Physicochemical properties of chitosan–magnetite nanocomposites obtained with different pH

The physicochemical properties of the nanoparticle surface determine the performance of nanocomposites in biomedical applications such as their biodistribution and pharmacokinetics. The physicochemical properties of chitosan, such as apparent charge density and solubility, are pH dependent. Similarl...

Full description

Saved in:
Bibliographic Details
Published inPolymers & polymer composites Vol. 29; no. 9_suppl; pp. S1009 - S1016
Main Authors Chapa González, Christian, Navarro Arriaga, Javier Ulises, García Casillas, Perla Elvia
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.11.2021
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The physicochemical properties of the nanoparticle surface determine the performance of nanocomposites in biomedical applications such as their biodistribution and pharmacokinetics. The physicochemical properties of chitosan, such as apparent charge density and solubility, are pH dependent. Similarly, Fe3O4 nanoparticles are susceptible to variations in their physicochemical properties due to changes in pH. In this work, we evaluated the physicochemical properties of chitosan–magnetite nanocomposites that were suspended at pH 7.0, 9.0, and 11.0 to determinate the effect on particle size, zeta potential, and mass percentage of the polymeric coating, in addition to the crystalline phase and magnetic properties of magnetite phase. X-ray diffraction results exposed that the present phase was magnetite with no other phases present and that the crystallite size was between 10.8 and 14.1 nm. Fourier transform infrared verified the chitosan functional groups in treated samples while the percentage of mass determined by TGA found to be nearly 9%. Scanning electron microscopy micrographs corroborated the spherical shape of the bare and chitosan-coated nanoparticles. Dynamic light scattering results showed that chitosan coating modifies the zeta potential, going from a potential of −11.8 mV for bare particles to −3.0 mV (pH 11). Besides, vibrating sample magnetometer measurements showed that coercivity remained very low, which is desirable in biomedical applications.
AbstractList The physicochemical properties of the nanoparticle surface determine the performance of nanocomposites in biomedical applications such as their biodistribution and pharmacokinetics. The physicochemical properties of chitosan, such as apparent charge density and solubility, are pH dependent. Similarly, Fe 3 O 4 nanoparticles are susceptible to variations in their physicochemical properties due to changes in pH. In this work, we evaluated the physicochemical properties of chitosan–magnetite nanocomposites that were suspended at pH 7.0, 9.0, and 11.0 to determinate the effect on particle size, zeta potential, and mass percentage of the polymeric coating, in addition to the crystalline phase and magnetic properties of magnetite phase. X-ray diffraction results exposed that the present phase was magnetite with no other phases present and that the crystallite size was between 10.8 and 14.1 nm. Fourier transform infrared verified the chitosan functional groups in treated samples while the percentage of mass determined by TGA found to be nearly 9%. Scanning electron microscopy micrographs corroborated the spherical shape of the bare and chitosan-coated nanoparticles. Dynamic light scattering results showed that chitosan coating modifies the zeta potential, going from a potential of −11.8 mV for bare particles to −3.0 mV (pH 11). Besides, vibrating sample magnetometer measurements showed that coercivity remained very low, which is desirable in biomedical applications.
The physicochemical properties of the nanoparticle surface determine the performance of nanocomposites in biomedical applications such as their biodistribution and pharmacokinetics. The physicochemical properties of chitosan, such as apparent charge density and solubility, are pH dependent. Similarly, Fe3O4 nanoparticles are susceptible to variations in their physicochemical properties due to changes in pH. In this work, we evaluated the physicochemical properties of chitosan–magnetite nanocomposites that were suspended at pH 7.0, 9.0, and 11.0 to determinate the effect on particle size, zeta potential, and mass percentage of the polymeric coating, in addition to the crystalline phase and magnetic properties of magnetite phase. X-ray diffraction results exposed that the present phase was magnetite with no other phases present and that the crystallite size was between 10.8 and 14.1 nm. Fourier transform infrared verified the chitosan functional groups in treated samples while the percentage of mass determined by TGA found to be nearly 9%. Scanning electron microscopy micrographs corroborated the spherical shape of the bare and chitosan-coated nanoparticles. Dynamic light scattering results showed that chitosan coating modifies the zeta potential, going from a potential of −11.8 mV for bare particles to −3.0 mV (pH 11). Besides, vibrating sample magnetometer measurements showed that coercivity remained very low, which is desirable in biomedical applications.
The physicochemical properties of the nanoparticle surface determine the performance of nanocomposites in biomedical applications such as their biodistribution and pharmacokinetics. The physicochemical properties of chitosan, such as apparent charge density and solubility, are pH dependent. Similarly, Fe3O4 nanoparticles are susceptible to variations in their physicochemical properties due to changes in pH. In this work, we evaluated the physicochemical properties of chitosan–magnetite nanocomposites that were suspended at pH 7.0, 9.0, and 11.0 to determinate the effect on particle size, zeta potential, and mass percentage of the polymeric coating, in addition to the crystalline phase and magnetic properties of magnetite phase. X-ray diffraction results exposed that the present phase was magnetite with no other phases present and that the crystallite size was between 10.8 and 14.1 nm. Fourier transform infrared verified the chitosan functional groups in treated samples while the percentage of mass determined by TGA found to be nearly 9%. Scanning electron microscopy micrographs corroborated the spherical shape of the bare and chitosan-coated nanoparticles. Dynamic light scattering results showed that chitosan coating modifies the zeta potential, going from a potential of −11.8 mV for bare particles to −3.0 mV (pH 11). Besides, vibrating sample magnetometer measurements showed that coercivity remained very low, which is desirable in biomedical applications.
Author Chapa González, Christian
Navarro Arriaga, Javier Ulises
García Casillas, Perla Elvia
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0000-0003-1760-6116
  surname: Chapa González
  fullname: Chapa González, Christian
  organization: Department of Physics and Mathematics
– sequence: 2
  givenname: Javier Ulises
  surname: Navarro Arriaga
  fullname: Navarro Arriaga, Javier Ulises
  organization: Department of Physics and Mathematics
– sequence: 3
  givenname: Perla Elvia
  surname: García Casillas
  fullname: García Casillas, Perla Elvia
  organization: Department of Physics and Mathematics
BookMark eNp1kMFKAzEQhoNUsGofwNuC562ZJLvZHKWoFQp60JuwZLPZbqSbrEmK9OY7-IY-iSkVPIhzGWbm-_8Z5hRNrLMaoQvAcwDOr7AoORUABADTipVwhKbAeJWT1J2g6X6e74ETNAvBNBgXuEjBpujlsd8Fo5zq9WCU3GSjd6P20eiQuS5TvYkuSPv18TnItdXRRJ1ZaZ1yw-hCqhLWRGmsbrN3E_usNV2nvbYxG5fn6LiTm6BnP_kMPd_ePC2W-erh7n5xvcoVBRLzhheCUlKwFkspSqExKwXgVtASCyaKUnDc4ILQTjENLeFEcQqslEAY4R2nZ-jy4JuOf9vqEOtXt_U2raxJJUCwAvMqUXCglHcheN3VozeD9LsacL3_Y_3nj0kzP2iCXOtf1_8F32vsdG4
CitedBy_id crossref_primary_10_1007_s11274_023_03800_3
crossref_primary_10_1016_j_ijbiomac_2023_128258
crossref_primary_10_1557_s43580_021_00153_7
crossref_primary_10_1002_admi_202300206
crossref_primary_10_1002_slct_202400822
crossref_primary_10_3390_bios13030304
crossref_primary_10_1007_s10876_022_02278_7
crossref_primary_10_1007_s13399_024_05448_x
Cites_doi 10.1186/1556-276X-8-467
10.1016/j.mtcomm.2020.101247
10.1016/j.rinp.2018.03.008
10.1134/S1061933X20010020
10.1039/c2jm15339d
10.1016/j.actbio.2008.02.002
10.1016/j.colsurfa.2019.04.016
10.1166/sl.2010.1297
10.1016/j.jallcom.2014.01.155
10.3390/polym10111221
10.19053/01217488.v8.n1.2017.4494
10.3390/ijms20225705
10.1016/j.physe.2006.12.041
10.1016/j.bprint.2019.e00063
10.1016/j.jallcom.2013.12.269
10.1039/c2jm31295f
10.1007/s00418-014-1265-3
10.1016/B978-0-12-816662-8.00013-8
10.1590/S0100-40422010000300006
10.1007/978-3-662-33915-2_7
10.4028/www.scientific.net/AMR.324.129
10.1155/2018/7571613
10.3390/molecules23102661
10.1016/j.ces.2011.05.021
10.1016/j.jallcom.2020.154017
10.1016/j.matlet.2014.01.004
10.1016/j.reactfunctpolym.2019.104459
10.1186/1556-276X-8-512
10.1016/j.reactfunctpolym.2019.104372
10.3390/molecules16086778
10.1016/S0378-5173(02)00267-3
10.1002/app.25920
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1177/09673911211038461
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1478-2391
EndPage S1016
ExternalDocumentID 10_1177_09673911211038461
10.1177_09673911211038461
GroupedDBID -TM
0R~
123
29O
3V.
54M
88I
8FE
8FG
8FW
8G5
AADUE
AAHPS
AARIX
AATBZ
ABCCA
ABDBF
ABFWQ
ABJCF
ABKRH
ABQXT
ABRHV
ABUWG
ACDXX
ACGOD
ACIWK
ACOFE
ACSIQ
ACUIR
ADOGD
AENEX
AEWDL
AEWHI
AEXNY
AFCOW
AFKRA
AFKRG
AFRWT
AFUIA
AGNHF
AIOMO
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AZQEC
BDDNI
BENPR
BGLVJ
BPHCQ
CCPQU
CFDXU
CZ9
D1I
DOPDO
DU5
DV7
DWQXO
EAD
EAP
EBS
EHMNL
EJD
EPL
ESX
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GUQSH
HCIFZ
HRT
I-F
IAO
ITC
J8X
JCYGO
K.F
KB.
KC.
M2O
M2P
M4V
ML~
OK1
PDBOC
PQQKQ
PROAC
PV9
Q1R
RZL
SAFTQ
SFC
SJN
TUS
ZE2
ZPPRI
ZRKOI
~02
AAYXX
CITATION
H13
7SR
8FD
JG9
ID FETCH-LOGICAL-c312t-b75933254d0aa969e046910d936094956970b0523fc4e1d272c73146a12427f73
IEDL.DBID AFRWT
ISSN 0967-3911
IngestDate Thu Oct 10 20:38:21 EDT 2024
Wed Oct 09 16:52:05 EDT 2024
Tue Jul 16 20:41:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9_suppl
Keywords chitosan
magnetite nanoparticles
polymeric coating
dynamic light scattering
biomedical applications
zeta potential
particle size distribution
Fourier transform infrared
nanocomposites
TGA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-b75933254d0aa969e046910d936094956970b0523fc4e1d272c73146a12427f73
ORCID 0000-0003-1760-6116
PQID 2891945078
PQPubID 38601
ParticipantIDs proquest_journals_2891945078
crossref_primary_10_1177_09673911211038461
sage_journals_10_1177_09673911211038461
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Shropshire
PublicationTitle Polymers & polymer composites
PublicationYear 2021
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Sahranavard, Zamanian, Ghorbani 2020; 17
Alvarez-Barreto, Márquez, Gallardo 2017; 38
Višnjar, Kreft 2015; 143
Martel-Estrada, Olivas-Armendáriz, Santos-Rodríguez 2014; 119
Flores Urquizo, García Casillas, Chapa González 2017; 38
Maldonado Lara, Luna Bárcenas, Luna Hernández 2017; 38
Reza, Martínez Pérez, Martínez 2010; 8
Mahadevan, Gnanaprakash, Philip 2007; 39
Szalai, Kaptay, Barany 2019; 81
Chapa Gonzalez, Roacho Pérez, Martínez Pérez 2014; 615
Blanco-Andujar, Ortega, Pankhurst 2012; 22
Irimia, Ghica, Popa 2018; 10
Morales-Morales 2017; 8
Favela-Camacho, Samaniego-Benítez, Godínez-García 2019; 574
Vidojkovic, Rodriguez-Santiago, Fedkin 2011; 66
Saleem, Zhang, Gong 2020; 825
Li, Cai, Li 2018; 23
Ramanery, Mansur, Mansur 2013; 8
Villegas, Zavala, Israel 2018; 2008
Hong, Li, Ou 2007; 105
Dragan, Dinu 2020; 146
Arias, Reddy, Couvreur 2012; 22
Castrejón-Parga, Camacho-Montes, Rodríguez-González 2015; 615
Gohi, Zeng, Xu 2019; 20
Korolkov, Ludzik, Kozlovskiy 2020; 24
Kibasomba, Dhlamini, Maaza 2018; 9
Lv, Zhang, Wang 2011; 16
Quihui Cota, Morales Figueroa, Valbuena Gregorio 2017; 38
Andrade, Souza, Pereira 2010; 33
Yuan, Venkatasubramanian, Hein 2008; 4
Banerjee, Mitra, Kumar Singh 2002; 243
Frank, Onzi, Morawski 2020; 147
Lim, Sajomsang, Choi 2013; 8
Ramadan, Kareem, Hannoyer 2011; 324
bibr26-09673911211038461
bibr13-09673911211038461
bibr16-09673911211038461
bibr29-09673911211038461
bibr36-09673911211038461
bibr20-09673911211038461
bibr8-09673911211038461
bibr33-09673911211038461
bibr23-09673911211038461
bibr3-09673911211038461
bibr30-09673911211038461
bibr10-09673911211038461
bibr18-09673911211038461
Flores Urquizo IA (bibr19-09673911211038461) 2017; 38
bibr28-09673911211038461
bibr15-09673911211038461
bibr9-09673911211038461
bibr12-09673911211038461
bibr7-09673911211038461
Maldonado Lara K (bibr6-09673911211038461) 2017; 38
bibr22-09673911211038461
bibr32-09673911211038461
bibr25-09673911211038461
bibr35-09673911211038461
bibr34-09673911211038461
bibr11-09673911211038461
bibr21-09673911211038461
bibr1-09673911211038461
Quihui Cota L (bibr2-09673911211038461) 2017; 38
bibr14-09673911211038461
Alvarez-Barreto J (bibr5-09673911211038461) 2017; 38
bibr4-09673911211038461
bibr31-09673911211038461
bibr24-09673911211038461
bibr17-09673911211038461
bibr27-09673911211038461
References_xml – volume: 8
  start-page: 467
  year: 2013
  end-page: 512
  article-title: Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy
  publication-title: Nanoscale Res Lett
  contributor:
    fullname: Choi
– volume: 825
  start-page: 154017
  year: 2020
  article-title: Structural, magnetic and dielectric properties of nano-crystalline spinel NixCu1-xFe2O4
  publication-title: J Alloys Compounds
  contributor:
    fullname: Gong
– volume: 22
  start-page: 12498
  year: 2012
  end-page: 12506
  article-title: Elucidating the morphological and structural evolution of iron oxide nanoparticles formed by sodium carbonate in aqueous medium
  publication-title: J Mater Chem
  contributor:
    fullname: Pankhurst
– volume: 105
  start-page: 547
  year: 2007
  end-page: 551
  article-title: Thermogravimetric analysis of chitosan
  publication-title: J Appl Polym Sci
  contributor:
    fullname: Ou
– volume: 81
  start-page: 773
  year: 2019
  end-page: 778
  article-title: Electrokinetic potential and size distribution of magnetite nanoparticles stabilized by poly(vinyl pyrrolidone)
  publication-title: Colloid J
  contributor:
    fullname: Barany
– volume: 22
  start-page: 7622
  year: 2012
  end-page: 7632
  article-title: Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer
  publication-title: J Mater Chem
  contributor:
    fullname: Couvreur
– volume: 147
  start-page: 104459
  year: 2020
  article-title: Chitosan as a coating material for nanoparticles intended for biomedical applications
  publication-title: Reactive Funct Polym
  contributor:
    fullname: Morawski
– volume: 17
  start-page: e00063
  year: 2020
  article-title: A critical review on three dimensional-printed chitosan hydrogels for development of tissue engineering
  publication-title: Bioprinting
  contributor:
    fullname: Ghorbani
– volume: 615
  start-page: S655
  year: 2014
  end-page: S659
  article-title: Surface modified superparamagnetic nanoparticles: interaction with fibroblasts in primary cell culture
  publication-title: J Alloys Compounds
  contributor:
    fullname: Martínez Pérez
– volume: 38
  start-page: 402
  year: 2017
  end-page: 411
  article-title: Development of magnetic nanoparticles Fe X O (X= Fe, Co y Ni) coated by amino silane
  publication-title: Mex J Biomed Eng
  contributor:
    fullname: Chapa González
– volume: 9
  start-page: 628
  year: 2018
  end-page: 635
  article-title: Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method
  publication-title: Results Phys
  contributor:
    fullname: Maaza
– volume: 66
  start-page: 4029
  year: 2011
  end-page: 4035
  article-title: Electrophoretic mobility of magnetite particles in high temperature water
  publication-title: Chem Eng Sci
  contributor:
    fullname: Fedkin
– volume: 4
  start-page: 1024
  year: 2008
  end-page: 1037
  article-title: A stimulus-responsive magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-grafted-copolymer
  publication-title: Acta Biomater
  contributor:
    fullname: Hein
– volume: 146
  start-page: 104372
  year: 2020
  article-title: Advances in porous chitosan-based composite hydrogels: synthesis and applications
  publication-title: Reactive Funct Polym
  contributor:
    fullname: Dinu
– volume: 20
  start-page: 5705
  year: 2019
  article-title: Optimization of ZnAl/chitosan supra-nano hybrid preparation as efficient antibacterial material
  publication-title: IJMS
  contributor:
    fullname: Xu
– volume: 119
  start-page: 146
  year: 2014
  end-page: 149
  article-title: Evaluation of in vitro bioactivity of Chitosan/Mimosa tenuiflora composites
  publication-title: Mater Lett
  contributor:
    fullname: Santos-Rodríguez
– volume: 33
  start-page: 524
  year: 2010
  end-page: 527
  article-title: pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method
  publication-title: Quím Nova
  contributor:
    fullname: Pereira
– volume: 324
  start-page: 129
  year: 2011
  end-page: 132
  article-title: Effect of pH on the structural and magnetic properties of magnetite nanoparticles synthesised by co-precipitation
  publication-title: Amr
  contributor:
    fullname: Hannoyer
– volume: 615
  start-page: S505
  year: 2015
  end-page: S510
  article-title: Chitosan-starch film reinforced with magnetite-decorated carbon nanotubes
  publication-title: J Alloys Compd
  contributor:
    fullname: Rodríguez-González
– volume: 38
  start-page: 306
  year: 2017
  end-page: 313
  article-title: Preparation and characterization of copper chitosan nanocomposites with antibacterial activity for applications in tissue engineering
  publication-title: Mex J Biomed Eng
  contributor:
    fullname: Luna Hernández
– volume: 8
  start-page: 476
  year: 2010
  end-page: 481
  article-title: Study of the particle size effect on the magnetic separation of Bovine Serum Albumin (BSA)
  publication-title: Sen Lett
  contributor:
    fullname: Martínez
– volume: 243
  start-page: 93
  year: 2002
  end-page: 105
  article-title: Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles
  publication-title: Int J Pharmaceutics
  contributor:
    fullname: Kumar Singh
– volume: 8
  start-page: 512
  year: 2013
  article-title: One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates
  publication-title: Nanoscale Res Lett
  contributor:
    fullname: Mansur
– volume: 23
  start-page: 2661
  year: 2018
  article-title: Chitosan-based nanomaterials for drug delivery
  publication-title: Molecules
  contributor:
    fullname: Li
– volume: 143
  start-page: 95
  year: 2015
  end-page: 107
  article-title: The complete functional recovery of chitosan-treated biomimetic hyperplastic and normoplastic urothelial models
  publication-title: Histochem Cel Biol
  contributor:
    fullname: Kreft
– volume: 16
  start-page: 6778
  year: 2011
  end-page: 6790
  article-title: A biomimetic chitosan derivates: preparation, characterization and transdermal enhancement studies of N-arginine chitosan
  publication-title: Molecules
  contributor:
    fullname: Wang
– volume: 39
  start-page: 20
  year: 2007
  end-page: 25
  article-title: X-ray diffraction-based characterization of magnetite nanoparticles in presence of goethite and correlation with magnetic properties
  publication-title: Phys E: Low-dimensional Syst Nanostruct
  contributor:
    fullname: Philip
– volume: 38
  start-page: 524
  year: 2017
  end-page: 536
  article-title: Mesenchymal stem cell culture on composite hydrogels of hydroxyapatite nanoparticles and photo-crosslinking chitosan
  publication-title: Mex J Biomed Eng
  contributor:
    fullname: Gallardo
– volume: 10
  start-page: 1221
  year: 2018
  article-title: Strategies for improving ocular drug bioavailability and corneal wound healing with chitosan-based delivery systems
  publication-title: Polymers
  contributor:
    fullname: Popa
– volume: 38
  start-page: 255
  year: 2017
  end-page: 264
  article-title: Membrane of chitosan with essential oils of Romero and Tree of Tea: Potential as biomaterial
  publication-title: Mex J Biomed Eng
  contributor:
    fullname: Valbuena Gregorio
– volume: 24
  start-page: 101247
  year: 2020
  article-title: Carboranes immobilization on Fe3O4 nanocomposites for targeted delivery
  publication-title: Mater Today Commun
  contributor:
    fullname: Kozlovskiy
– volume: 2008
  start-page: 1
  year: 2018
  end-page: 9
  article-title: Detection of HER2 through antibody immobilization is influenced by the properties of the magnetite nanoparticle coating
  publication-title: J Nanomater
  contributor:
    fullname: Israel
– volume: 8
  start-page: 99
  year: 2017
  end-page: 107
  article-title: Synthesis of Hematite α-Fe O Nano powders by the controlled precipitation method
  publication-title: Ciencia en Desarrollo
  contributor:
    fullname: Morales-Morales
– volume: 574
  start-page: 29
  year: 2019
  end-page: 35
  article-title: How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties
  publication-title: Colloids Surf A: Physicochemical Eng Aspects
  contributor:
    fullname: Godínez-García
– ident: bibr17-09673911211038461
  doi: 10.1186/1556-276X-8-467
– ident: bibr29-09673911211038461
  doi: 10.1016/j.mtcomm.2020.101247
– ident: bibr24-09673911211038461
  doi: 10.1016/j.rinp.2018.03.008
– ident: bibr12-09673911211038461
  doi: 10.1134/S1061933X20010020
– ident: bibr16-09673911211038461
  doi: 10.1039/c2jm15339d
– ident: bibr18-09673911211038461
  doi: 10.1016/j.actbio.2008.02.002
– ident: bibr32-09673911211038461
  doi: 10.1016/j.colsurfa.2019.04.016
– ident: bibr13-09673911211038461
  doi: 10.1166/sl.2010.1297
– ident: bibr14-09673911211038461
  doi: 10.1016/j.jallcom.2014.01.155
– ident: bibr7-09673911211038461
  doi: 10.3390/polym10111221
– ident: bibr23-09673911211038461
  doi: 10.19053/01217488.v8.n1.2017.4494
– ident: bibr26-09673911211038461
  doi: 10.3390/ijms20225705
– ident: bibr21-09673911211038461
  doi: 10.1016/j.physe.2006.12.041
– ident: bibr4-09673911211038461
  doi: 10.1016/j.bprint.2019.e00063
– ident: bibr30-09673911211038461
  doi: 10.1016/j.jallcom.2013.12.269
– ident: bibr22-09673911211038461
  doi: 10.1039/c2jm31295f
– ident: bibr33-09673911211038461
  doi: 10.1007/s00418-014-1265-3
– volume: 38
  start-page: 255
  year: 2017
  ident: bibr2-09673911211038461
  publication-title: Mex J Biomed Eng
  contributor:
    fullname: Quihui Cota L
– ident: bibr36-09673911211038461
  doi: 10.1016/B978-0-12-816662-8.00013-8
– ident: bibr10-09673911211038461
  doi: 10.1590/S0100-40422010000300006
– ident: bibr20-09673911211038461
  doi: 10.1007/978-3-662-33915-2_7
– ident: bibr11-09673911211038461
  doi: 10.4028/www.scientific.net/AMR.324.129
– ident: bibr15-09673911211038461
  doi: 10.1155/2018/7571613
– volume: 38
  start-page: 524
  year: 2017
  ident: bibr5-09673911211038461
  publication-title: Mex J Biomed Eng
  contributor:
    fullname: Alvarez-Barreto J
– ident: bibr8-09673911211038461
  doi: 10.3390/molecules23102661
– ident: bibr31-09673911211038461
  doi: 10.1016/j.ces.2011.05.021
– ident: bibr25-09673911211038461
  doi: 10.1016/j.jallcom.2020.154017
– volume: 38
  start-page: 402
  year: 2017
  ident: bibr19-09673911211038461
  publication-title: Mex J Biomed Eng
  contributor:
    fullname: Flores Urquizo IA
– ident: bibr3-09673911211038461
  doi: 10.1016/j.matlet.2014.01.004
– ident: bibr9-09673911211038461
  doi: 10.1016/j.reactfunctpolym.2019.104459
– ident: bibr34-09673911211038461
  doi: 10.1186/1556-276X-8-512
– ident: bibr1-09673911211038461
  doi: 10.1016/j.reactfunctpolym.2019.104372
– ident: bibr28-09673911211038461
  doi: 10.3390/molecules16086778
– ident: bibr27-09673911211038461
  doi: 10.1016/S0378-5173(02)00267-3
– volume: 38
  start-page: 306
  year: 2017
  ident: bibr6-09673911211038461
  publication-title: Mex J Biomed Eng
  contributor:
    fullname: Maldonado Lara K
– ident: bibr35-09673911211038461
  doi: 10.1002/app.25920
SSID ssib005055554
ssj0021665
Score 2.3421552
Snippet The physicochemical properties of the nanoparticle surface determine the performance of nanocomposites in biomedical applications such as their biodistribution...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Publisher
StartPage S1009
SubjectTerms Addition polymerization
Biomedical materials
Charge density
Chitosan
Coercivity
Crystallites
Fourier transforms
Functional groups
Iron oxides
Magnetic properties
Magnetite
Nanocomposites
Nanoparticles
Particle size
Photomicrographs
Photon correlation spectroscopy
Polymer coatings
Scanning electron microscopy
Zeta potential
Title Physicochemical properties of chitosan–magnetite nanocomposites obtained with different pH
URI https://journals.sagepub.com/doi/full/10.1177/09673911211038461
https://www.proquest.com/docview/2891945078
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qe9GD-MRqLTkIghC77zQnadVSBD2IxR6EJZvNeupuabcHb_4H_6G_xJntLq2i4HU3JGEyyXzzBjgzItJ4uBGPpPK55-uYIwoX3DI-wW0U-BHZIe8fguHIuxv74xpkVS5MScH5JYVV4Y6Kx5puN1mjO6WTsYO4W7h4TUl7cVGC2leLfBIuzd1VVw36Qv7pxYRc25oCIt94ld62AQ2HquLWodEbPD6vroBPBbBIwpY6mx0U3ShpQU4rlo7RXzfxXbSt8OpaiFghtQY7sF3CTdZb8scu1Ey6B1trRQj34aUIAtXUOasoHcCmZJ-fUaFVliWM_AzZXKWf7x8T9ZpSUpphqUozCkaniC8aFpGBwcSMrLqs6rmSs-nwAEaD26frIS97LnDt2k7OI-FL10WtMbaUkoE0pD_bVizdABVBPEYprIhMyYn2jB07wtHCxddWIU5wRCLcQ6inWWqOgCVBorraToyltNc1WjrdxNIIqJxExdKSTbioyBVOl6U1QruqPv6Ttk1oVQQNKx4JUVm0pYeIttuEcyLy6tefEx3_e-QJbDoUwFIkHragns8W5hQRSB61kWv6N_1Bu-SeLzca0_8
link.rule.ids 315,786,790,21994,27884,27955,27956,44978,45366
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSsNAEF6kPagH8RerVfcgCEIkySbZ7LGIpWrbg7TYgxB2N7ueTEob776Db-iTOJMmtoqC5yxDmNnd-b7Z-SHk3HClwbjKUUKGThDq1AEUzh3XhAi3weErjEMOhlFvHNxNwkmVVYm1MJUG51eYVgV_VF7WX6cbOyWJiDM4oUhcGDhPYD7NIGQR7O5mp_vwuNzNIfayQmdZ0S8vKgdLogAHJVRvnL8K_e6lltBzJdurdEDdbbJVIUfaWZh6h6yZbJdsrvQT3CNPZT6nxiFYZRcAOsVQ-wx7ptLcUnwyyOcy-3h7f5HPGdaXGZrJLMe8ckzewmUKYwUmpRigpfX4lIJOe_tk3L0ZXfecanyCo5nnF47ioWAMCGDqSikiYZAKe24qWAScDiwiuKswKmx1YLzU577mDC5OCS7f55azA9LI8swcEmojK2PtWeNKHcRGCz-2rgZs5FuZCle0yGWtrmS66JKReHUj8Z-6bZF2rdCkNncCvM8TAYDTuEUuUMnLT38KOvr3yjOy3hsN-kn_dnh_TDZ8zEsp6wnbpFHMXs0JAItCnVY76BMoi7_1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kBdGD-MRq1T0IghCb92aPRQ31VUQs9iCEzWbXk0lo493_4D_0lziTbmgVBc9ZhjCzu_N9s_Mg5FixVIJxUyvlIrD8QGYWoHBm2SpAuA0OP8U45N0wHIz863EwNgE3rIUxGpyeYVoV_FF9WePpLjPdM2-MPYDdzINTiuTFAwcK7Kft46i0Fmn344en-Y4OsJ8VOkxDwZywHi6JAiyUYN45fxX63VPN4edCxlfthOJ1smbQI-3PzL1BllS-SVYXegpukec6p1PiIKy6EwAtMdw-wb6ptNAUnw2Kqcg_3z9exUuONWaK5iIvMLccE7hwWYrxApVRDNLSZoRKRcvBNhnFl4_nA8uMULCk57iVlbKAex6QwMwWgodcIR127Ix7IfA6sApndoqRYS195WQucyXz4PIU4PZdppm3Q1p5katdQnWoRSQdrWwh_UhJ7kbaloCPXC0ybvMOOW3UlZSzThmJ0zQT_6nbDuk2Ck0akyfA_RzuA0CNOuQElTz_9KegvX-vPCLL9xdxcns1vNknKy6mptQlhV3SqiZv6gCwRZUemg30BU3FwQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physicochemical+properties+of+chitosan%E2%80%93magnetite+nanocomposites+obtained+with+different+pH&rft.jtitle=Polymers+%26+polymer+composites&rft.au=Christian+Chapa+Gonz%C3%A1lez&rft.au=Javier+Ulises+Navarro+Arriaga&rft.au=Perla+Elvia+Garc%C3%ADa+Casillas&rft.date=2021-11-01&rft.pub=Sage+Publications+Ltd&rft.issn=0967-3911&rft.eissn=1478-2391&rft.volume=29&rft.issue=9_suppl&rft.spage=S1009&rft.epage=S1016&rft_id=info:doi/10.1177%2F09673911211038461&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3911&client=summon