 2017 end-page: 378 ident: bib3 article-title: Wave spectral shapes in the coastal waters based on measured data off Karwar on the western coast of India publication-title: Ocean Sci. – volume: 25 year: 2020 ident: bib37 article-title: Effect of wave spectral variability on stochastic response of a long-span bridge subjected to random waves during tropical cyclones publication-title: J. Bridge Eng. – volume: 137 start-page: 100 year: 2017 end-page: 107 ident: bib29 article-title: A new foundation model for integrated analyses of monopile-based offshore wind turbines publication-title: Energy Proc. – year: 1979 ident: bib32 article-title: Development And Evaluation Of A Procedure For Simulating A Random Directional Second-Order Sea Surface And Associated Wave Forces – year: 2000 ident: 10.1016/j.oceaneng.2022.113222_bib18 – year: 2004 ident: 10.1016/j.oceaneng.2022.113222_bib40 – volume: 63 start-page: 19 year: 2014 ident: 10.1016/j.oceaneng.2022.113222_bib5 article-title: Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction publication-title: Soil Dynam. Earthq. Eng. doi: 10.1016/j.soildyn.2014.03.006 – volume: 25 start-page: 111 issue: 1 year: 1972 ident: 10.1016/j.oceaneng.2022.113222_bib34 article-title: Digital simulation of random processes and its applications publication-title: J. Sound Vib. doi: 10.1016/0022-460X(72)90600-1 – volume: 136 start-page: 94 year: 2017 ident: 10.1016/j.oceaneng.2022.113222_bib22 article-title: Numerical analysis of the long-term performance of offshore wind turbines supported by monopiles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.03.019 – volume: 104 start-page: 7649 issue: C4 year: 1999 ident: 10.1016/j.oceaneng.2022.113222_bib6 article-title: A third-generation wave model for coastal regions: 1. Model description and validation publication-title: J. Geophys. Res.: Oceans doi: 10.1029/98JC02622 – year: 1989 ident: 10.1016/j.oceaneng.2022.113222_bib17 – volume: 246 year: 2022 ident: 10.1016/j.oceaneng.2022.113222_bib11 article-title: A spectral description for extreme sea states offshore Denmark Part I: power spectrum publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110351 – volume: 101 start-page: 181 year: 2019 ident: 10.1016/j.oceaneng.2022.113222_bib16 article-title: Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures–A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.11.002 – year: 2005 ident: 10.1016/j.oceaneng.2022.113222_bib19 – year: 1973 ident: 10.1016/j.oceaneng.2022.113222_bib14 – start-page: 3277 year: 2012 ident: 10.1016/j.oceaneng.2022.113222_bib12 article-title: Three-dimensional finite element modelling of monopiles for offshore wind turbines – year: 2015 ident: 10.1016/j.oceaneng.2022.113222_bib13 – volume: 99 start-page: 483 issue: 4 year: 2011 ident: 10.1016/j.oceaneng.2022.113222_bib23 article-title: A fully nonlinear wave model to account for breaking wave impact loads on offshore wind turbines publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2010.12.015 – volume: 306 year: 2022 ident: 10.1016/j.oceaneng.2022.113222_bib42 article-title: Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117947 – year: 2004 ident: 10.1016/j.oceaneng.2022.113222_bib15 article-title: Hydrodynamic loading on offshore wind turbines – volume: 55 issue: 1 year: 2013 ident: 10.1016/j.oceaneng.2022.113222_bib1 article-title: Wave transformation and attenuation along the west coast of India: measurements and numerical simulations publication-title: Coast Eng. J. doi: 10.1142/S0578563413500010 – volume: 61 start-page: 116 year: 2014 ident: 10.1016/j.oceaneng.2022.113222_bib10 article-title: Assessment of the dynamic behaviour of saturated soil subjected to cyclic loading from offshore monopile wind turbine foundations publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2014.05.008 – volume: 186 start-page: 394 year: 2022 ident: 10.1016/j.oceaneng.2022.113222_bib41 article-title: Modeling of soil-pile-structure interaction for dynamic response of standalone wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2021.12.066 – volume: 13 start-page: 365 issue: 3 year: 2017 ident: 10.1016/j.oceaneng.2022.113222_bib3 article-title: Wave spectral shapes in the coastal waters based on measured data off Karwar on the western coast of India publication-title: Ocean Sci. doi: 10.5194/os-13-365-2017 – volume: 255 start-page: 275 year: 2013 ident: 10.1016/j.oceaneng.2022.113222_bib24 article-title: A novel numerical strategy for the simulation of irregular nonlinear waves and their effects on the dynamic response of offshore wind turbines publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.12.005 – year: 1993 ident: 10.1016/j.oceaneng.2022.113222_bib38 – volume: 98 start-page: 563 issue: 417 year: 1972 ident: 10.1016/j.oceaneng.2022.113222_bib21 article-title: Spectral characteristics of surface-layer turbulence publication-title: Q. J. R. Meteorol. Soc. – volume: 1 start-page: 922 issue: 1 year: 2014 ident: 10.1016/j.oceaneng.2022.113222_bib4 article-title: Challenges in design of foundations for offshore wind turbines publication-title: Eng. Technol. Ref – volume: 10 start-page: 333 issue: 2 year: 2018 ident: 10.1016/j.oceaneng.2022.113222_bib7 article-title: Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2017.11.010 – volume: 137 start-page: 100 year: 2017 ident: 10.1016/j.oceaneng.2022.113222_bib29 article-title: A new foundation model for integrated analyses of monopile-based offshore wind turbines publication-title: Energy Proc. doi: 10.1016/j.egypro.2017.10.337 – volume: 70 start-page: 682 issue: 8 year: 2020 ident: 10.1016/j.oceaneng.2022.113222_bib20 article-title: Evaluation of soil models for improved design of offshore wind turbine foundations in dense sand publication-title: Geotechnique doi: 10.1680/jgeot.19.TI.034 – volume: 157 start-page: 42 year: 2018 ident: 10.1016/j.oceaneng.2022.113222_bib43 article-title: Dynamic analyses of operating offshore wind turbines including soil-structure interaction publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.12.001 – volume: 33 start-page: 215 issue: 3 year: 2011 ident: 10.1016/j.oceaneng.2022.113222_bib2 article-title: Incorporating irregular nonlinear waves in coupled simulation and reliability studies of offshore wind turbines publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2011.02.001 – volume: 1977 start-page: 301 year: 1976 ident: 10.1016/j.oceaneng.2022.113222_bib28 article-title: Six-parameter wave spectra publication-title: Coast. Eng. – volume: 129 start-page: 296 issue: 4 year: 2003 ident: 10.1016/j.oceaneng.2022.113222_bib30 article-title: Behavior of open-and closed-ended piles driven into sands publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2003)129:4(296) – volume: 93 start-page: 1651 issue: 11 year: 2012 ident: 10.1016/j.oceaneng.2022.113222_bib8 article-title: Wind waves in the coupled climate system publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00170.1 – year: 2006 ident: 10.1016/j.oceaneng.2022.113222_bib26 article-title: Energy from offshore wind – volume: 123 start-page: 363 year: 2013 ident: 10.1016/j.oceaneng.2022.113222_bib25 article-title: The role of the nonlinear wave kinematics on the global responses of an OWT in parked and operating conditions publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2013.09.003 – year: 2014 ident: 10.1016/j.oceaneng.2022.113222_bib36 – volume: 69 start-page: 5181 issue: 24 year: 1964 ident: 10.1016/j.oceaneng.2022.113222_bib31 article-title: A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii publication-title: J. Geophys. Res. doi: 10.1029/JZ069i024p05181 – year: 1979 ident: 10.1016/j.oceaneng.2022.113222_bib32 – volume: 82 start-page: 154 year: 2016 ident: 10.1016/j.oceaneng.2022.113222_bib27 article-title: An innovative cyclic loading device to study long term performance of offshore wind turbines publication-title: Soil Dynam. Earthq. Eng. doi: 10.1016/j.soildyn.2015.12.008 – volume: 21 start-page: 1121 issue: 11 year: 2018 ident: 10.1016/j.oceaneng.2022.113222_bib9 article-title: Modelling damping sources in monopile-supported offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.2218 – start-page: 514 year: 2013 ident: 10.1016/j.oceaneng.2022.113222_bib39 article-title: Nonlinear eddy viscosity models applied to wind turbine wakes – volume: 25 issue: 1 year: 2020 ident: 10.1016/j.oceaneng.2022.113222_bib37 article-title: Effect of wave spectral variability on stochastic response of a long-span bridge subjected to random waves during tropical cyclones publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001517 – year: 1991 ident: 10.1016/j.oceaneng.2022.113222_bib33 – volume: 11 start-page: 185 issue: 2 year: 1984 ident: 10.1016/j.oceaneng.2022.113222_bib35 article-title: Representation of double-peaked sea wave spectra publication-title: Ocean Eng. doi: 10.1016/0029-8018(84)90019-2 |
SSID | ssj0006603 |
Score | 2.41783 |
Snippet | The accurate assessment of the dynamic response of the offshore wind turbine is fundamental to its economical and safe design, where the precise... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113222 |
SubjectTerms | Offshore wind turbine Stochastic response Wave spectrum Wave theory Wave-structure interaction |
Title | Effect of wave spectral variability on the dynamic response of offshore wind turbine considering soil-pile-structure interaction |
URI | https://dx.doi.org/10.1016/j.oceaneng.2022.113222 |
Volume | 267 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KXlQQrYr1o-zBa9pkd_N1LMVSFevFQm9hk8xqS0lKW1u8iD_d2WyiFYQevIadTchs5s2EeW8IubF5yhG4tRSiF1oCQm5J6QvLs5VKlORJ7Gii8OPA6w_F_cgd1Ui34sLotsoy9puYXkTr8kq7fJvt2XisOb4sxPiKCFfguGaUC-HrU976-Gnz8DybV20eevUGS3jSQoiQGWQvWCcypsebMMb-BqgN0OkdkcMyW6Qd80DHpAZZnexvaAjWycGT3r0Unj4hn0aOmOaKruUKaMGknOMeKyyKjSb3O80zinkfTc00ejo3fbKgjXKlFq_5HOgai3WKeISVM9CkHOuJd6SLfDy1ZhhMLKM9-4aLtejE3FAkTsmwd_vc7VvllAUr4Q5bWqkrEyFjP0WgjlM7EbbATxES31Ep56FMFaa0NjCmpKOUoyAAdKkIpGR26ngBPyM7WZ7BOaG-HUhQylOhjIUnVAiYb4ILDoAfCAkN4lavNkpKCXI9CWMaVb1mk6hySaRdEhmXNEj7225mRDi2WoSV56JfxylCpNhie_EP20uyp-fRm380V2QH_QDXmLUs42ZxLJtkt3P30B98AdlP8So |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HnyA-MS3e_Aam-xuXsciSn3Vi4K3sElmtSJJaavFmz_d2e5GKggevIbMJuy3mW8mzHwDcOKLUhBxGynEKPUkpsJTKpZe5GtdaCWKPDCNwre9qPsgrx7Dxzk4a3phTFml8_3Wp0-9tbvSdrvZHvT7pseXp-RfieGmPB7Pw4JRpwpbsNC5vO72vh1yFPmiqfQwBjONwi-nxBKqwuqJUkXOzYQTzvnvHDXDOxdrsOoCRtax77QOc1htwPKMjOAGrNyZ1Z329CZ8WkViVms2Ue_Ips2UQ1rjnfJiK8v9weqKUejHSjuQng1tqSwao1rr0XM9RDahfJ0RJVHyjKxwkz3piWxU91-9AfkTz8rPvtHNRndiaLsktuDh4vz-rOu5QQteIQI-9spQFVLlcUlcnZd-IX1JXyMWcaBLIVJVaopqfeRcq0DrQGOChKpMlOJ-GUSJ2IZWVVe4Ayz2E4VaRzpVuYykTpFCTgwxQIwTqXAXwmZrs8KpkJthGK9ZU272kjWQZAaSzEKyC-1vu4HV4fjTIm2Qy36cqIzI4g_bvX_YHsNi9_72Jru57F3vw5IZT29_2RxAizDBQwpixvmRO6RfE2Dz2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+wave+spectral+variability+on+the+dynamic+response+of+offshore+wind+turbine+considering+soil-pile-structure+interaction&rft.jtitle=Ocean+engineering&rft.au=Yang%2C+Shanghui&rft.au=Deng%2C+Xiaowei&rft.au=Zhang%2C+Mingming&rft.au=Xu%2C+Yixiang&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=267&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.113222&rft.externalDocID=S0029801822025057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |