Investigation on structural, morphological, and optical studies of multiphase titanium dioxide nanoparticles
•Multiphase titanium dioxide (TiO2) nanoparticles were successfully synthesized using the hydrothermal method.•Investigation on structural, morphological, and optical studies of multiphase titanium dioxide nanoparticles we investigated by subject TiO2 in different annealing temperatures ranging betw...
Saved in:
Published in | Journal of molecular structure Vol. 1251; p. 132014 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2860 1872-8014 |
DOI | 10.1016/j.molstruc.2021.132014 |
Cover
Abstract | •Multiphase titanium dioxide (TiO2) nanoparticles were successfully synthesized using the hydrothermal method.•Investigation on structural, morphological, and optical studies of multiphase titanium dioxide nanoparticles we investigated by subject TiO2 in different annealing temperatures ranging between 200 and 1200 °C.•The XRD analysis of the multiphase material exhibit good structural stability due to elevated A-R phase transition.•TEM and SEM microscopic images show an excellent morphology with a promising interfacial contact point needed in solar cell applications.
Multiphase titanium dioxide (TiO2) nanoparticles were successfully synthesized using the hydrothermal method. The as-prepared nanoparticles were subjected to different annealing temperatures (Ta) to investigate their effects on the structural, morphological, and opto-chemical properties using X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM), Scanning electron microscopy (SEM), Energy dispersive x-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and Ultraviolet-visible spectrometry (UV–Vis) techniques. As Ta is increased from 200 to 1200 °C, the TiO2 nanoparticles appear to have a stable tetragonal crystal structure throughout the various Ta. XRD measurements indicate an extended presence of mixed anatase-rutile phase composition with a slow phase transformation mechanism. The crystalline size of both the anatase and rutile phase increases from 19 to 38 nm and 18 -57 nm, respectively. The behaviour in the lattice parameter indicates that increasing Ta forces the crystalline structure in both phases to expand. Images from TEM and SEM micrographs reveal a similar morphology in agreement with XRD measurements. The micrographs reveal that increasing Ta increases material porosity and the dispersion of well-defined TiO2 nanostructure. The EDX spectroscopy confirms the successful synthesis of TiO2 nanoparticles with the absence of impurities after annealing. FT-IR confirms vibrational modes and bond behaviour associated with the expected titanium and oxygen elements with Ta. The UV–Vis spectroscopy characterizes changes in the multiphase TiO2 optical properties as the Ta is increased. An intense UV absorption is reported in the results section and its importance in solar cell applications is stated in the conclusion. |
---|---|
AbstractList | •Multiphase titanium dioxide (TiO2) nanoparticles were successfully synthesized using the hydrothermal method.•Investigation on structural, morphological, and optical studies of multiphase titanium dioxide nanoparticles we investigated by subject TiO2 in different annealing temperatures ranging between 200 and 1200 °C.•The XRD analysis of the multiphase material exhibit good structural stability due to elevated A-R phase transition.•TEM and SEM microscopic images show an excellent morphology with a promising interfacial contact point needed in solar cell applications.
Multiphase titanium dioxide (TiO2) nanoparticles were successfully synthesized using the hydrothermal method. The as-prepared nanoparticles were subjected to different annealing temperatures (Ta) to investigate their effects on the structural, morphological, and opto-chemical properties using X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM), Scanning electron microscopy (SEM), Energy dispersive x-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and Ultraviolet-visible spectrometry (UV–Vis) techniques. As Ta is increased from 200 to 1200 °C, the TiO2 nanoparticles appear to have a stable tetragonal crystal structure throughout the various Ta. XRD measurements indicate an extended presence of mixed anatase-rutile phase composition with a slow phase transformation mechanism. The crystalline size of both the anatase and rutile phase increases from 19 to 38 nm and 18 -57 nm, respectively. The behaviour in the lattice parameter indicates that increasing Ta forces the crystalline structure in both phases to expand. Images from TEM and SEM micrographs reveal a similar morphology in agreement with XRD measurements. The micrographs reveal that increasing Ta increases material porosity and the dispersion of well-defined TiO2 nanostructure. The EDX spectroscopy confirms the successful synthesis of TiO2 nanoparticles with the absence of impurities after annealing. FT-IR confirms vibrational modes and bond behaviour associated with the expected titanium and oxygen elements with Ta. The UV–Vis spectroscopy characterizes changes in the multiphase TiO2 optical properties as the Ta is increased. An intense UV absorption is reported in the results section and its importance in solar cell applications is stated in the conclusion. |
ArticleNumber | 132014 |
Author | Motloung, S.V. Malevu, T.D. Koao, L.F. Motaung, T.E. Lekesi, L.P. |
Author_xml | – sequence: 1 givenname: L.P. surname: Lekesi fullname: Lekesi, L.P. email: hlonnylekesi@gmail.com organization: School of Chemistry and Physics, Westville Campus, University of KwaZulu-Natal, Private bag X54001, Durban, 4000, South Africa – sequence: 2 givenname: T.E. surname: Motaung fullname: Motaung, T.E. organization: Department of Chemistry, School of Science in the College of Science Engineering and Technology, University of South Africa, Preller Street, Muckleneuk Ridge, City of Tshwane, PO Box 392, South Africa – sequence: 3 givenname: S.V. surname: Motloung fullname: Motloung, S.V. organization: Department of Chemistry/ Physics, Sefako Makgatho Health Science University, P. O. Box 94, Medunsa, 0204, South Africa – sequence: 4 givenname: L.F. surname: Koao fullname: Koao, L.F. organization: Department of Chemistry/ Physics, Sefako Makgatho Health Science University, P. O. Box 94, Medunsa, 0204, South Africa – sequence: 5 givenname: T.D. surname: Malevu fullname: Malevu, T.D. email: malevu.td@gmail.com organization: Department of Chemistry/ Physics, Sefako Makgatho Health Science University, P. O. Box 94, Medunsa, 0204, South Africa |
BookMark | eNqFkF1LwzAUhoNMcJv-BckPsDVJt3YFL5Thx2Dgze7DaZJuGWlSknTovzd1euONcCDnhTwvnGeGJtZZhdAtJTkltLw_5p0zIfpB5IwwmtOCEbq4QFO6qli2SvsETQlhLGOrklyhWQhHQghN8BSZjT2pEPUeonYWp_luioMHc4c75_uDM26vxRjBSuz6OIb0bZBaBexa3A0m6v4AQeGoI1g9dFhq96Glwhas68EnxqhwjS5bMEHd_LxztHt53q3fsu3762b9tM1EQVnMRC1LUgkBKVbNSrY1ZVWlGMhaFKxhCtqmqMp6UQGwOiVCWlgWAPVy0RRFMUfluVZ4F4JXLe-97sB_ckr4qIwf-a8yPirjZ2UJfPgDinTPKCZ60OZ__PGMq3TbSSvPg9DKCiW1VyJy6fR_FV8OLZL5 |
CitedBy_id | crossref_primary_10_1016_j_fuel_2022_127216 crossref_primary_10_1007_s12034_023_02978_4 crossref_primary_10_1016_j_optmat_2024_116339 crossref_primary_10_1002_slct_202404396 crossref_primary_10_1007_s11051_024_06014_2 crossref_primary_10_3390_condmat7020039 crossref_primary_10_3390_catal12080834 |
Cites_doi | 10.1007/s10971-010-2378-3 10.1007/s11434-011-4476-1 10.1016/S0254-0584(02)00343-7 10.1016/j.heliyon.2021.e07269 10.1016/S0167-577X(02)00790-5 10.1016/S0927-0248(00)00008-8 10.1021/cm0102739 10.1093/petrology/5.2.310 10.1021/jp994365l 10.1021/acsami.0c02248 10.1039/c4ta01144a 10.1016/j.sbsr.2016.09.003 10.1039/C6RA19759K 10.1016/S1001-0742(08)62219-6 10.1039/C1DT11765C 10.4236/ampc.2015.59036 10.1007/s13204-014-0337-y 10.1021/cr400606n 10.1021/cm302129a 10.1038/nphoton.2013.80 10.1016/S0254-0584(02)00226-2 10.1016/j.physe.2018.10.028 10.1016/j.scriptamat.2007.03.051 10.1155/2013/848205 10.1021/cm990180f 10.1016/S0167-5729(02)00100-0 10.1021/cr5001892 10.1021/cr500072j 10.1007/s10562-008-9798-5 10.1016/j.pmatsci.2018.07.006 10.1155/2008/245981 10.1016/j.electacta.2015.12.040 10.1016/j.ceramint.2010.11.014 10.1021/ac60125a006 10.1016/j.surfcoat.2011.06.053 10.1016/j.solmat.2011.03.023 10.1515/msp-2017-0082 10.1021/cr0500535 10.1021/cr00033a004 10.1016/j.ceramint.2020.03.188 10.1111/j.1151-2916.1997.tb03245.x 10.1039/b908686b 10.1021/cr400621z 10.1039/c1ce05638g 10.1063/1.2940607 10.1038/nmat3697 10.1016/j.msec.2004.12.004 10.1155/2014/205636 10.1021/jp044771r 10.1016/j.jcat.2007.10.014 10.1016/j.matlet.2006.04.010 10.1155/2013/726872 10.1007/s00339-011-6749-6 10.3390/ma11112227 10.18494/SAM.2020.2649 10.1006/jcat.2001.3316 10.1021/jp0618173 10.1016/j.ultsonch.2009.09.003 10.1007/s10973-010-0893-7 10.1557/JMR.1998.0356 10.1007/s10853-010-5113-0 10.1186/s11671-018-2465-x |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.molstruc.2021.132014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1872-8014 |
ExternalDocumentID | 10_1016_j_molstruc_2021_132014 S0022286021021347 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABNEU ABUDA ABYKQ ACDAQ ACFVG ACGFS ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSK SSQ SSU SSZ T5K TN5 UPT XPP YK3 YQT ZMT ~02 ~G- 29L 3O- 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 R2- RIG SCB SCH SEW SSH UQL WUQ XJT XOL |
ID | FETCH-LOGICAL-c312t-c9d607ccac317b8df91277e2ad9c32b2eafb376947aa29eaf00fa53aa954b333 |
IEDL.DBID | AIKHN |
ISSN | 0022-2860 |
IngestDate | Tue Jul 01 03:32:05 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Fri Feb 23 02:41:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticles Annealing Absorption Morphology Porosity Impurities and bandgap Hydrothermal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-c9d607ccac317b8df91277e2ad9c32b2eafb376947aa29eaf00fa53aa954b333 |
ParticipantIDs | crossref_primary_10_1016_j_molstruc_2021_132014 crossref_citationtrail_10_1016_j_molstruc_2021_132014 elsevier_sciencedirect_doi_10_1016_j_molstruc_2021_132014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-05 |
PublicationDateYYYYMMDD | 2022-03-05 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Journal of molecular structure |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Andronic, Andrasi, Enesca, Visa, Duta (bib0034) 2011; 58 Diebold (bib0052) 2003 Shen, Chen, Wang, Sheng, Chen, Feng (bib0007) 2018 Yang, Lin, Wei, Wu, Lin (bib0053) 2003; 4 Ohno, Sarukawa, Tokieda, Matsumura (bib0045) 2001; 203 Ding, Liu (bib0060) 1998; 13 Swamy, Kuznetsov, Dubrovinsky, Caruso, Shchukin, Muddle (bib0015) 2005; 71 Luttrell, Halpegamage, Tao, Kramer, Sutter, Batzill (bib0069) 2015; 4 Lian, Mokhtar, Lu, Zhu, Jacobs, Foster (bib0031) 2020; 12 SHI, WENG (bib0061) 2008; 20 Malevu, T.D., Mwankemwa, B.S., Motloung, S.V., Tshabalala, K.G. and Ocaya, R.O. (2019) Effect of annealing temperature on nano-crystalline TiO2 for solar cell applications. Physica E: low-Dimensional Syst. Nanostruct., 106, pp. 127–132. 10.1016/j.physe.2018.10.028 Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. et al. (2014) Understanding TiO 2 photocatalysis: mechanisms and materials. 114, pp. 9919–9986. 10.1021/cr5001892 Bai, Mora-Seró, De Angelis, Bisquert, Wang (bib0017) 2014 Sarah, Musa, Asiah, Rusop (bib0025) 2010 Xiong, Wu, Zhang, Gu, Zhao (bib0046) 2014; 2 Gupta, Tripathi (bib0016) 2011 Buddington, Lindsley (bib0001) 1964; 5 Pal, Serrano, Santiago, Pal (bib0057) 2007; 111 Baiju, Zachariah, Shukla, Biju, Reddy, Warrier (bib0062) 2009; 130 Zhao, Li, Liu, Gu, Jiang, Shao (bib0065) 2007; 61 Ramimoghadam, Bagheri, Abd Hamid (bib0005) 2014; 2014 Zhang, Banfield (bib0051) 2014 Yuan, Chen, Hu (bib0008) 2005; 25 Rashidzadeh (bib0014) 2008; 2008 Sönmezoǧlu, S., Çankaya, G. and Serin, N. (2012) Phase transformation of nanostructured titanium dioxide thin films grown by sol-gel method. Appl. Phys. A: mater. Sci. Processing, 107, pp. 233–241. 10.1007/s00339-011-6749-6 Park, Van De Lagemaat, Frank (bib0018) 2000; 104 Wu, Lin, Chen, Wang, He, Feng (bib0012) 2002; 14 Zhou, Gai, Hu, Cui, Liu, Wang (bib0058) 2011; 13 Heo, Im, Noh, Mandal, Lim, Chang (bib0023) 2013; 7 Muthee, Dejene (bib0027) 2021; 7 Nadzirah, Hashim (bib0013) 2013 Bakri, Sahdan, Adriyanto, Raship, Said, Abdullah (bib0028) 2017 Sabyrov, Burrows, Penn (bib0055) 2013; 25 Reddy, Manorama, Reddy (bib0003) 2003; 78 Li, Ciston, Saponjic, Chen, Dimitrijevic, Rajh (bib0042) 2008; 253 Alsaiari, Alhemiary, Umar, Hayden (bib0050) 2020; 46 Oh, Krantz, Litzov, Stubhan, Pinna, Brabec (bib0022) 2011; 95 Kim, Hahn, Oh, Kim (bib0033) 2002; 57 Pulišová, Boháček, Šubrt, Szatmáry, Bezdička, Večerníková (bib0067) 2010 Peng, Zhao, Dai, Shi, Hirao (bib0006) 2005; 109 Byrne, Fagan, Hinder, McCormack, Pillai (bib0054) 2016; 6 Yun, Park, Kim, Shim, Bae, Huh (bib0035) 2012; 41 Mahmoud, Narasimharao, Ali, Khalil (bib0049) 2018; 13 Wang, Ying (bib0043) 1999; 11 Li, Richter, Milot, Cai, Schmuttenmaer, Crabtree (bib0037) 2009 Prasad, Pinjari, Pandit, Mhaske (bib0063) 2010; 17 Mugundan, Rajamannan, Viruthagiri, Shanmugam, Gobi, Praveen (bib0068) 2015; 5 Sarode, Shelke, Gunjal, Khollam, Takwale, Jadkar (bib0030) 2012; 06 Cano-Casanova, Amorós-Pérez, Lillo-Ródenas, Román-Martínez, del (bib0041) 2018; 11 Spurr, Myers (bib0059) 1957; 29 Barbé, Arendse, Comte, Jirousek, Lenzmann, Shklover (bib0010) 1997; 80 Hanaor, Sorrell (bib0026) 2011 Mohammed, Ahmad, Azeez (bib0021) 2015; 05 Wei, Zhu, Fang, Chen (bib0048) 2013; 2013 Selman, Husham (bib0056) 2016; 11 Matthews (bib0044) 1976; 61 Joanni, Savu, de Sousa Góes, Bueno, de Freitas, Nogueira (bib0011) 2007; 57 Harizanov, Harizanova (bib0024) 2000; 63 Khalid Hossain, Pervez, Mia, Tayyaba, Jalal Uddin, Ahamed (bib0029) 2017; 35 Chen, Mao (bib0004) 2007 Bagheri, Shameli, Abd Hamid (bib0066) 2013; 2013 Ntsikelelo, Thembinkosi, Koao, Setumo, Tshwafo (bib0039) 2020; 32 Mechiakh, Sedrine, Naceur, Chtourou (bib0032) 2011; 206 Guimarães, Parussulo, Toma, Araki (bib0036) 2016; 188 Muniz, Góes, Silva, Varela, Joanni, Parra (bib0047) 2011; 37 Hoffmann, Martin, Choi, Bahnemann (bib0002) 1995; 95 Li, Wang, Yan, Li (bib0020) 2003; 78 Scanlon, Dunnill, Buckeridge, Shevlin, Logsdail, Woodley (bib0070) 2013; 12 Liu, Yang, Pan, Yang, Lu, Cheng (bib0019) 2014 Ahmad, M.K., Rasheid, N.A., Ahmed, A.Z., Abdullah, S. and Rusop, M. (2008) Effect of annealing temperature on titanium dioxide thin films prepared by sol gel method. 1017, pp. 109–113. 10.1063/1.2940607 Andronic (10.1016/j.molstruc.2021.132014_bib0034) 2011; 58 Guimarães (10.1016/j.molstruc.2021.132014_bib0036) 2016; 188 Reddy (10.1016/j.molstruc.2021.132014_bib0003) 2003; 78 Nadzirah (10.1016/j.molstruc.2021.132014_bib0013) 2013 Mahmoud (10.1016/j.molstruc.2021.132014_bib0049) 2018; 13 Liu (10.1016/j.molstruc.2021.132014_bib0019) 2014 Bakri (10.1016/j.molstruc.2021.132014_bib0028) 2017 Park (10.1016/j.molstruc.2021.132014_bib0018) 2000; 104 Oh (10.1016/j.molstruc.2021.132014_bib0022) 2011; 95 Zhou (10.1016/j.molstruc.2021.132014_bib0058) 2011; 13 10.1016/j.molstruc.2021.132014_bib0064 Spurr (10.1016/j.molstruc.2021.132014_bib0059) 1957; 29 Kim (10.1016/j.molstruc.2021.132014_bib0033) 2002; 57 Zhao (10.1016/j.molstruc.2021.132014_bib0065) 2007; 61 Yuan (10.1016/j.molstruc.2021.132014_bib0008) 2005; 25 Joanni (10.1016/j.molstruc.2021.132014_bib0011) 2007; 57 Xiong (10.1016/j.molstruc.2021.132014_bib0046) 2014; 2 Wei (10.1016/j.molstruc.2021.132014_bib0048) 2013; 2013 Khalid Hossain (10.1016/j.molstruc.2021.132014_bib0029) 2017; 35 Selman (10.1016/j.molstruc.2021.132014_bib0056) 2016; 11 Buddington (10.1016/j.molstruc.2021.132014_bib0001) 1964; 5 10.1016/j.molstruc.2021.132014_bib0009 Alsaiari (10.1016/j.molstruc.2021.132014_bib0050) 2020; 46 Ntsikelelo (10.1016/j.molstruc.2021.132014_bib0039) 2020; 32 Byrne (10.1016/j.molstruc.2021.132014_bib0054) 2016; 6 Bagheri (10.1016/j.molstruc.2021.132014_bib0066) 2013; 2013 Sarah (10.1016/j.molstruc.2021.132014_bib0025) 2010 Hanaor (10.1016/j.molstruc.2021.132014_bib0026) 2011 Muthee (10.1016/j.molstruc.2021.132014_bib0027) 2021; 7 Matthews (10.1016/j.molstruc.2021.132014_bib0044) 1976; 61 Rashidzadeh (10.1016/j.molstruc.2021.132014_bib0014) 2008; 2008 Ding (10.1016/j.molstruc.2021.132014_bib0060) 1998; 13 Ohno (10.1016/j.molstruc.2021.132014_bib0045) 2001; 203 Shen (10.1016/j.molstruc.2021.132014_bib0007) 2018 Prasad (10.1016/j.molstruc.2021.132014_bib0063) 2010; 17 Mechiakh (10.1016/j.molstruc.2021.132014_bib0032) 2011; 206 SHI (10.1016/j.molstruc.2021.132014_bib0061) 2008; 20 Diebold (10.1016/j.molstruc.2021.132014_bib0052) 2003 Wu (10.1016/j.molstruc.2021.132014_bib0012) 2002; 14 Bai (10.1016/j.molstruc.2021.132014_bib0017) 2014 Baiju (10.1016/j.molstruc.2021.132014_bib0062) 2009; 130 Wang (10.1016/j.molstruc.2021.132014_bib0043) 1999; 11 Chen (10.1016/j.molstruc.2021.132014_bib0004) 2007 10.1016/j.molstruc.2021.132014_bib0040 Gupta (10.1016/j.molstruc.2021.132014_bib0016) 2011 Harizanov (10.1016/j.molstruc.2021.132014_bib0024) 2000; 63 Yun (10.1016/j.molstruc.2021.132014_bib0035) 2012; 41 Li (10.1016/j.molstruc.2021.132014_bib0042) 2008; 253 Luttrell (10.1016/j.molstruc.2021.132014_bib0069) 2015; 4 Lian (10.1016/j.molstruc.2021.132014_bib0031) 2020; 12 Ramimoghadam (10.1016/j.molstruc.2021.132014_bib0005) 2014; 2014 Zhang (10.1016/j.molstruc.2021.132014_bib0051) 2014 Pulišová (10.1016/j.molstruc.2021.132014_bib0067) 2010 Muniz (10.1016/j.molstruc.2021.132014_bib0047) 2011; 37 Mohammed (10.1016/j.molstruc.2021.132014_bib0021) 2015; 05 Cano-Casanova (10.1016/j.molstruc.2021.132014_bib0041) 2018; 11 Hoffmann (10.1016/j.molstruc.2021.132014_bib0002) 1995; 95 Li (10.1016/j.molstruc.2021.132014_bib0020) 2003; 78 Li (10.1016/j.molstruc.2021.132014_bib0037) 2009 Sabyrov (10.1016/j.molstruc.2021.132014_bib0055) 2013; 25 Pal (10.1016/j.molstruc.2021.132014_bib0057) 2007; 111 Heo (10.1016/j.molstruc.2021.132014_bib0023) 2013; 7 Swamy (10.1016/j.molstruc.2021.132014_bib0015) 2005; 71 10.1016/j.molstruc.2021.132014_bib0038 Mugundan (10.1016/j.molstruc.2021.132014_bib0068) 2015; 5 Barbé (10.1016/j.molstruc.2021.132014_bib0010) 1997; 80 Sarode (10.1016/j.molstruc.2021.132014_bib0030) 2012; 06 Yang (10.1016/j.molstruc.2021.132014_bib0053) 2003; 4 Peng (10.1016/j.molstruc.2021.132014_bib0006) 2005; 109 Scanlon (10.1016/j.molstruc.2021.132014_bib0070) 2013; 12 |
References_xml | – volume: 95 start-page: 2194 year: 2011 end-page: 2199 ident: bib0022 article-title: Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 11 start-page: 3113 year: 1999 end-page: 3120 ident: bib0043 article-title: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals publication-title: Chem. Mater. – volume: 25 start-page: 479 year: 2005 end-page: 485 ident: bib0008 article-title: Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine publication-title: Mater. Sci. Eng. C – start-page: 855 year: 2011 end-page: 874 ident: bib0026 article-title: Review of the anatase to rutile phase transformation publication-title: J. Mater. Sci. p. – year: 2017 ident: bib0028 article-title: Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties publication-title: AIP Conference Proceedings – start-page: 607 year: 2010 end-page: 613 ident: bib0067 article-title: Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions publication-title: J. Therm. Anal. Calorim. – start-page: 9559 year: 2014 end-page: 9612 ident: bib0019 article-title: Titanium dioxide crystals with tailored facets publication-title: Chem. Rev. p. – volume: 7 start-page: 486 year: 2013 end-page: 491 ident: bib0023 article-title: Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors publication-title: Nat Photonics – volume: 20 start-page: 1263 year: 2008 end-page: 1267 ident: bib0061 article-title: Highly active mixed-phase TiO2 photocatalysts fabricated at low temperatureand the correlation between phase compositionand photocatalytic activity publication-title: J. Environ. Sci. – reference: Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. et al. (2014) Understanding TiO 2 photocatalysis: mechanisms and materials. 114, pp. 9919–9986. 10.1021/cr5001892 – reference: Sönmezoǧlu, S., Çankaya, G. and Serin, N. (2012) Phase transformation of nanostructured titanium dioxide thin films grown by sol-gel method. Appl. Phys. A: mater. Sci. Processing, 107, pp. 233–241. 10.1007/s00339-011-6749-6 – volume: 37 start-page: 1017 year: 2011 end-page: 1024 ident: bib0047 article-title: Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol-gel method for application in dye solar cells publication-title: Ceram. Int. – volume: 2013 year: 2013 ident: bib0066 article-title: Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method publication-title: J. Chem. – volume: 17 start-page: 409 year: 2010 end-page: 415 ident: bib0063 article-title: Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol-gel technique publication-title: Ultrason. Sonochem. – volume: 109 start-page: 4947 year: 2005 end-page: 4952 ident: bib0006 article-title: Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity publication-title: J. Phys. Chem. B – volume: 29 start-page: 760 year: 1957 end-page: 762 ident: bib0059 article-title: Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer publication-title: Anal. Chem. – reference: Ahmad, M.K., Rasheid, N.A., Ahmed, A.Z., Abdullah, S. and Rusop, M. (2008) Effect of annealing temperature on titanium dioxide thin films prepared by sol gel method. 1017, pp. 109–113. 10.1063/1.2940607 – volume: 13 start-page: 1 year: 2018 end-page: 13 ident: bib0049 article-title: Acidic peptizing agent effect on anatase-rutile ratio and photocatalytic performance of TiO2 nanoparticles publication-title: Nanoscale Res. Lett. – volume: 4 start-page: 48 year: 2003 end-page: 54 ident: bib0053 article-title: UV enhancement of the gas sensing properties of nano-TiO2 publication-title: Rev. Adv. Mater. Sci. – volume: 41 start-page: 1284 year: 2012 end-page: 1288 ident: bib0035 article-title: Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes publication-title: Dalton Trans. – volume: 188 start-page: 523 year: 2016 end-page: 528 ident: bib0036 article-title: Enlightening the synergic effect of anatase/rutile mixtures in solar cells publication-title: Electrochim. Acta – volume: 61 start-page: 79 year: 2007 end-page: 83 ident: bib0065 article-title: Synthesis and optical properties of TiO2 nanoparticles publication-title: Mater. Lett. – volume: 12 start-page: 798 year: 2013 end-page: 801 ident: bib0070 article-title: Band alignment of rutile and anatase TiO2 publication-title: Nat. Mater. – volume: 2013 year: 2013 ident: bib0048 article-title: Synthesis, characterization, and photocatalysis of well-dispersible phase-pure anatase TiO2 nanoparticles publication-title: Int. J. Photoenergy – start-page: 10078 year: 2009 end-page: 10085 ident: bib0037 article-title: Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells publication-title: Dalton Trans. – volume: 14 start-page: 1974 year: 2002 end-page: 1980 ident: bib0012 article-title: Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium d ioxide publication-title: Chem. Mater. – volume: 206 start-page: 243 year: 2011 end-page: 249 ident: bib0032 article-title: Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol-gel dip-coating publication-title: Surf. Coat. Technol. – volume: 13 start-page: 2556 year: 1998 end-page: 2559 ident: bib0060 article-title: Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders publication-title: J. Mater. Res. – start-page: 10095 year: 2014 end-page: 10130 ident: bib0017 article-title: Titanium dioxide nanomaterials for photovoltaic applications publication-title: Chem. Rev. p. – volume: 80 start-page: 3157 year: 1997 end-page: 3171 ident: bib0010 article-title: Nanocrystalline titanium oxide electrodes for photovoltaic applications publication-title: J. Am. Ceram. Soc. – volume: 2014 year: 2014 ident: bib0005 article-title: Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material publication-title: Biomed. Res. Int. – volume: 253 start-page: 105 year: 2008 end-page: 110 ident: bib0042 article-title: Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications publication-title: J. Catal. – volume: 57 start-page: 277 year: 2007 end-page: 280 ident: bib0011 article-title: Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide publication-title: Scr. Mater. – volume: 71 year: 2005 ident: bib0015 article-title: Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2 publication-title: Phys. Rev. B - Condensed Matter Mater. Phys. – volume: 95 start-page: 69 year: 1995 end-page: 96 ident: bib0002 article-title: Environmental applications of semiconductor photocatalysis publication-title: Chem. Rev. – volume: 2008 year: 2008 ident: bib0014 article-title: Synthesis of high-thermal stable titanium dioxide nanoparticles publication-title: Int. J. Photoenergy – start-page: 2891 year: 2007 end-page: 2959 ident: bib0004 article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications publication-title: Chem. Rev. p. – volume: 11 start-page: 8 year: 2016 end-page: 13 ident: bib0056 article-title: Calcination induced phase transformation of TiO2 nanostructures and fabricated a Schottky diode as humidity sensor based on rutile phase publication-title: Sens. Biosensing Res. – volume: 61 start-page: 419 year: 1976 end-page: 424 ident: bib0044 article-title: The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions publication-title: Am. Mineral. – volume: 111 start-page: 96 year: 2007 end-page: 102 ident: bib0057 article-title: Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition publication-title: J. Phys. Chem. C – volume: 13 start-page: 6643 year: 2011 end-page: 6649 ident: bib0058 article-title: Phase transformation of TiO2 nanobelts and TiO 2(B)/anatase interface heterostructure nanobelts with enhanced photocatalytic activity publication-title: CrystEngComm – start-page: 159 year: 2013 end-page: 162 ident: bib0013 article-title: Annealing effects on titanium dioxide films by Sol-Gel spin coating method publication-title: Proceedings - RSM 2013: 2013 IEEE Regional Symposium on Micro and Nano Electronics – start-page: 53 year: 2003 end-page: 229 ident: bib0052 article-title: The surface science of titanium dioxide publication-title: Surf. Sci. Rep. p. – volume: 130 start-page: 130 year: 2009 end-page: 136 ident: bib0062 article-title: Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania publication-title: Catal. Lett. – volume: 2 start-page: 9291 year: 2014 end-page: 9297 ident: bib0046 article-title: Synthesis of TiO2 with controllable ratio of anatase to rutile publication-title: J. Mater. Chem. A – volume: 06 start-page: 13 year: 2012 end-page: 18 ident: bib0030 article-title: Effect of annealing temperature on optical properties of titanium dioxide thin films prepared by sol-gel method publication-title: Int. J. Modern Phys.: Conference Series – volume: 203 start-page: 82 year: 2001 end-page: 86 ident: bib0045 article-title: Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases publication-title: J. Catal. – volume: 11 start-page: 2227 year: 2018 ident: bib0041 article-title: Effect of the preparation method (sol-gel or hydrothermal) and conditions on the TiO2 properties and activity for propene oxidation publication-title: Materials (Basel) – start-page: 361 year: 2010 end-page: 364 ident: bib0025 article-title: Electrical conductivity characteristics of TiO2 thin film publication-title: 2010 International Conference on Electronic Devices, Systems and Applications, ICEDSA 2010 - Proceedings – volume: 63 start-page: 185 year: 2000 end-page: 195 ident: bib0024 article-title: Development and investigation of sol-gel solutions for the formation of TiO2 coatings publication-title: Sol. Energy Mater. Sol. Cells – volume: 7 start-page: e07269 year: 2021 ident: bib0027 article-title: Effect of annealing temperature on structural, optical, and photocatalytic properties of titanium dioxide nanoparticles publication-title: Heliyon – volume: 05 start-page: 361 year: 2015 ident: bib0021 article-title: Fabrication of dye sensitized solar cell based on titanium dioxide (TiO2) publication-title: Adv. Mater. Phys. Chem. – volume: 32 start-page: 1511 year: 2020 end-page: 1522 ident: bib0039 article-title: Transformation from anatase to rutile titania using hydrothermal method: investigation of morphology and thermal stability publication-title: Sensors Mater. – start-page: 299 year: 2018 end-page: 385 ident: bib0007 article-title: Titanium dioxide nanostructures for photoelectrochemical applications publication-title: Prog. Mater. Sci. p. – volume: 104 start-page: 8989 year: 2000 end-page: 8994 ident: bib0018 article-title: Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells publication-title: J. Phys. Chem. B – reference: Malevu, T.D., Mwankemwa, B.S., Motloung, S.V., Tshabalala, K.G. and Ocaya, R.O. (2019) Effect of annealing temperature on nano-crystalline TiO2 for solar cell applications. Physica E: low-Dimensional Syst. Nanostruct., 106, pp. 127–132. 10.1016/j.physe.2018.10.028 – volume: 35 start-page: 868 year: 2017 end-page: 877 ident: bib0029 article-title: Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO2 film photoanode for dye-sensitized solar cell application publication-title: Mater. Sci.- Poland – volume: 4 start-page: 1 year: 2015 end-page: 8 ident: bib0069 article-title: Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films publication-title: Sci. Rep. – start-page: 9613 year: 2014 end-page: 9644 ident: bib0051 article-title: Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2 publication-title: Chem. Rev. p. – volume: 5 start-page: 449 year: 2015 end-page: 456 ident: bib0068 article-title: Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique publication-title: Appl. Nanosci. (Switzerland) – volume: 78 start-page: 184 year: 2003 end-page: 188 ident: bib0020 article-title: Preparation and characterization of nano-TiO2 powder publication-title: Mater. Chem. Phys. – volume: 57 start-page: 355 year: 2002 end-page: 360 ident: bib0033 article-title: Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol-gel dip coating publication-title: Mater. Lett – volume: 78 start-page: 239 year: 2003 end-page: 245 ident: bib0003 article-title: Bandgap studies on anatase titanium dioxide nanoparticles publication-title: Mater. Chem. Phys. – start-page: 1639 year: 2011 end-page: 1657 ident: bib0016 article-title: A review of TiO2 nanoparticles publication-title: Chin. Sci. Bull. – volume: 12 start-page: 18578 year: 2020 end-page: 18589 ident: bib0031 article-title: Using soft polymer template engineering of mesoporous TiO2Scaffolds to increase Perovskite grain size and solar cell efficiency publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 16310 year: 2020 end-page: 16320 ident: bib0050 article-title: Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random access memory (ReRAM) device application publication-title: Ceram. Int. – volume: 25 start-page: 1408 year: 2013 end-page: 1415 ident: bib0055 article-title: Size-dependent anatase to rutile phase transformation and particle growth publication-title: Chem. Mater. – volume: 58 start-page: 201 year: 2011 end-page: 208 ident: bib0034 article-title: The influence of titanium dioxide phase composition on dyes photocatalysis publication-title: J. Solgel Sci. Technol. – volume: 6 start-page: 95232 year: 2016 end-page: 95238 ident: bib0054 article-title: New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts publication-title: RSC Adv. – volume: 5 start-page: 310 year: 1964 end-page: 357 ident: bib0001 article-title: Iron-titanium oxide minerals and synthetic equivalents publication-title: J. Petrol. – volume: 58 start-page: 201 year: 2011 ident: 10.1016/j.molstruc.2021.132014_bib0034 article-title: The influence of titanium dioxide phase composition on dyes photocatalysis publication-title: J. Solgel Sci. Technol. doi: 10.1007/s10971-010-2378-3 – start-page: 1639 year: 2011 ident: 10.1016/j.molstruc.2021.132014_bib0016 article-title: A review of TiO2 nanoparticles publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-011-4476-1 – volume: 4 start-page: 48 year: 2003 ident: 10.1016/j.molstruc.2021.132014_bib0053 article-title: UV enhancement of the gas sensing properties of nano-TiO2 publication-title: Rev. Adv. Mater. Sci. – volume: 78 start-page: 239 year: 2003 ident: 10.1016/j.molstruc.2021.132014_bib0003 article-title: Bandgap studies on anatase titanium dioxide nanoparticles publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(02)00343-7 – volume: 7 start-page: e07269 year: 2021 ident: 10.1016/j.molstruc.2021.132014_bib0027 article-title: Effect of annealing temperature on structural, optical, and photocatalytic properties of titanium dioxide nanoparticles publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e07269 – volume: 57 start-page: 355 year: 2002 ident: 10.1016/j.molstruc.2021.132014_bib0033 article-title: Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol-gel dip coating publication-title: Mater. Lett doi: 10.1016/S0167-577X(02)00790-5 – volume: 63 start-page: 185 year: 2000 ident: 10.1016/j.molstruc.2021.132014_bib0024 article-title: Development and investigation of sol-gel solutions for the formation of TiO2 coatings publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(00)00008-8 – volume: 14 start-page: 1974 year: 2002 ident: 10.1016/j.molstruc.2021.132014_bib0012 article-title: Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium d ioxide publication-title: Chem. Mater. doi: 10.1021/cm0102739 – volume: 5 start-page: 310 year: 1964 ident: 10.1016/j.molstruc.2021.132014_bib0001 article-title: Iron-titanium oxide minerals and synthetic equivalents publication-title: J. Petrol. doi: 10.1093/petrology/5.2.310 – volume: 61 start-page: 419 year: 1976 ident: 10.1016/j.molstruc.2021.132014_bib0044 article-title: The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions publication-title: Am. Mineral. – volume: 104 start-page: 8989 year: 2000 ident: 10.1016/j.molstruc.2021.132014_bib0018 article-title: Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells publication-title: J. Phys. Chem. B doi: 10.1021/jp994365l – volume: 12 start-page: 18578 year: 2020 ident: 10.1016/j.molstruc.2021.132014_bib0031 article-title: Using soft polymer template engineering of mesoporous TiO2Scaffolds to increase Perovskite grain size and solar cell efficiency publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c02248 – volume: 2 start-page: 9291 year: 2014 ident: 10.1016/j.molstruc.2021.132014_bib0046 article-title: Synthesis of TiO2 with controllable ratio of anatase to rutile publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01144a – volume: 11 start-page: 8 year: 2016 ident: 10.1016/j.molstruc.2021.132014_bib0056 article-title: Calcination induced phase transformation of TiO2 nanostructures and fabricated a Schottky diode as humidity sensor based on rutile phase publication-title: Sens. Biosensing Res. doi: 10.1016/j.sbsr.2016.09.003 – start-page: 159 year: 2013 ident: 10.1016/j.molstruc.2021.132014_bib0013 article-title: Annealing effects on titanium dioxide films by Sol-Gel spin coating method – volume: 6 start-page: 95232 year: 2016 ident: 10.1016/j.molstruc.2021.132014_bib0054 article-title: New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts publication-title: RSC Adv. doi: 10.1039/C6RA19759K – volume: 20 start-page: 1263 year: 2008 ident: 10.1016/j.molstruc.2021.132014_bib0061 article-title: Highly active mixed-phase TiO2 photocatalysts fabricated at low temperatureand the correlation between phase compositionand photocatalytic activity publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(08)62219-6 – volume: 41 start-page: 1284 year: 2012 ident: 10.1016/j.molstruc.2021.132014_bib0035 article-title: Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes publication-title: Dalton Trans. doi: 10.1039/C1DT11765C – volume: 4 start-page: 1 year: 2015 ident: 10.1016/j.molstruc.2021.132014_bib0069 article-title: Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films publication-title: Sci. Rep. – volume: 06 start-page: 13 year: 2012 ident: 10.1016/j.molstruc.2021.132014_bib0030 article-title: Effect of annealing temperature on optical properties of titanium dioxide thin films prepared by sol-gel method publication-title: Int. J. Modern Phys.: Conference Series – volume: 71 year: 2005 ident: 10.1016/j.molstruc.2021.132014_bib0015 article-title: Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2 publication-title: Phys. Rev. B - Condensed Matter Mater. Phys. – volume: 05 start-page: 361 year: 2015 ident: 10.1016/j.molstruc.2021.132014_bib0021 article-title: Fabrication of dye sensitized solar cell based on titanium dioxide (TiO2) publication-title: Adv. Mater. Phys. Chem. doi: 10.4236/ampc.2015.59036 – volume: 5 start-page: 449 year: 2015 ident: 10.1016/j.molstruc.2021.132014_bib0068 article-title: Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique publication-title: Appl. Nanosci. (Switzerland) doi: 10.1007/s13204-014-0337-y – start-page: 10095 year: 2014 ident: 10.1016/j.molstruc.2021.132014_bib0017 article-title: Titanium dioxide nanomaterials for photovoltaic applications publication-title: Chem. Rev. p. doi: 10.1021/cr400606n – volume: 25 start-page: 1408 year: 2013 ident: 10.1016/j.molstruc.2021.132014_bib0055 article-title: Size-dependent anatase to rutile phase transformation and particle growth publication-title: Chem. Mater. doi: 10.1021/cm302129a – volume: 7 start-page: 486 year: 2013 ident: 10.1016/j.molstruc.2021.132014_bib0023 article-title: Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors publication-title: Nat Photonics doi: 10.1038/nphoton.2013.80 – volume: 78 start-page: 184 year: 2003 ident: 10.1016/j.molstruc.2021.132014_bib0020 article-title: Preparation and characterization of nano-TiO2 powder publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(02)00226-2 – ident: 10.1016/j.molstruc.2021.132014_bib0038 doi: 10.1016/j.physe.2018.10.028 – volume: 57 start-page: 277 year: 2007 ident: 10.1016/j.molstruc.2021.132014_bib0011 article-title: Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2007.03.051 – volume: 2013 year: 2013 ident: 10.1016/j.molstruc.2021.132014_bib0066 article-title: Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method publication-title: J. Chem. doi: 10.1155/2013/848205 – volume: 11 start-page: 3113 year: 1999 ident: 10.1016/j.molstruc.2021.132014_bib0043 article-title: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals publication-title: Chem. Mater. doi: 10.1021/cm990180f – start-page: 53 year: 2003 ident: 10.1016/j.molstruc.2021.132014_bib0052 article-title: The surface science of titanium dioxide publication-title: Surf. Sci. Rep. p. doi: 10.1016/S0167-5729(02)00100-0 – ident: 10.1016/j.molstruc.2021.132014_bib0009 doi: 10.1021/cr5001892 – start-page: 9613 year: 2014 ident: 10.1016/j.molstruc.2021.132014_bib0051 article-title: Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2 publication-title: Chem. Rev. p. doi: 10.1021/cr500072j – volume: 130 start-page: 130 year: 2009 ident: 10.1016/j.molstruc.2021.132014_bib0062 article-title: Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania publication-title: Catal. Lett. doi: 10.1007/s10562-008-9798-5 – start-page: 299 year: 2018 ident: 10.1016/j.molstruc.2021.132014_bib0007 article-title: Titanium dioxide nanostructures for photoelectrochemical applications publication-title: Prog. Mater. Sci. p. doi: 10.1016/j.pmatsci.2018.07.006 – volume: 2008 year: 2008 ident: 10.1016/j.molstruc.2021.132014_bib0014 article-title: Synthesis of high-thermal stable titanium dioxide nanoparticles publication-title: Int. J. Photoenergy doi: 10.1155/2008/245981 – volume: 188 start-page: 523 year: 2016 ident: 10.1016/j.molstruc.2021.132014_bib0036 article-title: Enlightening the synergic effect of anatase/rutile mixtures in solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.040 – volume: 37 start-page: 1017 year: 2011 ident: 10.1016/j.molstruc.2021.132014_bib0047 article-title: Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol-gel method for application in dye solar cells publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2010.11.014 – volume: 29 start-page: 760 year: 1957 ident: 10.1016/j.molstruc.2021.132014_bib0059 article-title: Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer publication-title: Anal. Chem. doi: 10.1021/ac60125a006 – volume: 206 start-page: 243 year: 2011 ident: 10.1016/j.molstruc.2021.132014_bib0032 article-title: Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol-gel dip-coating publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.06.053 – volume: 95 start-page: 2194 year: 2011 ident: 10.1016/j.molstruc.2021.132014_bib0022 article-title: Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.03.023 – volume: 35 start-page: 868 year: 2017 ident: 10.1016/j.molstruc.2021.132014_bib0029 article-title: Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO2 film photoanode for dye-sensitized solar cell application publication-title: Mater. Sci.- Poland doi: 10.1515/msp-2017-0082 – start-page: 2891 year: 2007 ident: 10.1016/j.molstruc.2021.132014_bib0004 article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications and applications publication-title: Chem. Rev. p. doi: 10.1021/cr0500535 – volume: 95 start-page: 69 year: 1995 ident: 10.1016/j.molstruc.2021.132014_bib0002 article-title: Environmental applications of semiconductor photocatalysis publication-title: Chem. Rev. doi: 10.1021/cr00033a004 – volume: 46 start-page: 16310 year: 2020 ident: 10.1016/j.molstruc.2021.132014_bib0050 article-title: Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random access memory (ReRAM) device application publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.188 – start-page: 361 year: 2010 ident: 10.1016/j.molstruc.2021.132014_bib0025 article-title: Electrical conductivity characteristics of TiO2 thin film – volume: 80 start-page: 3157 year: 1997 ident: 10.1016/j.molstruc.2021.132014_bib0010 article-title: Nanocrystalline titanium oxide electrodes for photovoltaic applications publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1997.tb03245.x – start-page: 10078 year: 2009 ident: 10.1016/j.molstruc.2021.132014_bib0037 article-title: Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells publication-title: Dalton Trans. doi: 10.1039/b908686b – start-page: 9559 year: 2014 ident: 10.1016/j.molstruc.2021.132014_bib0019 article-title: Titanium dioxide crystals with tailored facets publication-title: Chem. Rev. p. doi: 10.1021/cr400621z – volume: 13 start-page: 6643 year: 2011 ident: 10.1016/j.molstruc.2021.132014_bib0058 article-title: Phase transformation of TiO2 nanobelts and TiO 2(B)/anatase interface heterostructure nanobelts with enhanced photocatalytic activity publication-title: CrystEngComm doi: 10.1039/c1ce05638g – ident: 10.1016/j.molstruc.2021.132014_bib0064 doi: 10.1063/1.2940607 – volume: 12 start-page: 798 year: 2013 ident: 10.1016/j.molstruc.2021.132014_bib0070 article-title: Band alignment of rutile and anatase TiO2 publication-title: Nat. Mater. doi: 10.1038/nmat3697 – volume: 25 start-page: 479 year: 2005 ident: 10.1016/j.molstruc.2021.132014_bib0008 article-title: Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2004.12.004 – volume: 2014 year: 2014 ident: 10.1016/j.molstruc.2021.132014_bib0005 article-title: Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material publication-title: Biomed. Res. Int. doi: 10.1155/2014/205636 – volume: 109 start-page: 4947 year: 2005 ident: 10.1016/j.molstruc.2021.132014_bib0006 article-title: Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity publication-title: J. Phys. Chem. B doi: 10.1021/jp044771r – volume: 253 start-page: 105 year: 2008 ident: 10.1016/j.molstruc.2021.132014_bib0042 article-title: Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications publication-title: J. Catal. doi: 10.1016/j.jcat.2007.10.014 – volume: 61 start-page: 79 year: 2007 ident: 10.1016/j.molstruc.2021.132014_bib0065 article-title: Synthesis and optical properties of TiO2 nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2006.04.010 – volume: 2013 year: 2013 ident: 10.1016/j.molstruc.2021.132014_bib0048 article-title: Synthesis, characterization, and photocatalysis of well-dispersible phase-pure anatase TiO2 nanoparticles publication-title: Int. J. Photoenergy doi: 10.1155/2013/726872 – ident: 10.1016/j.molstruc.2021.132014_bib0040 doi: 10.1007/s00339-011-6749-6 – volume: 11 start-page: 2227 year: 2018 ident: 10.1016/j.molstruc.2021.132014_bib0041 article-title: Effect of the preparation method (sol-gel or hydrothermal) and conditions on the TiO2 properties and activity for propene oxidation publication-title: Materials (Basel) doi: 10.3390/ma11112227 – volume: 32 start-page: 1511 year: 2020 ident: 10.1016/j.molstruc.2021.132014_bib0039 article-title: Transformation from anatase to rutile titania using hydrothermal method: investigation of morphology and thermal stability publication-title: Sensors Mater. doi: 10.18494/SAM.2020.2649 – volume: 203 start-page: 82 year: 2001 ident: 10.1016/j.molstruc.2021.132014_bib0045 article-title: Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases publication-title: J. Catal. doi: 10.1006/jcat.2001.3316 – volume: 111 start-page: 96 year: 2007 ident: 10.1016/j.molstruc.2021.132014_bib0057 article-title: Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition publication-title: J. Phys. Chem. C doi: 10.1021/jp0618173 – volume: 17 start-page: 409 year: 2010 ident: 10.1016/j.molstruc.2021.132014_bib0063 article-title: Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol-gel technique publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2009.09.003 – start-page: 607 year: 2010 ident: 10.1016/j.molstruc.2021.132014_bib0067 article-title: Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-010-0893-7 – volume: 13 start-page: 2556 year: 1998 ident: 10.1016/j.molstruc.2021.132014_bib0060 article-title: Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders publication-title: J. Mater. Res. doi: 10.1557/JMR.1998.0356 – start-page: 855 year: 2011 ident: 10.1016/j.molstruc.2021.132014_bib0026 article-title: Review of the anatase to rutile phase transformation publication-title: J. Mater. Sci. p. doi: 10.1007/s10853-010-5113-0 – year: 2017 ident: 10.1016/j.molstruc.2021.132014_bib0028 article-title: Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.molstruc.2021.132014_bib0049 article-title: Acidic peptizing agent effect on anatase-rutile ratio and photocatalytic performance of TiO2 nanoparticles publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2465-x |
SSID | ssj0001101 |
Score | 2.377888 |
Snippet | •Multiphase titanium dioxide (TiO2) nanoparticles were successfully synthesized using the hydrothermal method.•Investigation on structural, morphological, and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 132014 |
SubjectTerms | Absorption Annealing Hydrothermal Impurities and bandgap Morphology Nanoparticles Porosity |
Title | Investigation on structural, morphological, and optical studies of multiphase titanium dioxide nanoparticles |
URI | https://dx.doi.org/10.1016/j.molstruc.2021.132014 |
Volume | 1251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qi-hFtCrWj7IHj02b7GaT7LEUS1XsqUJvYZNNMKXdFFrBk7_d2XyUCkIPhlw2yUB4s8zMLvPeAjwq6mGRKl3L9WNuuZGfWiLxuRVLOwo8LFFUwXJ9m3qTd_dlzucNGNVcGNNWWcX-MqYX0bp6MqjQHKyzzHB8ze6FVyxaDCHyCFqUCY83oTV8fp1MdwEZM5xTi4Ybgz2i8KK_ypeFUisuFanTN4Rix_07R-3lnfE5nFUFIxmW_3QBjUS34WRUn9PWhuOiiTPeXMJyTzQj1wTvUh3WKGv0yCpHSOtQ1yNSK5Kvi51ssimbCUmekrLB8ANzGzH0M519rojK8q9MJURLjUvsqpPuCmbjp9loYlWnKVgxc-jWioXybB8dhkM_ClQqHOr7CZVKxIxGNJFphNFGoOckFTiy7VRyJqXgbsQYu4amznVyAySwJfUQaJlyFy8eSCYdL6Asxc-E4h3gNXxhXCmNmwMvlmHdUrYIa9hDA3tYwt6Bwc5uXWptHLQQtXfCX7MmxIRwwPb2H7Z3cErNbDK9aPwemvg-ecDiZBt14aj_7XSrKfgDXqrmig |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qRepFfGJ97sFj0ya72U32KMVStfVUobewySaY0iaFVvDkb3c2D60g9GDIZcMOhJllZnb5vm8B7jQV2KQq13K9iFtu6CWWjD1uRcoOfYEtii5YruMXMXx1n6Z82oB-zYUxsMoq95c5vcjW1Zde5c3eMk0Nx9ecXohi02IIkTuw63LmGVxf9_MH54H1zaklw830DZrwrLvI54VOK24UqdM1dGLH_btCbVSdwSEcVO0iuS__6AgacXYMrX59S9sx7BUQzmh1AvMNyYw8I_iW2rBGV6NDFjk6tE50HaIyTfJlcY5NViWUkOQJKeGFb1jZiCGfZen7gug0_0h1TDKV4Qa7wtGdwmTwMOkPreouBStiDl1bkdTC9jBcOPRCXyfSoZ4XU6VlxGhIY5WEmGskxk1RiSPbThRnSknuhoyxM2hmeRafA_FtRYUUXCXcxYf7iilH-JQlOE1q3gZeuy-IKp1xc93FPKgBZbOgdntg3B6Ubm9D79tuWSptbLWQdXSCX2smwHKwxfbiH7a30BpOxqNg9PjyfAn71Kwsg0rjV9DEufE1tinr8KZYhl9VvudV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+structural%2C+morphological%2C+and+optical+studies+of+multiphase+titanium+dioxide+nanoparticles&rft.jtitle=Journal+of+molecular+structure&rft.au=Lekesi%2C+L.P.&rft.au=Motaung%2C+T.E.&rft.au=Motloung%2C+S.V.&rft.au=Koao%2C+L.F.&rft.date=2022-03-05&rft.issn=0022-2860&rft.volume=1251&rft.spage=132014&rft_id=info:doi/10.1016%2Fj.molstruc.2021.132014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molstruc_2021_132014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2860&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2860&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2860&client=summon |