Development of an optimized cell-based selection system for phage display libraries
The discovery of antibodies through phage display is significantly influenced by antigen presentation during panning, particularly for membrane-anchored proteins, which pose challenges due to their complex structures. Traditional approaches, such as whole cells expressing the target protein, often r...
Saved in:
Published in | Biology methods and protocols Vol. 10; no. 1; p. bpaf009 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2396-8923 2396-8923 |
DOI | 10.1093/biomethods/bpaf009 |
Cover
Abstract | The discovery of antibodies through phage display is significantly influenced by antigen presentation during panning, particularly for membrane-anchored proteins, which pose challenges due to their complex structures. Traditional approaches, such as whole cells expressing the target protein, often result in low antigen density and high background signals. In this study, we describe an alternative method using stably transfected cell lines that express the target antigen on their surface, regulated by an intracellular enhanced green fluorescent protein (EGFP) signal. This system enables high-throughput flow cytometry-based screening of phage display libraries to isolate human antibodies that recognize the native conformation of membrane proteins. Using human epithelial cell adhesion molecule (EpCAM) and human neuroplastin 65 (NP65) as model antigens, we established an optimized screening workflow with polyclonal phage pools. Selected EpCAM-specific single-chain variable fragments (scFvs) from a naïve library were recombinantly expressed with an IgG4 scaffold and characterized for specific binding. This approach provides an effective platform for the identification of antibodies against membrane proteins in their native state. |
---|---|
AbstractList | The discovery of antibodies through phage display is significantly influenced by antigen presentation during panning, particularly for membrane-anchored proteins, which pose challenges due to their complex structures. Traditional approaches, such as whole cells expressing the target protein, often result in low antigen density and high background signals. In this study, we describe an alternative method using stably transfected cell lines that express the target antigen on their surface, regulated by an intracellular enhanced green fluorescent protein (EGFP) signal. This system enables high-throughput flow cytometry-based screening of phage display libraries to isolate human antibodies that recognize the native conformation of membrane proteins. Using human epithelial cell adhesion molecule (EpCAM) and human neuroplastin 65 (NP65) as model antigens, we established an optimized screening workflow with polyclonal phage pools. Selected EpCAM-specific single-chain variable fragments (scFvs) from a naïve library were recombinantly expressed with an IgG4 scaffold and characterized for specific binding. This approach provides an effective platform for the identification of antibodies against membrane proteins in their native state.The discovery of antibodies through phage display is significantly influenced by antigen presentation during panning, particularly for membrane-anchored proteins, which pose challenges due to their complex structures. Traditional approaches, such as whole cells expressing the target protein, often result in low antigen density and high background signals. In this study, we describe an alternative method using stably transfected cell lines that express the target antigen on their surface, regulated by an intracellular enhanced green fluorescent protein (EGFP) signal. This system enables high-throughput flow cytometry-based screening of phage display libraries to isolate human antibodies that recognize the native conformation of membrane proteins. Using human epithelial cell adhesion molecule (EpCAM) and human neuroplastin 65 (NP65) as model antigens, we established an optimized screening workflow with polyclonal phage pools. Selected EpCAM-specific single-chain variable fragments (scFvs) from a naïve library were recombinantly expressed with an IgG4 scaffold and characterized for specific binding. This approach provides an effective platform for the identification of antibodies against membrane proteins in their native state. The discovery of antibodies through phage display is significantly influenced by antigen presentation during panning, particularly for membrane-anchored proteins, which pose challenges due to their complex structures. Traditional approaches, such as whole cells expressing the target protein, often result in low antigen density and high background signals. In this study, we describe an alternative method using stably transfected cell lines that express the target antigen on their surface, regulated by an intracellular enhanced green fluorescent protein (EGFP) signal. This system enables high-throughput flow cytometry-based screening of phage display libraries to isolate human antibodies that recognize the native conformation of membrane proteins. Using human epithelial cell adhesion molecule (EpCAM) and human neuroplastin 65 (NP65) as model antigens, we established an optimized screening workflow with polyclonal phage pools. Selected EpCAM-specific single-chain variable fragments (scFvs) from a naïve library were recombinantly expressed with an IgG4 scaffold and characterized for specific binding. This approach provides an effective platform for the identification of antibodies against membrane proteins in their native state. |
Author | Czarnecka, Malgorzata Schlör, Anja Findik, Nicole Hanack, Katja |
Author_xml | – sequence: 1 givenname: Malgorzata surname: Czarnecka fullname: Czarnecka, Malgorzata – sequence: 2 givenname: Nicole surname: Findik fullname: Findik, Nicole – sequence: 3 givenname: Anja surname: Schlör fullname: Schlör, Anja – sequence: 4 givenname: Katja orcidid: 0000-0003-2867-689X surname: Hanack fullname: Hanack, Katja |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39968222$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtrHDEQhIVZk7Wd_QM5BEEuvoytlnZnpFMIdh4Ggw9JzkKP1q7MzGgizRrWv95jvPHr1AX9UXR1HZNZn3ok5BOwM2BKnNuYOhw3yZdzO5jAmDogR1youpKKi9krPSeLUm4ZYyCXK2DwgcyFUrXknB-R35d4h20aOuxHmgI1PU3DGLt4j546bNvKmjLJgi26Maaell0ZsaMhZTpszBqpj2VozY620WaTI5aP5DCYtuBiP0_I3x_f_1z8qq5vfl5dfLuunAA-VnZVNzzUEIKRjfeslsoL7gCYNcG5pvbeWcVEcCaoBjwsvbQNKlkbLzGsxAn5-uQ7bG2H3k0Rsmn1kGNn8k4nE_XbTR83ep3uNIAUKy745HC6d8jp3xbLqLtYHlObHtO2aAG1FEo00Ezol3fobdrmfsqnJyPZMFhymKjPr096vuX_wyeAPwEup1IyhmcEmH4sVr8Uq_fFigcw55wP |
Cites_doi | 10.1093/protein/gzs043 10.14348/molcells.2017.0106 10.1111/j.1365-2583.2004.00525.x 10.1016/S0958-1669(98)80092-X 10.3390/ijms23116275 10.3389/fcimb.2021.697876 10.3390/antib6030010 10.1016/0022-1759(94)90233-X 10.1186/1472-6750-14-68 10.1016/j.intimp.2023.110656 10.1093/protein/gzr039 10.3109/08830189309061689 10.1006/jmbi.2000.4315 10.1172/JCI156955 10.1016/j.bbrc.2016.11.157 10.1073/pnas.080389297 10.1007/BF01542654 10.1016/j.biochi.2007.06.008 10.1073/pnas.0909775106 10.3389/fimmu.2022.930975 10.1101/pdb.prot065573 10.15698/cst2019.06.188 10.1038/s41598-020-58571-w 10.1007/s00262-007-0376-2 10.1038/227680a0 10.1038/srep26240 10.1016/j.nbt.2018.03.006 10.1186/s12896-015-0125-0 10.1093/nar/gkm446 10.3892/mmr.2021.12407 10.1006/jmbi.1999.2676 10.3390/cells12111453 10.3390/antib5020011 10.3390/antib11020041 10.1016/j.bios.2020.112868 10.1073/pnas.88.18.7978 10.1002/jcp.27636 10.1016/S0022-1759(12)80037-8 10.1074/jbc.RA120.015053 10.1080/19420862.2024.2322562 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025. Published by Oxford University Press. 2025 |
Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025. Published by Oxford University Press. 2025 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1093/biomethods/bpaf009 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2396-8923 |
ExternalDocumentID | PMC11835232 39968222 10_1093_biomethods_bpaf009 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 03IP703; 03IP703X |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP AAYXX ABDBF ABEJV ABGNP ABPTD ABXVV ACGFS ACUHS AENZO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMNDL AVWKF BAYMD BBNVY BENPR BHPHI CCPQU CITATION EBS ESX GROUPED_DOAJ H13 HCIFZ IAO IHR ISR KSI M7P M~E O9- OAWHX OJQWA OK1 PEELM PHGZM PHGZT PIMPY RPM TOX EJD ITC NPM 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c312t-b5672f61ffa87dd0689d32c110bafcc76ddcb903fcaf971d14d8b7e986ad8ef53 |
IEDL.DBID | BENPR |
ISSN | 2396-8923 |
IngestDate | Thu Aug 21 18:28:40 EDT 2025 Thu Sep 04 17:45:49 EDT 2025 Sat Sep 06 07:08:18 EDT 2025 Thu Apr 03 07:06:13 EDT 2025 Tue Jul 01 05:24:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | recombinant human antibodies membrane proteins selection phage display antibody discovery |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-b5672f61ffa87dd0689d32c110bafcc76ddcb903fcaf971d14d8b7e986ad8ef53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2867-689X |
OpenAccessLink | https://www.proquest.com/docview/3238701421?pq-origsite=%requestingapplication% |
PMID | 39968222 |
PQID | 3238701421 |
PQPubID | 7121356 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11835232 proquest_miscellaneous_3168393717 proquest_journals_3238701421 pubmed_primary_39968222 crossref_primary_10_1093_biomethods_bpaf009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Biology methods and protocols |
PublicationTitleAlternate | Biol Methods Protoc |
PublicationYear | 2025 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Li (2025030711381238000_bpaf009-B3) 2022; 11 Huang (2025030711381238000_bpaf009-B37) 2016; 5 Kügler (2025030711381238000_bpaf009-B27) 2015; 15 Weber (2025030711381238000_bpaf009-B9) 2021; 24 Schenk (2025030711381238000_bpaf009-B11) 2007; 89 Keller (2025030711381238000_bpaf009-B13) 2019; 3 Lewis (2025030711381238000_bpaf009-B43) 2012 Smalla (2025030711381238000_bpaf009-B14) 2000; 97 Kim (2025030711381238000_bpaf009-B26) 2017; 40 Schlör (2025030711381238000_bpaf009-B20) 2018; 45 Coomber (2025030711381238000_bpaf009-B23) 2002; 178 Langreder (2025030711381238000_bpaf009-B41) 2023 Glanville (2025030711381238000_bpaf009-B28) 2009; 106 Jones (2025030711381238000_bpaf009-B10) 2016; 6 Andris-Widhopf (2025030711381238000_bpaf009-B18) 2011; 2011 Schlör (2025030711381238000_bpaf009-B24) 2022; 13 Cadiñanos (2025030711381238000_bpaf009-B40) 2007; 35 Jayaram (2025030711381238000_bpaf009-B29) 2012; 25 Roth (2025030711381238000_bpaf009-B30) 2021; 11 Pieper (2025030711381238000_bpaf009-B32) 2023; 12 Schwab (2025030711381238000_bpaf009-B6) 1992; 147 Kneissel (2025030711381238000_bpaf009-B22) 1999; 288 Fuchs (2025030711381238000_bpaf009-B33) 2014; 14 Czarnecka (2025030711381238000_bpaf009-B19) 2022; 23 Li (2025030711381238000_bpaf009-B39) 2005; 14 Griffiths (2025030711381238000_bpaf009-B7) 1998; 9 Listek (2025030711381238000_bpaf009-B12) 2020; 10 Yuan (2025030711381238000_bpaf009-B38) 2008; 57 Kim (2025030711381238000_bpaf009-B31) 2021; 175 Koprowski (2025030711381238000_bpaf009-B2) 1979; 5 Sharon (2025030711381238000_bpaf009-B42) 1993; 10 Hötzel (2025030711381238000_bpaf009-B36) 2011; 24 Krogh (2025030711381238000_bpaf009-B16) 2001; 305 Laemmli (2025030711381238000_bpaf009-B25) 1970; 227 Barbas (2025030711381238000_bpaf009-B17) 1991; 88 Robertson (2025030711381238000_bpaf009-B35) 2020; 295 Lakzaei (2025030711381238000_bpaf009-B5) 2019; 234 Frey (2025030711381238000_bpaf009-B4) 2024; 16 Micheel (2025030711381238000_bpaf009-B21) 1994; 171 Alfaleh (2025030711381238000_bpaf009-B8) 2017; 6 Mirzaei (2025030711381238000_bpaf009-B34) 2023; 122 Lütkecosmann (2025030711381238000_bpaf009-B1) 2017; 482 Goodyer (2025030711381238000_bpaf009-B15) 2022; 132 |
References_xml | – volume: 25 start-page: 523 year: 2012 ident: 2025030711381238000_bpaf009-B29 article-title: Germline VH/VL pairing in antibodies publication-title: Protein Eng Des Sel doi: 10.1093/protein/gzs043 – volume: 40 start-page: 655 year: 2017 ident: 2025030711381238000_bpaf009-B26 article-title: Generation, diversity determination, and application to antibody selection of a human naïve fab library publication-title: Mol Cells doi: 10.14348/molcells.2017.0106 – volume: 14 start-page: 17 year: 2005 ident: 2025030711381238000_bpaf009-B39 article-title: piggyBac internal sequences are necessary for efficient transformation of target genomes publication-title: Insect Mol Biol doi: 10.1111/j.1365-2583.2004.00525.x – volume: 9 start-page: 102 year: 1998 ident: 2025030711381238000_bpaf009-B7 article-title: Strategies for selection of antibodies by phage display publication-title: Curr Opin Biotechnol doi: 10.1016/S0958-1669(98)80092-X – volume: 23 start-page: 6275 year: 2022 ident: 2025030711381238000_bpaf009-B19 article-title: Novel anti double-stranded nucleic acids full-length recombinant camelid heavy-chain antibody for the detection of miRNA publication-title: IJMS doi: 10.3390/ijms23116275 – volume: 11 start-page: 697876 year: 2021 ident: 2025030711381238000_bpaf009-B30 article-title: Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2021.697876 – volume: 6 start-page: 10 year: 2017 ident: 2025030711381238000_bpaf009-B8 article-title: Strategies for selecting membrane protein-specific antibodies using phage display with cell-based panning publication-title: Antibodies doi: 10.3390/antib6030010 – volume: 171 start-page: 103 year: 1994 ident: 2025030711381238000_bpaf009-B21 article-title: Production of monoclonal antibodies against epitopes of the main coat protein of filamentous Fd phages publication-title: J Immunol Methods doi: 10.1016/0022-1759(94)90233-X – volume: 14 start-page: 68 year: 2014 ident: 2025030711381238000_bpaf009-B33 article-title: Novel human recombinant antibodies against mycobacterium tuberculosis antigen 85B publication-title: BMC Biotechnol doi: 10.1186/1472-6750-14-68 – volume: 122 start-page: 110656 year: 2023 ident: 2025030711381238000_bpaf009-B34 article-title: Production of novel recombinant anti-EpCAM antibody as targeted therapy for breast cancer publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2023.110656 – volume: 24 start-page: 679 year: 2011 ident: 2025030711381238000_bpaf009-B36 article-title: Efficient production of antibodies against a mammalian integral membrane protein by phage display publication-title: Protein Eng Des Sel doi: 10.1093/protein/gzr039 – volume: 10 start-page: 113 year: 1993 ident: 2025030711381238000_bpaf009-B42 article-title: Oligonucleotide-directed mutagenesis of antibody combining sites publication-title: Int Rev Immunol doi: 10.3109/08830189309061689 – volume: 305 start-page: 567 year: 2001 ident: 2025030711381238000_bpaf009-B16 article-title: Predicting transmembrane protein topology with a hidden markov model: application to complete genomes publication-title: J Mol Biol doi: 10.1006/jmbi.2000.4315 – volume: 132 start-page: e156955 year: 2022 ident: 2025030711381238000_bpaf009-B15 article-title: In vivo visualization and molecular targeting of the cardiac conduction system publication-title: J Clin Invest doi: 10.1172/JCI156955 – volume: 482 start-page: 1054 year: 2017 ident: 2025030711381238000_bpaf009-B1 article-title: A novel monoclonal antibody suitable for the detection of leukotriene B4 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2016.11.157 – volume: 97 start-page: 4327 year: 2000 ident: 2025030711381238000_bpaf009-B14 article-title: The synaptic glycoprotein neuroplastin is involved in long-term potentiation at hippocampal CA1 synapses publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.080389297 – volume: 5 start-page: 957 year: 1979 ident: 2025030711381238000_bpaf009-B2 article-title: Colorectal carcinoma antigens detected by hybridoma antibodies publication-title: Somatic Cell Genet doi: 10.1007/BF01542654 – volume: 89 start-page: 1304 year: 2007 ident: 2025030711381238000_bpaf009-B11 article-title: Generation and application of a fluorescein-specific single chain antibody publication-title: Biochimie doi: 10.1016/j.biochi.2007.06.008 – volume: 106 start-page: 20216 year: 2009 ident: 2025030711381238000_bpaf009-B28 article-title: Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0909775106 – volume: 13 start-page: 930975 year: 2022 ident: 2025030711381238000_bpaf009-B24 article-title: SARS-CoV-2 neutralizing camelid heavy-chain-only antibodies as powerful tools for diagnostic and therapeutic applications publication-title: Front Immunol doi: 10.3389/fimmu.2022.930975 – volume: 178 start-page: 133 year: 2002 ident: 2025030711381238000_bpaf009-B23 article-title: Panning of antibody phage-display libraries: standard protocols publication-title: Methods Mol Biol – volume: 2011 year: 2011 ident: 2025030711381238000_bpaf009-B18 article-title: Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences publication-title: Cold Spring Harb Protoc doi: 10.1101/pdb.prot065573 – volume: 3 start-page: 165 year: 2019 ident: 2025030711381238000_bpaf009-B13 article-title: Biology and clinical relevance of EpCAM publication-title: Cell Stress doi: 10.15698/cst2019.06.188 – volume: 10 start-page: 1664 year: 2020 ident: 2025030711381238000_bpaf009-B12 article-title: A novel selection strategy for antibody producing hybridoma cells based on a new transgenic fusion cell line publication-title: Sci Rep doi: 10.1038/s41598-020-58571-w – volume: 57 start-page: 367 year: 2008 ident: 2025030711381238000_bpaf009-B38 article-title: Isolation of anti-MISIIR scFv molecules from a phage display library by cell sorter biopanning publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-007-0376-2 – start-page: 395 volume-title: Methods Mol Biol year: 2023 ident: 2025030711381238000_bpaf009-B41 – volume: 227 start-page: 680 year: 1970 ident: 2025030711381238000_bpaf009-B25 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature doi: 10.1038/227680a0 – volume: 6 start-page: 26240 year: 2016 ident: 2025030711381238000_bpaf009-B10 article-title: Targeting membrane proteins for antibody discovery using phage display publication-title: Sci Rep doi: 10.1038/srep26240 – volume: 45 start-page: 60 year: 2018 ident: 2025030711381238000_bpaf009-B20 article-title: Generation and validation of murine monoclonal and camelid recombinant single domain antibodies specific for human pancreatic glycoprotein 2 publication-title: N Biotechnol doi: 10.1016/j.nbt.2018.03.006 – volume: 15 start-page: 10 year: 2015 ident: 2025030711381238000_bpaf009-B27 article-title: Generation and analysis of the improved human HAL9/10 antibody phage display libraries publication-title: BMC Biotechnol doi: 10.1186/s12896-015-0125-0 – volume: 35 start-page: e87 year: 2007 ident: 2025030711381238000_bpaf009-B40 article-title: Generation of an inducible and optimized piggyBac transposon system publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm446 – volume: 24 start-page: 767 year: 2021 ident: 2025030711381238000_bpaf009-B9 article-title: Parallel evaluation of cell-based phage display panning strategies: optimized selection and depletion steps result in AML blast-binding consensus antibodies publication-title: Mol Med Rep doi: 10.3892/mmr.2021.12407 – volume: 288 start-page: 21 year: 1999 ident: 2025030711381238000_bpaf009-B22 article-title: Epitope structures recognised by antibodies against the major coat protein (G8p) of filamentous bacteriophage Fd (Inoviridae) publication-title: J Mol Biol doi: 10.1006/jmbi.1999.2676 – volume: 12 start-page: 1453 year: 2023 ident: 2025030711381238000_bpaf009-B32 article-title: Generation of chimeric antigen receptors against tetraspanin 7 publication-title: Cells doi: 10.3390/cells12111453 – volume: 5 start-page: 11 year: 2016 ident: 2025030711381238000_bpaf009-B37 article-title: Generating recombinant antibodies to membrane proteins through phage display publication-title: Antibodies doi: 10.3390/antib5020011 – start-page: 139 year: 2012 ident: 2025030711381238000_bpaf009-B43 – volume: 11 start-page: 41 year: 2022 ident: 2025030711381238000_bpaf009-B3 article-title: Development of a novel anti-EpCAM monoclonal antibody for various applications publication-title: Antibodies doi: 10.3390/antib11020041 – volume: 175 start-page: 112868 year: 2021 ident: 2025030711381238000_bpaf009-B31 article-title: Development of a SARS-CoV-2-specific biosensor for antigen detection using scFv-Fc fusion proteins publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2020.112868 – volume: 88 start-page: 7978 year: 1991 ident: 2025030711381238000_bpaf009-B17 article-title: Assembly of combinatorial antibody libraries on phage surfaces: the gene III site publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.88.18.7978 – volume: 234 start-page: 9486 year: 2019 ident: 2025030711381238000_bpaf009-B5 article-title: A comparison of three strategies for biopanning of phage-scFv library against diphtheria toxin publication-title: J Cell Physiol doi: 10.1002/jcp.27636 – volume: 147 start-page: 125 year: 1992 ident: 2025030711381238000_bpaf009-B6 article-title: Caveats for the use of surface-adsorbed protein antigen to test the specificity of antibodies publication-title: J Immunol Methods doi: 10.1016/S0022-1759(12)80037-8 – volume: 295 start-page: 18436 year: 2020 ident: 2025030711381238000_bpaf009-B35 article-title: Development of a novel mammalian display system for selection of antibodies against membrane proteins publication-title: J Biol Chem doi: 10.1074/jbc.RA120.015053 – volume: 16 start-page: 2322562 year: 2024 ident: 2025030711381238000_bpaf009-B4 article-title: A novel conditional active biologic anti-EpCAM x anti-CD3 bispecific antibody with synergistic tumor selectivity for cancer immunotherapy publication-title: mAbs doi: 10.1080/19420862.2024.2322562 |
SSID | ssj0001845101 |
Score | 2.2786384 |
Snippet | The discovery of antibodies through phage display is significantly influenced by antigen presentation during panning, particularly for membrane-anchored... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | bpaf009 |
SubjectTerms | Antibodies Antigen presentation Antigens Cell adhesion molecules Cell lines Epithelial cells Flow cytometry Green fluorescent protein Immunoglobulin G Membrane proteins Methods Panning Phage display Proteins |
Title | Development of an optimized cell-based selection system for phage display libraries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39968222 https://www.proquest.com/docview/3238701421 https://www.proquest.com/docview/3168393717 https://pubmed.ncbi.nlm.nih.gov/PMC11835232 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS91AEB9aReilaFs11coK3sry3m6S3c1JtChSqBWr8G4h-4UP2iQ2z4P9651N9n2o0Esuu5AwM5nfb2ZnZwCOmM-4FZLRnAlHM8c9LbzIqdTayXBXU8twOfnHpbi4zb5P8klMuHWxrHLuE3tHbRsTcuSjFLFFIp_n7Li9p2FqVDhdjSM03sI6umCFdr5-enZ5db3MsqgsGF28LYPR-6i_1R5mM3cj3VZ-HCoRVxHpFc18WS25Aj_nm_A-8kZyMih6C964-gNsDJMkHz_Cr5XiH9J4UtWkQWfwZ_rPWRKS8zTAlSVdP_YGdUGGFs4EOStp79CpEDvt2t_VI1kE0J_g9vzs5tsFjfMSqEkZn1GdC8m9YN5XSlo7FqqwKTcI8LryxkhhrdHFOPWm8oVklmVWaekKJSqrnM_TbVirm9rtAkkx7MqMsAajm4xroWRAOwQ7p3KJIVICX-cyK9uhLUY5HGen5VLCZZRwAvtzsZbxF-nKpUITOFwso3EHoVS1ax5wDxOq79gnE9gZtLB4HTIrEdhNAuqZfhYbQuPs5yv19K5voI1BFfLOlH_-_3ftwTsepv32CZd9WJv9fXBfkILM9EG0s4M-hMfnzc_JEyBR4zI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4NFDASnJC1ayexnQNCPFptabtC0Eq9hfilrgRJIFuh5UfxGxnnsbsFiVvPtpRoZjzzjT0zH8Bz5hNuhWQ0ZcLRxHFPMy9SKrV2MvRqahmak49nYnqafDhLz7bg99ALE8oqB5_YOmpbmXBHPo4xtkjE85y9rr_TwBoVXlcHCo3OLA7d8iembM2rg_eo3xec7--dvJvSnlWAmpjxBdWpkNwL5n2hpLUToTIbc4NhUBfeGCmsNTqbxN4UPpPMssQqLV2mRGGV84ElAl3-dhI6Wkew_XZv9vHT-lZHJcHI--6cSRaP2y76wAXdjHVd-EmofNyMgP_A2r-rMzfC3f4tuNnjVPKmM6zbsOXKO3CtY65c3oXPG8VGpPKkKEmFzufb_JezJDwG0BAeLWlamh3UPelGRhPEyKQ-RydG7LypvxZLskrY78HplUjyPozKqnQ7QGJM8xIjrMFsKuFaKBmiKwZXp1KJKVkELweZ5XU3hiPvns_jfC3hvJdwBLuDWPP-SDb52oAieLZaxsMUhFKUrrrAPUyodkKgjOBBp4XV5xDJiYCmIlCX9LPaEAZ1X14p5-ftwG5M4hDnxvzh___rKVyfnhwf5UcHs8NHcIMHpuH2smcXRosfF-4xwp-FftLbHIEvV23mfwCqryA_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+optimized+cell-based+selection+system+for+phage+display+libraries&rft.jtitle=Biology+methods+and+protocols&rft.au=Czarnecka%2C+Malgorzata&rft.au=Findik%2C+Nicole&rft.au=Schl%C3%B6r%2C+Anja&rft.au=Hanack%2C+Katja&rft.date=2025&rft.issn=2396-8923&rft.eissn=2396-8923&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1093%2Fbiomethods%2Fbpaf009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_biomethods_bpaf009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8923&client=summon |