Investigation of hexamethylenetetramine effects on formation and corrosion resistance of anodic coatings developed on AZ31B alloys
To fabricate calcium-phosphate (CaP) coatings with good corrosion resistance on AZ31B alloys via micro-arc oxidation (MAO) treatment, hexamethylenetetramine (HTMA) was selected as an effective MAO additive of magnesium alloys. The influences of HTMA concentrations on formation mechanism and coating...
Saved in:
Published in | Surface & coatings technology Vol. 447; p. 128824 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To fabricate calcium-phosphate (CaP) coatings with good corrosion resistance on AZ31B alloys via micro-arc oxidation (MAO) treatment, hexamethylenetetramine (HTMA) was selected as an effective MAO additive of magnesium alloys. The influences of HTMA concentrations on formation mechanism and coating property were systematically investigated in a near-neutral base solution composed of NH4HF2, EDTA-CaNa2, phytic acid and phosphoric acid. The results show that HTMA can increase the solubility of calcium salts and significantly promote the formation of MAO coatings on AZ31B alloys. In a base solution with 360 g/L HTMA, the fabricated MAO sample achieves the best corrosion resistance in Hank's solution and the corrosion current density (icorr) is significantly decreased by two orders of magnitude than that treated in solution without HTMA. During MAO treatment, acting as an effective corrosion inhibitor of magnesium alloys, HTMA is helpful for coating formation via protecting the magnesium sample from corrosion. In 3.5 % NaCl solution with different HTMA concentrations, the maximum inhibition efficiency is 94.57 % at a HTMA concentration of 360 g/L. Moreover, HTMA molecules are absorbed on the surface of AZ31B alloys following the Langmuir absorption isotherm in the range of 120 to 360 g/L, however, excessively high concentrations fail to conform with the equation, which may be attributed to steric hindrance.
•HTMA can increase the solubility of calcium salts.•HTMA significantly promotes the formation of MAO coatings on AZ31B alloys.•HTMA is an effective inhibitor of Mg alloys.•HTMA molecules are absorbed following Langmuir absorption isotherm in the range of 120 to 360 g/L.•The MAO sample fabricated in the solution with 360 g/L HTMA achieves the best corrosion resistance. |
---|---|
AbstractList | To fabricate calcium-phosphate (CaP) coatings with good corrosion resistance on AZ31B alloys via micro-arc oxidation (MAO) treatment, hexamethylenetetramine (HTMA) was selected as an effective MAO additive of magnesium alloys. The influences of HTMA concentrations on formation mechanism and coating property were systematically investigated in a near-neutral base solution composed of NH4HF2, EDTA-CaNa2, phytic acid and phosphoric acid. The results show that HTMA can increase the solubility of calcium salts and significantly promote the formation of MAO coatings on AZ31B alloys. In a base solution with 360 g/L HTMA, the fabricated MAO sample achieves the best corrosion resistance in Hank's solution and the corrosion current density (icorr) is significantly decreased by two orders of magnitude than that treated in solution without HTMA. During MAO treatment, acting as an effective corrosion inhibitor of magnesium alloys, HTMA is helpful for coating formation via protecting the magnesium sample from corrosion. In 3.5 % NaCl solution with different HTMA concentrations, the maximum inhibition efficiency is 94.57 % at a HTMA concentration of 360 g/L. Moreover, HTMA molecules are absorbed on the surface of AZ31B alloys following the Langmuir absorption isotherm in the range of 120 to 360 g/L, however, excessively high concentrations fail to conform with the equation, which may be attributed to steric hindrance.
•HTMA can increase the solubility of calcium salts.•HTMA significantly promotes the formation of MAO coatings on AZ31B alloys.•HTMA is an effective inhibitor of Mg alloys.•HTMA molecules are absorbed following Langmuir absorption isotherm in the range of 120 to 360 g/L.•The MAO sample fabricated in the solution with 360 g/L HTMA achieves the best corrosion resistance. |
ArticleNumber | 128824 |
Author | Miao, Xi Shen, Youliang Zhang, Rongfa Wang, Yu Zhao, Rongfang Huang, Xiwen Shi, Xiaoting Hu, Wenxin Zhang, Wenxia Zhang, Shufang |
Author_xml | – sequence: 1 givenname: Xi surname: Miao fullname: Miao, Xi organization: School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013, China – sequence: 2 givenname: Xiaoting surname: Shi fullname: Shi, Xiaoting organization: School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013, China – sequence: 3 givenname: Youliang surname: Shen fullname: Shen, Youliang organization: School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013, China – sequence: 4 givenname: Wenxia surname: Zhang fullname: Zhang, Wenxia organization: School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013, China – sequence: 5 givenname: Wenxin surname: Hu fullname: Hu, Wenxin organization: Baotou Research Institute of Rare Earths, Baotou 014020, China – sequence: 6 givenname: Shufang surname: Zhang fullname: Zhang, Shufang organization: School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013, China – sequence: 7 givenname: Xiwen surname: Huang fullname: Huang, Xiwen organization: School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013, China – sequence: 8 givenname: Yu surname: Wang fullname: Wang, Yu organization: School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013, China – sequence: 9 givenname: Rongfang surname: Zhao fullname: Zhao, Rongfang email: zhaorfamy@126.com organization: School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013, China – sequence: 10 givenname: Rongfa surname: Zhang fullname: Zhang, Rongfa email: rfzhang-10@163.com organization: School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013, China |
BookMark | eNqFkM1KAzEUhYMoWKuvIPMCU5PMTDMBF_7gHxTc6MZNuJPcaMo0kSQWu_XJnbG6cdPV5cI5h3O-I7Lvg0dCThmdMcrmZ8tZ-ohWB8gzTjmfMd62vN4jE9YKWVZVLfbJhPJGlK0U_JAcpbSklDIh6wn5evBrTNm9QnbBF8EWb_gJK8xvmx49ZswRVs5jgdaizqkYRDbE1VYO3hQ6xBjS-EVMLmXwGscc8ME4XYy9nH9NhcE19uEdzRhx-VKxqwL6PmzSMTmw0Cc8-b1T8nx783R9Xy4e7x6uLxelrhjPZaeNNM28Y2ArAcZQDoggpG06IQ0FCS0TGhtuGys7MF1rai0r2UmucS7aakrOt7l66JsiWqVd_tkxbHS9YlSNPNVS_fFUI0-15TnY5__s79GtIG52Gy-2RhzGrR1GlbTDgZJxcUCqTHC7Ir4Bx0WbuQ |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2023_05_077 crossref_primary_10_1177_02670844241302998 crossref_primary_10_1016_j_apsusc_2024_160674 crossref_primary_10_1016_j_jma_2024_01_033 crossref_primary_10_1016_j_porgcoat_2024_108327 crossref_primary_10_1016_j_ceramint_2023_11_309 crossref_primary_10_1016_j_jma_2024_02_001 crossref_primary_10_1016_j_jma_2023_07_011 crossref_primary_10_1016_j_jmrt_2023_10_303 crossref_primary_10_3390_coatings14010140 crossref_primary_10_1016_j_ijbiomac_2025_141960 crossref_primary_10_1016_j_mtcomm_2024_109870 crossref_primary_10_1016_j_surfcoat_2023_130349 |
Cites_doi | 10.1016/j.corsci.2010.01.033 10.1149/2.0941811jes 10.1016/j.corsci.2018.11.011 10.1021/je800662m 10.1016/j.corsci.2010.12.024 10.1016/j.corsci.2011.10.025 10.1016/j.electacta.2009.02.004 10.1016/j.jnoncrysol.2016.11.011 10.1080/10408436.2017.1358148 10.1016/j.msec.2018.12.028 10.1016/j.corsci.2009.06.034 10.1016/j.surfcoat.2009.09.069 10.1016/j.corsci.2009.10.016 10.1080/02670844.2017.1278642 10.1016/j.jtice.2020.06.011 10.1016/j.cej.2021.130551 10.1016/j.actbio.2011.10.016 10.1016/j.corsci.2008.09.016 10.1007/s40735-018-0214-4 10.1016/j.cej.2020.126323 10.1016/j.surfcoat.2020.125853 10.1016/j.actbio.2012.12.016 10.1016/j.jallcom.2019.02.003 10.1021/am100450h 10.1016/j.corsci.2013.03.017 10.1016/j.corsci.2011.07.037 10.1016/j.jallcom.2020.153721 10.1080/17518250903447100 10.1016/j.jpowsour.2016.01.041 10.1016/j.electacta.2015.11.033 10.1016/j.electacta.2005.08.026 10.1016/j.surfcoat.2015.02.026 10.1016/j.matlet.2019.126944 10.1016/j.surfcoat.2012.06.056 10.1016/j.apsusc.2013.01.175 10.1016/S0010-938X(02)00246-9 10.1002/adem.200500013 10.1016/j.surfcoat.2015.01.013 10.1016/j.jma.2020.07.004 10.1016/j.colsurfb.2012.07.040 10.1021/ie301465k 10.1016/j.matchemphys.2007.02.073 10.1016/j.jallcom.2012.04.120 10.1021/jp507496a 10.1016/S1452-3981(23)10865-0 10.1007/s40195-022-01378-7 10.1016/j.surfcoat.2020.125661 10.1016/j.apsusc.2009.02.082 10.1080/17458080.2012.656708 10.1016/j.corsci.2008.10.039 10.1007/s12598-016-0795-3 10.1080/15298668991375191 10.1177/0885328218809911 10.1016/j.corsci.2021.109459 10.1016/j.ecoenv.2019.01.123 10.1088/2053-1591/ab2014 10.1016/j.corsci.2009.03.001 10.1016/j.surfcoat.2022.128754 10.5006/1.3277563 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.surfcoat.2022.128824 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3347 |
ExternalDocumentID | 10_1016_j_surfcoat_2022_128824 S0257897222007459 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HX~ HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-bcd9d56b1af37add02aeea79f5b79d0a9a817ce52f5f9badb8d4c939b92ce6783 |
IEDL.DBID | .~1 |
ISSN | 0257-8972 |
IngestDate | Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 03:08:09 EDT 2025 Fri Feb 23 02:39:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Corrosion resistance HTMA Magnesium alloys Micro-arc oxidation Inhibition mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-bcd9d56b1af37add02aeea79f5b79d0a9a817ce52f5f9badb8d4c939b92ce6783 |
ParticipantIDs | crossref_citationtrail_10_1016_j_surfcoat_2022_128824 crossref_primary_10_1016_j_surfcoat_2022_128824 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2022_128824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yu, Liao, Luo, Chen (bb0190) 2003; 3 Zarrouk, Hammouti, Dafali, Bentiss (bb0285) 2013; 52 Xu, Zhang, Su, Yu, Wan, Sun (bb0055) 2022; 446 Zhang, Zhang, Yang, Yao, He, Zhou, Xu, Chang, Bai (bb0160) 2012; 539 Ariboa, Olusegunc, Rodriguesc, Ogunbadejoa, Igbaroolaa, Aloa, Rochac, Mohallemc, Olubambi (bb0170) 2020; 112 Abdel Hameed, AlShafey, Abu-Nawwas (bb0280) 2014; 9 Hao, Yin, Wan, Xu, Zhou (bb0235) 2008; 50 Cui, Liu, Xue, Zhang, Zeng, Li, Xu, Han, Guan (bb0145) 2018; 165 Hosseini, Mertens, Arshadi (bb0255) 2003; 45 Volovitch, Gazizzullin, Ruel, Ogle (bb0165) 2011; 53 Lo, Wang, Huang, Huang, Kang (bb0260) 2016; 308 Shi, Liu, Attrens (bb0230) 2010; 52 Moon, Jeong (bb0115) 2009; 51 Liang, Srinivasan, Blawert, Dietzel (bb0320) 2009; 51 Zhang, Zhang, Li, Li, Yang (bb0140) 2012; 207 Li, Deng, Fu (bb0195) 2012; 55 Yao, Li, Jiang (bb0075) 2009; 255 Chaharmahali, Fattah-alhosseini, Babaei (bb0105) 2021; 9 Sun, Ma, Wang, An, Wang, Wang (bb0305) 2020; 390 Dou, Chen, Yu, Chen (bb0135) 2017; 33 Shi, Zhu, Zhang, Zhao, Zhang, Chen, Zhang (bb0215) 2020; 261 Vijai Anand, Mohan, Mohan Kumar, Karl Chinnu, Jayavel (bb0200) 2012; 9 Ghasemi, Raja, Blawert, Dietzel, Kainer (bb0120) 2010; 204 Ou, Chen (bb0220) 2019; 787 Gao (bb0265) 2009; 30 Liang, Srinivasan, Blawert, Störmer, Dietzel (bb0310) 2009; 54 Song (bb0025) 2005; 7 Dreyfors, Jones, Sayed (bb0210) 1989; 50 Wang, Dai, Lei, Chen (bb0205) 2008; 53 Cheng, Feng, Cheng (bb0035) 2022; 163 Shadanbaz, Dias (bb0095) 2012; 8 Fayomi, Akande (bb0180) 2019; 5 Sharma, Mudhoo, Jain, Sharma (bb0275) 2010; 3 Chen, Tu, Hu, Xiong, Wu, Zou, Zeng (bb0050) 2017; 456 Xu, Tao, Ba, Luo, Zheng (bb0245) 2019; 97 Poorqasemi, Abootalebi, Peikari, Haqdar (bb0225) 2009; 51 Yao, Jia, Tian, Li, Jiang, Bai (bb0040) 2010; 2 Shao, Jiang, Huang (bb0125) 2019; 6 Lin, Tan, Zhang, Yang, Hu, Qiu, Cai (bb0010) 2013; 9 Tang, Feng, Li, Zhang, Zhang (bb0325) 2015; 264 Li, Shi, Liu, Han (bb0240) 2021; 158 Mei, Lamaka, Gonzalez, Feyerabend, Willumeit-Römer, Zheludkevich (bb0065) 2019; 147 Zhu, Song, Dong, Shan, Han (bb0150) 2022; 35 Zhao, Guo, Dang, Hao, Lai, Wang (bb0090) 2013; 102 Liu, Li, Yu, Qi, Peng, Liang (bb0300) 2021; 424 Li, Huang, Ye, Liu, Qin, Zhou, Zheng, Wu, Han (bb0005) 2021; 403 Chua, Hana, Xuea, Bai, Chu (bb0015) 2013; 271 Lu, Blawert, Huang, Ovri, Zheludkevich, Kainer (bb0085) 2016; 187 Gao, Li, Dai, Luo, Zhang (bb0185) 2010; 52 Liu, Shan, Song, Han, Ke (bb0080) 2011; 53 Shi, Wang, Li, Zhang, Zhao, Li, Zhang, Sheng, Cao, Zhao, Xu, Zhao (bb0100) 2020; 823 Duan, Du, Yan, Wang (bb0315) 2006; 51 Echeverry-Rendon, Duque, Quintero, Robledo, Harmsen, Echeverria (bb0290) 2018; 33 Chang, Tian, Liu, Duan (bb0070) 2013; 72 Li, Zhang, Wen, Mao, Huo, Guo, Wang (bb0030) 2020; 394 Strano, Urso, Scuderi, OdinakaIwu, Simone, Ciliberto, Spinella, Mirabella (bb0295) 2014; 118 Hosseini, Mertens, Arshadi (bb0175) 2003; 45 Wang, Zhu, Su, Li, Wang, Xing (bb0270) 2019; 174 Cao, Zhang (bb0250) 2002 Qadir, Li, Munir, Wen (bb0060) 2017; 43 Qi, Swiatowska, Skeldon, Marcus (bb0020) 2021; 186 McNeill (bb0130) 1955; 53 Rakoch, Gladkova, Linn, Strekalina (bb0110) 2015; 269 Bayol, Kayakırılmaz, Erbil (bb0155) 2007; 104 Hao, Hao, Zhu (bb0045) 2016; 35 Shao (10.1016/j.surfcoat.2022.128824_bb0125) 2019; 6 Xu (10.1016/j.surfcoat.2022.128824_bb0055) 2022; 446 Liu (10.1016/j.surfcoat.2022.128824_bb0080) 2011; 53 Shi (10.1016/j.surfcoat.2022.128824_bb0100) 2020; 823 Cui (10.1016/j.surfcoat.2022.128824_bb0145) 2018; 165 Liang (10.1016/j.surfcoat.2022.128824_bb0310) 2009; 54 Chua (10.1016/j.surfcoat.2022.128824_bb0015) 2013; 271 Liu (10.1016/j.surfcoat.2022.128824_bb0300) 2021; 424 Ghasemi (10.1016/j.surfcoat.2022.128824_bb0120) 2010; 204 Volovitch (10.1016/j.surfcoat.2022.128824_bb0165) 2011; 53 Zhang (10.1016/j.surfcoat.2022.128824_bb0160) 2012; 539 Chang (10.1016/j.surfcoat.2022.128824_bb0070) 2013; 72 Vijai Anand (10.1016/j.surfcoat.2022.128824_bb0200) 2012; 9 Shi (10.1016/j.surfcoat.2022.128824_bb0230) 2010; 52 Sun (10.1016/j.surfcoat.2022.128824_bb0305) 2020; 390 Zhao (10.1016/j.surfcoat.2022.128824_bb0090) 2013; 102 Chaharmahali (10.1016/j.surfcoat.2022.128824_bb0105) 2021; 9 Zarrouk (10.1016/j.surfcoat.2022.128824_bb0285) 2013; 52 Moon (10.1016/j.surfcoat.2022.128824_bb0115) 2009; 51 Gao (10.1016/j.surfcoat.2022.128824_bb0265) 2009; 30 Wang (10.1016/j.surfcoat.2022.128824_bb0270) 2019; 174 Chen (10.1016/j.surfcoat.2022.128824_bb0050) 2017; 456 Zhang (10.1016/j.surfcoat.2022.128824_bb0140) 2012; 207 Hosseini (10.1016/j.surfcoat.2022.128824_bb0175) 2003; 45 Ou (10.1016/j.surfcoat.2022.128824_bb0220) 2019; 787 Yao (10.1016/j.surfcoat.2022.128824_bb0075) 2009; 255 Li (10.1016/j.surfcoat.2022.128824_bb0195) 2012; 55 Zhu (10.1016/j.surfcoat.2022.128824_bb0150) 2022; 35 Qi (10.1016/j.surfcoat.2022.128824_bb0020) 2021; 186 Sharma (10.1016/j.surfcoat.2022.128824_bb0275) 2010; 3 Rakoch (10.1016/j.surfcoat.2022.128824_bb0110) 2015; 269 Lu (10.1016/j.surfcoat.2022.128824_bb0085) 2016; 187 Li (10.1016/j.surfcoat.2022.128824_bb0240) 2021; 158 Mei (10.1016/j.surfcoat.2022.128824_bb0065) 2019; 147 Xu (10.1016/j.surfcoat.2022.128824_bb0245) 2019; 97 Duan (10.1016/j.surfcoat.2022.128824_bb0315) 2006; 51 Tang (10.1016/j.surfcoat.2022.128824_bb0325) 2015; 264 Li (10.1016/j.surfcoat.2022.128824_bb0005) 2021; 403 Lin (10.1016/j.surfcoat.2022.128824_bb0010) 2013; 9 Gao (10.1016/j.surfcoat.2022.128824_bb0185) 2010; 52 Echeverry-Rendon (10.1016/j.surfcoat.2022.128824_bb0290) 2018; 33 Cheng (10.1016/j.surfcoat.2022.128824_bb0035) 2022; 163 Ariboa (10.1016/j.surfcoat.2022.128824_bb0170) 2020; 112 Hosseini (10.1016/j.surfcoat.2022.128824_bb0255) 2003; 45 Wang (10.1016/j.surfcoat.2022.128824_bb0205) 2008; 53 Shadanbaz (10.1016/j.surfcoat.2022.128824_bb0095) 2012; 8 Strano (10.1016/j.surfcoat.2022.128824_bb0295) 2014; 118 Li (10.1016/j.surfcoat.2022.128824_bb0030) 2020; 394 Liang (10.1016/j.surfcoat.2022.128824_bb0320) 2009; 51 Fayomi (10.1016/j.surfcoat.2022.128824_bb0180) 2019; 5 Lo (10.1016/j.surfcoat.2022.128824_bb0260) 2016; 308 Hao (10.1016/j.surfcoat.2022.128824_bb0235) 2008; 50 Cao (10.1016/j.surfcoat.2022.128824_bb0250) 2002 Bayol (10.1016/j.surfcoat.2022.128824_bb0155) 2007; 104 Shi (10.1016/j.surfcoat.2022.128824_bb0215) 2020; 261 McNeill (10.1016/j.surfcoat.2022.128824_bb0130) 1955; 53 Dou (10.1016/j.surfcoat.2022.128824_bb0135) 2017; 33 Yu (10.1016/j.surfcoat.2022.128824_bb0190) 2003; 59 Song (10.1016/j.surfcoat.2022.128824_bb0025) 2005; 7 Qadir (10.1016/j.surfcoat.2022.128824_bb0060) 2017; 43 Abdel Hameed (10.1016/j.surfcoat.2022.128824_bb0280) 2014; 9 Hao (10.1016/j.surfcoat.2022.128824_bb0045) 2016; 35 Yao (10.1016/j.surfcoat.2022.128824_bb0040) 2010; 2 Dreyfors (10.1016/j.surfcoat.2022.128824_bb0210) 1989; 50 Poorqasemi (10.1016/j.surfcoat.2022.128824_bb0225) 2009; 51 |
References_xml | – volume: 53 start-page: 2907 year: 2008 end-page: 2909 ident: bb0205 article-title: Solubility of hexamethylenetetramine in a pure water, methanol, acetic acid, and ethanol + water mixture from (299.38 to 340.35) K publication-title: J. Chem. Eng. Data – volume: 97 start-page: 156 year: 2019 end-page: 165 ident: bb0245 article-title: Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys publication-title: Mater. Sci. Eng. C – volume: 9 start-page: 8631 year: 2013 end-page: 8642 ident: bb0010 article-title: The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating publication-title: Acta Biomater. – volume: 255 start-page: 6724 year: 2009 end-page: 6728 ident: bb0075 article-title: Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation publication-title: Appl. Surf. Sci. – volume: 186 year: 2021 ident: bb0020 article-title: Formation of a trivalent chromium conversion coating on AZ91D magnesium alloy publication-title: Corros. Sci. – volume: 52 start-page: 2560 year: 2013 end-page: 2568 ident: bb0285 article-title: Inhibitive properties and adsorption of Purpald as a corrosion inhibitor for copper in nitric acid medium publication-title: Ind. Eng. Chem. Res. – volume: 264 start-page: 105 year: 2015 end-page: 113 ident: bb0325 article-title: High-corrosion resistance of the microarc oxidation coatings on magnesium alloy obtained in potassium fluotitanate electrolytes publication-title: Surf. Coat. Technol. – volume: 102 start-page: 321 year: 2013 end-page: 326 ident: bb0090 article-title: Preparation and properties of composite MAO/ECD coatings on magnesium alloy publication-title: Colloids Surf.B – volume: 147 start-page: 81 year: 2019 end-page: 93 ident: bb0065 article-title: The role of individual components of simulated body fluid on the corrosion behavior of commercially pure mg publication-title: Corros. Sci. – volume: 424 year: 2021 ident: bb0300 article-title: Dual self-healing composite coating on magnesium alloys for corrosion protection publication-title: Chem. Eng. J. – volume: 204 start-page: 1469 year: 2010 end-page: 1478 ident: bb0120 article-title: The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings publication-title: Surf. Coat. Technol. – volume: 52 start-page: 1603 year: 2010 end-page: 1609 ident: bb0185 article-title: High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91D magnesium alloy publication-title: Corros. Sci. – volume: 269 start-page: 138 year: 2015 end-page: 144 ident: bb0110 article-title: The evidence of cathodic micro-discharges during plasma electrolytic oxidation of light metallic alloys and micro-discharge intensity depending on pH of the electrolyte publication-title: Surf. Coat. Technol. – volume: 112 start-page: 222 year: 2020 end-page: 231 ident: bb0170 article-title: Experimental and theoretical investigation on corrosion inhibition of hexamethylenetetramine [HMT] for mild steel in acidic solution publication-title: J. Taiwan Inst. Chem. E – volume: 187 start-page: 20 year: 2016 end-page: 33 ident: bb0085 article-title: Plasma electrolytic oxidation coatings on mg alloy with addition of SiO2 particles publication-title: Electrochim. Acta – volume: 390 year: 2020 ident: bb0305 article-title: Preparation and corrosion resistance of hybrid coatings formed by PEN/C plus PEO on AZ91D magnesium alloys publication-title: Surf. Coat. Technol. – volume: 271 start-page: 271 year: 2013 end-page: 275 ident: bb0015 article-title: Effects of sealing treatment on corrosion resistance and degradation behavior of micro-arc oxidized magnesium alloy wires publication-title: Appl. Surf. Sci. – volume: 163 year: 2022 ident: bb0035 article-title: A systematic study of the role of cathodic polarization and new findings on the soft sparking phenomenon from plasma electrolytic oxidation of an Al-Cu-Li alloy publication-title: J. Electrochem. Soc. – volume: 53 start-page: 3845 year: 2011 end-page: 3852 ident: bb0080 article-title: Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation publication-title: Corros. Sci. – volume: 165 start-page: C821 year: 2018 end-page: C829 ident: bb0145 article-title: In vitro corrosion and antibacterial performance of micro-arc oxidation coating on AZ31 magnesium alloy: effects of tannic acid publication-title: J. Electrochem. Soc. – volume: 51 start-page: 2483 year: 2009 end-page: 2492 ident: bb0320 article-title: Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation publication-title: Corros. Sci. – volume: 823 year: 2020 ident: bb0100 article-title: Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy publication-title: J. Alloys Compd. – volume: 45 start-page: 1473 year: 2003 end-page: 1489 ident: bb0255 article-title: Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine publication-title: Corros. Sci. – volume: 7 start-page: 563 year: 2005 end-page: 586 ident: bb0025 article-title: Recent progress in corrosion and protection of magnesium alloys publication-title: Adv. Eng. Mater. – volume: 9 start-page: 261 year: 2012 end-page: 271 ident: bb0200 article-title: Low-temperature synthesis of hexamethylenetetramine-stabilised ZnS nanoparticles and its photocatalytic properties publication-title: J. Exp. Nanosci. – volume: 261 year: 2020 ident: bb0215 article-title: Characteristics of selenium-containing coatings on WE43 magnesium alloy by micro-arc oxidation publication-title: Mater. Lett. – volume: 5 start-page: 23 year: 2019 ident: bb0180 article-title: Corrosion mitigation of aluminium in 3.65% NaCl medium using hexamine publication-title: J. Bio- and Tribo-Corros. – volume: 8 start-page: 20 year: 2012 end-page: 30 ident: bb0095 article-title: Calcium phosphate coatings on magnesium alloys for biomedical applications: a review publication-title: Acta Biomater. – volume: 3 start-page: 7 year: 2010 end-page: 15 ident: bb0275 article-title: Corrosion inhibition and adsorption properties ofAzadirachta indicamature leaves extract as green inhibitor for mild steel in HNO3 publication-title: Green Chem. Lett. Rev. – volume: 446 year: 2022 ident: bb0055 article-title: Improving the tribocorrosion performance of plasma electrolytic oxidized coatings on AZ31B magnesium alloy using pullulan as an electrolyte additive publication-title: Surf. Coat. Technol. – volume: 53 start-page: 1362 year: 2011 end-page: 1368 ident: bb0165 article-title: An atomic emission spectroelectrochemical study of corrosion inhibition: the effect of hexamethylenetetramine on the reaction of mild steel in HCl publication-title: Corros. Sci. – volume: 51 start-page: 1043 year: 2009 end-page: 1054 ident: bb0225 article-title: Investigating accuracy of the Tafel extrapolation method in HCl solutions publication-title: Corros. Sci. – volume: 53 start-page: 57 year: 1955 end-page: 59 ident: bb0130 article-title: The cr-22 coating for magnesium publication-title: Met. Finish. – volume: 104 start-page: 74 year: 2007 end-page: 82 ident: bb0155 article-title: The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel publication-title: Mater. Chem. Phys. – volume: 308 start-page: 29 year: 2016 end-page: 36 ident: bb0260 article-title: Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors publication-title: J. Power Sources – volume: 33 start-page: 731 year: 2017 end-page: 738 ident: bb0135 article-title: Research status of magnesium alloys by micro-arc oxidation: a review publication-title: Surf. Eng. – volume: 35 start-page: 1559 year: 2022 end-page: 1571 ident: bb0150 article-title: Effect of initial oxide film on the formation and performance of plasma electrolytic oxidation coating on 7075 aluminum alloy publication-title: Acta Metall. Sin. – volume: 6 start-page: 0865b4 year: 2019 ident: bb0125 article-title: A comparative study on the microstructure and corrosion resistance of MAO coatings prepared in alkaline and acidic electrolytes publication-title: Mater. Res. Express – volume: 51 start-page: 1506 year: 2009 end-page: 1512 ident: bb0115 article-title: Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions publication-title: Corros. Sci. – volume: 118 start-page: 28189 year: 2014 end-page: 28195 ident: bb0295 article-title: Double role of HMTA in ZnO nanorods grown by chemical bath deposition publication-title: J. Phys. Chem. C – volume: 539 start-page: 249 year: 2012 end-page: 255 ident: bb0160 article-title: Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys publication-title: J. Alloys Compd. – year: 2002 ident: bb0250 article-title: An Introduction to Electrochemical Impedance Spectroscopy – volume: 33 start-page: 725 year: 2018 end-page: 740 ident: bb0290 article-title: Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives publication-title: J. Biomater. Appl. – volume: 50 start-page: 579 year: 1989 end-page: 585 ident: bb0210 article-title: Hexamethylenetetramine: a review publication-title: Am. Ind. Hyg. Assoc. J. – volume: 456 start-page: 125 year: 2017 end-page: 131 ident: bb0050 article-title: Corrosion resistance and in vitro bioactivity of Si-containing coating prepared on a biodegradable Mg-Zn-Ca bulk metallic glass by micro-arc oxidation publication-title: J. Non-Cryst. Solids – volume: 55 start-page: 280 year: 2012 end-page: 288 ident: bb0195 article-title: Allyl thiourea as a corrosion inhibitor for cold rolled steel in H3PO4 solution publication-title: Corros. Sci. – volume: 158 year: 2021 ident: bb0240 article-title: Self-healing epoxy coating based on tung oil-containing microcapsules for corrosion protection publication-title: Prog. Org. Coat. – volume: 45 start-page: 1473 year: 2003 end-page: 1489 ident: bb0175 article-title: Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine publication-title: Corros. Sci. – volume: 787 start-page: 145 year: 2019 end-page: 151 ident: bb0220 article-title: Corrosion resistance of phytic acid/Ce (III) nanocomposite coating with superhydrophobicity on magnesium publication-title: J. Alloys Compd. – volume: 9 start-page: 21 year: 2021 end-page: 40 ident: bb0105 article-title: Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): a review publication-title: J. Magnes. Alloys – volume: 394 year: 2020 ident: bb0030 article-title: Microstructure and wear resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys publication-title: Surf. Coat. Technol. – volume: 30 start-page: 182 year: 2009 end-page: 183 ident: bb0265 article-title: Urotropine as a corrosion inhibitor in hydrochloric acid solution publication-title: Corros.Prot. – volume: 403 year: 2021 ident: bb0005 article-title: A self-healing coating containing curcumin for osteoimmunomodulation to ameliorate oseointegration publication-title: Chem. Eng. J. – volume: 2 start-page: 2617 year: 2010 end-page: 2622 ident: bb0040 article-title: Microporous Ni-doped TiO2 film photocatalyst by plasma electrolytic oxidation publication-title: ACS Appl. Mater. Interfaces – volume: 174 start-page: 164 year: 2019 end-page: 174 ident: bb0270 article-title: Preparation of MgAlFe-LDHs as a deicer corrosion inhibitor to reduce corrosion of chloride ions in deicing salts publication-title: Ecotoxicol. Environ. Saf. – volume: 54 start-page: 3842 year: 2009 end-page: 3850 ident: bb0310 article-title: Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes publication-title: Electrochim. Acta – volume: 9 start-page: 6006 year: 2014 end-page: 6019 ident: bb0280 article-title: 2-(2,6-Dichloranilino) phenyl acetic acid drugs as eco-friendly corrosion inhibitors for mild steel in 1M HCl publication-title: Int. J. Electrochem. Sci. – volume: 35 start-page: 836 year: 2016 end-page: 840 ident: bb0045 article-title: Phase composition, morphology and element contents of micro-arc oxidation ceramic coatings on Ti–6Al–4V alloy under different calcination conditions publication-title: Rare Metals – volume: 207 start-page: 170 year: 2012 end-page: 176 ident: bb0140 article-title: Effects of tannic acid on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloy publication-title: Surf. Coat. Technol. – volume: 51 start-page: 2898 year: 2006 end-page: 2908 ident: bb0315 article-title: Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D publication-title: Electrochim. Acta – volume: 3 start-page: 314 year: 2003 end-page: 318 ident: bb0190 article-title: Studies of benzotriazole and tolytriazole as inhibitors for copper corrosion in deionized water publication-title: Corros. Sci. – volume: 72 start-page: 118 year: 2013 end-page: 124 ident: bb0070 article-title: Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment publication-title: Corros. Sci. – volume: 43 start-page: 392 year: 2017 end-page: 416 ident: bb0060 article-title: Calcium phosphate-based composite coating by micro-arc oxidation (MAO) for biomedical application: a review publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 52 start-page: 579 year: 2010 end-page: 588 ident: bb0230 article-title: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation publication-title: Corros. Sci. – volume: 50 start-page: 3527 year: 2008 end-page: 3533 ident: bb0235 article-title: Electrochemical and photoelectrochemical study of the self-assembled monolayer phytic acid on cupronickel B30 publication-title: Corros. Sci. – volume: 52 start-page: 1603 year: 2010 ident: 10.1016/j.surfcoat.2022.128824_bb0185 article-title: High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91D magnesium alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.01.033 – volume: 165 start-page: C821 year: 2018 ident: 10.1016/j.surfcoat.2022.128824_bb0145 article-title: In vitro corrosion and antibacterial performance of micro-arc oxidation coating on AZ31 magnesium alloy: effects of tannic acid publication-title: J. Electrochem. Soc. doi: 10.1149/2.0941811jes – year: 2002 ident: 10.1016/j.surfcoat.2022.128824_bb0250 – volume: 147 start-page: 81 year: 2019 ident: 10.1016/j.surfcoat.2022.128824_bb0065 article-title: The role of individual components of simulated body fluid on the corrosion behavior of commercially pure mg publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.11.011 – volume: 53 start-page: 2907 year: 2008 ident: 10.1016/j.surfcoat.2022.128824_bb0205 article-title: Solubility of hexamethylenetetramine in a pure water, methanol, acetic acid, and ethanol + water mixture from (299.38 to 340.35) K publication-title: J. Chem. Eng. Data doi: 10.1021/je800662m – volume: 53 start-page: 1362 year: 2011 ident: 10.1016/j.surfcoat.2022.128824_bb0165 article-title: An atomic emission spectroelectrochemical study of corrosion inhibition: the effect of hexamethylenetetramine on the reaction of mild steel in HCl publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.12.024 – volume: 55 start-page: 280 year: 2012 ident: 10.1016/j.surfcoat.2022.128824_bb0195 article-title: Allyl thiourea as a corrosion inhibitor for cold rolled steel in H3PO4 solution publication-title: Corros. Sci. doi: 10.1016/j.corsci.2011.10.025 – volume: 54 start-page: 3842 year: 2009 ident: 10.1016/j.surfcoat.2022.128824_bb0310 article-title: Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.02.004 – volume: 456 start-page: 125 year: 2017 ident: 10.1016/j.surfcoat.2022.128824_bb0050 article-title: Corrosion resistance and in vitro bioactivity of Si-containing coating prepared on a biodegradable Mg-Zn-Ca bulk metallic glass by micro-arc oxidation publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2016.11.011 – volume: 43 start-page: 392 year: 2017 ident: 10.1016/j.surfcoat.2022.128824_bb0060 article-title: Calcium phosphate-based composite coating by micro-arc oxidation (MAO) for biomedical application: a review publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408436.2017.1358148 – volume: 158 year: 2021 ident: 10.1016/j.surfcoat.2022.128824_bb0240 article-title: Self-healing epoxy coating based on tung oil-containing microcapsules for corrosion protection publication-title: Prog. Org. Coat. – volume: 97 start-page: 156 year: 2019 ident: 10.1016/j.surfcoat.2022.128824_bb0245 article-title: Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.12.028 – volume: 51 start-page: 2483 year: 2009 ident: 10.1016/j.surfcoat.2022.128824_bb0320 article-title: Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.06.034 – volume: 204 start-page: 1469 year: 2010 ident: 10.1016/j.surfcoat.2022.128824_bb0120 article-title: The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.09.069 – volume: 53 start-page: 57 year: 1955 ident: 10.1016/j.surfcoat.2022.128824_bb0130 article-title: The cr-22 coating for magnesium publication-title: Met. Finish. – volume: 52 start-page: 579 year: 2010 ident: 10.1016/j.surfcoat.2022.128824_bb0230 article-title: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.10.016 – volume: 33 start-page: 731 year: 2017 ident: 10.1016/j.surfcoat.2022.128824_bb0135 article-title: Research status of magnesium alloys by micro-arc oxidation: a review publication-title: Surf. Eng. doi: 10.1080/02670844.2017.1278642 – volume: 112 start-page: 222 year: 2020 ident: 10.1016/j.surfcoat.2022.128824_bb0170 article-title: Experimental and theoretical investigation on corrosion inhibition of hexamethylenetetramine [HMT] for mild steel in acidic solution publication-title: J. Taiwan Inst. Chem. E doi: 10.1016/j.jtice.2020.06.011 – volume: 424 year: 2021 ident: 10.1016/j.surfcoat.2022.128824_bb0300 article-title: Dual self-healing composite coating on magnesium alloys for corrosion protection publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130551 – volume: 8 start-page: 20 year: 2012 ident: 10.1016/j.surfcoat.2022.128824_bb0095 article-title: Calcium phosphate coatings on magnesium alloys for biomedical applications: a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.10.016 – volume: 50 start-page: 3527 year: 2008 ident: 10.1016/j.surfcoat.2022.128824_bb0235 article-title: Electrochemical and photoelectrochemical study of the self-assembled monolayer phytic acid on cupronickel B30 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.09.016 – volume: 5 start-page: 23 year: 2019 ident: 10.1016/j.surfcoat.2022.128824_bb0180 article-title: Corrosion mitigation of aluminium in 3.65% NaCl medium using hexamine publication-title: J. Bio- and Tribo-Corros. doi: 10.1007/s40735-018-0214-4 – volume: 403 year: 2021 ident: 10.1016/j.surfcoat.2022.128824_bb0005 article-title: A self-healing coating containing curcumin for osteoimmunomodulation to ameliorate oseointegration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126323 – volume: 394 year: 2020 ident: 10.1016/j.surfcoat.2022.128824_bb0030 article-title: Microstructure and wear resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125853 – volume: 30 start-page: 182 year: 2009 ident: 10.1016/j.surfcoat.2022.128824_bb0265 article-title: Urotropine as a corrosion inhibitor in hydrochloric acid solution publication-title: Corros.Prot. – volume: 9 start-page: 8631 year: 2013 ident: 10.1016/j.surfcoat.2022.128824_bb0010 article-title: The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.12.016 – volume: 787 start-page: 145 year: 2019 ident: 10.1016/j.surfcoat.2022.128824_bb0220 article-title: Corrosion resistance of phytic acid/Ce (III) nanocomposite coating with superhydrophobicity on magnesium publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.02.003 – volume: 2 start-page: 2617 year: 2010 ident: 10.1016/j.surfcoat.2022.128824_bb0040 article-title: Microporous Ni-doped TiO2 film photocatalyst by plasma electrolytic oxidation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100450h – volume: 72 start-page: 118 year: 2013 ident: 10.1016/j.surfcoat.2022.128824_bb0070 article-title: Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.03.017 – volume: 53 start-page: 3845 year: 2011 ident: 10.1016/j.surfcoat.2022.128824_bb0080 article-title: Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation publication-title: Corros. Sci. doi: 10.1016/j.corsci.2011.07.037 – volume: 823 year: 2020 ident: 10.1016/j.surfcoat.2022.128824_bb0100 article-title: Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.153721 – volume: 3 start-page: 7 year: 2010 ident: 10.1016/j.surfcoat.2022.128824_bb0275 article-title: Corrosion inhibition and adsorption properties ofAzadirachta indicamature leaves extract as green inhibitor for mild steel in HNO3 publication-title: Green Chem. Lett. Rev. doi: 10.1080/17518250903447100 – volume: 308 start-page: 29 year: 2016 ident: 10.1016/j.surfcoat.2022.128824_bb0260 article-title: Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.041 – volume: 187 start-page: 20 year: 2016 ident: 10.1016/j.surfcoat.2022.128824_bb0085 article-title: Plasma electrolytic oxidation coatings on mg alloy with addition of SiO2 particles publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.11.033 – volume: 51 start-page: 2898 year: 2006 ident: 10.1016/j.surfcoat.2022.128824_bb0315 article-title: Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.08.026 – volume: 269 start-page: 138 year: 2015 ident: 10.1016/j.surfcoat.2022.128824_bb0110 article-title: The evidence of cathodic micro-discharges during plasma electrolytic oxidation of light metallic alloys and micro-discharge intensity depending on pH of the electrolyte publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.02.026 – volume: 261 year: 2020 ident: 10.1016/j.surfcoat.2022.128824_bb0215 article-title: Characteristics of selenium-containing coatings on WE43 magnesium alloy by micro-arc oxidation publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.126944 – volume: 207 start-page: 170 year: 2012 ident: 10.1016/j.surfcoat.2022.128824_bb0140 article-title: Effects of tannic acid on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.06.056 – volume: 271 start-page: 271 year: 2013 ident: 10.1016/j.surfcoat.2022.128824_bb0015 article-title: Effects of sealing treatment on corrosion resistance and degradation behavior of micro-arc oxidized magnesium alloy wires publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.01.175 – volume: 45 start-page: 1473 year: 2003 ident: 10.1016/j.surfcoat.2022.128824_bb0255 article-title: Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine publication-title: Corros. Sci. doi: 10.1016/S0010-938X(02)00246-9 – volume: 7 start-page: 563 year: 2005 ident: 10.1016/j.surfcoat.2022.128824_bb0025 article-title: Recent progress in corrosion and protection of magnesium alloys publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200500013 – volume: 264 start-page: 105 year: 2015 ident: 10.1016/j.surfcoat.2022.128824_bb0325 article-title: High-corrosion resistance of the microarc oxidation coatings on magnesium alloy obtained in potassium fluotitanate electrolytes publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.01.013 – volume: 9 start-page: 21 year: 2021 ident: 10.1016/j.surfcoat.2022.128824_bb0105 article-title: Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): a review publication-title: J. Magnes. Alloys doi: 10.1016/j.jma.2020.07.004 – volume: 102 start-page: 321 year: 2013 ident: 10.1016/j.surfcoat.2022.128824_bb0090 article-title: Preparation and properties of composite MAO/ECD coatings on magnesium alloy publication-title: Colloids Surf.B doi: 10.1016/j.colsurfb.2012.07.040 – volume: 52 start-page: 2560 year: 2013 ident: 10.1016/j.surfcoat.2022.128824_bb0285 article-title: Inhibitive properties and adsorption of Purpald as a corrosion inhibitor for copper in nitric acid medium publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301465k – volume: 104 start-page: 74 year: 2007 ident: 10.1016/j.surfcoat.2022.128824_bb0155 article-title: The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2007.02.073 – volume: 539 start-page: 249 year: 2012 ident: 10.1016/j.surfcoat.2022.128824_bb0160 article-title: Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.04.120 – volume: 118 start-page: 28189 year: 2014 ident: 10.1016/j.surfcoat.2022.128824_bb0295 article-title: Double role of HMTA in ZnO nanorods grown by chemical bath deposition publication-title: J. Phys. Chem. C doi: 10.1021/jp507496a – volume: 163 year: 2022 ident: 10.1016/j.surfcoat.2022.128824_bb0035 article-title: A systematic study of the role of cathodic polarization and new findings on the soft sparking phenomenon from plasma electrolytic oxidation of an Al-Cu-Li alloy publication-title: J. Electrochem. Soc. – volume: 9 start-page: 6006 year: 2014 ident: 10.1016/j.surfcoat.2022.128824_bb0280 article-title: 2-(2,6-Dichloranilino) phenyl acetic acid drugs as eco-friendly corrosion inhibitors for mild steel in 1M HCl publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)10865-0 – volume: 35 start-page: 1559 year: 2022 ident: 10.1016/j.surfcoat.2022.128824_bb0150 article-title: Effect of initial oxide film on the formation and performance of plasma electrolytic oxidation coating on 7075 aluminum alloy publication-title: Acta Metall. Sin. doi: 10.1007/s40195-022-01378-7 – volume: 390 year: 2020 ident: 10.1016/j.surfcoat.2022.128824_bb0305 article-title: Preparation and corrosion resistance of hybrid coatings formed by PEN/C plus PEO on AZ91D magnesium alloys publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125661 – volume: 255 start-page: 6724 year: 2009 ident: 10.1016/j.surfcoat.2022.128824_bb0075 article-title: Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.02.082 – volume: 9 start-page: 261 year: 2012 ident: 10.1016/j.surfcoat.2022.128824_bb0200 article-title: Low-temperature synthesis of hexamethylenetetramine-stabilised ZnS nanoparticles and its photocatalytic properties publication-title: J. Exp. Nanosci. doi: 10.1080/17458080.2012.656708 – volume: 51 start-page: 1506 year: 2009 ident: 10.1016/j.surfcoat.2022.128824_bb0115 article-title: Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.10.039 – volume: 35 start-page: 836 year: 2016 ident: 10.1016/j.surfcoat.2022.128824_bb0045 article-title: Phase composition, morphology and element contents of micro-arc oxidation ceramic coatings on Ti–6Al–4V alloy under different calcination conditions publication-title: Rare Metals doi: 10.1007/s12598-016-0795-3 – volume: 50 start-page: 579 year: 1989 ident: 10.1016/j.surfcoat.2022.128824_bb0210 article-title: Hexamethylenetetramine: a review publication-title: Am. Ind. Hyg. Assoc. J. doi: 10.1080/15298668991375191 – volume: 33 start-page: 725 year: 2018 ident: 10.1016/j.surfcoat.2022.128824_bb0290 article-title: Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives publication-title: J. Biomater. Appl. doi: 10.1177/0885328218809911 – volume: 186 year: 2021 ident: 10.1016/j.surfcoat.2022.128824_bb0020 article-title: Formation of a trivalent chromium conversion coating on AZ91D magnesium alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109459 – volume: 174 start-page: 164 year: 2019 ident: 10.1016/j.surfcoat.2022.128824_bb0270 article-title: Preparation of MgAlFe-LDHs as a deicer corrosion inhibitor to reduce corrosion of chloride ions in deicing salts publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.01.123 – volume: 6 start-page: 0865b4 year: 2019 ident: 10.1016/j.surfcoat.2022.128824_bb0125 article-title: A comparative study on the microstructure and corrosion resistance of MAO coatings prepared in alkaline and acidic electrolytes publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab2014 – volume: 51 start-page: 1043 year: 2009 ident: 10.1016/j.surfcoat.2022.128824_bb0225 article-title: Investigating accuracy of the Tafel extrapolation method in HCl solutions publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.03.001 – volume: 45 start-page: 1473 year: 2003 ident: 10.1016/j.surfcoat.2022.128824_bb0175 article-title: Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine publication-title: Corros. Sci. doi: 10.1016/S0010-938X(02)00246-9 – volume: 446 year: 2022 ident: 10.1016/j.surfcoat.2022.128824_bb0055 article-title: Improving the tribocorrosion performance of plasma electrolytic oxidized coatings on AZ31B magnesium alloy using pullulan as an electrolyte additive publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.128754 – volume: 59 start-page: 314 year: 2003 ident: 10.1016/j.surfcoat.2022.128824_bb0190 article-title: Studies of benzotriazole and tolytriazole as inhibitors for copper corrosion in deionized water publication-title: Corrosion doi: 10.5006/1.3277563 |
SSID | ssj0001794 |
Score | 2.4638336 |
Snippet | To fabricate calcium-phosphate (CaP) coatings with good corrosion resistance on AZ31B alloys via micro-arc oxidation (MAO) treatment, hexamethylenetetramine... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 128824 |
SubjectTerms | Corrosion resistance HTMA Inhibition mechanism Magnesium alloys Micro-arc oxidation |
Title | Investigation of hexamethylenetetramine effects on formation and corrosion resistance of anodic coatings developed on AZ31B alloys |
URI | https://dx.doi.org/10.1016/j.surfcoat.2022.128824 |
Volume | 447 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS_NAEF9ED-pB1E_xzR68xjb7aLLHWpSq6MVPEC9h9oUVTaRW0IsH_3Jn2kQrCB48Juwsm51hfr_dzIOxfQu5zToxTySiW6KQkiQgnEyUFKmNApwGuho4v-j0r9Tptb6eYb0mF4bCKmvfP_HpY29dv2nVu9l6HAxal22yNpMhwBEOakriUyojKz94-wrzIIMb37No9MY4eipL-A790zC6CiimUogDdNW5UD8D1BToHC-zpZot8u5kQStsJpSrbL7XNGlbZYtT9QT_sfepqhlVyavIb8MLUJPoVwQXpMejITzgcF5HcXAc9Jm9yKH0HM-iuCp6wmM4UUvcD5oHysoPHKevoKt1XudaBU9TdG9kesjpD_7r0xq7Oj763-sndZOFxMlUjBLrvPG6Y1OIMkNn1xYQAmQmapsZ3wYDeZq5oEXU0VjwNvfKGWmsES4g0sl1NltWZdhgHMkZBOOCSa1SzucQrfRKiGg1CGSam0w3O1u4ugI5NcK4L5pQs7ui0UhBGikmGtlkrU-5x0kNjl8lTKO44ps1FQgUv8hu_UF2my3QE2FbqnfY7Gj4HHaRtIzs3tgq99hc9-Ssf_EBWFLxcw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcKAcKqCtoC1lD1zdxLve2HtMo6JQIBdAQr1Ysy81qLVRCFK59pd3hqyjVKrEoUfbOyt7Z_R9s-t5ABxbrGw5jFWmiN2yglySDKVTWaFkbqNEp5GPBi6mw8l18fVG32zAuMuF4bDKhP1LTH9C63Snn1azfzeb9S8HbG2mJIJjHtTmBWxydSrdg83R6dlkugJktrmnoxZNgEwCa4nCtwRR8-ha5LBKKT8RWley-DdHrfHOyQ68Sg6jGC3faRc2QrMHW-OuT9sebK-VFHwNv9cKZ7SNaKP4Hn4h94l-JH4hD3kxx580XKRADkGDVgmMAhsvaDtKb8VXtBNn75KWhOfBpvUzJ_gr-HRdpHSr4HmK0TeVfxb8E__x_g1cn3y5Gk-y1GchcyqXi8w6b7we2hyjKgnvBhJDwNJEbUvjB2iwyksXtIw6GoveVr5wRhlrpAtEduot9Jq2CfsgyD_DYFwwuS0K5yuMVvlCymg1SnI2D0B3K1u7VISce2H8qLtos9u600jNGqmXGjmA_krublmG41kJ0ymu_sugauKKZ2Tf_YfsEWxNri7O6_PT6dl7eMlPmOpy_QF6i_lDOCQfZmE_Jhv9A5J29CQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+hexamethylenetetramine+effects+on+formation+and+corrosion+resistance+of+anodic+coatings+developed+on+AZ31B+alloys&rft.jtitle=Surface+%26+coatings+technology&rft.au=Miao%2C+Xi&rft.au=Shi%2C+Xiaoting&rft.au=Shen%2C+Youliang&rft.au=Zhang%2C+Wenxia&rft.date=2022-10-15&rft.issn=0257-8972&rft.volume=447&rft.spage=128824&rft_id=info:doi/10.1016%2Fj.surfcoat.2022.128824&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2022_128824 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |