Sputtering pressure influence on growth morphology, surface roughness, and electrical resistivity for strong anisotropy beryllium film
The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and when the pressure exceeds 0.8 Pa, it gradually descends. The X-ray diffraction analys...
Saved in:
Published in | Chinese physics B Vol. 23; no. 6; pp. 457 - 461 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/23/6/066804 |
Cover
Abstract | The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and when the pressure exceeds 0.8 Pa, it gradually descends. The X-ray diffraction analysis indicates that Be film is of α-Be phase, its surface always reveals the (101) crystal plane possessing the low surface energy. As for the growth morphology of Be film, the surface is mainly characterized by the fibrous grains, while the cross section shows a transition from a columnar grain to a mixed grain consisting of a cone-shaped grain and a columnar grain as the sputtering pressure increases. The large grain fraction decays exponentially from 75.0% to 59.3% with the increase of sputtering pressure p, which can improve the grain size uniformity. The surface roughness increases due to the insufficient atom diffusion, which is comparable to its decrease due to the etching effect at p 〈 0.8 Pa, while it increases drastically at p 〉 0.8 Pa, and this increase is dominated by the atom diffusion. The electrical resistivity values of Be films range from 1.7 μΩ m to 2.7 μΩ m in the range 0.4 Pa-1.2 Pa, which is 50 times larger than the bulk resistivity. |
---|---|
AbstractList | The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and when the pressure exceeds 0.8 Pa, it gradually descends. The X-ray diffraction analysis indicates that Be film is of α-Be phase, its surface always reveals the (101) crystal plane possessing the low surface energy. As for the growth morphology of Be film, the surface is mainly characterized by the fibrous grains, while the cross section shows a transition from a columnar grain to a mixed grain consisting of a cone-shaped grain and a columnar grain as the sputtering pressure increases. The large grain fraction decays exponentially from 75.0% to 59.3% with the increase of sputtering pressure p, which can improve the grain size uniformity. The surface roughness increases due to the insufficient atom diffusion, which is comparable to its decrease due to the etching effect at p 〈 0.8 Pa, while it increases drastically at p 〉 0.8 Pa, and this increase is dominated by the atom diffusion. The electrical resistivity values of Be films range from 1.7 μΩ m to 2.7 μΩ m in the range 0.4 Pa-1.2 Pa, which is 50 times larger than the bulk resistivity. The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and when the pressure exceeds 0.8 Pa, it gradually descends. The X-ray diffraction analysis indicates that Be film is of alpha -Be phase, its surface always reveals the (101) crystal plane possessing the low surface energy. As for the growth morphology of Be film, the surface is mainly characterized by the fibrous grains, while the cross section shows a transition from a columnar grain to a mixed grain consisting of a cone-shaped grain and a columnar grain as the sputtering pressure increases. The large grain fraction decays exponentially from 75.0% to 59.3% with the increase of sputtering pressure p, which can improve the grain size uniformity. The surface roughness increases due to the insufficient atom diffusion, which is comparable to its decrease due to the etching effect at p < 0.8 Pa, while it increases drastically at p > 0.8 Pa, and this increase is dominated by the atom diffusion. The electrical resistivity values of Be films range from 1.7 mu ohm times m to 2.7 mu ohm times m in the range 0.4 Pa-1.2 Pa, which is 50 times larger than the bulk resistivity. |
Author | 罗炳池 李恺 康晓丽 张吉强 何玉丹 罗江山 吴卫东 唐永建 |
AuthorAffiliation | Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China Sclence-and Technology on Plasma Physics Laboratory. Mianyang621900. China |
Author_xml | – sequence: 1 fullname: 罗炳池 李恺 康晓丽 张吉强 何玉丹 罗江山 吴卫东 唐永建 |
BookMark | eNqFkc9q3DAQh0VJoZu0j1BQbjnEWf2xJZmcQkjbQKCHtmch2-NdFVlyJDnBL9DnrpYNOeSS0wzM75uBb07RiQ8eEPpKyRUlSm2pkHVFSSO2jG_FlgihSP0BbRhpVMUVr0_Q5jXzCZ2m9JcQQQnjG_Tv17zkDNH6HZ4jpLREwNaPbgHfAw4e72J4zns8hTjvgwu79RKX0GjKNIZlt_cFusTGDxgc9Dna3jhcNtmU7ZPNKx5DxCnHUC4Yb1Mo7bziDuLqnF0mPFo3fUYfR-MSfHmpZ-jPt7vftz-qh5_f729vHqqeU5arbqSEdopw1crOtCOlVDXKgJTGKDkI0wjJFUhBmWBAa8pa6GQ9dHygwAfFz9DFce8cw-MCKevJph6cMx7CkjSVghHRNoyU6PUx2seQUoRR9zabbIPP0VinKdEH-_pgVh_Masa10Ef7hW7e0HO0k4nru9z5C7cvwh7LW17BulWkqRXn_wHBZZkn |
CitedBy_id | crossref_primary_10_1002_pssb_202100335 crossref_primary_10_1063_1_5051716 crossref_primary_10_1016_j_jallcom_2017_08_185 crossref_primary_10_3390_nano12162870 crossref_primary_10_1016_j_mseb_2019_114436 crossref_primary_10_1016_j_tsf_2020_138311 crossref_primary_10_1016_j_physb_2020_412221 crossref_primary_10_3938_jkps_68_557 crossref_primary_10_1063_1_5087112 crossref_primary_10_1016_j_jcrysgro_2019_125366 crossref_primary_10_1007_s11664_018_6315_5 |
Cites_doi | 10.1016/j.jmmm.2006.01.192 10.13182/FST55-349 10.1063/1.4820452 10.13182/FST49-553 10.1063/1.1556273 10.1088/1674-1056/21/8/087304 10.1063/1.1790054 10.1103/PhysRevB.59.15966 10.1088/0022-3727/40/20/S15 10.1063/1.2179054 10.1016/j.jnucmat.2007.03.199 10.7498/aps.61.016101 10.13182/FST51-547 10.13182/FST51-509 10.1063/1.3187793 10.1016/S0022-3115(96)00038-4 10.13182/FST08-3501 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1674-1056/23/6/066804 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Sputtering pressure influence on growth morphology, surface roughness, and electrical resistivity for strong anisotropy beryllium film |
EISSN | 2058-3834 1741-4199 |
EndPage | 461 |
ExternalDocumentID | 10_1088_1674_1056_23_6_066804 49805483 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c312t-bf101b803897ba9f111858ae77aa87d6a56738e761262e14129eb74db3d1e3d83 |
ISSN | 1674-1056 |
IngestDate | Sun Aug 24 03:55:39 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Tue Jul 01 02:55:06 EDT 2025 Wed Feb 14 10:36:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-bf101b803897ba9f111858ae77aa87d6a56738e761262e14129eb74db3d1e3d83 |
Notes | Luo Bing-Chi, Li Kai, Kang Xiao-Li, Zhang Ji-Qiang, He Yu-Dan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian ( a)Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China b) Science and Technology on Plasma Physics Laboratory, Mianyang 621900, China magnetron sputtering, growth morphology, Be films, electrical resistivity The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of pressure, the deposition rate of Be film first increases, and when the pressure exceeds 0.8 Pa, it gradually descends. The X-ray diffraction analysis indicates that Be film is of α-Be phase, its surface always reveals the (101) crystal plane possessing the low surface energy. As for the growth morphology of Be film, the surface is mainly characterized by the fibrous grains, while the cross section shows a transition from a columnar grain to a mixed grain consisting of a cone-shaped grain and a columnar grain as the sputtering pressure increases. The large grain fraction decays exponentially from 75.0% to 59.3% with the increase of sputtering pressure p, which can improve the grain size uniformity. The surface roughness increases due to the insufficient atom diffusion, which is comparable to its decrease due to the etching effect at p 〈 0.8 Pa, while it increases drastically at p 〉 0.8 Pa, and this increase is dominated by the atom diffusion. The electrical resistivity values of Be films range from 1.7 μΩ m to 2.7 μΩ m in the range 0.4 Pa-1.2 Pa, which is 50 times larger than the bulk resistivity. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1762069520 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1762069520 crossref_citationtrail_10_1088_1674_1056_23_6_066804 crossref_primary_10_1088_1674_1056_23_6_066804 chongqing_primary_49805483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2014 |
References | 11 12 Haan S W (5) 2009; 55 13 15 Haan S W (3) 2007; 51 16 Singh S (10) 2007; 40 Song D J (14) 2006; 20 Zhu Z W (17) 2012; 21 Moreno K A (4) 2009; 55 Zhang L S (18) 2012; 61 6 Xu H W (2) 2007; 51 7 Lutišan J (19) 1995; 56 8 9 Xie H B (20) 1999; 3 Haan S W (1) 2006; 49 |
References_xml | – ident: 11 doi: 10.1016/j.jmmm.2006.01.192 – volume: 55 start-page: 349 issn: 1536-1055 year: 2009 ident: 4 publication-title: Fusion Sci. Technol. doi: 10.13182/FST55-349 – ident: 16 doi: 10.1063/1.4820452 – volume: 49 start-page: 553 issn: 1536-1055 year: 2006 ident: 1 publication-title: Fusion Sci. Technol. doi: 10.13182/FST49-553 – ident: 12 doi: 10.1063/1.1556273 – volume: 21 start-page: 087304 issn: 1674-1056 year: 2012 ident: 17 publication-title: Chin. Phys. doi: 10.1088/1674-1056/21/8/087304 – ident: 6 doi: 10.1063/1.1790054 – volume: 56 start-page: 39 year: 1995 ident: 19 publication-title: Chem. Eng. J. – ident: 9 doi: 10.1103/PhysRevB.59.15966 – volume: 40 start-page: 6312 issn: 0022-3727 year: 2007 ident: 10 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/40/20/S15 – ident: 8 doi: 10.1063/1.2179054 – ident: 7 doi: 10.1016/j.jnucmat.2007.03.199 – volume: 61 start-page: 016101 issn: 0372-736X year: 2012 ident: 18 publication-title: Acta Phys. Sin. doi: 10.7498/aps.61.016101 – volume: 20 start-page: 66 year: 2006 ident: 14 publication-title: Mater. Rev. – volume: 51 start-page: 547 issn: 1536-1055 year: 2007 ident: 2 publication-title: Fusion Sci. Technol. doi: 10.13182/FST51-547 – volume: 51 start-page: 509 issn: 1536-1055 year: 2007 ident: 3 publication-title: Fusion Sci. Technol. doi: 10.13182/FST51-509 – ident: 15 doi: 10.1063/1.3187793 – ident: 13 doi: 10.1016/S0022-3115(96)00038-4 – volume: 55 start-page: 227 issn: 1536-1055 year: 2009 ident: 5 publication-title: Fusion Sci. Technol. doi: 10.13182/FST08-3501 – volume: 3 start-page: 37 year: 1999 ident: 20 publication-title: Vacuum |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 2.0385332 |
Snippet | The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of... The strong anisotropy beryllium (Be) films are fabricated at different sputtering pressures by direct current magnetron sputtering. With the increase of... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 457 |
SubjectTerms | Anisotropy Atomic properties Beryllium Diffusion Electrical resistivity Grains Morphology Sputtering X射线衍射分析 体电阻率 压力 各向异性 生长形态 直流磁控溅射 薄膜 表面粗糙度 |
Title | Sputtering pressure influence on growth morphology, surface roughness, and electrical resistivity for strong anisotropy beryllium film |
URI | http://lib.cqvip.com/qk/85823A/201406/49805483.html https://www.proquest.com/docview/1762069520 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWSFAV6KbqiSRewQHlyFEsixeVWyVaQFugCNAFyE7TQSYDETmP7kH5Av7szpCQ7TdHtYhAkh6Q1epohOQshb5pGxcmEi0CXXAXwwWsCUCPqIKwq0Rhei0mNN7ofPsqDI_H-ODne2Hy77l2yqPbqb7_0K_kfrkId8BW9ZP-Bs_2gUAFl4C_8Aofh9694_OXSpZn2DuW4bb7CECBt1hG8BjiBTfbidHAxg6fZu6VAt0lZo2Hh8uQUv3SdBadPieO4BqMh-F1iCTREnOOJOXozns1nULy8HlT26vr8_Gx5gaGdLtZ1XJYLlmmWjlmeMJOxDAqKacNSgwUTMi0zlu-zbMRMynLNNHSKWC6ZkUyrtrfujWyxAgYxviVmGce-QJGGA0c1ZjrHgo5Ylg5w2ixlmXJthhnerigb-7YRELq1hTiPr3F0wk2TuGly1-bpzGBtCW5ms-_oYL5o0A6VCSzoMUuzls6MfJvAZqQLsRbp4P-m6-ctkVjZhbUiQioBwitpA3i7ujhMdMC7Y9mzW2JB-CDcrYYhfPj5W8ILPvh4jtKNj746GFXDXbBJqX2a5p-igwujQenWfJPciZVyhgrvPn3udBGJgTnwyKEbs_Nh03rY1w1jPpRDPwNGGDmF9-krvLk3NbWbiorTvg4fkPvttommHgMPyYadPiJ3nflyPX9Mvq-QQDsk0B4JdDalHgl0hYRd2uKA9jjYpYACukIBXUMBBRRQjwK6QgHtUUARBU_I0X5-ODoI2gwjQc2jeBFUE5BIlcYgk6oqzQQEv050aZUqS60aWSaYFNcq2AbI2EYClGNbKdFUvIksbzR_Srams6l9RqiJ7MTquDK6FKIStanjEq-om6guLejR22Snf7LFpY8kU3Tc2yaie9RF3cbmxxQx54WzEdG6QG4VyK0i5oUsPLe2yV5P1g35B4LXHR8LECN4N1hO7Ww5LyJQikJpkjjc-d1Cn5N7K0y8IFuLq6V9CVr5onrlXrwfWPe9Wg |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sputtering+pressure+influence+on+growth+morphology%2C+surface+roughness%2C+and+electrical+resistivity+for+strong+anisotropy+beryllium+film&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%BD%97%E7%82%B3%E6%B1%A0+%E6%9D%8E%E6%81%BA+%E5%BA%B7%E6%99%93%E4%B8%BD+%E5%BC%A0%E5%90%89%E5%BC%BA+%E4%BD%95%E7%8E%89%E4%B8%B9+%E7%BD%97%E6%B1%9F%E5%B1%B1+%E5%90%B4%E5%8D%AB%E4%B8%9C+%E5%94%90%E6%B0%B8%E5%BB%BA&rft.date=2014-06-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=6&rft.spage=457&rft.epage=461&rft_id=info:doi/10.1088%2F1674-1056%2F23%2F6%2F066804&rft.externalDocID=49805483 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |