Impact of hull flexibility on the global performance of a 15 MW concrete-spar floating offshore wind turbine
•The impact of the hull flexibility of a 15MW spar-type floating offshore wind turbine (FOWT) on the global performance analysis has been investigated based on discrete-module-based (DMB) modeling of the spar hull.•Free-decay, free-vibration, irregular wave white-noise, and various design load cases...
Saved in:
Published in | Marine structures Vol. 100; p. 103724 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The impact of the hull flexibility of a 15MW spar-type floating offshore wind turbine (FOWT) on the global performance analysis has been investigated based on discrete-module-based (DMB) modeling of the spar hull.•Free-decay, free-vibration, irregular wave white-noise, and various design load cases (DLCs) in parked and operating conditions were examined for both rigid- and flexible-hull FOWT numerical models with catenary and taut mooring systems, and the numerical results were systematically compared with each other.•The lowest bending mode natural frequency is substantially shifted down from 0.52 Hz to 0.41 Hz. The shifted natural frequency is more likely to resonate in operational conditions, leading to appreciable increases in horizontal nacelle accelerations and tower-base bending moments.
In this study, we investigated the impact of the hull flexibility of 15MW spar-type FOWT (floating offshore wind turbine) on the global dynamics/performance analysis. Until recently, the rigid hull (floating foundation) model with flexible tower and RNA (rotor-nacelle assembly) has been used as industry standard procedure in the global performance analysis of FOWTs. Since the FOWT size continues to increase beyond 20MW, there has been increasing concern of the effect of hull flexibility on its global performance. The present study is intended to provide representative insights on this subject. Global performance analysis of the 15MW WindCrete spar is examined based on the conventional hull-rigid and the DMB (discrete-module-beam) models including hull flexibility. Coupled aero-hydro-servo-elastic-mooring dynamic simulations were carried out with the rigid-hull and DMB (discrete-module-beam) models under various combinations of irregular waves, sheared currents, and full-field turbulent winds. The lowest fore-aft bending-mode natural frequency is shifted toward lower frequency from 0.52 to 0.41 Hz after including hull flexibility. Platform rigid 6-DOF (degree-of-freedom) motions and mooring tensions by the DMB model are little changed but nacelle horizontal accelerations and tower-base bending moments may be appreciably increased compared to the rigid-hull model. |
---|---|
AbstractList | •The impact of the hull flexibility of a 15MW spar-type floating offshore wind turbine (FOWT) on the global performance analysis has been investigated based on discrete-module-based (DMB) modeling of the spar hull.•Free-decay, free-vibration, irregular wave white-noise, and various design load cases (DLCs) in parked and operating conditions were examined for both rigid- and flexible-hull FOWT numerical models with catenary and taut mooring systems, and the numerical results were systematically compared with each other.•The lowest bending mode natural frequency is substantially shifted down from 0.52 Hz to 0.41 Hz. The shifted natural frequency is more likely to resonate in operational conditions, leading to appreciable increases in horizontal nacelle accelerations and tower-base bending moments.
In this study, we investigated the impact of the hull flexibility of 15MW spar-type FOWT (floating offshore wind turbine) on the global dynamics/performance analysis. Until recently, the rigid hull (floating foundation) model with flexible tower and RNA (rotor-nacelle assembly) has been used as industry standard procedure in the global performance analysis of FOWTs. Since the FOWT size continues to increase beyond 20MW, there has been increasing concern of the effect of hull flexibility on its global performance. The present study is intended to provide representative insights on this subject. Global performance analysis of the 15MW WindCrete spar is examined based on the conventional hull-rigid and the DMB (discrete-module-beam) models including hull flexibility. Coupled aero-hydro-servo-elastic-mooring dynamic simulations were carried out with the rigid-hull and DMB (discrete-module-beam) models under various combinations of irregular waves, sheared currents, and full-field turbulent winds. The lowest fore-aft bending-mode natural frequency is shifted toward lower frequency from 0.52 to 0.41 Hz after including hull flexibility. Platform rigid 6-DOF (degree-of-freedom) motions and mooring tensions by the DMB model are little changed but nacelle horizontal accelerations and tower-base bending moments may be appreciably increased compared to the rigid-hull model. |
ArticleNumber | 103724 |
Author | Jin, Chungkuk Lee, Ikjae Kim, Moohyun |
Author_xml | – sequence: 1 givenname: Ikjae orcidid: 0000-0002-7701-2996 surname: Lee fullname: Lee, Ikjae email: ijlee@tamu.edu organization: Department of Ocean Engineering, Texas A&M University, College Station, TX, 77843, USA – sequence: 2 givenname: Moohyun surname: Kim fullname: Kim, Moohyun organization: Department of Ocean Engineering, Texas A&M University, College Station, TX, 77843, USA – sequence: 3 givenname: Chungkuk surname: Jin fullname: Jin, Chungkuk organization: Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA |
BookMark | eNqFkMtKAzEUhrOoYKu-guQFpiaTzEwDLpTipVBxo7gMmVzalDQZklTt25tS3bjp6sDh_37O-SZg5IPXAFxjNMUItzeb6VbElONOTmtU07IkXU1HYIxYg6sZIewcTFLaIIQ7jPEYuMV2EDLDYOB65xw0Tn_b3jqb9zB4mNcarlzohYODjibErfBSH9IC4ga-fEAZvIw66yoNIhY8iGz9qiRMWoeo4Zf1CuZd7K3Xl-DMCJf01e-8AO-PD2_z52r5-rSY3y8rSXCdK2EU6zQyuKvbnlLC2KxRrTICs4Zi2gmqGtIzrDpR07afEdmZfsakEJJKpBS5ALfHXhlDSlEbLm0udwWfo7COY8QPtviG_9niB1v8aKvg7T98iLYk96fBuyOoy3OfVkeepNVFmLJRy8xVsKcqfgDnqI70 |
CitedBy_id | crossref_primary_10_1016_j_compstruc_2025_107738 crossref_primary_10_3390_jmse13030515 |
Cites_doi | 10.1115/1.1464561 10.1016/j.engstruct.2020.111090 10.1016/j.jfluidstructs.2020.102891 10.1016/j.engstruct.2024.118710 10.1115/1.3230419 10.1016/j.oceaneng.2023.115584 10.1016/j.marstruc.2023.103402 10.3390/en14248490 10.1016/j.engstruct.2022.115198 10.5194/wes-6-867-2021 10.1016/j.apor.2020.102276 10.1016/j.renene.2022.01.053 10.12989/ose.2015.5.3.139 10.1016/j.oceaneng.2008.06.004 10.2514/3.2874 10.1016/j.marstruc.2022.103182 10.1002/cpa.3160030106 10.1007/s10665-011-9468-2 10.1016/S0951-8339(00)00007-1 10.1016/j.oceaneng.2023.115635 10.3390/jmse9020124 10.5194/wes-7-53-2022 10.1016/j.jfluidstructs.2017.06.002 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.marstruc.2024.103724 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
ExternalDocumentID | 10_1016_j_marstruc_2024_103724 S0951833924001527 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSZ T5K XPP ZMT ~G- 29M 6TJ AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE LY7 M41 R2- RIG SET SSH UHS WUQ |
ID | FETCH-LOGICAL-c312t-afd97e0f1726b4439985d6dfa1954147a4d53b91d7a246b83c7fb89caac4c0dd3 |
IEDL.DBID | .~1 |
ISSN | 0951-8339 |
IngestDate | Tue Jul 01 02:36:57 EDT 2025 Thu Apr 24 23:05:54 EDT 2025 Sat Dec 21 15:58:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DMB Floating offshore wind turbines WindCrete Hydroelasticity Rigid vs flexible hull Spar platform |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-afd97e0f1726b4439985d6dfa1954147a4d53b91d7a246b83c7fb89caac4c0dd3 |
ORCID | 0000-0002-7701-2996 |
ParticipantIDs | crossref_citationtrail_10_1016_j_marstruc_2024_103724 crossref_primary_10_1016_j_marstruc_2024_103724 elsevier_sciencedirect_doi_10_1016_j_marstruc_2024_103724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-15 |
PublicationDateYYYYMMDD | 2025-03-15 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Marine structures |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | WindCrete - OpenFAST model. Abdelmoteleb, Mendoza, dos Santos, Bachynski-Polić, Griffith, Oggiano (bib0015) 2022 Jonkman, Branlard, Hall, Hayman, Platt, Robertson (bib0047) 2020 Chen, Jin, Kim (bib0012) 2023; 13 Li, Lee, Yi, Gao, Song, Fu (bib0001) 2023; 13 Cummins (bib0027) 1962 ROSCO toolbox. Jonkman, Butterfield, Musial, Scott (bib0004) 2009 Brodtkorb, Johannesson, Lindgren, Rychlik, Rydén, Sjö (bib0060) 2000 Standards (bib0061) 2018 Kikuchi, Ishihara (bib0014) 2019 Vigara F., Cerdán L., Durán R., Muñoz S., Lynch M., Doole S., et al. COREWIND D1. 2 Design Basis. tech. rep., ESTEYCO; 2019. Lee (bib0039) 1995 Senjanović, Tomić, Tomašević (bib0043) 2008; 35 Wu, Leitch, Pedersen, Nærum (bib0052) 2023 Hopstad, Argyriadis, Manjock, Goldsmith, KO (bib0024) 2018 Xue (bib0017) 2016 Jin, Kim, Kim, Kim, Kwak (bib0030) 2023; 275 Design (bib0018) 2016 Ran (bib0029) 2000 . de Souza, Bachynski-Polić (bib0002) 2022; 84 Senjanović, Vladimir, Tomić (bib0044) 2012; 72 Bachynski-Polić, Gilloteaux (bib0032) 2022; 255 Orcina L. OrcaFlex examples. Lee, Park, Jin, Kim (bib0041) 2024; 318 Bae, Kim, Im, Chang (bib0021) 2011 Gaertner, Rinker, Sethuraman, Zahle, Anderson, Barter (bib0006) 2020 Ran, Leroy, Bachynski-Polić (bib0033) 2023; 286 Bae, Kim (bib0020) 2011; 1 Takata, Takaoka, Gonçalves, Houtani, Yoshimura, Hara (bib0057) 2021; 9 Jin, Bakti, Kim (bib0036) 2020; 101 Huang, Riggs (bib0042) 2000; 13 Hasselmann, Barnett, Bouws, Carlson, Cartwright, Enke (bib0058) 1973 Garrett D.L. Dynamic analysis of slender rods. 1982. DNV (bib0023) 2016 Havelock (bib0050) 1955; 231 Newman, Lee (bib0040) 2002; 124 Wang, Robertson, Jonkman, Yu (bib0013) 2022; 187 Robertson, Jonkman, Vorpahl, Popko, Qvist, Frøyd (bib0010) 2014 Wu, Kim (bib0003) 2021; 14 Velarde, Mankar, Kramhøft, Sørensen (bib0059) 2020; 222 Jonkman, Robertson, Hayman (bib0045) 2014 Kim, Kim (bib0022) 2015; 5 Abbas, Zalkind, Pao, Wright (bib0026) 2022; 7 Rinker, Gaertner, Zahle, Skrzypiński, Abbas, Bredmose (bib0011) 2020 Li, Gao, Bachynski-Polić, Zhao, Fiskvik (bib0034) 2023; 286 Damiani, Jonkman, Hayman (bib0046) 2015 Lee, Kim, Kwon (bib0031) 2020; 94 Wei, Fu, Moan, Lu, Deng (bib0035) 2017; 74 Guyan (bib0053) 1965; 3 Allen, Viscelli, Dagher, Goupee, Gaertner, Abbas (bib0007) 2020 Bak, Zahle, Bitsche, Kim, Yde, Henriksen (bib0005) 2013 Lorenzo Garcia (bib0062) 2020 Mahfou M.Y., Salari M., Hernández S., Vigara F., Molins C., Trubat P., et al. D1. 3. Public design and FAST models of the two 15MW floater-turbine concepts. 2020. Kim, Jin, Lee, Kim, Kim, Kwak (bib0037) 2023; 90 Jonkman (bib0025) 2014 John (bib0049) 1950; 3 Mahfouz, Molins, Trubat, Hernández, Vigara, Pegalajar-Jurado (bib0009) 2021; 6 Design (bib0019) 2016 Jonkman, Matha (bib0016) 2011; 14 Lee, Jin, Kim (bib0038) 2023 Jonkman, Hayman, Jonkman, Damiani, Murray (bib0051) 2015; 46 Lee (10.1016/j.marstruc.2024.103724_bib0041) 2024; 318 Design (10.1016/j.marstruc.2024.103724_bib0018) 2016 Hopstad (10.1016/j.marstruc.2024.103724_bib0024) 2018 Jonkman (10.1016/j.marstruc.2024.103724_bib0004) 2009 Allen (10.1016/j.marstruc.2024.103724_bib0007) 2020 Li (10.1016/j.marstruc.2024.103724_bib0034) 2023; 286 Takata (10.1016/j.marstruc.2024.103724_bib0057) 2021; 9 Huang (10.1016/j.marstruc.2024.103724_bib0042) 2000; 13 Guyan (10.1016/j.marstruc.2024.103724_bib0053) 1965; 3 10.1016/j.marstruc.2024.103724_bib0056 10.1016/j.marstruc.2024.103724_bib0055 10.1016/j.marstruc.2024.103724_bib0054 Jonkman (10.1016/j.marstruc.2024.103724_bib0016) 2011; 14 Abbas (10.1016/j.marstruc.2024.103724_bib0026) 2022; 7 Li (10.1016/j.marstruc.2024.103724_bib0001) 2023; 13 Brodtkorb (10.1016/j.marstruc.2024.103724_bib0060) 2000 Kikuchi (10.1016/j.marstruc.2024.103724_bib0014) 2019 Bae (10.1016/j.marstruc.2024.103724_bib0021) 2011 de Souza (10.1016/j.marstruc.2024.103724_bib0002) 2022; 84 10.1016/j.marstruc.2024.103724_bib0008 Lee (10.1016/j.marstruc.2024.103724_bib0038) 2023 Hasselmann (10.1016/j.marstruc.2024.103724_bib0058) 1973 Design (10.1016/j.marstruc.2024.103724_bib0019) 2016 Jin (10.1016/j.marstruc.2024.103724_bib0030) 2023; 275 Jonkman (10.1016/j.marstruc.2024.103724_bib0051) 2015; 46 Velarde (10.1016/j.marstruc.2024.103724_bib0059) 2020; 222 Kim (10.1016/j.marstruc.2024.103724_bib0022) 2015; 5 10.1016/j.marstruc.2024.103724_bib0048 Gaertner (10.1016/j.marstruc.2024.103724_bib0006) 2020 Newman (10.1016/j.marstruc.2024.103724_bib0040) 2002; 124 Havelock (10.1016/j.marstruc.2024.103724_bib0050) 1955; 231 Bae (10.1016/j.marstruc.2024.103724_bib0020) 2011; 1 Abdelmoteleb (10.1016/j.marstruc.2024.103724_bib0015) 2022 Bachynski-Polić (10.1016/j.marstruc.2024.103724_bib0032) 2022; 255 Ran (10.1016/j.marstruc.2024.103724_bib0029) 2000 Ran (10.1016/j.marstruc.2024.103724_bib0033) 2023; 286 Lee (10.1016/j.marstruc.2024.103724_bib0031) 2020; 94 Bak (10.1016/j.marstruc.2024.103724_bib0005) 2013 Standards (10.1016/j.marstruc.2024.103724_bib0061) 2018 John (10.1016/j.marstruc.2024.103724_bib0049) 1950; 3 Rinker (10.1016/j.marstruc.2024.103724_bib0011) 2020 Wang (10.1016/j.marstruc.2024.103724_bib0013) 2022; 187 Jonkman (10.1016/j.marstruc.2024.103724_bib0045) 2014 Kim (10.1016/j.marstruc.2024.103724_bib0037) 2023; 90 Lee (10.1016/j.marstruc.2024.103724_bib0039) 1995 Senjanović (10.1016/j.marstruc.2024.103724_bib0044) 2012; 72 Lorenzo Garcia (10.1016/j.marstruc.2024.103724_bib0062) 2020 Jonkman (10.1016/j.marstruc.2024.103724_bib0025) 2014 DNV (10.1016/j.marstruc.2024.103724_bib0023) 2016 Xue (10.1016/j.marstruc.2024.103724_bib0017) 2016 Jin (10.1016/j.marstruc.2024.103724_bib0036) 2020; 101 Chen (10.1016/j.marstruc.2024.103724_bib0012) 2023; 13 Damiani (10.1016/j.marstruc.2024.103724_bib0046) 2015 Wu (10.1016/j.marstruc.2024.103724_bib0052) 2023 10.1016/j.marstruc.2024.103724_bib0028 Mahfouz (10.1016/j.marstruc.2024.103724_bib0009) 2021; 6 Cummins (10.1016/j.marstruc.2024.103724_bib0027) 1962 Senjanović (10.1016/j.marstruc.2024.103724_bib0043) 2008; 35 Jonkman (10.1016/j.marstruc.2024.103724_bib0047) 2020 Robertson (10.1016/j.marstruc.2024.103724_bib0010) 2014 Wu (10.1016/j.marstruc.2024.103724_bib0003) 2021; 14 Wei (10.1016/j.marstruc.2024.103724_bib0035) 2017; 74 |
References_xml | – volume: 14 start-page: 8490 year: 2021 ident: bib0003 article-title: Generic upscaling methodology of a floating offshore wind turbine publication-title: Energies (Basel) – volume: 14 start-page: 557 year: 2011 end-page: 569 ident: bib0016 publication-title: Dynamics of offshore floating wind turbines—analysis of three concepts – volume: 84 year: 2022 ident: bib0002 article-title: Design, structural modeling, control, and performance of 20 MW spar floating wind turbines publication-title: Mar Struct – year: 1973 ident: bib0058 article-title: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) publication-title: Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A – year: 2014 ident: bib0045 article-title: HydroDyn user's guide and theory manual – reference: ROSCO toolbox. – year: 2020 ident: bib0007 article-title: Definition of the UMaine volturnus-s reference platform developed for the iea wind 15-megawatt offshore reference wind turbine – volume: 3 start-page: 380 year: 1965 ident: bib0053 article-title: Reduction of stiffness and mass matrices publication-title: AIAA J – volume: 318 year: 2024 ident: bib0041 article-title: On the correction of hydrostatic stiffness for discrete-module-based hydroelasticity analysis of vertically arrayed modules publication-title: Eng Struct – year: 2015 ident: bib0046 article-title: SubDyn user's guide and theory manual – year: 2011 ident: bib0021 article-title: Aero-elastic-control-floater-mooring coupled dynamic analysis of floating offshore wind turbines publication-title: ISOPE International Ocean and Polar Engineering Conference: ISOPE – volume: 94 year: 2020 ident: bib0031 article-title: A 3D direct coupling method for steady ship hydroelastic analysis publication-title: J Fluids Struct – year: 2022 ident: bib0015 article-title: Preliminary sizing and optimization of semisubmersible substructures for future generation offshore wind turbines publication-title: Journal of Physics: Conference Series – year: 2020 ident: bib0047 article-title: Implementation of substructure flexibility and member-level load capabilities for floating offshore wind turbines in openfast – year: 2000 ident: bib0029 article-title: Coupled dynamic analysis of floating structures in waves and currents – year: 2019 ident: bib0014 article-title: Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms publication-title: Journal of physics: conference series – year: 2014 ident: bib0025 article-title: TurbSim user's guide v2. 00.00 – volume: 35 start-page: 1322 year: 2008 end-page: 1338 ident: bib0043 article-title: An explicit formulation for restoring stiffness and its performance in ship hydroelasticity publication-title: Ocean Eng – volume: 222 year: 2020 ident: bib0059 article-title: Probabilistic calibration of fatigue safety factors for offshore wind turbine concrete structures publication-title: Eng Struct – year: 2018 ident: bib0061 article-title: DNV-ST-C502 offshore concrete structures – year: 2016 ident: bib0017 article-title: Design, numerical modelling and analysis of a spar floater supporting the DTU 10MW wind turbine – volume: 72 start-page: 141 year: 2012 end-page: 157 ident: bib0044 article-title: Formulation of consistent restoring stiffness in ship hydroelastic analysis publication-title: J Eng Math – volume: 231 start-page: 1 year: 1955 end-page: 7 ident: bib0050 article-title: Waves due to a floating sphere making periodic heaving oscillations publication-title: Proc R Soc Lond Ser A Math Phys Sci – year: 2023 ident: bib0038 article-title: A Consistent-Module-Based (CMB) Method for Hydroelasticity Analysis publication-title: ISOPE International Ocean and Polar Engineering Conference: ISOPE – year: 1962 ident: bib0027 article-title: The impulse response function and ship motion publication-title: Report 1661, Department of the Navy, David W Taylor Model Basin, Hydromechanics Laboratory, Research and Development Report – volume: 6 start-page: 867 year: 2021 end-page: 883 ident: bib0009 article-title: Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves publication-title: Wind Energy Sci – year: 2016 ident: bib0019 article-title: Numerical modelling and analysis of a semi-submersible floater supporting the DTU 10MW wind turbine – year: 2016 ident: bib0023 article-title: Dnv gl-st-0437: loads and site conditions for wind turbines – volume: 275 year: 2023 ident: bib0030 article-title: Discrete-module-beam-based hydro-elasticity simulations for moored submerged floating tunnel under regular and random wave excitations publication-title: Eng Struct – volume: 13 start-page: 91 year: 2000 end-page: 106 ident: bib0042 article-title: The hydrostatic stiffness of flexible floating structures for linear hydroelasticity publication-title: Marine Struct – volume: 1 start-page: 93 year: 2011 end-page: 109 ident: bib0020 article-title: Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine) publication-title: Ocean Syst Eng – reference: Garrett D.L. Dynamic analysis of slender rods. 1982. – year: 2000 ident: bib0060 article-title: WAFO-a Matlab toolbox for analysis of random waves and loads publication-title: ISOPE International Ocean and Polar Engineering Conference: ISOPE – year: 2016 ident: bib0018 article-title: Numerical modelling and analysis of tlp floater supporting the DTU 10MW wind turbine – start-page: D011S2R04 year: 2023 ident: bib0052 article-title: A New Mooring System for Floating Offshore Wind Turbines: theory, Design and Industrialization publication-title: Offshore Technology Conference: OTC – volume: 13 start-page: 287 year: 2023 end-page: 312 ident: bib0001 publication-title: Numerical modeling and global performance analysis of a 15-MW semisubmersible floating offshore wind turbine (FOWT) – volume: 90 year: 2023 ident: bib0037 article-title: Efficient time-domain approach for hydroelastic-structural analysis including hydrodynamic pressure distribution on a moored SFT publication-title: Mar Struct – year: 2020 ident: bib0006 article-title: IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine – year: 2014 ident: bib0010 article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system publication-title: International Conference on Offshore Mechanics and Arctic Engineering – year: 2009 ident: bib0004 article-title: Definition of a 5-MW reference wind turbine for offshore system development – volume: 286 year: 2023 ident: bib0034 article-title: Effect of floater flexibility on global dynamic responses of a 15-MW semi-submersible floating wind turbine publication-title: Ocean Eng – volume: 46 year: 2015 ident: bib0051 article-title: AeroDyn v15 user's guide and theory manual publication-title: NREL Draft Rep – reference: Mahfou M.Y., Salari M., Hernández S., Vigara F., Molins C., Trubat P., et al. D1. 3. Public design and FAST models of the two 15MW floater-turbine concepts. 2020. – reference: WindCrete - OpenFAST model. – volume: 5 start-page: 139 year: 2015 end-page: 160 ident: bib0022 article-title: Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects publication-title: Ocean Syst Eng – volume: 9 start-page: 124 year: 2021 ident: bib0057 article-title: Dynamic behavior of a flexible multi-column FOWT in regular waves publication-title: J Mar Sci Eng – volume: 13 start-page: 173 year: 2023 end-page: 193 ident: bib0012 article-title: Systematic comparisons among OpenFAST, Charm3D-FAST simulations and DeepCWind model test for 5 MW OC4 semisubmersible offshore wind turbine publication-title: Ocean Syst Eng – volume: 187 start-page: 282 year: 2022 end-page: 301 ident: bib0013 article-title: OC6 phase I: improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform publication-title: Renew Energy – year: 2020 ident: bib0011 article-title: Comparison of loads from HAWC2 and OpenFAST for the IEA Wind 15 MW Reference Wind Turbine publication-title: Journal of Physics: Conference Series – reference: Vigara F., Cerdán L., Durán R., Muñoz S., Lynch M., Doole S., et al. COREWIND D1. 2 Design Basis. tech. rep., ESTEYCO; 2019. – volume: 7 start-page: 53 year: 2022 end-page: 73 ident: bib0026 article-title: A reference open-source controller for fixed and floating offshore wind turbines publication-title: Wind Energy Sci – volume: 286 year: 2023 ident: bib0033 article-title: Hydroelastic response of a flexible spar floating wind turbine: numerical modelling and validation publication-title: Ocean Eng – year: 2018 ident: bib0024 article-title: DNV GL standard for floating wind turbines publication-title: International Conference on Offshore Mechanics and Arctic Engineering – year: 2020 ident: bib0062 article-title: Desing and structural verification a concrete spar type platform for a 15 mw wind turbine – reference: . – reference: Orcina L. OrcaFlex examples. – volume: 255 year: 2022 ident: bib0032 article-title: Experimental investigation of the hydro-elastic response of a spar-type floating offshore wind turbine publication-title: Ocean Eng – volume: 74 start-page: 321 year: 2017 end-page: 339 ident: bib0035 article-title: A discrete-modules-based frequency domain hydroelasticity method for floating structures in inhomogeneous sea conditions publication-title: J Fluids Struct – year: 2013 ident: bib0005 article-title: The DTU 10-MW reference wind turbine publication-title: Danish Wind Power Res – volume: 101 year: 2020 ident: bib0036 article-title: Multi-floater-mooring coupled time-domain hydro-elastic analysis in regular and irregular waves publication-title: Appl Ocean Res – volume: 3 start-page: 45 year: 1950 end-page: 101 ident: bib0049 article-title: On the motion of floating bodies II. Simple harmonic motions publication-title: Commun Pure Appl Math – volume: 124 start-page: 81 year: 2002 end-page: 89 ident: bib0040 article-title: Boundary-element methods in offshore structure analysis publication-title: J Offshore Mech Arct Eng – year: 1995 ident: bib0039 article-title: Theory manual – volume: 124 start-page: 81 year: 2002 ident: 10.1016/j.marstruc.2024.103724_bib0040 article-title: Boundary-element methods in offshore structure analysis publication-title: J Offshore Mech Arct Eng doi: 10.1115/1.1464561 – volume: 222 year: 2020 ident: 10.1016/j.marstruc.2024.103724_bib0059 article-title: Probabilistic calibration of fatigue safety factors for offshore wind turbine concrete structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111090 – year: 2020 ident: 10.1016/j.marstruc.2024.103724_bib0047 – year: 2013 ident: 10.1016/j.marstruc.2024.103724_bib0005 article-title: The DTU 10-MW reference wind turbine publication-title: Danish Wind Power Res – volume: 94 year: 2020 ident: 10.1016/j.marstruc.2024.103724_bib0031 article-title: A 3D direct coupling method for steady ship hydroelastic analysis publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2020.102891 – year: 2016 ident: 10.1016/j.marstruc.2024.103724_bib0023 – volume: 318 year: 2024 ident: 10.1016/j.marstruc.2024.103724_bib0041 article-title: On the correction of hydrostatic stiffness for discrete-module-based hydroelasticity analysis of vertically arrayed modules publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118710 – volume: 46 year: 2015 ident: 10.1016/j.marstruc.2024.103724_bib0051 article-title: AeroDyn v15 user's guide and theory manual publication-title: NREL Draft Rep – ident: 10.1016/j.marstruc.2024.103724_bib0055 – volume: 13 start-page: 287 year: 2023 ident: 10.1016/j.marstruc.2024.103724_bib0001 – ident: 10.1016/j.marstruc.2024.103724_bib0028 doi: 10.1115/1.3230419 – year: 2018 ident: 10.1016/j.marstruc.2024.103724_bib0024 article-title: DNV GL standard for floating wind turbines – volume: 286 year: 2023 ident: 10.1016/j.marstruc.2024.103724_bib0034 article-title: Effect of floater flexibility on global dynamic responses of a 15-MW semi-submersible floating wind turbine publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.115584 – year: 1973 ident: 10.1016/j.marstruc.2024.103724_bib0058 article-title: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) publication-title: Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A – start-page: D011S2R04 year: 2023 ident: 10.1016/j.marstruc.2024.103724_bib0052 article-title: A New Mooring System for Floating Offshore Wind Turbines: theory, Design and Industrialization – year: 2016 ident: 10.1016/j.marstruc.2024.103724_bib0017 – year: 2015 ident: 10.1016/j.marstruc.2024.103724_bib0046 – volume: 13 start-page: 173 year: 2023 ident: 10.1016/j.marstruc.2024.103724_bib0012 article-title: Systematic comparisons among OpenFAST, Charm3D-FAST simulations and DeepCWind model test for 5 MW OC4 semisubmersible offshore wind turbine publication-title: Ocean Syst Eng – year: 2020 ident: 10.1016/j.marstruc.2024.103724_bib0007 – ident: 10.1016/j.marstruc.2024.103724_bib0048 – volume: 90 year: 2023 ident: 10.1016/j.marstruc.2024.103724_bib0037 article-title: Efficient time-domain approach for hydroelastic-structural analysis including hydrodynamic pressure distribution on a moored SFT publication-title: Mar Struct doi: 10.1016/j.marstruc.2023.103402 – volume: 14 start-page: 8490 year: 2021 ident: 10.1016/j.marstruc.2024.103724_bib0003 article-title: Generic upscaling methodology of a floating offshore wind turbine publication-title: Energies (Basel) doi: 10.3390/en14248490 – volume: 14 start-page: 557 year: 2011 ident: 10.1016/j.marstruc.2024.103724_bib0016 – ident: 10.1016/j.marstruc.2024.103724_bib0054 – volume: 275 year: 2023 ident: 10.1016/j.marstruc.2024.103724_bib0030 article-title: Discrete-module-beam-based hydro-elasticity simulations for moored submerged floating tunnel under regular and random wave excitations publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115198 – volume: 6 start-page: 867 year: 2021 ident: 10.1016/j.marstruc.2024.103724_bib0009 article-title: Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves publication-title: Wind Energy Sci doi: 10.5194/wes-6-867-2021 – volume: 101 year: 2020 ident: 10.1016/j.marstruc.2024.103724_bib0036 article-title: Multi-floater-mooring coupled time-domain hydro-elastic analysis in regular and irregular waves publication-title: Appl Ocean Res doi: 10.1016/j.apor.2020.102276 – year: 2022 ident: 10.1016/j.marstruc.2024.103724_bib0015 article-title: Preliminary sizing and optimization of semisubmersible substructures for future generation offshore wind turbines – year: 2020 ident: 10.1016/j.marstruc.2024.103724_bib0062 – volume: 187 start-page: 282 year: 2022 ident: 10.1016/j.marstruc.2024.103724_bib0013 article-title: OC6 phase I: improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform publication-title: Renew Energy doi: 10.1016/j.renene.2022.01.053 – volume: 5 start-page: 139 year: 2015 ident: 10.1016/j.marstruc.2024.103724_bib0022 article-title: Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects publication-title: Ocean Syst Eng doi: 10.12989/ose.2015.5.3.139 – volume: 35 start-page: 1322 year: 2008 ident: 10.1016/j.marstruc.2024.103724_bib0043 article-title: An explicit formulation for restoring stiffness and its performance in ship hydroelasticity publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2008.06.004 – year: 2016 ident: 10.1016/j.marstruc.2024.103724_bib0018 – year: 2000 ident: 10.1016/j.marstruc.2024.103724_bib0060 article-title: WAFO-a Matlab toolbox for analysis of random waves and loads – year: 2019 ident: 10.1016/j.marstruc.2024.103724_bib0014 article-title: Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms – volume: 3 start-page: 380 year: 1965 ident: 10.1016/j.marstruc.2024.103724_bib0053 article-title: Reduction of stiffness and mass matrices publication-title: AIAA J doi: 10.2514/3.2874 – volume: 84 year: 2022 ident: 10.1016/j.marstruc.2024.103724_bib0002 article-title: Design, structural modeling, control, and performance of 20 MW spar floating wind turbines publication-title: Mar Struct doi: 10.1016/j.marstruc.2022.103182 – year: 2018 ident: 10.1016/j.marstruc.2024.103724_bib0061 – year: 2014 ident: 10.1016/j.marstruc.2024.103724_bib0025 – volume: 3 start-page: 45 year: 1950 ident: 10.1016/j.marstruc.2024.103724_bib0049 article-title: On the motion of floating bodies II. Simple harmonic motions publication-title: Commun Pure Appl Math doi: 10.1002/cpa.3160030106 – year: 2020 ident: 10.1016/j.marstruc.2024.103724_bib0011 article-title: Comparison of loads from HAWC2 and OpenFAST for the IEA Wind 15 MW Reference Wind Turbine – volume: 1 start-page: 93 year: 2011 ident: 10.1016/j.marstruc.2024.103724_bib0020 article-title: Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine) publication-title: Ocean Syst Eng – volume: 72 start-page: 141 year: 2012 ident: 10.1016/j.marstruc.2024.103724_bib0044 article-title: Formulation of consistent restoring stiffness in ship hydroelastic analysis publication-title: J Eng Math doi: 10.1007/s10665-011-9468-2 – year: 2011 ident: 10.1016/j.marstruc.2024.103724_bib0021 article-title: Aero-elastic-control-floater-mooring coupled dynamic analysis of floating offshore wind turbines – year: 1995 ident: 10.1016/j.marstruc.2024.103724_bib0039 – volume: 13 start-page: 91 year: 2000 ident: 10.1016/j.marstruc.2024.103724_bib0042 article-title: The hydrostatic stiffness of flexible floating structures for linear hydroelasticity publication-title: Marine Struct doi: 10.1016/S0951-8339(00)00007-1 – year: 2023 ident: 10.1016/j.marstruc.2024.103724_bib0038 article-title: A Consistent-Module-Based (CMB) Method for Hydroelasticity Analysis – volume: 286 year: 2023 ident: 10.1016/j.marstruc.2024.103724_bib0033 article-title: Hydroelastic response of a flexible spar floating wind turbine: numerical modelling and validation publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.115635 – year: 1962 ident: 10.1016/j.marstruc.2024.103724_bib0027 article-title: The impulse response function and ship motion – volume: 255 year: 2022 ident: 10.1016/j.marstruc.2024.103724_bib0032 article-title: Experimental investigation of the hydro-elastic response of a spar-type floating offshore wind turbine publication-title: Ocean Eng – year: 2000 ident: 10.1016/j.marstruc.2024.103724_bib0029 – year: 2014 ident: 10.1016/j.marstruc.2024.103724_bib0045 – volume: 9 start-page: 124 year: 2021 ident: 10.1016/j.marstruc.2024.103724_bib0057 article-title: Dynamic behavior of a flexible multi-column FOWT in regular waves publication-title: J Mar Sci Eng doi: 10.3390/jmse9020124 – year: 2014 ident: 10.1016/j.marstruc.2024.103724_bib0010 article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system – volume: 7 start-page: 53 year: 2022 ident: 10.1016/j.marstruc.2024.103724_bib0026 article-title: A reference open-source controller for fixed and floating offshore wind turbines publication-title: Wind Energy Sci doi: 10.5194/wes-7-53-2022 – ident: 10.1016/j.marstruc.2024.103724_bib0056 – volume: 74 start-page: 321 year: 2017 ident: 10.1016/j.marstruc.2024.103724_bib0035 article-title: A discrete-modules-based frequency domain hydroelasticity method for floating structures in inhomogeneous sea conditions publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2017.06.002 – ident: 10.1016/j.marstruc.2024.103724_bib0008 – year: 2020 ident: 10.1016/j.marstruc.2024.103724_bib0006 – volume: 231 start-page: 1 year: 1955 ident: 10.1016/j.marstruc.2024.103724_bib0050 article-title: Waves due to a floating sphere making periodic heaving oscillations publication-title: Proc R Soc Lond Ser A Math Phys Sci – year: 2009 ident: 10.1016/j.marstruc.2024.103724_bib0004 – year: 2016 ident: 10.1016/j.marstruc.2024.103724_bib0019 |
SSID | ssj0017111 |
Score | 2.420757 |
Snippet | •The impact of the hull flexibility of a 15MW spar-type floating offshore wind turbine (FOWT) on the global performance analysis has been investigated based on... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103724 |
SubjectTerms | DMB Floating offshore wind turbines Hydroelasticity Rigid vs flexible hull Spar platform WindCrete |
Title | Impact of hull flexibility on the global performance of a 15 MW concrete-spar floating offshore wind turbine |
URI | https://dx.doi.org/10.1016/j.marstruc.2024.103724 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXryIT6wv5iDeYpvsbh7HIkpV2ouKvYV9oqU2pRakF3-7M3n4AKEHr8lOEiaTme8LM98ydmac1EpyGfBMaSQozgcacUSQhAgnrEuN0fRDfzCM-4_idiRHa-yymYWhtso691c5vczW9ZFO7c3O7OWlc0_gIOVY3wUV_ogmyoVIKMovPr7aPEK8adhsJ0-rf0wJjy9ekTySTCvyxEiU8-eR-LtA_Sg611tss0aL0KseaJutuekOOxiUytrzJZzDUGGkQP2B7rLJTTn0CIWHZ-SW4Enusmx_XUIxBQR7UCmAwOx7YIBWKwglDJ4A2THCyIULMNHM0bxQ1BaNK_zbczF38I4UHrBKIZ92e-zx-urhsh_U-ykEhofRIlDeZonresQssRZERFJpY-sVqb6FIlHCSq6z0CYqErFOuUm8TjOjlBGmay3fZ61pMXUHDHTklZClOFlX4BXSbpz5SHKreRq70LaZbJyYm1psnPa8mORNV9k4b5yfk_Pzyvlt1vmym1VyGystsuYd5b8CJ8easML28B-2R2wjoq2AqbVPHrMWnncniE8W-rQMwFO23ru56w8_Aaxe5ug |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qPehFfOLbOYi32Ca7m8dRitKq7UVFb2GfaNGm1IL4753NwwcIHryGnSRMNjPfl8x8A3CsrVBSMBGwTCoiKNYFinBEkIQEJ4xNtVb-g_5wFPfv-OWDeGhBr-mF8WWVdeyvYnoZresjndqbnenTU-fGg4OUUX7nPvFHyQIsenUq0YbFs8FVf_T5M4GuGzYT5b3Bt0bh8ekL8Uev1EpUMeJlC3rEf89R3_LOxSqs1IARz6p7WoOWnazD9rAU15694wmOJG0WrN_RDXgelH2PWDh8JHqJzitelhWw71hMkPAeViIgOP3qGfCrJYYCh_dIBJmQ5NwGFGtmZF5IXxlNK9zrYzGz-EYsHilREaW2m3B3cX7b6wf1SIVAszCaB9KZLLFdR7AlVtxzkVSY2Djphd9CnkhuBFNZaBIZ8VilTCdOpZmWUnPdNYZtQXtSTOw2oIqc5KLUJ-tyOkPajTMXCWYUS2Mbmh0QjRNzXeuN-7EXz3lTWDbOG-fn3vl55fwd6HzaTSvFjT8tsuYZ5T_2Tk5p4Q_b3X_YHsFS_3Z4nV8PRld7sBz5ycC-0k_sQ5vW2gOCK3N1WG_HD5iF6Zk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+hull+flexibility+on+the+global+performance+of+a+15+MW+concrete-spar+floating+offshore+wind+turbine&rft.jtitle=Marine+structures&rft.au=Lee%2C+Ikjae&rft.au=Kim%2C+Moohyun&rft.au=Jin%2C+Chungkuk&rft.date=2025-03-15&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.volume=100&rft_id=info:doi/10.1016%2Fj.marstruc.2024.103724&rft.externalDocID=S0951833924001527 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon |