Wide-bandgap, low-bandgap, and tandem perovskite solar cells

Organic-inorganic metal halide perovskite single-junction solar cells have attracted great attention in the past few years due to a high record power conversion efficiency (PCE) of 23.7% and low-cost fabrication processes. Beyond single-junction devices, low-temperature solution processability, and...

Full description

Saved in:
Bibliographic Details
Published inSemiconductor science and technology Vol. 34; no. 9; pp. 93001 - 93030
Main Authors Song, Zhaoning, Chen, Cong, Li, Chongwen, Awni, Rasha A, Zhao, Dewei, Yan, Yanfa
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic-inorganic metal halide perovskite single-junction solar cells have attracted great attention in the past few years due to a high record power conversion efficiency (PCE) of 23.7% and low-cost fabrication processes. Beyond single-junction devices, low-temperature solution processability, and bandgap tunability make the metal halide perovskites ideal candidates for fabricating tandem solar cells. Tandem solar cells combining a wide-bandgap perovskite top cell and a low-bandgap bottom cell based on mixed tin (Sn)-lead (Pb) perovskite or a dissimilar material such as silicon (Si) or copper indium gallium selenide (CIGS) offer an extraordinary opportunity to achieve PCEs higher than Shockley-Queisser (SQ) radiative efficiency limits (∼33%) for single-junction cells. In this review, we will summarize recent research progress on the fabrication of wide- (1.7 to 1.9 eV) and low-bandgap (1.1 to 1.3 eV) perovskite single-junction cells and their applications in tandem cells. Key challenges and issues in wide- and low-bandgap single-junction cells will be discussed. We will survey current state-of-the-art perovskite tandem cells and discuss the limitations and challenges for perovskite tandem cells. Lastly, we conclude with an outlook for the future development of perovskite tandem solar cells.
AbstractList Organic-inorganic metal halide perovskite single-junction solar cells have attracted great attention in the past few years due to a high record power conversion efficiency (PCE) of 23.7% and low-cost fabrication processes. Beyond single-junction devices, low-temperature solution processability, and bandgap tunability make the metal halide perovskites ideal candidates for fabricating tandem solar cells. Tandem solar cells combining a wide-bandgap perovskite top cell and a low-bandgap bottom cell based on mixed tin (Sn)-lead (Pb) perovskite or a dissimilar material such as silicon (Si) or copper indium gallium selenide (CIGS) offer an extraordinary opportunity to achieve PCEs higher than Shockley-Queisser (SQ) radiative efficiency limits (∼33%) for single-junction cells. In this review, we will summarize recent research progress on the fabrication of wide- (1.7 to 1.9 eV) and low-bandgap (1.1 to 1.3 eV) perovskite single-junction cells and their applications in tandem cells. Key challenges and issues in wide- and low-bandgap single-junction cells will be discussed. We will survey current state-of-the-art perovskite tandem cells and discuss the limitations and challenges for perovskite tandem cells. Lastly, we conclude with an outlook for the future development of perovskite tandem solar cells.
Author Li, Chongwen
Zhao, Dewei
Chen, Cong
Awni, Rasha A
Song, Zhaoning
Yan, Yanfa
Author_xml – sequence: 1
  givenname: Zhaoning
  orcidid: 0000-0002-6677-0994
  surname: Song
  fullname: Song, Zhaoning
  email: zhaoning.song@utoledo.edu
  organization: The University of Toledo Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, Toledo, OH 43606, United States of America
– sequence: 2
  givenname: Cong
  surname: Chen
  fullname: Chen, Cong
  organization: Wuhan University Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan 430072, People's Republic of China
– sequence: 3
  givenname: Chongwen
  surname: Li
  fullname: Li, Chongwen
  organization: The University of Toledo Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, Toledo, OH 43606, United States of America
– sequence: 4
  givenname: Rasha A
  surname: Awni
  fullname: Awni, Rasha A
  organization: University of Tikrit Department of Physics, College of Education for Pure Sciences, Tikrit 34001, Iraq
– sequence: 5
  givenname: Dewei
  surname: Zhao
  fullname: Zhao, Dewei
  organization: The University of Toledo Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, Toledo, OH 43606, United States of America
– sequence: 6
  givenname: Yanfa
  orcidid: 0000-0003-3977-5789
  surname: Yan
  fullname: Yan, Yanfa
  email: yanfa.yan@utoledo.edu
  organization: The University of Toledo Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, Toledo, OH 43606, United States of America
BookMark eNp9kM1LAzEQxYMo2FbvHvfmpWszSTabBS9S_IKCF8VjyOZDUrebJYmK_71bKgqiXuYxw_sNvDdF-33oLUIngM8AC7EAyqHknMFCtaR29R6afJ320QQTLkogjByiaUprjAEExRN0_uiNLVvVmyc1zIsuvH0voxZ5HHZTDDaG1_Tssy1S6FQstO26dIQOnOqSPf7UGXq4urxf3pSru-vb5cWq1BRILrXj0FYtBcU1rhgBXGvmlKtFVVWMGsYEwW3VUGqd4U2teKsaAw01BFNhCJ0hvvurY0gpWie1zyr70OeofCcBy20HchtYbgPLXQcjiH-AQ_QbFd__Q053iA-DXIeX2I_JZEpZUiYbiRs6dicH40bn_Bfnn48_AOwoesk
CODEN SSTEET
CitedBy_id crossref_primary_10_1016_j_commatsci_2023_112199
crossref_primary_10_1016_j_ijleo_2020_164723
crossref_primary_10_1016_j_jechem_2020_09_022
crossref_primary_10_1002_admi_202300134
crossref_primary_10_1002_adfm_202100265
crossref_primary_10_1021_acsaem_9b02428
crossref_primary_10_1021_acsenergylett_0c01350
crossref_primary_10_1002_aenm_202101045
crossref_primary_10_1002_solr_202300920
crossref_primary_10_1016_j_jiec_2024_08_013
crossref_primary_10_1016_j_solmat_2020_110741
crossref_primary_10_1016_j_nanoen_2021_106608
crossref_primary_10_1016_j_scib_2020_11_006
crossref_primary_10_1021_jacs_0c02227
crossref_primary_10_3390_en16165868
crossref_primary_10_1039_D2EE04087E
crossref_primary_10_1002_ente_202300832
crossref_primary_10_1117_1_JPE_13_042301
crossref_primary_10_1016_j_physe_2020_114618
crossref_primary_10_1016_j_nanoen_2021_106537
crossref_primary_10_1002_smtd_202000395
crossref_primary_10_3390_coatings11030279
crossref_primary_10_1016_j_nanoen_2021_106219
crossref_primary_10_7498_aps_69_20200822
crossref_primary_10_1039_D3CC03205A
crossref_primary_10_1021_jacs_9b09969
crossref_primary_10_1002_er_6542
crossref_primary_10_1021_acs_inorgchem_2c00531
crossref_primary_10_1002_solr_202100945
crossref_primary_10_1002_solr_202100906
crossref_primary_10_1002_slct_202303550
crossref_primary_10_1021_acs_jpcc_0c06240
crossref_primary_10_3390_en14248401
crossref_primary_10_1016_j_optmat_2021_111909
crossref_primary_10_1002_adma_202106805
crossref_primary_10_1002_admi_202101144
crossref_primary_10_1007_s12633_023_02466_8
crossref_primary_10_1016_j_solener_2023_111912
crossref_primary_10_1016_j_jechem_2021_03_038
crossref_primary_10_1063_5_0196152
crossref_primary_10_1088_1361_6641_abd266
crossref_primary_10_1002_cphc_202400530
crossref_primary_10_1021_acsnanoscienceau_3c00056
crossref_primary_10_1039_D1SE00314C
crossref_primary_10_1016_j_solener_2021_09_015
crossref_primary_10_1002_solr_202100277
crossref_primary_10_1016_j_mtener_2024_101556
crossref_primary_10_1002_aenm_202201509
crossref_primary_10_1088_2515_7639_acc893
crossref_primary_10_1088_1361_6528_acec54
crossref_primary_10_1039_D1SE00030F
crossref_primary_10_1063_1_5126867
crossref_primary_10_1002_adma_202002228
crossref_primary_10_1039_D1TA04330G
crossref_primary_10_1039_C9TA08791E
crossref_primary_10_1063_5_0006310
crossref_primary_10_1039_D1SC03251H
crossref_primary_10_1021_acs_cgd_9b01448
crossref_primary_10_1021_acs_chemrev_9b00780
crossref_primary_10_1002_smtd_202000093
crossref_primary_10_1039_D3EE03337F
crossref_primary_10_1016_j_solener_2023_111801
crossref_primary_10_1021_acsaem_2c00704
crossref_primary_10_1007_s11051_024_06196_9
crossref_primary_10_1088_1361_6641_ac1311
crossref_primary_10_1016_j_trechm_2021_04_004
crossref_primary_10_1039_D0TC00515K
crossref_primary_10_1002_aenm_202201473
crossref_primary_10_1039_D3QM01087B
crossref_primary_10_1088_2752_5724_ad37cf
crossref_primary_10_1002_aenm_202303664
crossref_primary_10_1016_j_nanoen_2024_109984
crossref_primary_10_1021_acsaem_3c02075
crossref_primary_10_1002_solr_202400148
crossref_primary_10_1016_j_surfin_2023_102680
crossref_primary_10_1016_j_nanoen_2024_110401
crossref_primary_10_1016_j_cej_2024_151459
crossref_primary_10_18311_jmmf_2024_47253
crossref_primary_10_1088_1361_6528_acd0b6
crossref_primary_10_1021_acsenergylett_2c01883
crossref_primary_10_1002_aenm_202102046
crossref_primary_10_1021_acsenergylett_0c00255
crossref_primary_10_1002_adma_202201315
crossref_primary_10_1002_adts_202200800
crossref_primary_10_1016_j_heliyon_2024_e24689
crossref_primary_10_1016_j_cej_2022_139697
crossref_primary_10_1002_aenm_201904102
crossref_primary_10_1016_j_cej_2023_141758
crossref_primary_10_1021_acsaem_4c00544
crossref_primary_10_3389_fenrg_2024_1457556
crossref_primary_10_1002_solr_202000082
crossref_primary_10_1002_advs_202304811
crossref_primary_10_1002_solr_202200708
Cites_doi 10.1002/advs.201801704
10.1002/aenm.201602807
10.1021/acsenergylett.8b01369
10.1002/adfm.201803130
10.1021/acsenergylett.6b00236
10.1039/C8SE00314A
10.1039/C6TA07712A
10.1109/PVSC.2014.6924957
10.1021/jacs.7b04981
10.1021/ja809598r
10.1021/acsenergylett.6b00495
10.1038/s41563-018-0115-4
10.1016/j.nanoen.2016.08.015
10.1039/C8TA05444D
10.1038/s41560-018-0201-5
10.1002/adma.201602696
10.1002/aenm.201701609
10.1021/acsenergylett.7b00647
10.1039/C8EE00689J
10.1126/science.aaf9717
10.1002/adma.201602992
10.1002/adfm.201807024
10.1021/acsenergylett.8b00576
10.1002/aenm.201800525
10.1039/C5TC01718A
10.1021/acs.jpclett.6b02415
10.1063/1.4899275
10.1021/acs.chemmater.8b00136
10.1038/srep18721
10.1002/aenm.201601353
10.1002/aenm.201801954
10.1039/C5CC07673K
10.1021/acs.jpclett.5b01738
10.1039/C4EE03322A
10.1002/adma.201700607
10.1021/acsenergylett.8b01562
10.1039/C4EE01076K
10.1016/j.joule.2018.11.010
10.1109/JPHOTOV.2017.2748720
10.1021/acs.nanolett.6b04453
10.1021/acsenergylett.7b00847
10.1038/srep00591
10.1088/0268-1242/17/8/305
10.1021/acs.jpcc.7b05517
10.1126/science.aat5055
10.1039/C6TA10727C
10.1039/C6NR00301J
10.1021/jacs.6b10227
10.1021/acs.jpclett.5b01108
10.1002/solr.201800146
10.1002/adma.201704418
10.1021/acsenergylett.8b00089
10.1039/C6EE00030D
10.1038/s41570-017-0095
10.1021/acs.nanolett.8b01480
10.1021/jacs.7b13229
10.1039/C7EE02901B
10.1016/j.mtener.2017.10.001
10.1038/ncomms8747
10.1021/acsenergylett.8b01906
10.1002/adma.201803792
10.1039/C8SE00358K
10.1002/aenm.201701048
10.1039/C8EE00237A
10.1039/C6EE03397K
10.1016/j.matlet.2018.05.047
10.1002/aenm.201801254
10.1002/aenm.201600846
10.1021/acs.nanolett.7b00050
10.1021/acs.nanolett.6b03455
10.1021/jacs.6b08337
10.1021/acsenergylett.7b00525
10.1039/C6TC05325D
10.1002/adma.201505279
10.1002/aenm.201602400
10.1038/s41467-018-07255-1
10.1126/science.1228604
10.1039/C8EE00956B
10.1021/acsenergylett.8b01201
10.1002/pip.3102
10.1021/acsenergylett.8b02002
10.1002/adfm.201703835
10.1039/C4SC03141E
10.1002/aenm.201600132
10.1016/j.joule.2018.05.001
10.1039/C8TA03054E
10.1002/anie.201703226
10.1038/s41560-018-0278-x
10.1109/JPHOTOV.2017.2768961
10.1021/acs.nanolett.6b03857
10.1016/B978-0-12-812915-9.00003-4
10.1021/ic401215x
10.1021/acs.nanolett.8b00701
10.1002/aenm.201701543
10.1038/nenergy.2017.9
10.1016/j.nanoen.2016.02.033
10.1021/acsnano.5b03189
10.1021/jz5002117
10.1039/C8TA02522C
10.1126/sciadv.1701293
10.1002/adma.201702140
10.1126/science.aag2700
10.1021/acsenergylett.7b01151
10.1021/acsenergylett.7b01287
10.1117/1.JPE.6.022001
10.1039/C7EE02564E
10.1002/aenm.201500799
10.1021/jacs.7b01815
10.1021/acsenergylett.8b01411
10.1038/s41560-018-0190-4
10.1002/advs.201500301
10.1002/adma.201501629
10.1038/s41563-018-0071-z
10.1002/anie.201705965
10.1016/j.coelec.2018.09.007
10.1002/adma.201401641
10.1038/nenergy.2017.18
10.1038/srep35705
10.1039/C5TA08744A
10.1038/s41467-018-05531-8
10.1002/adfm.201808801
10.1063/1.4914179
10.1021/acsenergylett.8b02179
10.1021/jacs.7b07949
10.1126/science.aam6323
10.1016/j.joule.2018.05.008
10.1021/nl400349b
10.1063/1.118761
10.1021/acs.nanolett.7b03179
10.1002/aenm.201703246
10.1039/c3ee43822h
10.1021/acsenergylett.9b00135
10.1021/acsenergylett.7b01221
10.1021/acsenergylett.8b02207
10.1063/1.4966996
10.1063/1.1736034
10.1039/C7TA00404D
10.1039/C7NR03507A
10.1039/C8EE02469C
10.1002/aenm.201802774
10.1002/pip.3091
10.1021/nl5048779
10.1039/C5NR06177F
10.1002/aenm.201700228
10.1021/acsenergylett.7b01255
10.1002/adma.201702905
10.1021/acsenergylett.6b00514
10.1039/C7EE00757D
10.1016/j.joule.2018.10.003
10.1039/C7EE01232B
10.1038/nenergy.2017.38
10.1002/solr.201600019
10.1002/aenm.201800997
10.1016/j.nanoen.2016.09.041
10.1016/j.joule.2018.09.012
10.1002/adma.201705998
10.1021/acsenergylett.8b01588
10.1002/adfm.201804603
10.1038/nenergy.2016.190
10.1002/adma.201804835
10.1038/s41467-018-07438-w
10.1002/adfm.201804427
10.1002/aenm.201602121
10.1021/acsami.8b04439
10.1021/jacs.6b00142
10.1016/j.joule.2017.07.017
10.1039/C4CP03788J
10.1126/science.aan2301
10.1021/acsenergylett.6b00254
10.1109/JPHOTOV.2013.2279336
10.1039/C5EE02965A
10.1021/acsenergylett.8b01382
10.1021/acsenergylett.8b00509
10.1021/acsenergylett.7b00589
10.1002/adfm.201605469
10.1002/aenm.201602761
10.1038/nenergy.2017.135
10.1088/0022-3727/13/5/018
10.1039/C5SC00961H
10.1021/ja5033259
10.1002/adma.201706275
10.1002/aenm.201702019
10.1126/science.aad5845
10.1002/aenm.201401616
10.1038/ncomms9932
10.1038/nenergy.2017.102
10.1021/acsenergylett.7b00282
10.1021/acs.jpclett.7b02277
10.1002/aenm.201803135
10.1039/C6EE01778A
10.1038/nphoton.2014.82
10.1039/C7EE02288C
10.1039/C7EE02627G
10.1002/aenm.201601128
10.1039/C8EE01936C
10.1039/C7EE01674C
10.1038/nature25989
10.1021/acs.jpclett.5b02686
10.1002/admi.201700731
10.1063/1.2734507
10.1016/j.nanoen.2017.02.040
10.1038/nature23877
10.1021/jacs.7b09018
10.1016/j.joule.2018.04.012
10.1016/j.jclepro.2018.03.063
10.1021/acsami.5b10987
10.1021/acs.jpclett.6b00002
10.1039/C7EE01650F
10.1038/nmat4572
10.1021/acsenergylett.7b00278
10.1016/j.joule.2017.09.017
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-6641/ab27f7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Wide-bandgap, low-bandgap, and tandem perovskite solar cells
EISSN 1361-6641
ExternalDocumentID 10_1088_1361_6641_ab27f7
sstab27f7
GrantInformation_xml – fundername: Air Force Research Laboratory
  grantid: FA9453-11-C-0253
  funderid: https://doi.org/10.13039/100006602
– fundername: Office of Naval Research
  grantid: N00014-17-1-2223
  funderid: https://doi.org/10.13039/100000006
– fundername: National Science Foundation
  grantid: DMR-1807818; ECCS-1807818
  funderid: https://doi.org/10.13039/100000001
– fundername: U.S. Department of Energy
  grantid: DE-FOA-0000990
  funderid: https://doi.org/10.13039/100000015
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
E.-
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
PZZ
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
UCJ
W28
XPP
ZMT
AAYXX
CITATION
ID FETCH-LOGICAL-c312t-cf61b5b31a6c0542107c4faf7855543d44820b5933efd697a6ba9d193d2038d23
IEDL.DBID IOP
ISSN 0268-1242
IngestDate Tue Jul 01 03:26:06 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Wed Aug 21 03:34:01 EDT 2024
Thu Jan 07 13:52:54 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-cf61b5b31a6c0542107c4faf7855543d44820b5933efd697a6ba9d193d2038d23
Notes SST-105414.R1
ORCID 0000-0003-3977-5789
0000-0002-6677-0994
PageCount 30
ParticipantIDs iop_journals_10_1088_1361_6641_ab27f7
crossref_primary_10_1088_1361_6641_ab27f7
crossref_citationtrail_10_1088_1361_6641_ab27f7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Semiconductor science and technology
PublicationTitleAbbrev SST
PublicationTitleAlternate Semicond. Sci. Technol
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 110
111
112
113
114
115
116
117
118
119
10
11
12
13
14
15
16
17
18
19
120
121
1
122
2
123
3
124
4
125
5
126
6
127
7
128
8
129
20
21
22
23
24
25
26
27
28
29
130
131
132
133
134
135
136
137
138
139
30
31
32
33
34
35
36
37
38
39
140
141
142
143
144
145
146
147
148
149
40
41
42
43
44
45
46
47
48
49
Geisz J F (156) 2002; 17
150
151
152
153
154
155
157
158
159
50
51
52
Vos A D (9) 1980; 13
53
54
55
56
57
58
59
160
161
162
163
164
165
166
167
168
169
60
61
62
63
64
65
66
67
68
69
170
171
172
173
174
175
176
177
178
179
70
71
72
73
74
75
76
77
78
79
180
181
182
183
184
185
186
187
188
189
80
81
82
83
84
85
86
87
88
89
190
191
192
193
194
195
196
197
198
199
90
91
92
93
94
95
96
97
98
99
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
100
101
102
103
104
105
106
107
108
109
References_xml – ident: 24
  doi: 10.1002/advs.201801704
– ident: 203
  doi: 10.1002/aenm.201602807
– ident: 92
  doi: 10.1021/acsenergylett.8b01369
– ident: 73
  doi: 10.1002/adfm.201803130
– ident: 132
  doi: 10.1021/acsenergylett.6b00236
– ident: 128
  doi: 10.1039/C8SE00314A
– ident: 135
  doi: 10.1039/C6TA07712A
– ident: 10
  doi: 10.1109/PVSC.2014.6924957
– ident: 124
  doi: 10.1021/jacs.7b04981
– ident: 26
  doi: 10.1021/ja809598r
– ident: 91
  doi: 10.1021/acsenergylett.6b00495
– ident: 178
  doi: 10.1038/s41563-018-0115-4
– ident: 136
  doi: 10.1016/j.nanoen.2016.08.015
– ident: 145
  doi: 10.1039/C8TA05444D
– ident: 188
  doi: 10.1038/s41560-018-0201-5
– ident: 121
  doi: 10.1002/adma.201602696
– ident: 176
  doi: 10.1002/aenm.201701609
– ident: 157
  doi: 10.1021/acsenergylett.7b00647
– ident: 179
  doi: 10.1039/C8EE00689J
– ident: 48
  doi: 10.1126/science.aaf9717
– ident: 107
  doi: 10.1002/adma.201602992
– ident: 148
  doi: 10.1002/adfm.201807024
– ident: 77
  doi: 10.1021/acsenergylett.8b00576
– ident: 67
  doi: 10.1002/aenm.201800525
– ident: 31
  doi: 10.1039/C5TC01718A
– ident: 190
  doi: 10.1021/acs.jpclett.6b02415
– ident: 194
  doi: 10.1063/1.4899275
– ident: 38
  doi: 10.1021/acs.chemmater.8b00136
– ident: 214
  doi: 10.1038/srep18721
– ident: 118
  doi: 10.1002/aenm.201601353
– ident: 186
  doi: 10.1002/aenm.201801954
– ident: 44
  doi: 10.1039/C5CC07673K
– ident: 36
  doi: 10.1021/acs.jpclett.5b01738
– ident: 159
  doi: 10.1039/C4EE03322A
– ident: 63
  doi: 10.1002/adma.201700607
– ident: 96
  doi: 10.1021/acsenergylett.8b01562
– ident: 105
  doi: 10.1039/C4EE01076K
– ident: 99
  doi: 10.1016/j.joule.2018.11.010
– ident: 210
  doi: 10.1109/JPHOTOV.2017.2748720
– ident: 86
  doi: 10.1021/acs.nanolett.6b04453
– ident: 119
  doi: 10.1021/acsenergylett.7b00847
– ident: 27
  doi: 10.1038/srep00591
– volume: 17
  start-page: 769
  issn: 0268-1242
  year: 2002
  ident: 156
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/17/8/305
– ident: 52
  doi: 10.1021/acs.jpcc.7b05517
– ident: 184
  doi: 10.1126/science.aat5055
– ident: 55
  doi: 10.1039/C6TA10727C
– ident: 137
  doi: 10.1039/C6NR00301J
– ident: 39
  doi: 10.1021/jacs.6b10227
– ident: 161
  doi: 10.1021/acs.jpclett.5b01108
– ident: 101
  doi: 10.1002/solr.201800146
– ident: 120
  doi: 10.1002/adma.201704418
– ident: 192
  doi: 10.1021/acsenergylett.8b00089
– ident: 33
  doi: 10.1039/C6EE00030D
– ident: 4
  doi: 10.1038/s41570-017-0095
– ident: 75
  doi: 10.1021/acs.nanolett.8b01480
– ident: 76
  doi: 10.1021/jacs.7b13229
– ident: 133
  doi: 10.1039/C7EE02901B
– ident: 57
  doi: 10.1016/j.mtener.2017.10.001
– ident: 84
  doi: 10.1038/ncomms8747
– ident: 85
  doi: 10.1021/acsenergylett.8b01906
– ident: 103
  doi: 10.1002/adma.201803792
– ident: 151
  doi: 10.1039/C8SE00358K
– ident: 59
  doi: 10.1002/aenm.201701048
– ident: 204
  doi: 10.1039/C8EE00237A
– ident: 5
  doi: 10.1039/C6EE03397K
– ident: 146
  doi: 10.1016/j.matlet.2018.05.047
– ident: 180
  doi: 10.1002/aenm.201801254
– ident: 207
  doi: 10.1002/aenm.201600846
– ident: 53
  doi: 10.1021/acs.nanolett.7b00050
– ident: 193
– ident: 40
  doi: 10.1021/acs.nanolett.6b03455
– ident: 122
  doi: 10.1021/jacs.6b08337
– ident: 88
  doi: 10.1021/acsenergylett.7b00525
– ident: 139
  doi: 10.1039/C6TC05325D
– ident: 191
  doi: 10.1002/adma.201505279
– ident: 17
  doi: 10.1002/aenm.201602400
– ident: 206
  doi: 10.1038/s41467-018-07255-1
– ident: 28
  doi: 10.1126/science.1228604
– ident: 114
  doi: 10.1039/C8EE00956B
– ident: 182
  doi: 10.1021/acsenergylett.8b01201
– ident: 13
  doi: 10.1002/pip.3102
– ident: 87
  doi: 10.1021/acsenergylett.8b02002
– ident: 199
  doi: 10.1002/adfm.201703835
– ident: 34
  doi: 10.1039/C4SC03141E
– ident: 46
  doi: 10.1002/aenm.201600132
– ident: 189
  doi: 10.1016/j.joule.2018.05.001
– ident: 147
  doi: 10.1039/C8TA03054E
– ident: 30
  doi: 10.1002/anie.201703226
– ident: 129
  doi: 10.1038/s41560-018-0278-x
– ident: 196
  doi: 10.1109/JPHOTOV.2017.2768961
– ident: 49
  doi: 10.1021/acs.nanolett.6b03857
– ident: 25
  doi: 10.1016/B978-0-12-812915-9.00003-4
– ident: 82
  doi: 10.1021/ic401215x
– ident: 125
  doi: 10.1021/acs.nanolett.8b00701
– ident: 100
  doi: 10.1002/aenm.201701543
– ident: 175
  doi: 10.1038/nenergy.2017.9
– ident: 51
  doi: 10.1016/j.nanoen.2016.02.033
– ident: 160
  doi: 10.1021/acsnano.5b03189
– ident: 116
  doi: 10.1021/jz5002117
– ident: 65
  doi: 10.1039/C8TA02522C
– ident: 109
  doi: 10.1126/sciadv.1701293
– ident: 62
  doi: 10.1002/adma.201702140
– ident: 43
  doi: 10.1126/science.aag2700
– ident: 90
  doi: 10.1021/acsenergylett.7b01151
– ident: 168
  doi: 10.1021/acsenergylett.7b01287
– ident: 22
  doi: 10.1117/1.JPE.6.022001
– ident: 205
– ident: 211
  doi: 10.1039/C7EE02564E
– ident: 170
  doi: 10.1002/aenm.201500799
– ident: 112
  doi: 10.1021/jacs.7b01815
– ident: 144
  doi: 10.1021/acsenergylett.8b01411
– ident: 3
  doi: 10.1038/s41560-018-0190-4
– ident: 50
  doi: 10.1002/advs.201500301
– ident: 173
  doi: 10.1002/adma.201501629
– ident: 2
  doi: 10.1038/s41563-018-0071-z
– ident: 130
  doi: 10.1002/anie.201705965
– ident: 95
  doi: 10.1016/j.coelec.2018.09.007
– ident: 117
  doi: 10.1002/adma.201401641
– ident: 123
  doi: 10.1038/nenergy.2017.18
– ident: 138
  doi: 10.1038/srep35705
– ident: 172
  doi: 10.1039/C5TA08744A
– ident: 74
  doi: 10.1038/s41467-018-05531-8
– ident: 102
  doi: 10.1002/adfm.201808801
– ident: 169
  doi: 10.1063/1.4914179
– ident: 69
  doi: 10.1021/acsenergylett.8b02179
– ident: 54
  doi: 10.1021/jacs.7b07949
– ident: 1
  doi: 10.1126/science.aam6323
– ident: 20
  doi: 10.1016/j.joule.2018.05.008
– ident: 80
  doi: 10.1021/nl400349b
– ident: 14
  doi: 10.1063/1.118761
– ident: 98
  doi: 10.1021/acs.nanolett.7b03179
– ident: 68
  doi: 10.1002/aenm.201703246
– ident: 81
  doi: 10.1039/c3ee43822h
– ident: 195
  doi: 10.1021/acsenergylett.9b00135
– ident: 201
  doi: 10.1021/acsenergylett.7b01221
– ident: 97
  doi: 10.1021/acsenergylett.8b02207
– ident: 15
  doi: 10.1063/1.4966996
– ident: 8
  doi: 10.1063/1.1736034
– ident: 23
  doi: 10.1039/C7TA00404D
– ident: 140
  doi: 10.1039/C7NR03507A
– ident: 187
  doi: 10.1039/C8EE02469C
– ident: 150
  doi: 10.1002/aenm.201802774
– ident: 154
  doi: 10.1002/pip.3091
– ident: 32
  doi: 10.1021/nl5048779
– ident: 7
– ident: 163
  doi: 10.1039/C5NR06177F
– ident: 56
  doi: 10.1002/aenm.201700228
– ident: 78
  doi: 10.1021/acsenergylett.7b01255
– ident: 152
  doi: 10.1002/adma.201702905
– ident: 134
  doi: 10.1021/acsenergylett.6b00514
– ident: 6
  doi: 10.1039/C7EE00757D
– ident: 185
  doi: 10.1016/j.joule.2018.10.003
– ident: 155
  doi: 10.1039/C7EE01232B
– ident: 200
  doi: 10.1038/nenergy.2017.38
– ident: 202
  doi: 10.1002/solr.201600019
– ident: 131
  doi: 10.1002/aenm.201800997
– ident: 208
  doi: 10.1016/j.nanoen.2016.09.041
– ident: 113
  doi: 10.1016/j.joule.2018.09.012
– ident: 143
  doi: 10.1002/adma.201705998
– ident: 110
  doi: 10.1021/acsenergylett.8b01588
– ident: 149
  doi: 10.1002/adfm.201804603
– ident: 166
  doi: 10.1038/nenergy.2016.190
– ident: 115
  doi: 10.1002/adma.201804835
– ident: 89
  doi: 10.1038/s41467-018-07438-w
– ident: 126
  doi: 10.1002/adfm.201804427
– ident: 42
  doi: 10.1002/aenm.201602121
– ident: 79
  doi: 10.1021/acsami.8b04439
– ident: 106
  doi: 10.1021/jacs.6b00142
– ident: 61
  doi: 10.1016/j.joule.2017.07.017
– ident: 158
  doi: 10.1039/C4CP03788J
– ident: 37
  doi: 10.1126/science.aan2301
– ident: 165
  doi: 10.1021/acsenergylett.6b00254
– ident: 11
  doi: 10.1109/JPHOTOV.2013.2279336
– ident: 171
  doi: 10.1039/C5EE02965A
– ident: 183
  doi: 10.1021/acsenergylett.8b01382
– ident: 66
  doi: 10.1021/acsenergylett.8b00509
– ident: 93
  doi: 10.1021/acsenergylett.7b00589
– ident: 142
  doi: 10.1002/adfm.201605469
– ident: 21
  doi: 10.1002/aenm.201602761
– ident: 58
  doi: 10.1038/nenergy.2017.135
– volume: 13
  start-page: 839
  issn: 0022-3727
  year: 1980
  ident: 9
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/13/5/018
– ident: 29
  doi: 10.1039/C5SC00961H
– ident: 35
  doi: 10.1021/ja5033259
– ident: 72
  doi: 10.1002/adma.201706275
– ident: 111
  doi: 10.1002/aenm.201702019
– ident: 45
  doi: 10.1126/science.aad5845
– ident: 83
  doi: 10.1002/aenm.201401616
– ident: 162
  doi: 10.1038/ncomms9932
– ident: 64
  doi: 10.1038/nenergy.2017.102
– ident: 94
  doi: 10.1021/acsenergylett.7b00282
– ident: 153
  doi: 10.1021/acs.jpclett.7b02277
– ident: 127
  doi: 10.1002/aenm.201803135
– ident: 16
  doi: 10.1039/C6EE01778A
– ident: 104
  doi: 10.1038/nphoton.2014.82
– ident: 177
  doi: 10.1039/C7EE02288C
– ident: 167
  doi: 10.1039/C7EE02627G
– ident: 164
  doi: 10.1002/aenm.201601128
– ident: 181
  doi: 10.1039/C8EE01936C
– ident: 209
  doi: 10.1039/C7EE01674C
– ident: 71
  doi: 10.1038/nature25989
– ident: 174
  doi: 10.1021/acs.jpclett.5b02686
– ident: 19
  doi: 10.1002/admi.201700731
– ident: 12
  doi: 10.1063/1.2734507
– ident: 141
  doi: 10.1016/j.nanoen.2017.02.040
– ident: 198
  doi: 10.1038/nature23877
– ident: 108
  doi: 10.1021/jacs.7b09018
– ident: 70
  doi: 10.1016/j.joule.2018.04.012
– ident: 213
  doi: 10.1016/j.jclepro.2018.03.063
– ident: 41
  doi: 10.1021/acsami.5b10987
– ident: 47
  doi: 10.1021/acs.jpclett.6b00002
– ident: 197
  doi: 10.1039/C7EE01650F
– ident: 212
  doi: 10.1038/nmat4572
– ident: 60
  doi: 10.1021/acsenergylett.7b00278
– ident: 18
  doi: 10.1016/j.joule.2017.09.017
SSID ssj0011830
Score 2.5576444
SecondaryResourceType review_article
Snippet Organic-inorganic metal halide perovskite single-junction solar cells have attracted great attention in the past few years due to a high record power...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 93001
SubjectTerms low bandgap
metal halide perovskites
perovskite solar cells
tandem solar cells
wide bandgap
Title Wide-bandgap, low-bandgap, and tandem perovskite solar cells
URI https://iopscience.iop.org/article/10.1088/1361-6641/ab27f7
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64IOjBXRw3etCDYGamTZum6EVEEcHl4KAHIWRpRBxnBttR8Nf7Mo3jggziqS28pOHxkve9NQDbOop1GDFKEBJlJJY8I2jZSoJnpbVKWpNnrt75_IKdtuKz2-R2DPaHtTDdnj_66_haNQquWOgT4ngjpCwkjMVhQ6ootek4TFKOitNV711eDUMIKKvewYJmEioiH6P8bYZvOmkc__tFxZzMwd3H4qrMksd6v1R1_fajb-M_Vz8Psx56BocV6QKM5Z1FmPnSkHARpgYJobpYgoObB5MTJTvmXvb2gnb39fMDn4HzQORPgWsz_lI4D3BQOCM5cIGAYhlaJ8fXR6fE37RANA2jkmjLQpUoGkqmEcOhGZjq2Eqb8gThBjVow0VNlWSU5tawLJVMycwg9jNRk3IT0RWY6HQ7-SoEWjMbatzlliPY0UoZlado00QJlcZyW4PGB6-F9m3I3W0YbTEIh3MuHIeE45CoOFSD3eGIXtWCYwTtDjJe-H1YjKALvtEVRSloLDLRzCjKjugZu_bHqdZhGkGUzzvbgInyuZ9vIlAp1dZAIN8BbpPeCg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RUCs4UMpDPPrwoRwq4d2NnTiJ1B6qwgpKSzmA4Gb8RAjYXZEAav9U_0p_Uscbs0BVoV449JREcqLYY8_MNzP-DPDWsNQkTHCKLlFJU1WUFJGtoqgrvdfKW1eG_c5fd8Tmfvr5MDscg5-jvTD9QVT9LbxtiIKbIYwFcUU74SKhQqRJW2mW-7w9sD5WVW6779eI2aoPW-so4FXGuht7nzZpPFaAGp6wmhovEp1pnihh0GFBzJOb1CufFxnaVm4RsLCOzhDpO29FmSuhVWnR0bGswwsbmA5Q509kHG112DH4bXeUtsD1EYM6CM3Q-MW86N_--p4dfIJ9vWPWus_h182ANNUsp63LWrfMjz-4Iv-jEZuB6ehik4_N772AMdebhak7xIuz8HRY-GqqOXh_cGId1apnj9VgjZz1r28f8EpCpMWdk0CnflWFSDepQjCAhIRHNQ_7j9KRBRjv9XtuEYgxwicGtZkv0KkzWlvtcsRuLOPK-sIvQftGvtJEuvVw6seZHKb9i0IGqcggFdlIZQnejd4YNFQjD7RdRWHLqG-qB9qRe-2qqpY8laXslBznq8SJsPyPn3oDz3bXu_LL1s72Ckyi3xhL7V7CeH1x6V6hb1br18P1QODosafTb7yKO4o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide-bandgap%2C+low-bandgap%2C+and+tandem+perovskite+solar+cells&rft.jtitle=Semiconductor+science+and+technology&rft.au=Song%2C+Zhaoning&rft.au=Chen%2C+Cong&rft.au=Li%2C+Chongwen&rft.au=Awni%2C+Rasha+A&rft.date=2019-09-01&rft.pub=IOP+Publishing&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=34&rft.issue=9&rft_id=info:doi/10.1088%2F1361-6641%2Fab27f7&rft.externalDocID=sstab27f7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon