Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting

Unlike well-studied locally resonant (LR) metamaterials with a periodic array of identical resonators, 'graded' LR metamaterials consist of an array of resonators with a spatially varying parameter, yielding wideband wave attenuation and mode trapping/localization, among other features. In...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 30; no. 1; pp. 15029 - 15038
Main Authors Alshaqaq, M, Erturk, A
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unlike well-studied locally resonant (LR) metamaterials with a periodic array of identical resonators, 'graded' LR metamaterials consist of an array of resonators with a spatially varying parameter, yielding wideband wave attenuation and mode trapping/localization, among other features. In this work, we explore a graded LR piezoelectric metamaterial-based structure (i.e. metastructure) in which the grading parameter, namely the inductive shunt resonant frequency of the unit cells, follows a predefined variation pattern in space (e.g. first-order, quadratic, or fractional). We investigate the effect of such patterns on (i) the vibration attenuation bandwidth, (ii) the localization of vibration modes, and (iii) the harvested power. To this end, we consider a piezoelectric bimorph cantilever hosting an array of piezoelectric unit cells with spatially varying inductive shunts. Fully coupled electromechanical equations describing the metastructure's linear transverse displacement and unit cell voltages are given with a modal analysis framework and solved using the matrix inversion method. The results show that (i) the first-order grading pattern yields the widest bandgap with 65% increase in the bandwidth compared to the standard uniform LR pattern, (ii) the localization of vibration modes follows in shape the corresponding frequency grading pattern, and (iii) the largest power is harvested for the fractional grading pattern. Furthermore, all of the graded resonator configurations result in wider bandwidth in energy harvesting as compared to the uniform resonators case. Overall, the results unveil the fundamental characteristics of this class of graded piezoelectric metastructures and support the design of such multifunctional piezoelectric metastructures for concurrent vibration attenuation and energy harvesting.
AbstractList Unlike well-studied locally resonant (LR) metamaterials with a periodic array of identical resonators, 'graded' LR metamaterials consist of an array of resonators with a spatially varying parameter, yielding wideband wave attenuation and mode trapping/localization, among other features. In this work, we explore a graded LR piezoelectric metamaterial-based structure (i.e. metastructure) in which the grading parameter, namely the inductive shunt resonant frequency of the unit cells, follows a predefined variation pattern in space (e.g. first-order, quadratic, or fractional). We investigate the effect of such patterns on (i) the vibration attenuation bandwidth, (ii) the localization of vibration modes, and (iii) the harvested power. To this end, we consider a piezoelectric bimorph cantilever hosting an array of piezoelectric unit cells with spatially varying inductive shunts. Fully coupled electromechanical equations describing the metastructure's linear transverse displacement and unit cell voltages are given with a modal analysis framework and solved using the matrix inversion method. The results show that (i) the first-order grading pattern yields the widest bandgap with 65% increase in the bandwidth compared to the standard uniform LR pattern, (ii) the localization of vibration modes follows in shape the corresponding frequency grading pattern, and (iii) the largest power is harvested for the fractional grading pattern. Furthermore, all of the graded resonator configurations result in wider bandwidth in energy harvesting as compared to the uniform resonators case. Overall, the results unveil the fundamental characteristics of this class of graded piezoelectric metastructures and support the design of such multifunctional piezoelectric metastructures for concurrent vibration attenuation and energy harvesting.
Author Alshaqaq, M
Erturk, A
Author_xml – sequence: 1
  givenname: M
  orcidid: 0000-0002-4407-8980
  surname: Alshaqaq
  fullname: Alshaqaq, M
  organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta GA 30332, United States of America
– sequence: 2
  givenname: A
  orcidid: 0000-0003-0110-5376
  surname: Erturk
  fullname: Erturk, A
  email: alper.erturk@me.gatech.edu
  organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta GA 30332, United States of America
BookMark eNp9kE1LAzEQhoNUsK3ePe7Ni2szm-5m9yhFq1DwouAtZGcnNWU_SpKt1F9va4sHkZ5mmHmfgXlGbNB2LTF2DfwOeJ5PQGQQZ1n6PtElSqPP2PB3NGBDXmTTGGSSXbCR9yvOAXIBQ1bPna6oipq-Dtb0LQbbtbqO1pa-OqoJg7MYNRS0D67H0Dvykelc9GkrKnVbRRtbOr2nIh0Ctf2x322oJbfcRh_abcgH2y4v2bnRtaerYx2zt8eH19lTvHiZP8_uFzEKSEKsEUAiL8gQlrmRaSrRVFBAXuVcC0xQcJIwJQ5SJGkhUU4JJYmi0ikKFGPGD3fRdd47MmrtbKPdVgFXe1tqr0bt1aiDrR2S_UHQhp9XgtO2PgXeHkDbrdWq693Onj8Vv_kn7huvxA5RHFKeFGpdGfENekmSaA
CODEN SMSTER
CitedBy_id crossref_primary_10_1088_1361_665X_ad1bac
crossref_primary_10_1088_1361_665X_ad254d
crossref_primary_10_3390_ma15030891
crossref_primary_10_1016_j_ijmecsci_2024_109633
crossref_primary_10_1016_j_euromechsol_2021_104350
crossref_primary_10_1080_19475411_2023_2221668
crossref_primary_10_1016_j_ijsolstr_2023_112306
crossref_primary_10_1016_j_apm_2023_10_011
crossref_primary_10_1016_j_compstruct_2023_117656
crossref_primary_10_1016_j_mechmat_2023_104892
crossref_primary_10_1088_1361_665X_ac04c3
crossref_primary_10_1088_1361_665X_aceba5
crossref_primary_10_1007_s42417_023_01034_z
crossref_primary_10_1088_1361_665X_ad8611
crossref_primary_10_1088_1361_665X_ac775d
crossref_primary_10_1016_j_ijmecsci_2024_109763
crossref_primary_10_1051_aacus_2024049
crossref_primary_10_1103_PhysRevApplied_17_L021003
crossref_primary_10_1002_adem_202200656
crossref_primary_10_1088_1361_665X_acedde
crossref_primary_10_1007_s00707_024_04114_7
crossref_primary_10_1016_j_tws_2024_112713
crossref_primary_10_1007_s42417_023_01180_4
crossref_primary_10_1088_1361_665X_ac47d6
crossref_primary_10_1103_PhysRevApplied_16_034028
crossref_primary_10_1063_5_0059025
crossref_primary_10_2139_ssrn_4004822
crossref_primary_10_1103_PhysRevB_106_104107
crossref_primary_10_1016_j_ymssp_2024_111241
crossref_primary_10_1088_1361_665X_ac112c
crossref_primary_10_1063_5_0228819
crossref_primary_10_1016_j_eml_2023_102091
crossref_primary_10_1016_j_engstruct_2022_115091
crossref_primary_10_1063_5_0145927
crossref_primary_10_1063_5_0203937
crossref_primary_10_1016_j_measurement_2022_111014
crossref_primary_10_1080_15376494_2025_2479584
crossref_primary_10_1016_j_enconman_2022_116056
crossref_primary_10_1088_1361_6463_acbd5f
crossref_primary_10_1063_5_0218118
crossref_primary_10_1016_j_eml_2021_101481
crossref_primary_10_1088_1361_665X_acf62f
crossref_primary_10_1088_1361_665X_ad63e7
crossref_primary_10_1063_5_0136134
crossref_primary_10_1016_j_apm_2025_116090
crossref_primary_10_1016_j_euromechsol_2022_104812
crossref_primary_10_1016_j_jsv_2022_116945
crossref_primary_10_1007_s40430_024_04722_3
crossref_primary_10_1016_j_mechrescom_2023_104200
crossref_primary_10_1016_j_ymssp_2024_112286
crossref_primary_10_1007_s00339_022_06032_8
crossref_primary_10_1063_5_0058086
crossref_primary_10_1103_PhysRevB_105_224314
crossref_primary_10_1103_PhysRevB_110_174305
crossref_primary_10_1115_1_4065751
crossref_primary_10_1098_rspa_2023_0537
crossref_primary_10_1007_s10483_025_3231_6
crossref_primary_10_1063_5_0090258
crossref_primary_10_1360_TB_2021_1265
crossref_primary_10_1016_j_jsv_2024_118632
Cites_doi 10.1103/PhysRevApplied.13.014023
10.1103/PhysRevB.73.064301
10.1117/12.2260333
10.1063/1.5050213
10.1088/0964-1726/25/8/085017
10.1016/j.ymssp.2018.06.059
10.1115/1.4000784
10.1016/j.jsv.2014.01.009
10.1177/1077546315598032
10.1016/j.ultras.2013.03.019
10.1038/srep01728
10.1063/1.4982634
10.1088/1361-665X/aa6671
10.1016/j.jmps.2018.04.005
10.1038/s41467-017-00671-9
10.1016/j.jsv.2012.11.005
10.1002/9781119991151
10.1016/j.ijmecsci.2017.01.034
10.1088/1367-2630/ab6062
10.1016/j.jsv.2017.06.004
10.1016/j.jsv.2012.07.016
10.1126/science.289.5485.1734
10.1063/1.4971761
10.1016/j.physleta.2012.02.059
10.1103/PhysRevApplied.13.061001
10.1038/nature06285
10.1063/1.5066329
10.1063/1.4902129
10.1063/1.4977559
10.1088/0964-1726/10/5/314
10.1063/1.5011999
10.1016/j.physb.2006.12.046
10.1063/1.5081916
10.1063/1.5084548
10.1115/1.4024214
10.1073/pnas.1014963108
10.1016/j.eml.2016.07.003
10.1016/j.ijsolstr.2018.03.014
10.1088/0964-1726/16/3/R01
10.1038/nmat1644
10.1088/1367-2630/13/11/113010
10.1088/1361-665X/ab36e4
10.1016/j.ymssp.2020.106982
10.1063/1.4934202
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd
Copyright_xml – notice: 2020 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/abc7fa
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_abc7fa
smsabc7fa
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c312t-ac117c09efecb8f7557cfd1918d80a3c2c30e714e01732597c74ec7e39da5c3c3
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Thu Apr 24 22:52:48 EDT 2025
Tue Jul 01 03:38:45 EDT 2025
Wed Aug 21 03:38:13 EDT 2024
Thu Jan 07 14:56:12 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-ac117c09efecb8f7557cfd1918d80a3c2c30e714e01732597c74ec7e39da5c3c3
Notes SMS-111012.R1
ORCID 0000-0002-4407-8980
0000-0003-0110-5376
PageCount 10
ParticipantIDs crossref_primary_10_1088_1361_665X_abc7fa
crossref_citationtrail_10_1088_1361_665X_abc7fa
iop_journals_10_1088_1361_665X_abc7fa
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
46
Safaei M (51) 2019; 28
49
Wang G (43) 2015; 25
Cardella D (40) 2016; 25
Chaplain G J (48) 2020
Wang G (15) 2017; 26
52
10
12
13
16
17
18
19
1
2
3
Xiao Y (25) 2013; 47
4
5
7
8
Thorp O (31) 2001; 10
Kuan L (11) 2017; 50
20
21
22
23
24
26
27
28
De Ponti J M (9) 2020
29
Airoldi L (41) 2011; 13
Thomas O (45) 2011; 21
Sugino C (6) 2017; 26
Zhou W (14) 2015; 24
Anton S R (50) 2007; 16
30
32
33
34
35
36
37
38
39
De Ponti J M (47) 2020; 22
42
References_xml – volume: 25
  issn: 0964-1726
  year: 2015
  ident: 43
  publication-title: Smart Mater. Struct.
– ident: 36
  doi: 10.1103/PhysRevApplied.13.014023
– ident: 13
  doi: 10.1103/PhysRevB.73.064301
– ident: 19
  doi: 10.1117/12.2260333
– ident: 26
  doi: 10.1063/1.5050213
– volume: 25
  issn: 0964-1726
  year: 2016
  ident: 40
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/8/085017
– ident: 12
  doi: 10.1016/j.ymssp.2018.06.059
– ident: 8
  doi: 10.1115/1.4000784
– ident: 17
  doi: 10.1016/j.jsv.2014.01.009
– ident: 18
  doi: 10.1177/1077546315598032
– ident: 22
  doi: 10.1016/j.ultras.2013.03.019
– ident: 39
  doi: 10.1038/srep01728
– ident: 29
  doi: 10.1063/1.4982634
– volume: 26
  issn: 0964-1726
  year: 2017
  ident: 6
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa6671
– ident: 7
  doi: 10.1016/j.jmps.2018.04.005
– year: 2020
  ident: 9
  publication-title: Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metasurface for energy harvesting
– ident: 34
  doi: 10.1038/s41467-017-00671-9
– volume: 21
  issn: 0964-1726
  year: 2011
  ident: 45
  publication-title: Smart Mater. Struct.
– year: 2020
  ident: 48
  publication-title: Rainbow reflection and trapping for energy harvesting
– ident: 32
  doi: 10.1016/j.jsv.2012.11.005
– ident: 52
  doi: 10.1002/9781119991151
– volume: 24
  issn: 0964-1726
  year: 2015
  ident: 14
  publication-title: Smart Mater. Struct.
– ident: 3
  doi: 10.1016/j.ijmecsci.2017.01.034
– volume: 26
  issn: 0964-1726
  year: 2017
  ident: 15
  publication-title: Smart Mater. Struct.
– volume: 47
  year: 2013
  ident: 25
  publication-title: J. Phys. D: Appl. Phys.
– volume: 22
  issn: 1367-2630
  year: 2020
  ident: 47
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab6062
– ident: 4
  doi: 10.1016/j.jsv.2017.06.004
– ident: 10
  doi: 10.1016/j.jsv.2012.07.016
– ident: 1
  doi: 10.1126/science.289.5485.1734
– ident: 33
  doi: 10.1063/1.4971761
– ident: 16
  doi: 10.1016/j.physleta.2012.02.059
– ident: 44
  doi: 10.1103/PhysRevApplied.13.061001
– volume: 50
  issn: 0022-3727
  year: 2017
  ident: 11
  publication-title: J. Phys. D: Appl. Phys.
– ident: 37
  doi: 10.1038/nature06285
– ident: 35
  doi: 10.1063/1.5066329
– ident: 24
  doi: 10.1063/1.4902129
– ident: 20
  doi: 10.1063/1.4977559
– volume: 10
  start-page: 979
  issn: 0964-1726
  year: 2001
  ident: 31
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/5/314
– ident: 21
  doi: 10.1063/1.5011999
– ident: 2
  doi: 10.1016/j.physb.2006.12.046
– ident: 49
  doi: 10.1063/1.5081916
– ident: 27
  doi: 10.1063/1.5084548
– ident: 23
  doi: 10.1115/1.4024214
– ident: 38
  doi: 10.1073/pnas.1014963108
– ident: 28
  doi: 10.1016/j.eml.2016.07.003
– ident: 30
  doi: 10.1016/j.ijsolstr.2018.03.014
– volume: 16
  start-page: R1
  issn: 0964-1726
  year: 2007
  ident: 50
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/3/R01
– ident: 5
  doi: 10.1038/nmat1644
– volume: 13
  issn: 1367-2630
  year: 2011
  ident: 41
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/11/113010
– volume: 28
  issn: 0964-1726
  year: 2019
  ident: 51
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab36e4
– ident: 46
  doi: 10.1016/j.ymssp.2020.106982
– ident: 42
  doi: 10.1063/1.4934202
SSID ssj0011831
Score 2.5658064
Snippet Unlike well-studied locally resonant (LR) metamaterials with a periodic array of identical resonators, 'graded' LR metamaterials consist of an array of...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 15029
SubjectTerms energy harvesting
metamaterial
piezoelectric
vibration attenuation
Title Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting
URI https://iopscience.iop.org/article/10.1088/1361-665X/abc7fa
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1RdCHtlbFai150Acf9m53s9lk8akUaylUfbBwD0JIJpN62O4dvTuF_vWdbPaOVqRI3wKZZMMk2fnIzG8Ye1dKnfvShkwikIFifZFpXUMmpfMVeOnAxtzh0y_18Vl1MpKjNfZxlQszmfa__gE1E1BwYmEfEKeHhaiLrK7laGgdqEDK0YbQJDhj9t7Xb6snBDqrXbm8pq4yktLLN8p_zXBHJj2i794SMUdb7MdycSmy5NdgMXcDuP4Lt_GBq99mm73qyQ8S6TO2hu0Oe3oLkHCHPe4CQmH2nF18vrIePe8CDqPwSz5DPh3j9STVzhkDv8S5TQi0CzLbOSnA_M_Yo7Ot57-jIR5H8Qjh2S76NvVgl2_If9qrDuOjPX_Bzo4-fT88zvrKDBmIopxnFopCQd5gQHA6KCkVBE-mn_Y6twJKEDmqokK674IMLAWqQlAoGm8lCBAv2Xo7afEV44HOCtYubwBCVTuhVQDZFEiKjIZGul02XO6NgR62PFbPuDDd87nWJnLURI6axNFd9mE1YpogO-6hfU8bZfp7O7uHjt-hm13OjCBaEx1GZWOmPrz-z6nesCdljIvp3Dh7bJ02Cd-SYjN3-90BvgGZ_PcQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RaBy4FFAlKcP9MAhu0kcx86BA6IsLYXSA5X2ZuyxA6u22dVml4r-Kf4KP4lxkl21CFVceuBmKbbleMaeh2e-AXiRChW71JSR8EgGinFJpFSOkRDWZeiERRNyhz_u5zuH2fuhGK7Az2UuzHjSXf09arZAwe0WdgFxqp_wPInyXAz7xqIsTX_iyi6qcs__OCWbrX61u00E3krTwdvPb3airqxAhDxJZ5HBJJEYF770aFUphZBYOrJblFOx4Zgij71MMk_Mysk6kCgzj9LzwhmBHDnNuwrXBCdZHTIGPx0sny3ofDQl-oo8i0gzWLyL_m3VF-TgKv3rObE2uA2_FhvSRrMc9eYz28OzP7Ai_6MduwO3OhWbvW6XdxdWfLUBN88BL27A9SbwFet7cPxuapx3rAmsDEK-9Y2yycifjdsaQSNkJ35mWqTd-dTXjBR9djpy3prKse_B4RBGsQBVWs27Nn3xTV4l-2amDZZJ9fU-HF7Jjz-AtWpc-YfASjoTPrdxgVhmueVKliiKxJPCprAQdhP6C37Q2MGzhyohx7oJE1BKByrqQEXdUnETXi5HTFpokkv6bhFz6O5-qi_pxy70q09qzamvDo6xtNDEOI_-carncONge6A_7O7vPYb1NIQCNZ6rJ7BG9PJPSZeb2WfN-WHw5arZ7zfSiFd7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graded+multifunctional+piezoelectric+metastructures+for+wideband+vibration+attenuation+and+energy+harvesting&rft.jtitle=Smart+materials+and+structures&rft.au=Alshaqaq%2C+M&rft.au=Erturk%2C+A&rft.date=2021-01-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=30&rft.issue=1&rft.spage=15029&rft_id=info:doi/10.1088%2F1361-665X%2Fabc7fa&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_abc7fa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon