Nonautonomous deformed solitons in a Bose-Einstein condensate

We study exact single-soliton solutions of an attractive Bose-Einstein condensate governed by a one-dimensional nonautonomous Gross-Pitaevskii system. For several different forms of time-dependent atom-atom interaction and external parabolic potential which satisfy the exact integrability scenario,...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 9; pp. 335 - 341
Main Author 李泽军 海文华 邓艳
Format Journal Article
LanguageEnglish
Published 01.09.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/9/090505

Cover

More Information
Summary:We study exact single-soliton solutions of an attractive Bose-Einstein condensate governed by a one-dimensional nonautonomous Gross-Pitaevskii system. For several different forms of time-dependent atom-atom interaction and external parabolic potential which satisfy the exact integrability scenario, we construct a set of new analytical nonautonomous deformed-soliton solutions, including the macroscopic wave function and the position of soliton's center of mass. The soliton characteristics are modulated by the external field parameters and deformation factors related to the number of the condensed atoms and the initial conditions. The results suggest a simple and effective method for experimentally generating matter-wave deformed solitons and manipulating their motions.
Bibliography:We study exact single-soliton solutions of an attractive Bose-Einstein condensate governed by a one-dimensional nonautonomous Gross-Pitaevskii system. For several different forms of time-dependent atom-atom interaction and external parabolic potential which satisfy the exact integrability scenario, we construct a set of new analytical nonautonomous deformed-soliton solutions, including the macroscopic wave function and the position of soliton's center of mass. The soliton characteristics are modulated by the external field parameters and deformation factors related to the number of the condensed atoms and the initial conditions. The results suggest a simple and effective method for experimentally generating matter-wave deformed solitons and manipulating their motions.
Li Ze-Jun, Hai Wen-Hua, and Deng Yan( Department of Physics and Key Laboratory of Low-Dimensional Quantum Structure and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China)
Bose-Einstein condensate, nonautonomous system, deformed soliton
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/9/090505