Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model

The performance of lithium-ion batteries degrades over time. Evaluating the performance degradation for lithium-ion batteries is essential to ensure the operational reliability and reduces the risk of host-system downtime. The battery capacity that is obtained by completely charging and discharging...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 114; p. 113857
Main Authors Qu, X., Song, Y., Liu, D., Cui, X., Peng, Y.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Online AccessGet full text

Cover

Loading…
Abstract The performance of lithium-ion batteries degrades over time. Evaluating the performance degradation for lithium-ion batteries is essential to ensure the operational reliability and reduces the risk of host-system downtime. The battery capacity that is obtained by completely charging and discharging a battery cell, directly reflects the performance of a lithium-ion battery. But in practical applications, the battery is dynamically charged and discharged. This makes it difficult to measure the actual capacity and further evaluate battery performance degradation to ensure the battery operating safety. To address this challenging issue, this paper proposes a performance degradation evaluation model by estimating the battery actual capacity in dynamic operating conditions. A health indicator (HI) is extracted from the measurable parameters to reflect the battery performance degradation. A battery digital twin model that describes the relationship between the cell voltage and the cell state-of-charge (SOC) are modelled by the long short-term memory (LSTM) algorithm, which takes the HI as a temporal measurement. The battery actual capacity can be obtained by virtually completely discharging this digital twin model. The experimental results illustrate the potential of the proposed method applying in dynamic operating conditions. •A deep learning-based lithium-ion battery digital twin model is proposed.•The battery capacity test can be validated virtually in this digital twin model.•Battery degradation is evaluated based on partially discharge process.
AbstractList The performance of lithium-ion batteries degrades over time. Evaluating the performance degradation for lithium-ion batteries is essential to ensure the operational reliability and reduces the risk of host-system downtime. The battery capacity that is obtained by completely charging and discharging a battery cell, directly reflects the performance of a lithium-ion battery. But in practical applications, the battery is dynamically charged and discharged. This makes it difficult to measure the actual capacity and further evaluate battery performance degradation to ensure the battery operating safety. To address this challenging issue, this paper proposes a performance degradation evaluation model by estimating the battery actual capacity in dynamic operating conditions. A health indicator (HI) is extracted from the measurable parameters to reflect the battery performance degradation. A battery digital twin model that describes the relationship between the cell voltage and the cell state-of-charge (SOC) are modelled by the long short-term memory (LSTM) algorithm, which takes the HI as a temporal measurement. The battery actual capacity can be obtained by virtually completely discharging this digital twin model. The experimental results illustrate the potential of the proposed method applying in dynamic operating conditions. •A deep learning-based lithium-ion battery digital twin model is proposed.•The battery capacity test can be validated virtually in this digital twin model.•Battery degradation is evaluated based on partially discharge process.
ArticleNumber 113857
Author Qu, X.
Song, Y.
Cui, X.
Liu, D.
Peng, Y.
Author_xml – sequence: 1
  givenname: X.
  surname: Qu
  fullname: Qu, X.
  organization: School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 2
  givenname: Y.
  surname: Song
  fullname: Song, Y.
  email: songyuchen@hit.edu.cn
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 3
  givenname: D.
  surname: Liu
  fullname: Liu, D.
  email: liudatong@hit.edu.cn
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 4
  givenname: X.
  surname: Cui
  fullname: Cui, X.
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 5
  givenname: Y.
  surname: Peng
  fullname: Peng, Y.
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
BookMark eNqFkM9KAzEQxoNUsK2-guQFtibZ3WQFD0rxHxS8KHgLaSZbU3aTkqSVvr1ZVi9eepphZr4v-X4zNHHeGYSuKVlQQvnNdtFbHXww3YIRloe0bGpxhqa0Eay4rejnBE0JYbxgglYXaBbjlhAiCKVTlFY2fdl9X1jv8FqlZMIR70xofeiV0waD2QQFKg17c1Ddfmytw3B0Kr-MfT7PQ7fB2juwwzpmq2gA50OFwW5sUh1O31nUezDdJTpvVRfN1W-do4-nx_flS7F6e35dPqwKXVKWCp3_yCohKKk1ZaJpGOclQK2oaWBdQgWCVKopuYC25i3JcXmreb0Wa8jZeTlHfPTNeGIMppW7YHsVjpISObCTW_nHTg7s5MguC-_-CXWOMCRLQdnutPx-lJsc7mBNkFFbk2mCDUYnCd6esvgBs_aT3g
CitedBy_id crossref_primary_10_3390_batteries7040078
crossref_primary_10_1016_j_microrel_2022_114500
crossref_primary_10_1016_j_ensm_2024_103531
crossref_primary_10_1016_j_enconman_2024_119223
crossref_primary_10_1016_j_jpowsour_2024_234464
crossref_primary_10_1016_j_energy_2023_127086
crossref_primary_10_1109_TII_2022_3230698
crossref_primary_10_1016_j_seta_2022_102837
crossref_primary_10_1016_j_rser_2021_110801
crossref_primary_10_1007_s41918_024_00233_w
crossref_primary_10_1016_j_apenergy_2024_124766
crossref_primary_10_1016_j_apenergy_2022_118795
crossref_primary_10_3390_en15165889
crossref_primary_10_1016_j_est_2023_107203
crossref_primary_10_1016_j_rser_2023_113280
crossref_primary_10_1149_1945_7111_ac95d2
crossref_primary_10_3390_en17225671
crossref_primary_10_1016_j_nxener_2024_100202
crossref_primary_10_31875_2409_9694_2021_08_4
crossref_primary_10_3390_en15196967
crossref_primary_10_1016_j_epsr_2024_110698
crossref_primary_10_1007_s00170_022_09632_z
crossref_primary_10_1016_j_compchemeng_2024_108591
crossref_primary_10_1007_s11227_024_06396_z
crossref_primary_10_1016_j_geits_2024_100162
crossref_primary_10_3390_app11136002
crossref_primary_10_1016_j_est_2024_113495
crossref_primary_10_1038_s41467_023_43138_w
crossref_primary_10_1016_j_ecmx_2025_100949
crossref_primary_10_1049_cim2_12028
crossref_primary_10_1049_stg2_12101
crossref_primary_10_3390_app132112059
crossref_primary_10_3390_machines13030175
crossref_primary_10_1016_j_energy_2023_129681
crossref_primary_10_1016_j_joule_2023_05_005
crossref_primary_10_1016_j_iotcps_2023_04_004
crossref_primary_10_1016_j_gee_2021_08_003
crossref_primary_10_1016_j_asoc_2023_110263
crossref_primary_10_23919_CHAIN_2024_100002
crossref_primary_10_1109_ACCESS_2022_3225093
crossref_primary_10_3390_ma15093331
crossref_primary_10_1016_j_geits_2022_100014
crossref_primary_10_1021_acsami_4c10285
crossref_primary_10_1109_JSYST_2023_3238287
crossref_primary_10_3390_en16124540
crossref_primary_10_1109_TIM_2025_3544698
crossref_primary_10_1016_j_jtte_2024_04_004
crossref_primary_10_1016_j_est_2022_106347
crossref_primary_10_3390_machines11070678
crossref_primary_10_1186_s10033_021_00577_0
crossref_primary_10_1016_j_ensm_2021_05_010
crossref_primary_10_1016_j_est_2024_112029
crossref_primary_10_3390_math11234865
crossref_primary_10_1016_j_enss_2024_09_002
crossref_primary_10_1016_j_ensm_2024_103417
crossref_primary_10_1149_1945_7111_ac41f0
crossref_primary_10_1016_j_scs_2024_105479
crossref_primary_10_1109_ACCESS_2024_3413075
crossref_primary_10_1109_ACCESS_2025_3531833
Cites_doi 10.1016/j.microrel.2017.12.036
10.1109/TVT.2018.2864688
10.1016/j.microrel.2017.06.045
10.1016/j.energy.2019.116467
10.1109/TR.2014.2299152
10.1016/j.microrel.2019.06.056
10.1016/j.cja.2017.11.010
10.1109/TII.2018.2873186
10.1016/j.apenergy.2019.114408
10.1016/j.jpowsour.2017.04.084
10.1109/TIM.2019.2935576
10.1504/IJPD.2005.006669
10.1016/j.apenergy.2019.113900
10.1016/j.jclepro.2018.06.182
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.microrel.2020.113857
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-941X
ExternalDocumentID 10_1016_j_microrel_2020_113857
S0026271420304765
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c312t-c0702477105c127882663dd5a1e8db3d4d704a8367df56f08726fc65b7bd18763
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Tue Jul 01 01:27:33 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Fri Feb 23 02:46:05 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-c0702477105c127882663dd5a1e8db3d4d704a8367df56f08726fc65b7bd18763
ParticipantIDs crossref_primary_10_1016_j_microrel_2020_113857
crossref_citationtrail_10_1016_j_microrel_2020_113857
elsevier_sciencedirect_doi_10_1016_j_microrel_2020_113857
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Microelectronics and reliability
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Miao, Zhang, Liu (bb0030) 2018; 81
Liao, Kottig (bb0040) 2014; 63
Li, Yuan, Li, Wang (bb0050) 2020; 190
Tao, Zhang, Liu, Nee (bb0065) 2019; 15
Gao, Jiang, Zhang, Zhang, Ma, Jiang (bb0025) 2017; 356
Grieves (bb0060) 2005; 2
Xiong, Zhang, Wang, He, Peng, Pecht (bb0005) 2019; 68
Hou, Song (bb0010) 2020; 257
Maures, Zhang, Martin, Delétage, Vinassa, Briat (bb0045) 2019; 100-101
Song, Liu, Hou, Yu, Peng (bb0020) 2018; 31
Song, Liu, Yang, Peng (bb0015) 2017; 75
Wang, Liu, Peng, Peng (bb0070) 2019; 69
Song, Liu, Liao, Peng (bb0035) 2020; 261
Liu, Song, Li, Liao, Peng (bb0055) 2018; 199
Song (10.1016/j.microrel.2020.113857_bb0020) 2018; 31
Song (10.1016/j.microrel.2020.113857_bb0035) 2020; 261
Xiong (10.1016/j.microrel.2020.113857_bb0005) 2019; 68
Wang (10.1016/j.microrel.2020.113857_bb0070) 2019; 69
Li (10.1016/j.microrel.2020.113857_bb0050) 2020; 190
Zhang (10.1016/j.microrel.2020.113857_bb0030) 2018; 81
Gao (10.1016/j.microrel.2020.113857_bb0025) 2017; 356
Tao (10.1016/j.microrel.2020.113857_bb0065) 2019; 15
Song (10.1016/j.microrel.2020.113857_bb0015) 2017; 75
Grieves (10.1016/j.microrel.2020.113857_bb0060) 2005; 2
Maures (10.1016/j.microrel.2020.113857_bb0045) 2019; 100-101
Hou (10.1016/j.microrel.2020.113857_bb0010) 2020; 257
Liu (10.1016/j.microrel.2020.113857_bb0055) 2018; 199
Liao (10.1016/j.microrel.2020.113857_bb0040) 2014; 63
References_xml – volume: 100-101
  start-page: 113364
  year: 2019
  ident: bb0045
  article-title: Impact of temperature on calendar ageing of lithium-ion battery using incremental capacity analysis
  publication-title: Microelectron. Reliab.
– volume: 63
  start-page: 191
  year: 2014
  end-page: 207
  ident: bb0040
  article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction
  publication-title: IEEE T. Reliab.
– volume: 190
  start-page: 116467
  year: 2020
  ident: bb0050
  article-title: State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression
  publication-title: Energy
– volume: 2
  start-page: 71
  year: 2005
  end-page: 84
  ident: bb0060
  article-title: Product lifecycle management: the new paradigm for enterprises
  publication-title: Int. J. Prod. Dev.
– volume: 75
  start-page: 142
  year: 2017
  end-page: 453
  ident: bb0015
  article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
  publication-title: Microelectron. Reliab.
– volume: 15
  start-page: 2405
  year: 2019
  end-page: 2415
  ident: bb0065
  article-title: Digital twin in industry: state-of-the-art
  publication-title: IEEE T. Ind. Inform.
– volume: 356
  start-page: 103
  year: 2017
  end-page: 114
  ident: bb0025
  article-title: Lithium-ion battery aging mechanisms and life model under different charging stresses
  publication-title: J. Power Sources
– volume: 68
  start-page: 4110
  year: 2019
  end-page: 4121
  ident: bb0005
  article-title: Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles
  publication-title: IEEE T. Veh. Technol.
– volume: 257
  start-page: 113900
  year: 2020
  ident: bb0010
  article-title: A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity
  publication-title: Appl. Energy
– volume: 81
  start-page: 288
  year: 2018
  end-page: 298
  ident: bb0030
  article-title: An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction
  publication-title: Microelectron. Reliab.
– volume: 69
  start-page: 3527
  year: 2019
  end-page: 3537
  ident: bb0070
  article-title: Multivariate regression-based fault detection and recovery of UAV flight data
  publication-title: IEEE T. Instrum. Meas.
– volume: 261
  start-page: 114408
  year: 2020
  ident: bb0035
  article-title: A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries
  publication-title: Appl. Energy
– volume: 199
  start-page: 1050
  year: 2018
  end-page: 1065
  ident: bb0055
  article-title: On-line life cycle health assessment for lithium-ion battery in electric vehicles
  publication-title: J. Clean. Prod.
– volume: 31
  start-page: 31
  year: 2018
  end-page: 40
  ident: bb0020
  article-title: Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm
  publication-title: Chin. J. Aeronaut.
– volume: 81
  start-page: 288
  year: 2018
  ident: 10.1016/j.microrel.2020.113857_bb0030
  article-title: An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.12.036
– volume: 68
  start-page: 4110
  issue: 5
  year: 2019
  ident: 10.1016/j.microrel.2020.113857_bb0005
  article-title: Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles
  publication-title: IEEE T. Veh. Technol.
  doi: 10.1109/TVT.2018.2864688
– volume: 75
  start-page: 142
  year: 2017
  ident: 10.1016/j.microrel.2020.113857_bb0015
  article-title: Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.06.045
– volume: 190
  start-page: 116467
  issue: 1
  year: 2020
  ident: 10.1016/j.microrel.2020.113857_bb0050
  article-title: State of health estimation for Li-ion battery using incremental capacity analysis and Gaussian process regression
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116467
– volume: 63
  start-page: 191
  issue: 1
  year: 2014
  ident: 10.1016/j.microrel.2020.113857_bb0040
  article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction
  publication-title: IEEE T. Reliab.
  doi: 10.1109/TR.2014.2299152
– volume: 100-101
  start-page: 113364
  year: 2019
  ident: 10.1016/j.microrel.2020.113857_bb0045
  article-title: Impact of temperature on calendar ageing of lithium-ion battery using incremental capacity analysis
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2019.06.056
– volume: 31
  start-page: 31
  issue: 1
  year: 2018
  ident: 10.1016/j.microrel.2020.113857_bb0020
  article-title: Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2017.11.010
– volume: 15
  start-page: 2405
  issue: 4
  year: 2019
  ident: 10.1016/j.microrel.2020.113857_bb0065
  article-title: Digital twin in industry: state-of-the-art
  publication-title: IEEE T. Ind. Inform.
  doi: 10.1109/TII.2018.2873186
– volume: 261
  start-page: 114408
  issue: 1
  year: 2020
  ident: 10.1016/j.microrel.2020.113857_bb0035
  article-title: A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114408
– volume: 356
  start-page: 103
  issue: 15
  year: 2017
  ident: 10.1016/j.microrel.2020.113857_bb0025
  article-title: Lithium-ion battery aging mechanisms and life model under different charging stresses
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.084
– volume: 69
  start-page: 3527
  issue: 6
  year: 2019
  ident: 10.1016/j.microrel.2020.113857_bb0070
  article-title: Multivariate regression-based fault detection and recovery of UAV flight data
  publication-title: IEEE T. Instrum. Meas.
  doi: 10.1109/TIM.2019.2935576
– volume: 2
  start-page: 71
  issue: 1–2
  year: 2005
  ident: 10.1016/j.microrel.2020.113857_bb0060
  article-title: Product lifecycle management: the new paradigm for enterprises
  publication-title: Int. J. Prod. Dev.
  doi: 10.1504/IJPD.2005.006669
– volume: 257
  start-page: 113900
  issue: 1
  year: 2020
  ident: 10.1016/j.microrel.2020.113857_bb0010
  article-title: A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113900
– volume: 199
  start-page: 1050
  issue: 20
  year: 2018
  ident: 10.1016/j.microrel.2020.113857_bb0055
  article-title: On-line life cycle health assessment for lithium-ion battery in electric vehicles
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.06.182
SSID ssj0007011
Score 2.5560617
Snippet The performance of lithium-ion batteries degrades over time. Evaluating the performance degradation for lithium-ion batteries is essential to ensure the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113857
Title Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model
URI https://dx.doi.org/10.1016/j.microrel.2020.113857
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KXvQgfmL9KHvwmra72eymx1IsVbEnC72F7G6iKTYtJUW8-NudySa2gtCDp5CwE8LLsjPDzLxHyF2chtg8pTwTCuuJFOu7odFeyk3XxGEvlmUF_3ksRxPxOA2mDTKoZ2GwrbI6-92ZXp7W1ZNOhWZnmWU448slV0xwrO4piYPmAq6wp9tfmzYP1WVONY9LD1dvTQnP2nNselslWILgpbxJiG7qLwe15XSGx-SoihZp333QCWkk-Sk53OIQPCOQTRZv2XruAcBUl2yZn3S5GQegFukgnHIS3XB70yyn1qnR08USmZXhbRSSY-t6uCi6N0thYUxt9orSIrT4AKNSOuecTIb3L4ORV0kpeMZnvPAM4MCFgnAiMIxD2gt-2bc2iFkSWu1bYVVXxKEvlU0DmXZDxWVqZKCVtgxJ6y7IXr7Ik0tCE4PptIaFcSyMYroHUZvQfgoWirFekwQ1fpGpeMZR7uI9qhvKZlGNe4S4Rw73Jun82C0d08ZOi179e6JfeyYCd7DD9uofttfkAO_cROIN2StW6-QWQpNCt8q91yL7_Yen0fgbAFbldw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOACHqqWgLm2pD_QYdu04dvbAoWpBy_MEErfgR0KDILtaskJ76Z_qH2QmD3aRkDggronHssajGY9m5vsAdkwWU_OUDlwsfSAzqu_GzgaZcD1n4r5RVQX_9EwNLuTRZXS5AP_bWRhqq2x8f-3TK2_dfOk22uyO8pxmfIUSmktB1T2t2s7K43T6gHnb_d7hH7zkn0Ic7J__HgQNtUDgQi7KwKGlC6kxvEaOC0wDMU6F3keGp7G3oZde96SJQ6V9FqmsF2uhMqciq63nBOKG-y7CskR3QbQJu_9mfSW6x2uaPqECOt7cWPLN7h112Y1TqnmIik8lprj4UkSci3IHH-FD8zxlv2oNfIKFtFiHtTnQws-A6Wv5N5_cBXijzFbwnFM2ms0fME_4EzVVE5uBibO8YH5aGDwbG44Iyhl3Y5iN-7ppjFE89QwXGubza-IyYeUDClVcPRtw8S4K3oSlYlikX4CljvJ3iwuNkU5z28dnorRhhhKa834HolZ_iWuAzYlf4zZpO9huklbvCek9qfXege6T3KiG9nhVot9eT_LMSBOMP6_Ibr1B9gesDM5PT5KTw7Pjr7BKf-pxyG-wVI4n6Xd8F5V2u7JDBlfvbfiPzx4fGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium-ion+battery+performance+degradation+evaluation+in+dynamic+operating+conditions+based+on+a+digital+twin+model&rft.jtitle=Microelectronics+and+reliability&rft.au=Qu%2C+X.&rft.au=Song%2C+Y.&rft.au=Liu%2C+D.&rft.au=Cui%2C+X.&rft.date=2020-11-01&rft.issn=0026-2714&rft.volume=114&rft.spage=113857&rft_id=info:doi/10.1016%2Fj.microrel.2020.113857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_microrel_2020_113857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon