Wide-bandgap, low-bandgap, and tandem perovskite solar cells
Organic-inorganic metal halide perovskite single-junction solar cells have attracted great attention in the past few years due to a high record power conversion efficiency (PCE) of 23.7% and low-cost fabrication processes. Beyond single-junction devices, low-temperature solution processability, and...
Saved in:
Published in | Semiconductor science and technology Vol. 34; no. 9; pp. 93001 - 93030 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic-inorganic metal halide perovskite single-junction solar cells have attracted great attention in the past few years due to a high record power conversion efficiency (PCE) of 23.7% and low-cost fabrication processes. Beyond single-junction devices, low-temperature solution processability, and bandgap tunability make the metal halide perovskites ideal candidates for fabricating tandem solar cells. Tandem solar cells combining a wide-bandgap perovskite top cell and a low-bandgap bottom cell based on mixed tin (Sn)-lead (Pb) perovskite or a dissimilar material such as silicon (Si) or copper indium gallium selenide (CIGS) offer an extraordinary opportunity to achieve PCEs higher than Shockley-Queisser (SQ) radiative efficiency limits (∼33%) for single-junction cells. In this review, we will summarize recent research progress on the fabrication of wide- (1.7 to 1.9 eV) and low-bandgap (1.1 to 1.3 eV) perovskite single-junction cells and their applications in tandem cells. Key challenges and issues in wide- and low-bandgap single-junction cells will be discussed. We will survey current state-of-the-art perovskite tandem cells and discuss the limitations and challenges for perovskite tandem cells. Lastly, we conclude with an outlook for the future development of perovskite tandem solar cells. |
---|---|
AbstractList | Organic-inorganic metal halide perovskite single-junction solar cells have attracted great attention in the past few years due to a high record power conversion efficiency (PCE) of 23.7% and low-cost fabrication processes. Beyond single-junction devices, low-temperature solution processability, and bandgap tunability make the metal halide perovskites ideal candidates for fabricating tandem solar cells. Tandem solar cells combining a wide-bandgap perovskite top cell and a low-bandgap bottom cell based on mixed tin (Sn)-lead (Pb) perovskite or a dissimilar material such as silicon (Si) or copper indium gallium selenide (CIGS) offer an extraordinary opportunity to achieve PCEs higher than Shockley-Queisser (SQ) radiative efficiency limits (∼33%) for single-junction cells. In this review, we will summarize recent research progress on the fabrication of wide- (1.7 to 1.9 eV) and low-bandgap (1.1 to 1.3 eV) perovskite single-junction cells and their applications in tandem cells. Key challenges and issues in wide- and low-bandgap single-junction cells will be discussed. We will survey current state-of-the-art perovskite tandem cells and discuss the limitations and challenges for perovskite tandem cells. Lastly, we conclude with an outlook for the future development of perovskite tandem solar cells. |
Author | Li, Chongwen Zhao, Dewei Chen, Cong Awni, Rasha A Song, Zhaoning Yan, Yanfa |
Author_xml | – sequence: 1 givenname: Zhaoning orcidid: 0000-0002-6677-0994 surname: Song fullname: Song, Zhaoning email: zhaoning.song@utoledo.edu organization: The University of Toledo Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, Toledo, OH 43606, United States of America – sequence: 2 givenname: Cong surname: Chen fullname: Chen, Cong organization: Wuhan University Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan 430072, People's Republic of China – sequence: 3 givenname: Chongwen surname: Li fullname: Li, Chongwen organization: The University of Toledo Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, Toledo, OH 43606, United States of America – sequence: 4 givenname: Rasha A surname: Awni fullname: Awni, Rasha A organization: University of Tikrit Department of Physics, College of Education for Pure Sciences, Tikrit 34001, Iraq – sequence: 5 givenname: Dewei surname: Zhao fullname: Zhao, Dewei organization: The University of Toledo Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, Toledo, OH 43606, United States of America – sequence: 6 givenname: Yanfa orcidid: 0000-0003-3977-5789 surname: Yan fullname: Yan, Yanfa email: yanfa.yan@utoledo.edu organization: The University of Toledo Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, Toledo, OH 43606, United States of America |
BookMark | eNp9kM1LAzEQxYMo2FbvHvfmpWszSTabBS9S_IKCF8VjyOZDUrebJYmK_71bKgqiXuYxw_sNvDdF-33oLUIngM8AC7EAyqHknMFCtaR29R6afJ320QQTLkogjByiaUprjAEExRN0_uiNLVvVmyc1zIsuvH0voxZ5HHZTDDaG1_Tssy1S6FQstO26dIQOnOqSPf7UGXq4urxf3pSru-vb5cWq1BRILrXj0FYtBcU1rhgBXGvmlKtFVVWMGsYEwW3VUGqd4U2teKsaAw01BFNhCJ0hvvurY0gpWie1zyr70OeofCcBy20HchtYbgPLXQcjiH-AQ_QbFd__Q053iA-DXIeX2I_JZEpZUiYbiRs6dicH40bn_Bfnn48_AOwoesk |
CODEN | SSTEET |
CitedBy_id | crossref_primary_10_1016_j_commatsci_2023_112199 crossref_primary_10_1016_j_ijleo_2020_164723 crossref_primary_10_1016_j_jechem_2020_09_022 crossref_primary_10_1002_admi_202300134 crossref_primary_10_1002_adfm_202100265 crossref_primary_10_1021_acsaem_9b02428 crossref_primary_10_1021_acsenergylett_0c01350 crossref_primary_10_1002_aenm_202101045 crossref_primary_10_1002_solr_202300920 crossref_primary_10_1016_j_jiec_2024_08_013 crossref_primary_10_1016_j_solmat_2020_110741 crossref_primary_10_1016_j_nanoen_2021_106608 crossref_primary_10_1016_j_scib_2020_11_006 crossref_primary_10_1021_jacs_0c02227 crossref_primary_10_3390_en16165868 crossref_primary_10_1039_D2EE04087E crossref_primary_10_1002_ente_202300832 crossref_primary_10_1117_1_JPE_13_042301 crossref_primary_10_1016_j_physe_2020_114618 crossref_primary_10_1016_j_nanoen_2021_106537 crossref_primary_10_1002_smtd_202000395 crossref_primary_10_3390_coatings11030279 crossref_primary_10_1016_j_nanoen_2021_106219 crossref_primary_10_7498_aps_69_20200822 crossref_primary_10_1039_D3CC03205A crossref_primary_10_1021_jacs_9b09969 crossref_primary_10_1002_er_6542 crossref_primary_10_1021_acs_inorgchem_2c00531 crossref_primary_10_1002_solr_202100945 crossref_primary_10_1002_solr_202100906 crossref_primary_10_1002_slct_202303550 crossref_primary_10_1021_acs_jpcc_0c06240 crossref_primary_10_3390_en14248401 crossref_primary_10_1016_j_optmat_2021_111909 crossref_primary_10_1002_adma_202106805 crossref_primary_10_1002_admi_202101144 crossref_primary_10_1007_s12633_023_02466_8 crossref_primary_10_1016_j_solener_2023_111912 crossref_primary_10_1016_j_jechem_2021_03_038 crossref_primary_10_1063_5_0196152 crossref_primary_10_1088_1361_6641_abd266 crossref_primary_10_1002_cphc_202400530 crossref_primary_10_1021_acsnanoscienceau_3c00056 crossref_primary_10_1039_D1SE00314C crossref_primary_10_1016_j_solener_2021_09_015 crossref_primary_10_1002_solr_202100277 crossref_primary_10_1016_j_mtener_2024_101556 crossref_primary_10_1002_aenm_202201509 crossref_primary_10_1088_2515_7639_acc893 crossref_primary_10_1088_1361_6528_acec54 crossref_primary_10_1039_D1SE00030F crossref_primary_10_1063_1_5126867 crossref_primary_10_1002_adma_202002228 crossref_primary_10_1039_D1TA04330G crossref_primary_10_1039_C9TA08791E crossref_primary_10_1063_5_0006310 crossref_primary_10_1039_D1SC03251H crossref_primary_10_1021_acs_cgd_9b01448 crossref_primary_10_1021_acs_chemrev_9b00780 crossref_primary_10_1002_smtd_202000093 crossref_primary_10_1039_D3EE03337F crossref_primary_10_1016_j_solener_2023_111801 crossref_primary_10_1021_acsaem_2c00704 crossref_primary_10_1007_s11051_024_06196_9 crossref_primary_10_1088_1361_6641_ac1311 crossref_primary_10_1016_j_trechm_2021_04_004 crossref_primary_10_1039_D0TC00515K crossref_primary_10_1002_aenm_202201473 crossref_primary_10_1039_D3QM01087B crossref_primary_10_1088_2752_5724_ad37cf crossref_primary_10_1002_aenm_202303664 crossref_primary_10_1016_j_nanoen_2024_109984 crossref_primary_10_1021_acsaem_3c02075 crossref_primary_10_1002_solr_202400148 crossref_primary_10_1016_j_surfin_2023_102680 crossref_primary_10_1016_j_nanoen_2024_110401 crossref_primary_10_1016_j_cej_2024_151459 crossref_primary_10_18311_jmmf_2024_47253 crossref_primary_10_1088_1361_6528_acd0b6 crossref_primary_10_1021_acsenergylett_2c01883 crossref_primary_10_1002_aenm_202102046 crossref_primary_10_1021_acsenergylett_0c00255 crossref_primary_10_1002_adma_202201315 crossref_primary_10_1002_adts_202200800 crossref_primary_10_1016_j_heliyon_2024_e24689 crossref_primary_10_1016_j_cej_2022_139697 crossref_primary_10_1002_aenm_201904102 crossref_primary_10_1016_j_cej_2023_141758 crossref_primary_10_1021_acsaem_4c00544 crossref_primary_10_3389_fenrg_2024_1457556 crossref_primary_10_1002_solr_202000082 crossref_primary_10_1002_advs_202304811 crossref_primary_10_1002_solr_202200708 |
Cites_doi | 10.1002/advs.201801704 10.1002/aenm.201602807 10.1021/acsenergylett.8b01369 10.1002/adfm.201803130 10.1021/acsenergylett.6b00236 10.1039/C8SE00314A 10.1039/C6TA07712A 10.1109/PVSC.2014.6924957 10.1021/jacs.7b04981 10.1021/ja809598r 10.1021/acsenergylett.6b00495 10.1038/s41563-018-0115-4 10.1016/j.nanoen.2016.08.015 10.1039/C8TA05444D 10.1038/s41560-018-0201-5 10.1002/adma.201602696 10.1002/aenm.201701609 10.1021/acsenergylett.7b00647 10.1039/C8EE00689J 10.1126/science.aaf9717 10.1002/adma.201602992 10.1002/adfm.201807024 10.1021/acsenergylett.8b00576 10.1002/aenm.201800525 10.1039/C5TC01718A 10.1021/acs.jpclett.6b02415 10.1063/1.4899275 10.1021/acs.chemmater.8b00136 10.1038/srep18721 10.1002/aenm.201601353 10.1002/aenm.201801954 10.1039/C5CC07673K 10.1021/acs.jpclett.5b01738 10.1039/C4EE03322A 10.1002/adma.201700607 10.1021/acsenergylett.8b01562 10.1039/C4EE01076K 10.1016/j.joule.2018.11.010 10.1109/JPHOTOV.2017.2748720 10.1021/acs.nanolett.6b04453 10.1021/acsenergylett.7b00847 10.1038/srep00591 10.1088/0268-1242/17/8/305 10.1021/acs.jpcc.7b05517 10.1126/science.aat5055 10.1039/C6TA10727C 10.1039/C6NR00301J 10.1021/jacs.6b10227 10.1021/acs.jpclett.5b01108 10.1002/solr.201800146 10.1002/adma.201704418 10.1021/acsenergylett.8b00089 10.1039/C6EE00030D 10.1038/s41570-017-0095 10.1021/acs.nanolett.8b01480 10.1021/jacs.7b13229 10.1039/C7EE02901B 10.1016/j.mtener.2017.10.001 10.1038/ncomms8747 10.1021/acsenergylett.8b01906 10.1002/adma.201803792 10.1039/C8SE00358K 10.1002/aenm.201701048 10.1039/C8EE00237A 10.1039/C6EE03397K 10.1016/j.matlet.2018.05.047 10.1002/aenm.201801254 10.1002/aenm.201600846 10.1021/acs.nanolett.7b00050 10.1021/acs.nanolett.6b03455 10.1021/jacs.6b08337 10.1021/acsenergylett.7b00525 10.1039/C6TC05325D 10.1002/adma.201505279 10.1002/aenm.201602400 10.1038/s41467-018-07255-1 10.1126/science.1228604 10.1039/C8EE00956B 10.1021/acsenergylett.8b01201 10.1002/pip.3102 10.1021/acsenergylett.8b02002 10.1002/adfm.201703835 10.1039/C4SC03141E 10.1002/aenm.201600132 10.1016/j.joule.2018.05.001 10.1039/C8TA03054E 10.1002/anie.201703226 10.1038/s41560-018-0278-x 10.1109/JPHOTOV.2017.2768961 10.1021/acs.nanolett.6b03857 10.1016/B978-0-12-812915-9.00003-4 10.1021/ic401215x 10.1021/acs.nanolett.8b00701 10.1002/aenm.201701543 10.1038/nenergy.2017.9 10.1016/j.nanoen.2016.02.033 10.1021/acsnano.5b03189 10.1021/jz5002117 10.1039/C8TA02522C 10.1126/sciadv.1701293 10.1002/adma.201702140 10.1126/science.aag2700 10.1021/acsenergylett.7b01151 10.1021/acsenergylett.7b01287 10.1117/1.JPE.6.022001 10.1039/C7EE02564E 10.1002/aenm.201500799 10.1021/jacs.7b01815 10.1021/acsenergylett.8b01411 10.1038/s41560-018-0190-4 10.1002/advs.201500301 10.1002/adma.201501629 10.1038/s41563-018-0071-z 10.1002/anie.201705965 10.1016/j.coelec.2018.09.007 10.1002/adma.201401641 10.1038/nenergy.2017.18 10.1038/srep35705 10.1039/C5TA08744A 10.1038/s41467-018-05531-8 10.1002/adfm.201808801 10.1063/1.4914179 10.1021/acsenergylett.8b02179 10.1021/jacs.7b07949 10.1126/science.aam6323 10.1016/j.joule.2018.05.008 10.1021/nl400349b 10.1063/1.118761 10.1021/acs.nanolett.7b03179 10.1002/aenm.201703246 10.1039/c3ee43822h 10.1021/acsenergylett.9b00135 10.1021/acsenergylett.7b01221 10.1021/acsenergylett.8b02207 10.1063/1.4966996 10.1063/1.1736034 10.1039/C7TA00404D 10.1039/C7NR03507A 10.1039/C8EE02469C 10.1002/aenm.201802774 10.1002/pip.3091 10.1021/nl5048779 10.1039/C5NR06177F 10.1002/aenm.201700228 10.1021/acsenergylett.7b01255 10.1002/adma.201702905 10.1021/acsenergylett.6b00514 10.1039/C7EE00757D 10.1016/j.joule.2018.10.003 10.1039/C7EE01232B 10.1038/nenergy.2017.38 10.1002/solr.201600019 10.1002/aenm.201800997 10.1016/j.nanoen.2016.09.041 10.1016/j.joule.2018.09.012 10.1002/adma.201705998 10.1021/acsenergylett.8b01588 10.1002/adfm.201804603 10.1038/nenergy.2016.190 10.1002/adma.201804835 10.1038/s41467-018-07438-w 10.1002/adfm.201804427 10.1002/aenm.201602121 10.1021/acsami.8b04439 10.1021/jacs.6b00142 10.1016/j.joule.2017.07.017 10.1039/C4CP03788J 10.1126/science.aan2301 10.1021/acsenergylett.6b00254 10.1109/JPHOTOV.2013.2279336 10.1039/C5EE02965A 10.1021/acsenergylett.8b01382 10.1021/acsenergylett.8b00509 10.1021/acsenergylett.7b00589 10.1002/adfm.201605469 10.1002/aenm.201602761 10.1038/nenergy.2017.135 10.1088/0022-3727/13/5/018 10.1039/C5SC00961H 10.1021/ja5033259 10.1002/adma.201706275 10.1002/aenm.201702019 10.1126/science.aad5845 10.1002/aenm.201401616 10.1038/ncomms9932 10.1038/nenergy.2017.102 10.1021/acsenergylett.7b00282 10.1021/acs.jpclett.7b02277 10.1002/aenm.201803135 10.1039/C6EE01778A 10.1038/nphoton.2014.82 10.1039/C7EE02288C 10.1039/C7EE02627G 10.1002/aenm.201601128 10.1039/C8EE01936C 10.1039/C7EE01674C 10.1038/nature25989 10.1021/acs.jpclett.5b02686 10.1002/admi.201700731 10.1063/1.2734507 10.1016/j.nanoen.2017.02.040 10.1038/nature23877 10.1021/jacs.7b09018 10.1016/j.joule.2018.04.012 10.1016/j.jclepro.2018.03.063 10.1021/acsami.5b10987 10.1021/acs.jpclett.6b00002 10.1039/C7EE01650F 10.1038/nmat4572 10.1021/acsenergylett.7b00278 10.1016/j.joule.2017.09.017 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd |
Copyright_xml | – notice: 2019 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6641/ab27f7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Wide-bandgap, low-bandgap, and tandem perovskite solar cells |
EISSN | 1361-6641 |
ExternalDocumentID | 10_1088_1361_6641_ab27f7 sstab27f7 |
GrantInformation_xml | – fundername: Air Force Research Laboratory grantid: FA9453-11-C-0253 funderid: https://doi.org/10.13039/100006602 – fundername: Office of Naval Research grantid: N00014-17-1-2223 funderid: https://doi.org/10.13039/100000006 – fundername: National Science Foundation grantid: DMR-1807818; ECCS-1807818 funderid: https://doi.org/10.13039/100000001 – fundername: U.S. Department of Energy grantid: DE-FOA-0000990 funderid: https://doi.org/10.13039/100000015 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 E.- EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE PZZ R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ UCJ W28 XPP ZMT AAYXX CITATION |
ID | FETCH-LOGICAL-c312t-cf61b5b31a6c0542107c4faf7855543d44820b5933efd697a6ba9d193d2038d23 |
IEDL.DBID | IOP |
ISSN | 0268-1242 |
IngestDate | Tue Jul 01 03:26:06 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Wed Aug 21 03:34:01 EDT 2024 Thu Jan 07 13:52:54 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-cf61b5b31a6c0542107c4faf7855543d44820b5933efd697a6ba9d193d2038d23 |
Notes | SST-105414.R1 |
ORCID | 0000-0003-3977-5789 0000-0002-6677-0994 |
PageCount | 30 |
ParticipantIDs | iop_journals_10_1088_1361_6641_ab27f7 crossref_primary_10_1088_1361_6641_ab27f7 crossref_citationtrail_10_1088_1361_6641_ab27f7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Semiconductor science and technology |
PublicationTitleAbbrev | SST |
PublicationTitleAlternate | Semicond. Sci. Technol |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 110 111 112 113 114 115 116 117 118 119 10 11 12 13 14 15 16 17 18 19 120 121 1 122 2 123 3 124 4 125 5 126 6 127 7 128 8 129 20 21 22 23 24 25 26 27 28 29 130 131 132 133 134 135 136 137 138 139 30 31 32 33 34 35 36 37 38 39 140 141 142 143 144 145 146 147 148 149 40 41 42 43 44 45 46 47 48 49 Geisz J F (156) 2002; 17 150 151 152 153 154 155 157 158 159 50 51 52 Vos A D (9) 1980; 13 53 54 55 56 57 58 59 160 161 162 163 164 165 166 167 168 169 60 61 62 63 64 65 66 67 68 69 170 171 172 173 174 175 176 177 178 179 70 71 72 73 74 75 76 77 78 79 180 181 182 183 184 185 186 187 188 189 80 81 82 83 84 85 86 87 88 89 190 191 192 193 194 195 196 197 198 199 90 91 92 93 94 95 96 97 98 99 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 100 101 102 103 104 105 106 107 108 109 |
References_xml | – ident: 24 doi: 10.1002/advs.201801704 – ident: 203 doi: 10.1002/aenm.201602807 – ident: 92 doi: 10.1021/acsenergylett.8b01369 – ident: 73 doi: 10.1002/adfm.201803130 – ident: 132 doi: 10.1021/acsenergylett.6b00236 – ident: 128 doi: 10.1039/C8SE00314A – ident: 135 doi: 10.1039/C6TA07712A – ident: 10 doi: 10.1109/PVSC.2014.6924957 – ident: 124 doi: 10.1021/jacs.7b04981 – ident: 26 doi: 10.1021/ja809598r – ident: 91 doi: 10.1021/acsenergylett.6b00495 – ident: 178 doi: 10.1038/s41563-018-0115-4 – ident: 136 doi: 10.1016/j.nanoen.2016.08.015 – ident: 145 doi: 10.1039/C8TA05444D – ident: 188 doi: 10.1038/s41560-018-0201-5 – ident: 121 doi: 10.1002/adma.201602696 – ident: 176 doi: 10.1002/aenm.201701609 – ident: 157 doi: 10.1021/acsenergylett.7b00647 – ident: 179 doi: 10.1039/C8EE00689J – ident: 48 doi: 10.1126/science.aaf9717 – ident: 107 doi: 10.1002/adma.201602992 – ident: 148 doi: 10.1002/adfm.201807024 – ident: 77 doi: 10.1021/acsenergylett.8b00576 – ident: 67 doi: 10.1002/aenm.201800525 – ident: 31 doi: 10.1039/C5TC01718A – ident: 190 doi: 10.1021/acs.jpclett.6b02415 – ident: 194 doi: 10.1063/1.4899275 – ident: 38 doi: 10.1021/acs.chemmater.8b00136 – ident: 214 doi: 10.1038/srep18721 – ident: 118 doi: 10.1002/aenm.201601353 – ident: 186 doi: 10.1002/aenm.201801954 – ident: 44 doi: 10.1039/C5CC07673K – ident: 36 doi: 10.1021/acs.jpclett.5b01738 – ident: 159 doi: 10.1039/C4EE03322A – ident: 63 doi: 10.1002/adma.201700607 – ident: 96 doi: 10.1021/acsenergylett.8b01562 – ident: 105 doi: 10.1039/C4EE01076K – ident: 99 doi: 10.1016/j.joule.2018.11.010 – ident: 210 doi: 10.1109/JPHOTOV.2017.2748720 – ident: 86 doi: 10.1021/acs.nanolett.6b04453 – ident: 119 doi: 10.1021/acsenergylett.7b00847 – ident: 27 doi: 10.1038/srep00591 – volume: 17 start-page: 769 issn: 0268-1242 year: 2002 ident: 156 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/17/8/305 – ident: 52 doi: 10.1021/acs.jpcc.7b05517 – ident: 184 doi: 10.1126/science.aat5055 – ident: 55 doi: 10.1039/C6TA10727C – ident: 137 doi: 10.1039/C6NR00301J – ident: 39 doi: 10.1021/jacs.6b10227 – ident: 161 doi: 10.1021/acs.jpclett.5b01108 – ident: 101 doi: 10.1002/solr.201800146 – ident: 120 doi: 10.1002/adma.201704418 – ident: 192 doi: 10.1021/acsenergylett.8b00089 – ident: 33 doi: 10.1039/C6EE00030D – ident: 4 doi: 10.1038/s41570-017-0095 – ident: 75 doi: 10.1021/acs.nanolett.8b01480 – ident: 76 doi: 10.1021/jacs.7b13229 – ident: 133 doi: 10.1039/C7EE02901B – ident: 57 doi: 10.1016/j.mtener.2017.10.001 – ident: 84 doi: 10.1038/ncomms8747 – ident: 85 doi: 10.1021/acsenergylett.8b01906 – ident: 103 doi: 10.1002/adma.201803792 – ident: 151 doi: 10.1039/C8SE00358K – ident: 59 doi: 10.1002/aenm.201701048 – ident: 204 doi: 10.1039/C8EE00237A – ident: 5 doi: 10.1039/C6EE03397K – ident: 146 doi: 10.1016/j.matlet.2018.05.047 – ident: 180 doi: 10.1002/aenm.201801254 – ident: 207 doi: 10.1002/aenm.201600846 – ident: 53 doi: 10.1021/acs.nanolett.7b00050 – ident: 193 – ident: 40 doi: 10.1021/acs.nanolett.6b03455 – ident: 122 doi: 10.1021/jacs.6b08337 – ident: 88 doi: 10.1021/acsenergylett.7b00525 – ident: 139 doi: 10.1039/C6TC05325D – ident: 191 doi: 10.1002/adma.201505279 – ident: 17 doi: 10.1002/aenm.201602400 – ident: 206 doi: 10.1038/s41467-018-07255-1 – ident: 28 doi: 10.1126/science.1228604 – ident: 114 doi: 10.1039/C8EE00956B – ident: 182 doi: 10.1021/acsenergylett.8b01201 – ident: 13 doi: 10.1002/pip.3102 – ident: 87 doi: 10.1021/acsenergylett.8b02002 – ident: 199 doi: 10.1002/adfm.201703835 – ident: 34 doi: 10.1039/C4SC03141E – ident: 46 doi: 10.1002/aenm.201600132 – ident: 189 doi: 10.1016/j.joule.2018.05.001 – ident: 147 doi: 10.1039/C8TA03054E – ident: 30 doi: 10.1002/anie.201703226 – ident: 129 doi: 10.1038/s41560-018-0278-x – ident: 196 doi: 10.1109/JPHOTOV.2017.2768961 – ident: 49 doi: 10.1021/acs.nanolett.6b03857 – ident: 25 doi: 10.1016/B978-0-12-812915-9.00003-4 – ident: 82 doi: 10.1021/ic401215x – ident: 125 doi: 10.1021/acs.nanolett.8b00701 – ident: 100 doi: 10.1002/aenm.201701543 – ident: 175 doi: 10.1038/nenergy.2017.9 – ident: 51 doi: 10.1016/j.nanoen.2016.02.033 – ident: 160 doi: 10.1021/acsnano.5b03189 – ident: 116 doi: 10.1021/jz5002117 – ident: 65 doi: 10.1039/C8TA02522C – ident: 109 doi: 10.1126/sciadv.1701293 – ident: 62 doi: 10.1002/adma.201702140 – ident: 43 doi: 10.1126/science.aag2700 – ident: 90 doi: 10.1021/acsenergylett.7b01151 – ident: 168 doi: 10.1021/acsenergylett.7b01287 – ident: 22 doi: 10.1117/1.JPE.6.022001 – ident: 205 – ident: 211 doi: 10.1039/C7EE02564E – ident: 170 doi: 10.1002/aenm.201500799 – ident: 112 doi: 10.1021/jacs.7b01815 – ident: 144 doi: 10.1021/acsenergylett.8b01411 – ident: 3 doi: 10.1038/s41560-018-0190-4 – ident: 50 doi: 10.1002/advs.201500301 – ident: 173 doi: 10.1002/adma.201501629 – ident: 2 doi: 10.1038/s41563-018-0071-z – ident: 130 doi: 10.1002/anie.201705965 – ident: 95 doi: 10.1016/j.coelec.2018.09.007 – ident: 117 doi: 10.1002/adma.201401641 – ident: 123 doi: 10.1038/nenergy.2017.18 – ident: 138 doi: 10.1038/srep35705 – ident: 172 doi: 10.1039/C5TA08744A – ident: 74 doi: 10.1038/s41467-018-05531-8 – ident: 102 doi: 10.1002/adfm.201808801 – ident: 169 doi: 10.1063/1.4914179 – ident: 69 doi: 10.1021/acsenergylett.8b02179 – ident: 54 doi: 10.1021/jacs.7b07949 – ident: 1 doi: 10.1126/science.aam6323 – ident: 20 doi: 10.1016/j.joule.2018.05.008 – ident: 80 doi: 10.1021/nl400349b – ident: 14 doi: 10.1063/1.118761 – ident: 98 doi: 10.1021/acs.nanolett.7b03179 – ident: 68 doi: 10.1002/aenm.201703246 – ident: 81 doi: 10.1039/c3ee43822h – ident: 195 doi: 10.1021/acsenergylett.9b00135 – ident: 201 doi: 10.1021/acsenergylett.7b01221 – ident: 97 doi: 10.1021/acsenergylett.8b02207 – ident: 15 doi: 10.1063/1.4966996 – ident: 8 doi: 10.1063/1.1736034 – ident: 23 doi: 10.1039/C7TA00404D – ident: 140 doi: 10.1039/C7NR03507A – ident: 187 doi: 10.1039/C8EE02469C – ident: 150 doi: 10.1002/aenm.201802774 – ident: 154 doi: 10.1002/pip.3091 – ident: 32 doi: 10.1021/nl5048779 – ident: 7 – ident: 163 doi: 10.1039/C5NR06177F – ident: 56 doi: 10.1002/aenm.201700228 – ident: 78 doi: 10.1021/acsenergylett.7b01255 – ident: 152 doi: 10.1002/adma.201702905 – ident: 134 doi: 10.1021/acsenergylett.6b00514 – ident: 6 doi: 10.1039/C7EE00757D – ident: 185 doi: 10.1016/j.joule.2018.10.003 – ident: 155 doi: 10.1039/C7EE01232B – ident: 200 doi: 10.1038/nenergy.2017.38 – ident: 202 doi: 10.1002/solr.201600019 – ident: 131 doi: 10.1002/aenm.201800997 – ident: 208 doi: 10.1016/j.nanoen.2016.09.041 – ident: 113 doi: 10.1016/j.joule.2018.09.012 – ident: 143 doi: 10.1002/adma.201705998 – ident: 110 doi: 10.1021/acsenergylett.8b01588 – ident: 149 doi: 10.1002/adfm.201804603 – ident: 166 doi: 10.1038/nenergy.2016.190 – ident: 115 doi: 10.1002/adma.201804835 – ident: 89 doi: 10.1038/s41467-018-07438-w – ident: 126 doi: 10.1002/adfm.201804427 – ident: 42 doi: 10.1002/aenm.201602121 – ident: 79 doi: 10.1021/acsami.8b04439 – ident: 106 doi: 10.1021/jacs.6b00142 – ident: 61 doi: 10.1016/j.joule.2017.07.017 – ident: 158 doi: 10.1039/C4CP03788J – ident: 37 doi: 10.1126/science.aan2301 – ident: 165 doi: 10.1021/acsenergylett.6b00254 – ident: 11 doi: 10.1109/JPHOTOV.2013.2279336 – ident: 171 doi: 10.1039/C5EE02965A – ident: 183 doi: 10.1021/acsenergylett.8b01382 – ident: 66 doi: 10.1021/acsenergylett.8b00509 – ident: 93 doi: 10.1021/acsenergylett.7b00589 – ident: 142 doi: 10.1002/adfm.201605469 – ident: 21 doi: 10.1002/aenm.201602761 – ident: 58 doi: 10.1038/nenergy.2017.135 – volume: 13 start-page: 839 issn: 0022-3727 year: 1980 ident: 9 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/13/5/018 – ident: 29 doi: 10.1039/C5SC00961H – ident: 35 doi: 10.1021/ja5033259 – ident: 72 doi: 10.1002/adma.201706275 – ident: 111 doi: 10.1002/aenm.201702019 – ident: 45 doi: 10.1126/science.aad5845 – ident: 83 doi: 10.1002/aenm.201401616 – ident: 162 doi: 10.1038/ncomms9932 – ident: 64 doi: 10.1038/nenergy.2017.102 – ident: 94 doi: 10.1021/acsenergylett.7b00282 – ident: 153 doi: 10.1021/acs.jpclett.7b02277 – ident: 127 doi: 10.1002/aenm.201803135 – ident: 16 doi: 10.1039/C6EE01778A – ident: 104 doi: 10.1038/nphoton.2014.82 – ident: 177 doi: 10.1039/C7EE02288C – ident: 167 doi: 10.1039/C7EE02627G – ident: 164 doi: 10.1002/aenm.201601128 – ident: 181 doi: 10.1039/C8EE01936C – ident: 209 doi: 10.1039/C7EE01674C – ident: 71 doi: 10.1038/nature25989 – ident: 174 doi: 10.1021/acs.jpclett.5b02686 – ident: 19 doi: 10.1002/admi.201700731 – ident: 12 doi: 10.1063/1.2734507 – ident: 141 doi: 10.1016/j.nanoen.2017.02.040 – ident: 198 doi: 10.1038/nature23877 – ident: 108 doi: 10.1021/jacs.7b09018 – ident: 70 doi: 10.1016/j.joule.2018.04.012 – ident: 213 doi: 10.1016/j.jclepro.2018.03.063 – ident: 41 doi: 10.1021/acsami.5b10987 – ident: 47 doi: 10.1021/acs.jpclett.6b00002 – ident: 197 doi: 10.1039/C7EE01650F – ident: 212 doi: 10.1038/nmat4572 – ident: 60 doi: 10.1021/acsenergylett.7b00278 – ident: 18 doi: 10.1016/j.joule.2017.09.017 |
SSID | ssj0011830 |
Score | 2.5576444 |
SecondaryResourceType | review_article |
Snippet | Organic-inorganic metal halide perovskite single-junction solar cells have attracted great attention in the past few years due to a high record power... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 93001 |
SubjectTerms | low bandgap metal halide perovskites perovskite solar cells tandem solar cells wide bandgap |
Title | Wide-bandgap, low-bandgap, and tandem perovskite solar cells |
URI | https://iopscience.iop.org/article/10.1088/1361-6641/ab27f7 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64IOjBXRw3etCDYGamTZum6EVEEcHl4KAHIWRpRBxnBttR8Nf7Mo3jggziqS28pOHxkve9NQDbOop1GDFKEBJlJJY8I2jZSoJnpbVKWpNnrt75_IKdtuKz2-R2DPaHtTDdnj_66_haNQquWOgT4ngjpCwkjMVhQ6ootek4TFKOitNV711eDUMIKKvewYJmEioiH6P8bYZvOmkc__tFxZzMwd3H4qrMksd6v1R1_fajb-M_Vz8Psx56BocV6QKM5Z1FmPnSkHARpgYJobpYgoObB5MTJTvmXvb2gnb39fMDn4HzQORPgWsz_lI4D3BQOCM5cIGAYhlaJ8fXR6fE37RANA2jkmjLQpUoGkqmEcOhGZjq2Eqb8gThBjVow0VNlWSU5tawLJVMycwg9jNRk3IT0RWY6HQ7-SoEWjMbatzlliPY0UoZlado00QJlcZyW4PGB6-F9m3I3W0YbTEIh3MuHIeE45CoOFSD3eGIXtWCYwTtDjJe-H1YjKALvtEVRSloLDLRzCjKjugZu_bHqdZhGkGUzzvbgInyuZ9vIlAp1dZAIN8BbpPeCg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RUCs4UMpDPPrwoRwq4d2NnTiJ1B6qwgpKSzmA4Gb8RAjYXZEAav9U_0p_Uscbs0BVoV449JREcqLYY8_MNzP-DPDWsNQkTHCKLlFJU1WUFJGtoqgrvdfKW1eG_c5fd8Tmfvr5MDscg5-jvTD9QVT9LbxtiIKbIYwFcUU74SKhQqRJW2mW-7w9sD5WVW6779eI2aoPW-so4FXGuht7nzZpPFaAGp6wmhovEp1pnihh0GFBzJOb1CufFxnaVm4RsLCOzhDpO29FmSuhVWnR0bGswwsbmA5Q509kHG112DH4bXeUtsD1EYM6CM3Q-MW86N_--p4dfIJ9vWPWus_h182ANNUsp63LWrfMjz-4Iv-jEZuB6ehik4_N772AMdebhak7xIuz8HRY-GqqOXh_cGId1apnj9VgjZz1r28f8EpCpMWdk0CnflWFSDepQjCAhIRHNQ_7j9KRBRjv9XtuEYgxwicGtZkv0KkzWlvtcsRuLOPK-sIvQftGvtJEuvVw6seZHKb9i0IGqcggFdlIZQnejd4YNFQjD7RdRWHLqG-qB9qRe-2qqpY8laXslBznq8SJsPyPn3oDz3bXu_LL1s72Ckyi3xhL7V7CeH1x6V6hb1br18P1QODosafTb7yKO4o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide-bandgap%2C+low-bandgap%2C+and+tandem+perovskite+solar+cells&rft.jtitle=Semiconductor+science+and+technology&rft.au=Song%2C+Zhaoning&rft.au=Chen%2C+Cong&rft.au=Li%2C+Chongwen&rft.au=Awni%2C+Rasha+A&rft.date=2019-09-01&rft.pub=IOP+Publishing&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=34&rft.issue=9&rft_id=info:doi/10.1088%2F1361-6641%2Fab27f7&rft.externalDocID=sstab27f7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon |