Impact of hull flexibility on the global performance of a 15 MW concrete-spar floating offshore wind turbine

•The impact of the hull flexibility of a 15MW spar-type floating offshore wind turbine (FOWT) on the global performance analysis has been investigated based on discrete-module-based (DMB) modeling of the spar hull.•Free-decay, free-vibration, irregular wave white-noise, and various design load cases...

Full description

Saved in:
Bibliographic Details
Published inMarine structures Vol. 100; p. 103724
Main Authors Lee, Ikjae, Kim, Moohyun, Jin, Chungkuk
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The impact of the hull flexibility of a 15MW spar-type floating offshore wind turbine (FOWT) on the global performance analysis has been investigated based on discrete-module-based (DMB) modeling of the spar hull.•Free-decay, free-vibration, irregular wave white-noise, and various design load cases (DLCs) in parked and operating conditions were examined for both rigid- and flexible-hull FOWT numerical models with catenary and taut mooring systems, and the numerical results were systematically compared with each other.•The lowest bending mode natural frequency is substantially shifted down from 0.52 Hz to 0.41 Hz. The shifted natural frequency is more likely to resonate in operational conditions, leading to appreciable increases in horizontal nacelle accelerations and tower-base bending moments. In this study, we investigated the impact of the hull flexibility of 15MW spar-type FOWT (floating offshore wind turbine) on the global dynamics/performance analysis. Until recently, the rigid hull (floating foundation) model with flexible tower and RNA (rotor-nacelle assembly) has been used as industry standard procedure in the global performance analysis of FOWTs. Since the FOWT size continues to increase beyond 20MW, there has been increasing concern of the effect of hull flexibility on its global performance. The present study is intended to provide representative insights on this subject. Global performance analysis of the 15MW WindCrete spar is examined based on the conventional hull-rigid and the DMB (discrete-module-beam) models including hull flexibility. Coupled aero-hydro-servo-elastic-mooring dynamic simulations were carried out with the rigid-hull and DMB (discrete-module-beam) models under various combinations of irregular waves, sheared currents, and full-field turbulent winds. The lowest fore-aft bending-mode natural frequency is shifted toward lower frequency from 0.52 to 0.41 Hz after including hull flexibility. Platform rigid 6-DOF (degree-of-freedom) motions and mooring tensions by the DMB model are little changed but nacelle horizontal accelerations and tower-base bending moments may be appreciably increased compared to the rigid-hull model.
AbstractList •The impact of the hull flexibility of a 15MW spar-type floating offshore wind turbine (FOWT) on the global performance analysis has been investigated based on discrete-module-based (DMB) modeling of the spar hull.•Free-decay, free-vibration, irregular wave white-noise, and various design load cases (DLCs) in parked and operating conditions were examined for both rigid- and flexible-hull FOWT numerical models with catenary and taut mooring systems, and the numerical results were systematically compared with each other.•The lowest bending mode natural frequency is substantially shifted down from 0.52 Hz to 0.41 Hz. The shifted natural frequency is more likely to resonate in operational conditions, leading to appreciable increases in horizontal nacelle accelerations and tower-base bending moments. In this study, we investigated the impact of the hull flexibility of 15MW spar-type FOWT (floating offshore wind turbine) on the global dynamics/performance analysis. Until recently, the rigid hull (floating foundation) model with flexible tower and RNA (rotor-nacelle assembly) has been used as industry standard procedure in the global performance analysis of FOWTs. Since the FOWT size continues to increase beyond 20MW, there has been increasing concern of the effect of hull flexibility on its global performance. The present study is intended to provide representative insights on this subject. Global performance analysis of the 15MW WindCrete spar is examined based on the conventional hull-rigid and the DMB (discrete-module-beam) models including hull flexibility. Coupled aero-hydro-servo-elastic-mooring dynamic simulations were carried out with the rigid-hull and DMB (discrete-module-beam) models under various combinations of irregular waves, sheared currents, and full-field turbulent winds. The lowest fore-aft bending-mode natural frequency is shifted toward lower frequency from 0.52 to 0.41 Hz after including hull flexibility. Platform rigid 6-DOF (degree-of-freedom) motions and mooring tensions by the DMB model are little changed but nacelle horizontal accelerations and tower-base bending moments may be appreciably increased compared to the rigid-hull model.
ArticleNumber 103724
Author Jin, Chungkuk
Lee, Ikjae
Kim, Moohyun
Author_xml – sequence: 1
  givenname: Ikjae
  orcidid: 0000-0002-7701-2996
  surname: Lee
  fullname: Lee, Ikjae
  email: ijlee@tamu.edu
  organization: Department of Ocean Engineering, Texas A&M University, College Station, TX, 77843, USA
– sequence: 2
  givenname: Moohyun
  surname: Kim
  fullname: Kim, Moohyun
  organization: Department of Ocean Engineering, Texas A&M University, College Station, TX, 77843, USA
– sequence: 3
  givenname: Chungkuk
  surname: Jin
  fullname: Jin, Chungkuk
  organization: Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
BookMark eNqFkMtKAzEUhrOoYKu-guQFpiaTzEwDLpTipVBxo7gMmVzalDQZklTt25tS3bjp6sDh_37O-SZg5IPXAFxjNMUItzeb6VbElONOTmtU07IkXU1HYIxYg6sZIewcTFLaIIQ7jPEYuMV2EDLDYOB65xw0Tn_b3jqb9zB4mNcarlzohYODjibErfBSH9IC4ga-fEAZvIw66yoNIhY8iGz9qiRMWoeo4Zf1CuZd7K3Xl-DMCJf01e-8AO-PD2_z52r5-rSY3y8rSXCdK2EU6zQyuKvbnlLC2KxRrTICs4Zi2gmqGtIzrDpR07afEdmZfsakEJJKpBS5ALfHXhlDSlEbLm0udwWfo7COY8QPtviG_9niB1v8aKvg7T98iLYk96fBuyOoy3OfVkeepNVFmLJRy8xVsKcqfgDnqI70
CitedBy_id crossref_primary_10_1016_j_compstruc_2025_107738
crossref_primary_10_3390_jmse13030515
Cites_doi 10.1115/1.1464561
10.1016/j.engstruct.2020.111090
10.1016/j.jfluidstructs.2020.102891
10.1016/j.engstruct.2024.118710
10.1115/1.3230419
10.1016/j.oceaneng.2023.115584
10.1016/j.marstruc.2023.103402
10.3390/en14248490
10.1016/j.engstruct.2022.115198
10.5194/wes-6-867-2021
10.1016/j.apor.2020.102276
10.1016/j.renene.2022.01.053
10.12989/ose.2015.5.3.139
10.1016/j.oceaneng.2008.06.004
10.2514/3.2874
10.1016/j.marstruc.2022.103182
10.1002/cpa.3160030106
10.1007/s10665-011-9468-2
10.1016/S0951-8339(00)00007-1
10.1016/j.oceaneng.2023.115635
10.3390/jmse9020124
10.5194/wes-7-53-2022
10.1016/j.jfluidstructs.2017.06.002
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.marstruc.2024.103724
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
ExternalDocumentID 10_1016_j_marstruc_2024_103724
S0951833924001527
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
XPP
ZMT
~G-
29M
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
LY7
M41
R2-
RIG
SET
SSH
UHS
WUQ
ID FETCH-LOGICAL-c312t-afd97e0f1726b4439985d6dfa1954147a4d53b91d7a246b83c7fb89caac4c0dd3
IEDL.DBID .~1
ISSN 0951-8339
IngestDate Tue Jul 01 02:36:57 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Sat Dec 21 15:58:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DMB
Floating offshore wind turbines
WindCrete
Hydroelasticity
Rigid vs flexible hull
Spar platform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-afd97e0f1726b4439985d6dfa1954147a4d53b91d7a246b83c7fb89caac4c0dd3
ORCID 0000-0002-7701-2996
ParticipantIDs crossref_citationtrail_10_1016_j_marstruc_2024_103724
crossref_primary_10_1016_j_marstruc_2024_103724
elsevier_sciencedirect_doi_10_1016_j_marstruc_2024_103724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Marine structures
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References WindCrete - OpenFAST model.
Abdelmoteleb, Mendoza, dos Santos, Bachynski-Polić, Griffith, Oggiano (bib0015) 2022
Jonkman, Branlard, Hall, Hayman, Platt, Robertson (bib0047) 2020
Chen, Jin, Kim (bib0012) 2023; 13
Li, Lee, Yi, Gao, Song, Fu (bib0001) 2023; 13
Cummins (bib0027) 1962
ROSCO toolbox.
Jonkman, Butterfield, Musial, Scott (bib0004) 2009
Brodtkorb, Johannesson, Lindgren, Rychlik, Rydén, Sjö (bib0060) 2000
Standards (bib0061) 2018
Kikuchi, Ishihara (bib0014) 2019
Vigara F., Cerdán L., Durán R., Muñoz S., Lynch M., Doole S., et al. COREWIND D1. 2 Design Basis. tech. rep., ESTEYCO; 2019.
Lee (bib0039) 1995
Senjanović, Tomić, Tomašević (bib0043) 2008; 35
Wu, Leitch, Pedersen, Nærum (bib0052) 2023
Hopstad, Argyriadis, Manjock, Goldsmith, KO (bib0024) 2018
Xue (bib0017) 2016
Jin, Kim, Kim, Kim, Kwak (bib0030) 2023; 275
Design (bib0018) 2016
Ran (bib0029) 2000
.
de Souza, Bachynski-Polić (bib0002) 2022; 84
Senjanović, Vladimir, Tomić (bib0044) 2012; 72
Bachynski-Polić, Gilloteaux (bib0032) 2022; 255
Orcina L. OrcaFlex examples.
Lee, Park, Jin, Kim (bib0041) 2024; 318
Bae, Kim, Im, Chang (bib0021) 2011
Gaertner, Rinker, Sethuraman, Zahle, Anderson, Barter (bib0006) 2020
Ran, Leroy, Bachynski-Polić (bib0033) 2023; 286
Bae, Kim (bib0020) 2011; 1
Takata, Takaoka, Gonçalves, Houtani, Yoshimura, Hara (bib0057) 2021; 9
Jin, Bakti, Kim (bib0036) 2020; 101
Huang, Riggs (bib0042) 2000; 13
Hasselmann, Barnett, Bouws, Carlson, Cartwright, Enke (bib0058) 1973
Garrett D.L. Dynamic analysis of slender rods. 1982.
DNV (bib0023) 2016
Havelock (bib0050) 1955; 231
Newman, Lee (bib0040) 2002; 124
Wang, Robertson, Jonkman, Yu (bib0013) 2022; 187
Robertson, Jonkman, Vorpahl, Popko, Qvist, Frøyd (bib0010) 2014
Wu, Kim (bib0003) 2021; 14
Velarde, Mankar, Kramhøft, Sørensen (bib0059) 2020; 222
Jonkman, Robertson, Hayman (bib0045) 2014
Kim, Kim (bib0022) 2015; 5
Abbas, Zalkind, Pao, Wright (bib0026) 2022; 7
Rinker, Gaertner, Zahle, Skrzypiński, Abbas, Bredmose (bib0011) 2020
Li, Gao, Bachynski-Polić, Zhao, Fiskvik (bib0034) 2023; 286
Damiani, Jonkman, Hayman (bib0046) 2015
Lee, Kim, Kwon (bib0031) 2020; 94
Wei, Fu, Moan, Lu, Deng (bib0035) 2017; 74
Guyan (bib0053) 1965; 3
Allen, Viscelli, Dagher, Goupee, Gaertner, Abbas (bib0007) 2020
Bak, Zahle, Bitsche, Kim, Yde, Henriksen (bib0005) 2013
Lorenzo Garcia (bib0062) 2020
Mahfou M.Y., Salari M., Hernández S., Vigara F., Molins C., Trubat P., et al. D1. 3. Public design and FAST models of the two 15MW floater-turbine concepts. 2020.
Kim, Jin, Lee, Kim, Kim, Kwak (bib0037) 2023; 90
Jonkman (bib0025) 2014
John (bib0049) 1950; 3
Mahfouz, Molins, Trubat, Hernández, Vigara, Pegalajar-Jurado (bib0009) 2021; 6
Design (bib0019) 2016
Jonkman, Matha (bib0016) 2011; 14
Lee, Jin, Kim (bib0038) 2023
Jonkman, Hayman, Jonkman, Damiani, Murray (bib0051) 2015; 46
Lee (10.1016/j.marstruc.2024.103724_bib0041) 2024; 318
Design (10.1016/j.marstruc.2024.103724_bib0018) 2016
Hopstad (10.1016/j.marstruc.2024.103724_bib0024) 2018
Jonkman (10.1016/j.marstruc.2024.103724_bib0004) 2009
Allen (10.1016/j.marstruc.2024.103724_bib0007) 2020
Li (10.1016/j.marstruc.2024.103724_bib0034) 2023; 286
Takata (10.1016/j.marstruc.2024.103724_bib0057) 2021; 9
Huang (10.1016/j.marstruc.2024.103724_bib0042) 2000; 13
Guyan (10.1016/j.marstruc.2024.103724_bib0053) 1965; 3
10.1016/j.marstruc.2024.103724_bib0056
10.1016/j.marstruc.2024.103724_bib0055
10.1016/j.marstruc.2024.103724_bib0054
Jonkman (10.1016/j.marstruc.2024.103724_bib0016) 2011; 14
Abbas (10.1016/j.marstruc.2024.103724_bib0026) 2022; 7
Li (10.1016/j.marstruc.2024.103724_bib0001) 2023; 13
Brodtkorb (10.1016/j.marstruc.2024.103724_bib0060) 2000
Kikuchi (10.1016/j.marstruc.2024.103724_bib0014) 2019
Bae (10.1016/j.marstruc.2024.103724_bib0021) 2011
de Souza (10.1016/j.marstruc.2024.103724_bib0002) 2022; 84
10.1016/j.marstruc.2024.103724_bib0008
Lee (10.1016/j.marstruc.2024.103724_bib0038) 2023
Hasselmann (10.1016/j.marstruc.2024.103724_bib0058) 1973
Design (10.1016/j.marstruc.2024.103724_bib0019) 2016
Jin (10.1016/j.marstruc.2024.103724_bib0030) 2023; 275
Jonkman (10.1016/j.marstruc.2024.103724_bib0051) 2015; 46
Velarde (10.1016/j.marstruc.2024.103724_bib0059) 2020; 222
Kim (10.1016/j.marstruc.2024.103724_bib0022) 2015; 5
10.1016/j.marstruc.2024.103724_bib0048
Gaertner (10.1016/j.marstruc.2024.103724_bib0006) 2020
Newman (10.1016/j.marstruc.2024.103724_bib0040) 2002; 124
Havelock (10.1016/j.marstruc.2024.103724_bib0050) 1955; 231
Bae (10.1016/j.marstruc.2024.103724_bib0020) 2011; 1
Abdelmoteleb (10.1016/j.marstruc.2024.103724_bib0015) 2022
Bachynski-Polić (10.1016/j.marstruc.2024.103724_bib0032) 2022; 255
Ran (10.1016/j.marstruc.2024.103724_bib0029) 2000
Ran (10.1016/j.marstruc.2024.103724_bib0033) 2023; 286
Lee (10.1016/j.marstruc.2024.103724_bib0031) 2020; 94
Bak (10.1016/j.marstruc.2024.103724_bib0005) 2013
Standards (10.1016/j.marstruc.2024.103724_bib0061) 2018
John (10.1016/j.marstruc.2024.103724_bib0049) 1950; 3
Rinker (10.1016/j.marstruc.2024.103724_bib0011) 2020
Wang (10.1016/j.marstruc.2024.103724_bib0013) 2022; 187
Jonkman (10.1016/j.marstruc.2024.103724_bib0045) 2014
Kim (10.1016/j.marstruc.2024.103724_bib0037) 2023; 90
Lee (10.1016/j.marstruc.2024.103724_bib0039) 1995
Senjanović (10.1016/j.marstruc.2024.103724_bib0044) 2012; 72
Lorenzo Garcia (10.1016/j.marstruc.2024.103724_bib0062) 2020
Jonkman (10.1016/j.marstruc.2024.103724_bib0025) 2014
DNV (10.1016/j.marstruc.2024.103724_bib0023) 2016
Xue (10.1016/j.marstruc.2024.103724_bib0017) 2016
Jin (10.1016/j.marstruc.2024.103724_bib0036) 2020; 101
Chen (10.1016/j.marstruc.2024.103724_bib0012) 2023; 13
Damiani (10.1016/j.marstruc.2024.103724_bib0046) 2015
Wu (10.1016/j.marstruc.2024.103724_bib0052) 2023
10.1016/j.marstruc.2024.103724_bib0028
Mahfouz (10.1016/j.marstruc.2024.103724_bib0009) 2021; 6
Cummins (10.1016/j.marstruc.2024.103724_bib0027) 1962
Senjanović (10.1016/j.marstruc.2024.103724_bib0043) 2008; 35
Jonkman (10.1016/j.marstruc.2024.103724_bib0047) 2020
Robertson (10.1016/j.marstruc.2024.103724_bib0010) 2014
Wu (10.1016/j.marstruc.2024.103724_bib0003) 2021; 14
Wei (10.1016/j.marstruc.2024.103724_bib0035) 2017; 74
References_xml – volume: 14
  start-page: 8490
  year: 2021
  ident: bib0003
  article-title: Generic upscaling methodology of a floating offshore wind turbine
  publication-title: Energies (Basel)
– volume: 14
  start-page: 557
  year: 2011
  end-page: 569
  ident: bib0016
  publication-title: Dynamics of offshore floating wind turbines—analysis of three concepts
– volume: 84
  year: 2022
  ident: bib0002
  article-title: Design, structural modeling, control, and performance of 20 MW spar floating wind turbines
  publication-title: Mar Struct
– year: 1973
  ident: bib0058
  article-title: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
  publication-title: Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A
– year: 2014
  ident: bib0045
  article-title: HydroDyn user's guide and theory manual
– reference: ROSCO toolbox.
– year: 2020
  ident: bib0007
  article-title: Definition of the UMaine volturnus-s reference platform developed for the iea wind 15-megawatt offshore reference wind turbine
– volume: 3
  start-page: 380
  year: 1965
  ident: bib0053
  article-title: Reduction of stiffness and mass matrices
  publication-title: AIAA J
– volume: 318
  year: 2024
  ident: bib0041
  article-title: On the correction of hydrostatic stiffness for discrete-module-based hydroelasticity analysis of vertically arrayed modules
  publication-title: Eng Struct
– year: 2015
  ident: bib0046
  article-title: SubDyn user's guide and theory manual
– year: 2011
  ident: bib0021
  article-title: Aero-elastic-control-floater-mooring coupled dynamic analysis of floating offshore wind turbines
  publication-title: ISOPE International Ocean and Polar Engineering Conference: ISOPE
– volume: 94
  year: 2020
  ident: bib0031
  article-title: A 3D direct coupling method for steady ship hydroelastic analysis
  publication-title: J Fluids Struct
– year: 2022
  ident: bib0015
  article-title: Preliminary sizing and optimization of semisubmersible substructures for future generation offshore wind turbines
  publication-title: Journal of Physics: Conference Series
– year: 2020
  ident: bib0047
  article-title: Implementation of substructure flexibility and member-level load capabilities for floating offshore wind turbines in openfast
– year: 2000
  ident: bib0029
  article-title: Coupled dynamic analysis of floating structures in waves and currents
– year: 2019
  ident: bib0014
  article-title: Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms
  publication-title: Journal of physics: conference series
– year: 2014
  ident: bib0025
  article-title: TurbSim user's guide v2. 00.00
– volume: 35
  start-page: 1322
  year: 2008
  end-page: 1338
  ident: bib0043
  article-title: An explicit formulation for restoring stiffness and its performance in ship hydroelasticity
  publication-title: Ocean Eng
– volume: 222
  year: 2020
  ident: bib0059
  article-title: Probabilistic calibration of fatigue safety factors for offshore wind turbine concrete structures
  publication-title: Eng Struct
– year: 2018
  ident: bib0061
  article-title: DNV-ST-C502 offshore concrete structures
– year: 2016
  ident: bib0017
  article-title: Design, numerical modelling and analysis of a spar floater supporting the DTU 10MW wind turbine
– volume: 72
  start-page: 141
  year: 2012
  end-page: 157
  ident: bib0044
  article-title: Formulation of consistent restoring stiffness in ship hydroelastic analysis
  publication-title: J Eng Math
– volume: 231
  start-page: 1
  year: 1955
  end-page: 7
  ident: bib0050
  article-title: Waves due to a floating sphere making periodic heaving oscillations
  publication-title: Proc R Soc Lond Ser A Math Phys Sci
– year: 2023
  ident: bib0038
  article-title: A Consistent-Module-Based (CMB) Method for Hydroelasticity Analysis
  publication-title: ISOPE International Ocean and Polar Engineering Conference: ISOPE
– year: 1962
  ident: bib0027
  article-title: The impulse response function and ship motion
  publication-title: Report 1661, Department of the Navy, David W Taylor Model Basin, Hydromechanics Laboratory, Research and Development Report
– volume: 6
  start-page: 867
  year: 2021
  end-page: 883
  ident: bib0009
  article-title: Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves
  publication-title: Wind Energy Sci
– year: 2016
  ident: bib0019
  article-title: Numerical modelling and analysis of a semi-submersible floater supporting the DTU 10MW wind turbine
– year: 2016
  ident: bib0023
  article-title: Dnv gl-st-0437: loads and site conditions for wind turbines
– volume: 275
  year: 2023
  ident: bib0030
  article-title: Discrete-module-beam-based hydro-elasticity simulations for moored submerged floating tunnel under regular and random wave excitations
  publication-title: Eng Struct
– volume: 13
  start-page: 91
  year: 2000
  end-page: 106
  ident: bib0042
  article-title: The hydrostatic stiffness of flexible floating structures for linear hydroelasticity
  publication-title: Marine Struct
– volume: 1
  start-page: 93
  year: 2011
  end-page: 109
  ident: bib0020
  article-title: Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)
  publication-title: Ocean Syst Eng
– reference: Garrett D.L. Dynamic analysis of slender rods. 1982.
– year: 2000
  ident: bib0060
  article-title: WAFO-a Matlab toolbox for analysis of random waves and loads
  publication-title: ISOPE International Ocean and Polar Engineering Conference: ISOPE
– year: 2016
  ident: bib0018
  article-title: Numerical modelling and analysis of tlp floater supporting the DTU 10MW wind turbine
– start-page: D011S2R04
  year: 2023
  ident: bib0052
  article-title: A New Mooring System for Floating Offshore Wind Turbines: theory, Design and Industrialization
  publication-title: Offshore Technology Conference: OTC
– volume: 13
  start-page: 287
  year: 2023
  end-page: 312
  ident: bib0001
  publication-title: Numerical modeling and global performance analysis of a 15-MW semisubmersible floating offshore wind turbine (FOWT)
– volume: 90
  year: 2023
  ident: bib0037
  article-title: Efficient time-domain approach for hydroelastic-structural analysis including hydrodynamic pressure distribution on a moored SFT
  publication-title: Mar Struct
– year: 2020
  ident: bib0006
  article-title: IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine
– year: 2014
  ident: bib0010
  article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system
  publication-title: International Conference on Offshore Mechanics and Arctic Engineering
– year: 2009
  ident: bib0004
  article-title: Definition of a 5-MW reference wind turbine for offshore system development
– volume: 286
  year: 2023
  ident: bib0034
  article-title: Effect of floater flexibility on global dynamic responses of a 15-MW semi-submersible floating wind turbine
  publication-title: Ocean Eng
– volume: 46
  year: 2015
  ident: bib0051
  article-title: AeroDyn v15 user's guide and theory manual
  publication-title: NREL Draft Rep
– reference: Mahfou M.Y., Salari M., Hernández S., Vigara F., Molins C., Trubat P., et al. D1. 3. Public design and FAST models of the two 15MW floater-turbine concepts. 2020.
– reference: WindCrete - OpenFAST model.
– volume: 5
  start-page: 139
  year: 2015
  end-page: 160
  ident: bib0022
  article-title: Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects
  publication-title: Ocean Syst Eng
– volume: 9
  start-page: 124
  year: 2021
  ident: bib0057
  article-title: Dynamic behavior of a flexible multi-column FOWT in regular waves
  publication-title: J Mar Sci Eng
– volume: 13
  start-page: 173
  year: 2023
  end-page: 193
  ident: bib0012
  article-title: Systematic comparisons among OpenFAST, Charm3D-FAST simulations and DeepCWind model test for 5 MW OC4 semisubmersible offshore wind turbine
  publication-title: Ocean Syst Eng
– volume: 187
  start-page: 282
  year: 2022
  end-page: 301
  ident: bib0013
  article-title: OC6 phase I: improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform
  publication-title: Renew Energy
– year: 2020
  ident: bib0011
  article-title: Comparison of loads from HAWC2 and OpenFAST for the IEA Wind 15 MW Reference Wind Turbine
  publication-title: Journal of Physics: Conference Series
– reference: Vigara F., Cerdán L., Durán R., Muñoz S., Lynch M., Doole S., et al. COREWIND D1. 2 Design Basis. tech. rep., ESTEYCO; 2019.
– volume: 7
  start-page: 53
  year: 2022
  end-page: 73
  ident: bib0026
  article-title: A reference open-source controller for fixed and floating offshore wind turbines
  publication-title: Wind Energy Sci
– volume: 286
  year: 2023
  ident: bib0033
  article-title: Hydroelastic response of a flexible spar floating wind turbine: numerical modelling and validation
  publication-title: Ocean Eng
– year: 2018
  ident: bib0024
  article-title: DNV GL standard for floating wind turbines
  publication-title: International Conference on Offshore Mechanics and Arctic Engineering
– year: 2020
  ident: bib0062
  article-title: Desing and structural verification a concrete spar type platform for a 15 mw wind turbine
– reference: .
– reference: Orcina L. OrcaFlex examples.
– volume: 255
  year: 2022
  ident: bib0032
  article-title: Experimental investigation of the hydro-elastic response of a spar-type floating offshore wind turbine
  publication-title: Ocean Eng
– volume: 74
  start-page: 321
  year: 2017
  end-page: 339
  ident: bib0035
  article-title: A discrete-modules-based frequency domain hydroelasticity method for floating structures in inhomogeneous sea conditions
  publication-title: J Fluids Struct
– year: 2013
  ident: bib0005
  article-title: The DTU 10-MW reference wind turbine
  publication-title: Danish Wind Power Res
– volume: 101
  year: 2020
  ident: bib0036
  article-title: Multi-floater-mooring coupled time-domain hydro-elastic analysis in regular and irregular waves
  publication-title: Appl Ocean Res
– volume: 3
  start-page: 45
  year: 1950
  end-page: 101
  ident: bib0049
  article-title: On the motion of floating bodies II. Simple harmonic motions
  publication-title: Commun Pure Appl Math
– volume: 124
  start-page: 81
  year: 2002
  end-page: 89
  ident: bib0040
  article-title: Boundary-element methods in offshore structure analysis
  publication-title: J Offshore Mech Arct Eng
– year: 1995
  ident: bib0039
  article-title: Theory manual
– volume: 124
  start-page: 81
  year: 2002
  ident: 10.1016/j.marstruc.2024.103724_bib0040
  article-title: Boundary-element methods in offshore structure analysis
  publication-title: J Offshore Mech Arct Eng
  doi: 10.1115/1.1464561
– volume: 222
  year: 2020
  ident: 10.1016/j.marstruc.2024.103724_bib0059
  article-title: Probabilistic calibration of fatigue safety factors for offshore wind turbine concrete structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111090
– year: 2020
  ident: 10.1016/j.marstruc.2024.103724_bib0047
– year: 2013
  ident: 10.1016/j.marstruc.2024.103724_bib0005
  article-title: The DTU 10-MW reference wind turbine
  publication-title: Danish Wind Power Res
– volume: 94
  year: 2020
  ident: 10.1016/j.marstruc.2024.103724_bib0031
  article-title: A 3D direct coupling method for steady ship hydroelastic analysis
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2020.102891
– year: 2016
  ident: 10.1016/j.marstruc.2024.103724_bib0023
– volume: 318
  year: 2024
  ident: 10.1016/j.marstruc.2024.103724_bib0041
  article-title: On the correction of hydrostatic stiffness for discrete-module-based hydroelasticity analysis of vertically arrayed modules
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2024.118710
– volume: 46
  year: 2015
  ident: 10.1016/j.marstruc.2024.103724_bib0051
  article-title: AeroDyn v15 user's guide and theory manual
  publication-title: NREL Draft Rep
– ident: 10.1016/j.marstruc.2024.103724_bib0055
– volume: 13
  start-page: 287
  year: 2023
  ident: 10.1016/j.marstruc.2024.103724_bib0001
– ident: 10.1016/j.marstruc.2024.103724_bib0028
  doi: 10.1115/1.3230419
– year: 2018
  ident: 10.1016/j.marstruc.2024.103724_bib0024
  article-title: DNV GL standard for floating wind turbines
– volume: 286
  year: 2023
  ident: 10.1016/j.marstruc.2024.103724_bib0034
  article-title: Effect of floater flexibility on global dynamic responses of a 15-MW semi-submersible floating wind turbine
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.115584
– year: 1973
  ident: 10.1016/j.marstruc.2024.103724_bib0058
  article-title: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
  publication-title: Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A
– start-page: D011S2R04
  year: 2023
  ident: 10.1016/j.marstruc.2024.103724_bib0052
  article-title: A New Mooring System for Floating Offshore Wind Turbines: theory, Design and Industrialization
– year: 2016
  ident: 10.1016/j.marstruc.2024.103724_bib0017
– year: 2015
  ident: 10.1016/j.marstruc.2024.103724_bib0046
– volume: 13
  start-page: 173
  year: 2023
  ident: 10.1016/j.marstruc.2024.103724_bib0012
  article-title: Systematic comparisons among OpenFAST, Charm3D-FAST simulations and DeepCWind model test for 5 MW OC4 semisubmersible offshore wind turbine
  publication-title: Ocean Syst Eng
– year: 2020
  ident: 10.1016/j.marstruc.2024.103724_bib0007
– ident: 10.1016/j.marstruc.2024.103724_bib0048
– volume: 90
  year: 2023
  ident: 10.1016/j.marstruc.2024.103724_bib0037
  article-title: Efficient time-domain approach for hydroelastic-structural analysis including hydrodynamic pressure distribution on a moored SFT
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2023.103402
– volume: 14
  start-page: 8490
  year: 2021
  ident: 10.1016/j.marstruc.2024.103724_bib0003
  article-title: Generic upscaling methodology of a floating offshore wind turbine
  publication-title: Energies (Basel)
  doi: 10.3390/en14248490
– volume: 14
  start-page: 557
  year: 2011
  ident: 10.1016/j.marstruc.2024.103724_bib0016
– ident: 10.1016/j.marstruc.2024.103724_bib0054
– volume: 275
  year: 2023
  ident: 10.1016/j.marstruc.2024.103724_bib0030
  article-title: Discrete-module-beam-based hydro-elasticity simulations for moored submerged floating tunnel under regular and random wave excitations
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115198
– volume: 6
  start-page: 867
  year: 2021
  ident: 10.1016/j.marstruc.2024.103724_bib0009
  article-title: Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves
  publication-title: Wind Energy Sci
  doi: 10.5194/wes-6-867-2021
– volume: 101
  year: 2020
  ident: 10.1016/j.marstruc.2024.103724_bib0036
  article-title: Multi-floater-mooring coupled time-domain hydro-elastic analysis in regular and irregular waves
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2020.102276
– year: 2022
  ident: 10.1016/j.marstruc.2024.103724_bib0015
  article-title: Preliminary sizing and optimization of semisubmersible substructures for future generation offshore wind turbines
– year: 2020
  ident: 10.1016/j.marstruc.2024.103724_bib0062
– volume: 187
  start-page: 282
  year: 2022
  ident: 10.1016/j.marstruc.2024.103724_bib0013
  article-title: OC6 phase I: improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.01.053
– volume: 5
  start-page: 139
  year: 2015
  ident: 10.1016/j.marstruc.2024.103724_bib0022
  article-title: Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects
  publication-title: Ocean Syst Eng
  doi: 10.12989/ose.2015.5.3.139
– volume: 35
  start-page: 1322
  year: 2008
  ident: 10.1016/j.marstruc.2024.103724_bib0043
  article-title: An explicit formulation for restoring stiffness and its performance in ship hydroelasticity
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2008.06.004
– year: 2016
  ident: 10.1016/j.marstruc.2024.103724_bib0018
– year: 2000
  ident: 10.1016/j.marstruc.2024.103724_bib0060
  article-title: WAFO-a Matlab toolbox for analysis of random waves and loads
– year: 2019
  ident: 10.1016/j.marstruc.2024.103724_bib0014
  article-title: Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms
– volume: 3
  start-page: 380
  year: 1965
  ident: 10.1016/j.marstruc.2024.103724_bib0053
  article-title: Reduction of stiffness and mass matrices
  publication-title: AIAA J
  doi: 10.2514/3.2874
– volume: 84
  year: 2022
  ident: 10.1016/j.marstruc.2024.103724_bib0002
  article-title: Design, structural modeling, control, and performance of 20 MW spar floating wind turbines
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2022.103182
– year: 2018
  ident: 10.1016/j.marstruc.2024.103724_bib0061
– year: 2014
  ident: 10.1016/j.marstruc.2024.103724_bib0025
– volume: 3
  start-page: 45
  year: 1950
  ident: 10.1016/j.marstruc.2024.103724_bib0049
  article-title: On the motion of floating bodies II. Simple harmonic motions
  publication-title: Commun Pure Appl Math
  doi: 10.1002/cpa.3160030106
– year: 2020
  ident: 10.1016/j.marstruc.2024.103724_bib0011
  article-title: Comparison of loads from HAWC2 and OpenFAST for the IEA Wind 15 MW Reference Wind Turbine
– volume: 1
  start-page: 93
  year: 2011
  ident: 10.1016/j.marstruc.2024.103724_bib0020
  article-title: Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)
  publication-title: Ocean Syst Eng
– volume: 72
  start-page: 141
  year: 2012
  ident: 10.1016/j.marstruc.2024.103724_bib0044
  article-title: Formulation of consistent restoring stiffness in ship hydroelastic analysis
  publication-title: J Eng Math
  doi: 10.1007/s10665-011-9468-2
– year: 2011
  ident: 10.1016/j.marstruc.2024.103724_bib0021
  article-title: Aero-elastic-control-floater-mooring coupled dynamic analysis of floating offshore wind turbines
– year: 1995
  ident: 10.1016/j.marstruc.2024.103724_bib0039
– volume: 13
  start-page: 91
  year: 2000
  ident: 10.1016/j.marstruc.2024.103724_bib0042
  article-title: The hydrostatic stiffness of flexible floating structures for linear hydroelasticity
  publication-title: Marine Struct
  doi: 10.1016/S0951-8339(00)00007-1
– year: 2023
  ident: 10.1016/j.marstruc.2024.103724_bib0038
  article-title: A Consistent-Module-Based (CMB) Method for Hydroelasticity Analysis
– volume: 286
  year: 2023
  ident: 10.1016/j.marstruc.2024.103724_bib0033
  article-title: Hydroelastic response of a flexible spar floating wind turbine: numerical modelling and validation
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.115635
– year: 1962
  ident: 10.1016/j.marstruc.2024.103724_bib0027
  article-title: The impulse response function and ship motion
– volume: 255
  year: 2022
  ident: 10.1016/j.marstruc.2024.103724_bib0032
  article-title: Experimental investigation of the hydro-elastic response of a spar-type floating offshore wind turbine
  publication-title: Ocean Eng
– year: 2000
  ident: 10.1016/j.marstruc.2024.103724_bib0029
– year: 2014
  ident: 10.1016/j.marstruc.2024.103724_bib0045
– volume: 9
  start-page: 124
  year: 2021
  ident: 10.1016/j.marstruc.2024.103724_bib0057
  article-title: Dynamic behavior of a flexible multi-column FOWT in regular waves
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse9020124
– year: 2014
  ident: 10.1016/j.marstruc.2024.103724_bib0010
  article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system
– volume: 7
  start-page: 53
  year: 2022
  ident: 10.1016/j.marstruc.2024.103724_bib0026
  article-title: A reference open-source controller for fixed and floating offshore wind turbines
  publication-title: Wind Energy Sci
  doi: 10.5194/wes-7-53-2022
– ident: 10.1016/j.marstruc.2024.103724_bib0056
– volume: 74
  start-page: 321
  year: 2017
  ident: 10.1016/j.marstruc.2024.103724_bib0035
  article-title: A discrete-modules-based frequency domain hydroelasticity method for floating structures in inhomogeneous sea conditions
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2017.06.002
– ident: 10.1016/j.marstruc.2024.103724_bib0008
– year: 2020
  ident: 10.1016/j.marstruc.2024.103724_bib0006
– volume: 231
  start-page: 1
  year: 1955
  ident: 10.1016/j.marstruc.2024.103724_bib0050
  article-title: Waves due to a floating sphere making periodic heaving oscillations
  publication-title: Proc R Soc Lond Ser A Math Phys Sci
– year: 2009
  ident: 10.1016/j.marstruc.2024.103724_bib0004
– year: 2016
  ident: 10.1016/j.marstruc.2024.103724_bib0019
SSID ssj0017111
Score 2.420757
Snippet •The impact of the hull flexibility of a 15MW spar-type floating offshore wind turbine (FOWT) on the global performance analysis has been investigated based on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103724
SubjectTerms DMB
Floating offshore wind turbines
Hydroelasticity
Rigid vs flexible hull
Spar platform
WindCrete
Title Impact of hull flexibility on the global performance of a 15 MW concrete-spar floating offshore wind turbine
URI https://dx.doi.org/10.1016/j.marstruc.2024.103724
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXryIT6wv5iDeYpvsbh7HIkpV2ouKvYV9oqU2pRakF3-7M3n4AKEHr8lOEiaTme8LM98ydmac1EpyGfBMaSQozgcacUSQhAgnrEuN0fRDfzCM-4_idiRHa-yymYWhtso691c5vczW9ZFO7c3O7OWlc0_gIOVY3wUV_ogmyoVIKMovPr7aPEK8adhsJ0-rf0wJjy9ekTySTCvyxEiU8-eR-LtA_Sg611tss0aL0KseaJutuekOOxiUytrzJZzDUGGkQP2B7rLJTTn0CIWHZ-SW4Enusmx_XUIxBQR7UCmAwOx7YIBWKwglDJ4A2THCyIULMNHM0bxQ1BaNK_zbczF38I4UHrBKIZ92e-zx-urhsh_U-ykEhofRIlDeZonresQssRZERFJpY-sVqb6FIlHCSq6z0CYqErFOuUm8TjOjlBGmay3fZ61pMXUHDHTklZClOFlX4BXSbpz5SHKreRq70LaZbJyYm1psnPa8mORNV9k4b5yfk_Pzyvlt1vmym1VyGystsuYd5b8CJ8easML28B-2R2wjoq2AqbVPHrMWnncniE8W-rQMwFO23ru56w8_Aaxe5ug
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qPehFfOLbOYi32Ca7m8dRitKq7UVFb2GfaNGm1IL4753NwwcIHryGnSRMNjPfl8x8A3CsrVBSMBGwTCoiKNYFinBEkIQEJ4xNtVb-g_5wFPfv-OWDeGhBr-mF8WWVdeyvYnoZresjndqbnenTU-fGg4OUUX7nPvFHyQIsenUq0YbFs8FVf_T5M4GuGzYT5b3Bt0bh8ekL8Uev1EpUMeJlC3rEf89R3_LOxSqs1IARz6p7WoOWnazD9rAU15694wmOJG0WrN_RDXgelH2PWDh8JHqJzitelhWw71hMkPAeViIgOP3qGfCrJYYCh_dIBJmQ5NwGFGtmZF5IXxlNK9zrYzGz-EYsHilREaW2m3B3cX7b6wf1SIVAszCaB9KZLLFdR7AlVtxzkVSY2Djphd9CnkhuBFNZaBIZ8VilTCdOpZmWUnPdNYZtQXtSTOw2oIqc5KLUJ-tyOkPajTMXCWYUS2Mbmh0QjRNzXeuN-7EXz3lTWDbOG-fn3vl55fwd6HzaTSvFjT8tsuYZ5T_2Tk5p4Q_b3X_YHsFS_3Z4nV8PRld7sBz5ycC-0k_sQ5vW2gOCK3N1WG_HD5iF6Zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+hull+flexibility+on+the+global+performance+of+a+15+MW+concrete-spar+floating+offshore+wind+turbine&rft.jtitle=Marine+structures&rft.au=Lee%2C+Ikjae&rft.au=Kim%2C+Moohyun&rft.au=Jin%2C+Chungkuk&rft.date=2025-03-15&rft.pub=Elsevier+Ltd&rft.issn=0951-8339&rft.volume=100&rft_id=info:doi/10.1016%2Fj.marstruc.2024.103724&rft.externalDocID=S0951833924001527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8339&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8339&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8339&client=summon