Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model
The performance of lithium-ion batteries degrades over time. Evaluating the performance degradation for lithium-ion batteries is essential to ensure the operational reliability and reduces the risk of host-system downtime. The battery capacity that is obtained by completely charging and discharging...
Saved in:
Published in | Microelectronics and reliability Vol. 114; p. 113857 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of lithium-ion batteries degrades over time. Evaluating the performance degradation for lithium-ion batteries is essential to ensure the operational reliability and reduces the risk of host-system downtime. The battery capacity that is obtained by completely charging and discharging a battery cell, directly reflects the performance of a lithium-ion battery. But in practical applications, the battery is dynamically charged and discharged. This makes it difficult to measure the actual capacity and further evaluate battery performance degradation to ensure the battery operating safety. To address this challenging issue, this paper proposes a performance degradation evaluation model by estimating the battery actual capacity in dynamic operating conditions. A health indicator (HI) is extracted from the measurable parameters to reflect the battery performance degradation. A battery digital twin model that describes the relationship between the cell voltage and the cell state-of-charge (SOC) are modelled by the long short-term memory (LSTM) algorithm, which takes the HI as a temporal measurement. The battery actual capacity can be obtained by virtually completely discharging this digital twin model. The experimental results illustrate the potential of the proposed method applying in dynamic operating conditions.
•A deep learning-based lithium-ion battery digital twin model is proposed.•The battery capacity test can be validated virtually in this digital twin model.•Battery degradation is evaluated based on partially discharge process. |
---|---|
AbstractList | The performance of lithium-ion batteries degrades over time. Evaluating the performance degradation for lithium-ion batteries is essential to ensure the operational reliability and reduces the risk of host-system downtime. The battery capacity that is obtained by completely charging and discharging a battery cell, directly reflects the performance of a lithium-ion battery. But in practical applications, the battery is dynamically charged and discharged. This makes it difficult to measure the actual capacity and further evaluate battery performance degradation to ensure the battery operating safety. To address this challenging issue, this paper proposes a performance degradation evaluation model by estimating the battery actual capacity in dynamic operating conditions. A health indicator (HI) is extracted from the measurable parameters to reflect the battery performance degradation. A battery digital twin model that describes the relationship between the cell voltage and the cell state-of-charge (SOC) are modelled by the long short-term memory (LSTM) algorithm, which takes the HI as a temporal measurement. The battery actual capacity can be obtained by virtually completely discharging this digital twin model. The experimental results illustrate the potential of the proposed method applying in dynamic operating conditions.
•A deep learning-based lithium-ion battery digital twin model is proposed.•The battery capacity test can be validated virtually in this digital twin model.•Battery degradation is evaluated based on partially discharge process. |
ArticleNumber | 113857 |
Author | Qu, X. Song, Y. Cui, X. Liu, D. Peng, Y. |
Author_xml | – sequence: 1 givenname: X. surname: Qu fullname: Qu, X. organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 2 givenname: Y. surname: Song fullname: Song, Y. email: songyuchen@hit.edu.cn organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 3 givenname: D. surname: Liu fullname: Liu, D. email: liudatong@hit.edu.cn organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 4 givenname: X. surname: Cui fullname: Cui, X. organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 5 givenname: Y. surname: Peng fullname: Peng, Y. organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China |
BookMark | eNqFkM9KAzEQxoNUsK2-guQFtibZ3WQFD0rxHxS8KHgLaSZbU3aTkqSVvr1ZVi9eepphZr4v-X4zNHHeGYSuKVlQQvnNdtFbHXww3YIRloe0bGpxhqa0Eay4rejnBE0JYbxgglYXaBbjlhAiCKVTlFY2fdl9X1jv8FqlZMIR70xofeiV0waD2QQFKg17c1Ddfmytw3B0Kr-MfT7PQ7fB2juwwzpmq2gA50OFwW5sUh1O31nUezDdJTpvVRfN1W-do4-nx_flS7F6e35dPqwKXVKWCp3_yCohKKk1ZaJpGOclQK2oaWBdQgWCVKopuYC25i3JcXmreb0Wa8jZeTlHfPTNeGIMppW7YHsVjpISObCTW_nHTg7s5MguC-_-CXWOMCRLQdnutPx-lJsc7mBNkFFbk2mCDUYnCd6esvgBs_aT3g |
CitedBy_id | crossref_primary_10_3390_batteries7040078 crossref_primary_10_1016_j_microrel_2022_114500 crossref_primary_10_1016_j_ensm_2024_103531 crossref_primary_10_1016_j_enconman_2024_119223 crossref_primary_10_1016_j_jpowsour_2024_234464 crossref_primary_10_1016_j_energy_2023_127086 crossref_primary_10_1109_TII_2022_3230698 crossref_primary_10_1016_j_seta_2022_102837 crossref_primary_10_1016_j_rser_2021_110801 crossref_primary_10_1007_s41918_024_00233_w crossref_primary_10_1016_j_apenergy_2024_124766 crossref_primary_10_1016_j_apenergy_2022_118795 crossref_primary_10_3390_en15165889 crossref_primary_10_1016_j_est_2023_107203 crossref_primary_10_1016_j_rser_2023_113280 crossref_primary_10_1149_1945_7111_ac95d2 crossref_primary_10_3390_en17225671 crossref_primary_10_1016_j_nxener_2024_100202 crossref_primary_10_31875_2409_9694_2021_08_4 crossref_primary_10_3390_en15196967 crossref_primary_10_1016_j_epsr_2024_110698 crossref_primary_10_1007_s00170_022_09632_z crossref_primary_10_1016_j_compchemeng_2024_108591 crossref_primary_10_1007_s11227_024_06396_z crossref_primary_10_1016_j_geits_2024_100162 crossref_primary_10_3390_app11136002 crossref_primary_10_1016_j_est_2024_113495 crossref_primary_10_1038_s41467_023_43138_w crossref_primary_10_1016_j_ecmx_2025_100949 crossref_primary_10_1049_cim2_12028 crossref_primary_10_1049_stg2_12101 crossref_primary_10_3390_app132112059 crossref_primary_10_3390_machines13030175 crossref_primary_10_1016_j_energy_2023_129681 crossref_primary_10_1016_j_joule_2023_05_005 crossref_primary_10_1016_j_iotcps_2023_04_004 crossref_primary_10_1016_j_gee_2021_08_003 crossref_primary_10_1016_j_asoc_2023_110263 crossref_primary_10_23919_CHAIN_2024_100002 crossref_primary_10_1109_ACCESS_2022_3225093 crossref_primary_10_3390_ma15093331 crossref_primary_10_1016_j_geits_2022_100014 crossref_primary_10_1021_acsami_4c10285 crossref_primary_10_1109_JSYST_2023_3238287 crossref_primary_10_3390_en16124540 crossref_primary_10_1109_TIM_2025_3544698 crossref_primary_10_1016_j_jtte_2024_04_004 crossref_primary_10_1016_j_est_2022_106347 crossref_primary_10_3390_machines11070678 crossref_primary_10_1186_s10033_021_00577_0 crossref_primary_10_1016_j_ensm_2021_05_010 crossref_primary_10_1016_j_est_2024_112029 crossref_primary_10_3390_math11234865 crossref_primary_10_1016_j_enss_2024_09_002 crossref_primary_10_1016_j_ensm_2024_103417 crossref_primary_10_1149_1945_7111_ac41f0 crossref_primary_10_1016_j_scs_2024_105479 crossref_primary_10_1109_ACCESS_2024_3413075 crossref_primary_10_1109_ACCESS_2025_3531833 |
Cites_doi | 10.1016/j.microrel.2017.12.036 10.1109/TVT.2018.2864688 10.1016/j.microrel.2017.06.045 10.1016/j.energy.2019.116467 10.1109/TR.2014.2299152 10.1016/j.microrel.2019.06.056 10.1016/j.cja.2017.11.010 10.1109/TII.2018.2873186 10.1016/j.apenergy.2019.114408 10.1016/j.jpowsour.2017.04.084 10.1109/TIM.2019.2935576 10.1504/IJPD.2005.006669 10.1016/j.apenergy.2019.113900 10.1016/j.jclepro.2018.06.182 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.microrel.2020.113857 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-941X |
ExternalDocumentID | 10_1016_j_microrel_2020_113857 S0026271420304765 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-c0702477105c127882663dd5a1e8db3d4d704a8367df56f08726fc65b7bd18763 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Tue Jul 01 01:27:33 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Fri Feb 23 02:46:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-c0702477105c127882663dd5a1e8db3d4d704a8367df56f08726fc65b7bd18763 |
ParticipantIDs | crossref_primary_10_1016_j_microrel_2020_113857 crossref_citationtrail_10_1016_j_microrel_2020_113857 elsevier_sciencedirect_doi_10_1016_j_microrel_2020_113857 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Miao, Zhang, Liu (bb0030) 2018; 81 Liao, Kottig (bb0040) 2014; 63 Li, Yuan, Li, Wang (bb0050) 2020; 190 Tao, Zhang, Liu, Nee (bb0065) 2019; 15 Gao, Jiang, Zhang, Zhang, Ma, Jiang (bb0025) 2017; 356 Grieves (bb0060) 2005; 2 Xiong, Zhang, Wang, He, Peng, Pecht (bb0005) 2019; 68 Hou, Song (bb0010) 2020; 257 Maures, Zhang, Martin, Delétage, Vinassa, Briat (bb0045) 2019; 100-101 Song, Liu, Hou, Yu, Peng (bb0020) 2018; 31 Song, Liu, Yang, Peng (bb0015) 2017; 75 Wang, Liu, Peng, Peng (bb0070) 2019; 69 Song, Liu, Liao, Peng (bb0035) 2020; 261 Liu, Song, Li, Liao, Peng (bb0055) 2018; 199 Song (10.1016/j.microrel.2020.113857_bb0020) 2018; 31 Song (10.1016/j.microrel.2020.113857_bb0035) 2020; 261 Xiong (10.1016/j.microrel.2020.113857_bb0005) 2019; 68 Wang (10.1016/j.microrel.2020.113857_bb0070) 2019; 69 Li (10.1016/j.microrel.2020.113857_bb0050) 2020; 190 Zhang (10.1016/j.microrel.2020.113857_bb0030) 2018; 81 Gao (10.1016/j.microrel.2020.113857_bb0025) 2017; 356 Tao (10.1016/j.microrel.2020.113857_bb0065) 2019; 15 Song (10.1016/j.microrel.2020.113857_bb0015) 2017; 75 Grieves (10.1016/j.microrel.2020.113857_bb0060) 2005; 2 Maures (10.1016/j.microrel.2020.113857_bb0045) 2019; 100-101 Hou (10.1016/j.microrel.2020.113857_bb0010) 2020; 257 Liu (10.1016/j.microrel.2020.113857_bb0055) 2018; 199 Liao (10.1016/j.microrel.2020.113857_bb0040) 2014; 63 |
References_xml | – volume: 100-101 start-page: 113364 year: 2019 ident: bb0045 article-title: Impact of temperature on calendar ageing of lithium-ion battery using incremental capacity analysis publication-title: Microelectron. Reliab. – volume: 63 start-page: 191 year: 2014 end-page: 207 ident: bb0040 article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction publication-title: IEEE T. Reliab. – volume: 190 start-page: 116467 year: 2020 ident: bb0050 article-title: State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression publication-title: Energy – volume: 2 start-page: 71 year: 2005 end-page: 84 ident: bb0060 article-title: Product lifecycle management: the new paradigm for enterprises publication-title: Int. J. Prod. Dev. – volume: 75 start-page: 142 year: 2017 end-page: 453 ident: bb0015 article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery publication-title: Microelectron. Reliab. – volume: 15 start-page: 2405 year: 2019 end-page: 2415 ident: bb0065 article-title: Digital twin in industry: state-of-the-art publication-title: IEEE T. Ind. Inform. – volume: 356 start-page: 103 year: 2017 end-page: 114 ident: bb0025 article-title: Lithium-ion battery aging mechanisms and life model under different charging stresses publication-title: J. Power Sources – volume: 68 start-page: 4110 year: 2019 end-page: 4121 ident: bb0005 article-title: Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles publication-title: IEEE T. Veh. Technol. – volume: 257 start-page: 113900 year: 2020 ident: bb0010 article-title: A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity publication-title: Appl. Energy – volume: 81 start-page: 288 year: 2018 end-page: 298 ident: bb0030 article-title: An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction publication-title: Microelectron. Reliab. – volume: 69 start-page: 3527 year: 2019 end-page: 3537 ident: bb0070 article-title: Multivariate regression-based fault detection and recovery of UAV flight data publication-title: IEEE T. Instrum. Meas. – volume: 261 start-page: 114408 year: 2020 ident: bb0035 article-title: A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries publication-title: Appl. Energy – volume: 199 start-page: 1050 year: 2018 end-page: 1065 ident: bb0055 article-title: On-line life cycle health assessment for lithium-ion battery in electric vehicles publication-title: J. Clean. Prod. – volume: 31 start-page: 31 year: 2018 end-page: 40 ident: bb0020 article-title: Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm publication-title: Chin. J. Aeronaut. – volume: 81 start-page: 288 year: 2018 ident: 10.1016/j.microrel.2020.113857_bb0030 article-title: An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.12.036 – volume: 68 start-page: 4110 issue: 5 year: 2019 ident: 10.1016/j.microrel.2020.113857_bb0005 article-title: Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles publication-title: IEEE T. Veh. Technol. doi: 10.1109/TVT.2018.2864688 – volume: 75 start-page: 142 year: 2017 ident: 10.1016/j.microrel.2020.113857_bb0015 article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2017.06.045 – volume: 190 start-page: 116467 issue: 1 year: 2020 ident: 10.1016/j.microrel.2020.113857_bb0050 article-title: State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression publication-title: Energy doi: 10.1016/j.energy.2019.116467 – volume: 63 start-page: 191 issue: 1 year: 2014 ident: 10.1016/j.microrel.2020.113857_bb0040 article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction publication-title: IEEE T. Reliab. doi: 10.1109/TR.2014.2299152 – volume: 100-101 start-page: 113364 year: 2019 ident: 10.1016/j.microrel.2020.113857_bb0045 article-title: Impact of temperature on calendar ageing of lithium-ion battery using incremental capacity analysis publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2019.06.056 – volume: 31 start-page: 31 issue: 1 year: 2018 ident: 10.1016/j.microrel.2020.113857_bb0020 article-title: Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2017.11.010 – volume: 15 start-page: 2405 issue: 4 year: 2019 ident: 10.1016/j.microrel.2020.113857_bb0065 article-title: Digital twin in industry: state-of-the-art publication-title: IEEE T. Ind. Inform. doi: 10.1109/TII.2018.2873186 – volume: 261 start-page: 114408 issue: 1 year: 2020 ident: 10.1016/j.microrel.2020.113857_bb0035 article-title: A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114408 – volume: 356 start-page: 103 issue: 15 year: 2017 ident: 10.1016/j.microrel.2020.113857_bb0025 article-title: Lithium-ion battery aging mechanisms and life model under different charging stresses publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.084 – volume: 69 start-page: 3527 issue: 6 year: 2019 ident: 10.1016/j.microrel.2020.113857_bb0070 article-title: Multivariate regression-based fault detection and recovery of UAV flight data publication-title: IEEE T. Instrum. Meas. doi: 10.1109/TIM.2019.2935576 – volume: 2 start-page: 71 issue: 1–2 year: 2005 ident: 10.1016/j.microrel.2020.113857_bb0060 article-title: Product lifecycle management: the new paradigm for enterprises publication-title: Int. J. Prod. Dev. doi: 10.1504/IJPD.2005.006669 – volume: 257 start-page: 113900 issue: 1 year: 2020 ident: 10.1016/j.microrel.2020.113857_bb0010 article-title: A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113900 – volume: 199 start-page: 1050 issue: 20 year: 2018 ident: 10.1016/j.microrel.2020.113857_bb0055 article-title: On-line life cycle health assessment for lithium-ion battery in electric vehicles publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.182 |
SSID | ssj0007011 |
Score | 2.5560617 |
Snippet | The performance of lithium-ion batteries degrades over time. Evaluating the performance degradation for lithium-ion batteries is essential to ensure the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 113857 |
Title | Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model |
URI | https://dx.doi.org/10.1016/j.microrel.2020.113857 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KXvQgfmL9KHvwmra72eymx1IsVbEnC72F7G6iKTYtJUW8-NudySa2gtCDp5CwE8LLsjPDzLxHyF2chtg8pTwTCuuJFOu7odFeyk3XxGEvlmUF_3ksRxPxOA2mDTKoZ2GwrbI6-92ZXp7W1ZNOhWZnmWU448slV0xwrO4piYPmAq6wp9tfmzYP1WVONY9LD1dvTQnP2nNselslWILgpbxJiG7qLwe15XSGx-SoihZp333QCWkk-Sk53OIQPCOQTRZv2XruAcBUl2yZn3S5GQegFukgnHIS3XB70yyn1qnR08USmZXhbRSSY-t6uCi6N0thYUxt9orSIrT4AKNSOuecTIb3L4ORV0kpeMZnvPAM4MCFgnAiMIxD2gt-2bc2iFkSWu1bYVVXxKEvlU0DmXZDxWVqZKCVtgxJ6y7IXr7Ik0tCE4PptIaFcSyMYroHUZvQfgoWirFekwQ1fpGpeMZR7uI9qhvKZlGNe4S4Rw73Jun82C0d08ZOi179e6JfeyYCd7DD9uofttfkAO_cROIN2StW6-QWQpNCt8q91yL7_Yen0fgbAFbldw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOACHqqWgLm2pD_QYdu04dvbAoWpBy_MEErfgR0KDILtaskJ76Z_qH2QmD3aRkDggronHssajGY9m5vsAdkwWU_OUDlwsfSAzqu_GzgaZcD1n4r5RVQX_9EwNLuTRZXS5AP_bWRhqq2x8f-3TK2_dfOk22uyO8pxmfIUSmktB1T2t2s7K43T6gHnb_d7hH7zkn0Ic7J__HgQNtUDgQi7KwKGlC6kxvEaOC0wDMU6F3keGp7G3oZde96SJQ6V9FqmsF2uhMqciq63nBOKG-y7CskR3QbQJu_9mfSW6x2uaPqECOt7cWPLN7h112Y1TqnmIik8lprj4UkSci3IHH-FD8zxlv2oNfIKFtFiHtTnQws-A6Wv5N5_cBXijzFbwnFM2ms0fME_4EzVVE5uBibO8YH5aGDwbG44Iyhl3Y5iN-7ppjFE89QwXGubza-IyYeUDClVcPRtw8S4K3oSlYlikX4CljvJ3iwuNkU5z28dnorRhhhKa834HolZ_iWuAzYlf4zZpO9huklbvCek9qfXege6T3KiG9nhVot9eT_LMSBOMP6_Ibr1B9gesDM5PT5KTw7Pjr7BKf-pxyG-wVI4n6Xd8F5V2u7JDBlfvbfiPzx4fGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium-ion+battery+performance+degradation+evaluation+in+dynamic+operating+conditions+based+on+a+digital+twin+model&rft.jtitle=Microelectronics+and+reliability&rft.au=Qu%2C+X.&rft.au=Song%2C+Y.&rft.au=Liu%2C+D.&rft.au=Cui%2C+X.&rft.date=2020-11-01&rft.issn=0026-2714&rft.volume=114&rft.spage=113857&rft_id=info:doi/10.1016%2Fj.microrel.2020.113857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2020_113857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |