Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting
Unlike well-studied locally resonant (LR) metamaterials with a periodic array of identical resonators, 'graded' LR metamaterials consist of an array of resonators with a spatially varying parameter, yielding wideband wave attenuation and mode trapping/localization, among other features. In...
Saved in:
Published in | Smart materials and structures Vol. 30; no. 1; pp. 15029 - 15038 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unlike well-studied locally resonant (LR) metamaterials with a periodic array of identical resonators, 'graded' LR metamaterials consist of an array of resonators with a spatially varying parameter, yielding wideband wave attenuation and mode trapping/localization, among other features. In this work, we explore a graded LR piezoelectric metamaterial-based structure (i.e. metastructure) in which the grading parameter, namely the inductive shunt resonant frequency of the unit cells, follows a predefined variation pattern in space (e.g. first-order, quadratic, or fractional). We investigate the effect of such patterns on (i) the vibration attenuation bandwidth, (ii) the localization of vibration modes, and (iii) the harvested power. To this end, we consider a piezoelectric bimorph cantilever hosting an array of piezoelectric unit cells with spatially varying inductive shunts. Fully coupled electromechanical equations describing the metastructure's linear transverse displacement and unit cell voltages are given with a modal analysis framework and solved using the matrix inversion method. The results show that (i) the first-order grading pattern yields the widest bandgap with 65% increase in the bandwidth compared to the standard uniform LR pattern, (ii) the localization of vibration modes follows in shape the corresponding frequency grading pattern, and (iii) the largest power is harvested for the fractional grading pattern. Furthermore, all of the graded resonator configurations result in wider bandwidth in energy harvesting as compared to the uniform resonators case. Overall, the results unveil the fundamental characteristics of this class of graded piezoelectric metastructures and support the design of such multifunctional piezoelectric metastructures for concurrent vibration attenuation and energy harvesting. |
---|---|
AbstractList | Unlike well-studied locally resonant (LR) metamaterials with a periodic array of identical resonators, 'graded' LR metamaterials consist of an array of resonators with a spatially varying parameter, yielding wideband wave attenuation and mode trapping/localization, among other features. In this work, we explore a graded LR piezoelectric metamaterial-based structure (i.e. metastructure) in which the grading parameter, namely the inductive shunt resonant frequency of the unit cells, follows a predefined variation pattern in space (e.g. first-order, quadratic, or fractional). We investigate the effect of such patterns on (i) the vibration attenuation bandwidth, (ii) the localization of vibration modes, and (iii) the harvested power. To this end, we consider a piezoelectric bimorph cantilever hosting an array of piezoelectric unit cells with spatially varying inductive shunts. Fully coupled electromechanical equations describing the metastructure's linear transverse displacement and unit cell voltages are given with a modal analysis framework and solved using the matrix inversion method. The results show that (i) the first-order grading pattern yields the widest bandgap with 65% increase in the bandwidth compared to the standard uniform LR pattern, (ii) the localization of vibration modes follows in shape the corresponding frequency grading pattern, and (iii) the largest power is harvested for the fractional grading pattern. Furthermore, all of the graded resonator configurations result in wider bandwidth in energy harvesting as compared to the uniform resonators case. Overall, the results unveil the fundamental characteristics of this class of graded piezoelectric metastructures and support the design of such multifunctional piezoelectric metastructures for concurrent vibration attenuation and energy harvesting. |
Author | Alshaqaq, M Erturk, A |
Author_xml | – sequence: 1 givenname: M orcidid: 0000-0002-4407-8980 surname: Alshaqaq fullname: Alshaqaq, M organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta GA 30332, United States of America – sequence: 2 givenname: A orcidid: 0000-0003-0110-5376 surname: Erturk fullname: Erturk, A email: alper.erturk@me.gatech.edu organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta GA 30332, United States of America |
BookMark | eNp9kE1LAzEQhoNUsK3ePe7Ni2szm-5m9yhFq1DwouAtZGcnNWU_SpKt1F9va4sHkZ5mmHmfgXlGbNB2LTF2DfwOeJ5PQGQQZ1n6PtElSqPP2PB3NGBDXmTTGGSSXbCR9yvOAXIBQ1bPna6oipq-Dtb0LQbbtbqO1pa-OqoJg7MYNRS0D67H0Dvykelc9GkrKnVbRRtbOr2nIh0Ctf2x322oJbfcRh_abcgH2y4v2bnRtaerYx2zt8eH19lTvHiZP8_uFzEKSEKsEUAiL8gQlrmRaSrRVFBAXuVcC0xQcJIwJQ5SJGkhUU4JJYmi0ikKFGPGD3fRdd47MmrtbKPdVgFXe1tqr0bt1aiDrR2S_UHQhp9XgtO2PgXeHkDbrdWq693Onj8Vv_kn7huvxA5RHFKeFGpdGfENekmSaA |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1088_1361_665X_ad1bac crossref_primary_10_1088_1361_665X_ad254d crossref_primary_10_3390_ma15030891 crossref_primary_10_1016_j_ijmecsci_2024_109633 crossref_primary_10_1016_j_euromechsol_2021_104350 crossref_primary_10_1080_19475411_2023_2221668 crossref_primary_10_1016_j_ijsolstr_2023_112306 crossref_primary_10_1016_j_apm_2023_10_011 crossref_primary_10_1016_j_compstruct_2023_117656 crossref_primary_10_1016_j_mechmat_2023_104892 crossref_primary_10_1088_1361_665X_ac04c3 crossref_primary_10_1088_1361_665X_aceba5 crossref_primary_10_1007_s42417_023_01034_z crossref_primary_10_1088_1361_665X_ad8611 crossref_primary_10_1088_1361_665X_ac775d crossref_primary_10_1016_j_ijmecsci_2024_109763 crossref_primary_10_1051_aacus_2024049 crossref_primary_10_1103_PhysRevApplied_17_L021003 crossref_primary_10_1002_adem_202200656 crossref_primary_10_1088_1361_665X_acedde crossref_primary_10_1007_s00707_024_04114_7 crossref_primary_10_1016_j_tws_2024_112713 crossref_primary_10_1007_s42417_023_01180_4 crossref_primary_10_1088_1361_665X_ac47d6 crossref_primary_10_1103_PhysRevApplied_16_034028 crossref_primary_10_1063_5_0059025 crossref_primary_10_2139_ssrn_4004822 crossref_primary_10_1103_PhysRevB_106_104107 crossref_primary_10_1016_j_ymssp_2024_111241 crossref_primary_10_1088_1361_665X_ac112c crossref_primary_10_1063_5_0228819 crossref_primary_10_1016_j_eml_2023_102091 crossref_primary_10_1016_j_engstruct_2022_115091 crossref_primary_10_1063_5_0145927 crossref_primary_10_1063_5_0203937 crossref_primary_10_1016_j_measurement_2022_111014 crossref_primary_10_1080_15376494_2025_2479584 crossref_primary_10_1016_j_enconman_2022_116056 crossref_primary_10_1088_1361_6463_acbd5f crossref_primary_10_1063_5_0218118 crossref_primary_10_1016_j_eml_2021_101481 crossref_primary_10_1088_1361_665X_acf62f crossref_primary_10_1088_1361_665X_ad63e7 crossref_primary_10_1063_5_0136134 crossref_primary_10_1016_j_apm_2025_116090 crossref_primary_10_1016_j_euromechsol_2022_104812 crossref_primary_10_1016_j_jsv_2022_116945 crossref_primary_10_1007_s40430_024_04722_3 crossref_primary_10_1016_j_mechrescom_2023_104200 crossref_primary_10_1016_j_ymssp_2024_112286 crossref_primary_10_1007_s00339_022_06032_8 crossref_primary_10_1063_5_0058086 crossref_primary_10_1103_PhysRevB_105_224314 crossref_primary_10_1103_PhysRevB_110_174305 crossref_primary_10_1115_1_4065751 crossref_primary_10_1098_rspa_2023_0537 crossref_primary_10_1007_s10483_025_3231_6 crossref_primary_10_1063_5_0090258 crossref_primary_10_1360_TB_2021_1265 crossref_primary_10_1016_j_jsv_2024_118632 |
Cites_doi | 10.1103/PhysRevApplied.13.014023 10.1103/PhysRevB.73.064301 10.1117/12.2260333 10.1063/1.5050213 10.1088/0964-1726/25/8/085017 10.1016/j.ymssp.2018.06.059 10.1115/1.4000784 10.1016/j.jsv.2014.01.009 10.1177/1077546315598032 10.1016/j.ultras.2013.03.019 10.1038/srep01728 10.1063/1.4982634 10.1088/1361-665X/aa6671 10.1016/j.jmps.2018.04.005 10.1038/s41467-017-00671-9 10.1016/j.jsv.2012.11.005 10.1002/9781119991151 10.1016/j.ijmecsci.2017.01.034 10.1088/1367-2630/ab6062 10.1016/j.jsv.2017.06.004 10.1016/j.jsv.2012.07.016 10.1126/science.289.5485.1734 10.1063/1.4971761 10.1016/j.physleta.2012.02.059 10.1103/PhysRevApplied.13.061001 10.1038/nature06285 10.1063/1.5066329 10.1063/1.4902129 10.1063/1.4977559 10.1088/0964-1726/10/5/314 10.1063/1.5011999 10.1016/j.physb.2006.12.046 10.1063/1.5081916 10.1063/1.5084548 10.1115/1.4024214 10.1073/pnas.1014963108 10.1016/j.eml.2016.07.003 10.1016/j.ijsolstr.2018.03.014 10.1088/0964-1726/16/3/R01 10.1038/nmat1644 10.1088/1367-2630/13/11/113010 10.1088/1361-665X/ab36e4 10.1016/j.ymssp.2020.106982 10.1063/1.4934202 |
ContentType | Journal Article |
Copyright | 2020 IOP Publishing Ltd |
Copyright_xml | – notice: 2020 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/abc7fa |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_abc7fa smsabc7fa |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c312t-ac117c09efecb8f7557cfd1918d80a3c2c30e714e01732597c74ec7e39da5c3c3 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Thu Apr 24 22:52:48 EDT 2025 Tue Jul 01 03:38:45 EDT 2025 Wed Aug 21 03:38:13 EDT 2024 Thu Jan 07 14:56:12 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-ac117c09efecb8f7557cfd1918d80a3c2c30e714e01732597c74ec7e39da5c3c3 |
Notes | SMS-111012.R1 |
ORCID | 0000-0002-4407-8980 0000-0003-0110-5376 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1088_1361_665X_abc7fa crossref_citationtrail_10_1088_1361_665X_abc7fa iop_journals_10_1088_1361_665X_abc7fa |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 46 Safaei M (51) 2019; 28 49 Wang G (43) 2015; 25 Cardella D (40) 2016; 25 Chaplain G J (48) 2020 Wang G (15) 2017; 26 52 10 12 13 16 17 18 19 1 2 3 Xiao Y (25) 2013; 47 4 5 7 8 Thorp O (31) 2001; 10 Kuan L (11) 2017; 50 20 21 22 23 24 26 27 28 De Ponti J M (9) 2020 29 Airoldi L (41) 2011; 13 Thomas O (45) 2011; 21 Sugino C (6) 2017; 26 Zhou W (14) 2015; 24 Anton S R (50) 2007; 16 30 32 33 34 35 36 37 38 39 De Ponti J M (47) 2020; 22 42 |
References_xml | – volume: 25 issn: 0964-1726 year: 2015 ident: 43 publication-title: Smart Mater. Struct. – ident: 36 doi: 10.1103/PhysRevApplied.13.014023 – ident: 13 doi: 10.1103/PhysRevB.73.064301 – ident: 19 doi: 10.1117/12.2260333 – ident: 26 doi: 10.1063/1.5050213 – volume: 25 issn: 0964-1726 year: 2016 ident: 40 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/8/085017 – ident: 12 doi: 10.1016/j.ymssp.2018.06.059 – ident: 8 doi: 10.1115/1.4000784 – ident: 17 doi: 10.1016/j.jsv.2014.01.009 – ident: 18 doi: 10.1177/1077546315598032 – ident: 22 doi: 10.1016/j.ultras.2013.03.019 – ident: 39 doi: 10.1038/srep01728 – ident: 29 doi: 10.1063/1.4982634 – volume: 26 issn: 0964-1726 year: 2017 ident: 6 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa6671 – ident: 7 doi: 10.1016/j.jmps.2018.04.005 – year: 2020 ident: 9 publication-title: Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metasurface for energy harvesting – ident: 34 doi: 10.1038/s41467-017-00671-9 – volume: 21 issn: 0964-1726 year: 2011 ident: 45 publication-title: Smart Mater. Struct. – year: 2020 ident: 48 publication-title: Rainbow reflection and trapping for energy harvesting – ident: 32 doi: 10.1016/j.jsv.2012.11.005 – ident: 52 doi: 10.1002/9781119991151 – volume: 24 issn: 0964-1726 year: 2015 ident: 14 publication-title: Smart Mater. Struct. – ident: 3 doi: 10.1016/j.ijmecsci.2017.01.034 – volume: 26 issn: 0964-1726 year: 2017 ident: 15 publication-title: Smart Mater. Struct. – volume: 47 year: 2013 ident: 25 publication-title: J. Phys. D: Appl. Phys. – volume: 22 issn: 1367-2630 year: 2020 ident: 47 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab6062 – ident: 4 doi: 10.1016/j.jsv.2017.06.004 – ident: 10 doi: 10.1016/j.jsv.2012.07.016 – ident: 1 doi: 10.1126/science.289.5485.1734 – ident: 33 doi: 10.1063/1.4971761 – ident: 16 doi: 10.1016/j.physleta.2012.02.059 – ident: 44 doi: 10.1103/PhysRevApplied.13.061001 – volume: 50 issn: 0022-3727 year: 2017 ident: 11 publication-title: J. Phys. D: Appl. Phys. – ident: 37 doi: 10.1038/nature06285 – ident: 35 doi: 10.1063/1.5066329 – ident: 24 doi: 10.1063/1.4902129 – ident: 20 doi: 10.1063/1.4977559 – volume: 10 start-page: 979 issn: 0964-1726 year: 2001 ident: 31 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/10/5/314 – ident: 21 doi: 10.1063/1.5011999 – ident: 2 doi: 10.1016/j.physb.2006.12.046 – ident: 49 doi: 10.1063/1.5081916 – ident: 27 doi: 10.1063/1.5084548 – ident: 23 doi: 10.1115/1.4024214 – ident: 38 doi: 10.1073/pnas.1014963108 – ident: 28 doi: 10.1016/j.eml.2016.07.003 – ident: 30 doi: 10.1016/j.ijsolstr.2018.03.014 – volume: 16 start-page: R1 issn: 0964-1726 year: 2007 ident: 50 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/3/R01 – ident: 5 doi: 10.1038/nmat1644 – volume: 13 issn: 1367-2630 year: 2011 ident: 41 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/11/113010 – volume: 28 issn: 0964-1726 year: 2019 ident: 51 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab36e4 – ident: 46 doi: 10.1016/j.ymssp.2020.106982 – ident: 42 doi: 10.1063/1.4934202 |
SSID | ssj0011831 |
Score | 2.5658064 |
Snippet | Unlike well-studied locally resonant (LR) metamaterials with a periodic array of identical resonators, 'graded' LR metamaterials consist of an array of... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 15029 |
SubjectTerms | energy harvesting metamaterial piezoelectric vibration attenuation |
Title | Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/abc7fa |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1RdCHtlbFai150Acf9m53s9lk8akUaylUfbBwD0JIJpN62O4dvTuF_vWdbPaOVqRI3wKZZMMk2fnIzG8Ye1dKnfvShkwikIFifZFpXUMmpfMVeOnAxtzh0y_18Vl1MpKjNfZxlQszmfa__gE1E1BwYmEfEKeHhaiLrK7laGgdqEDK0YbQJDhj9t7Xb6snBDqrXbm8pq4yktLLN8p_zXBHJj2i794SMUdb7MdycSmy5NdgMXcDuP4Lt_GBq99mm73qyQ8S6TO2hu0Oe3oLkHCHPe4CQmH2nF18vrIePe8CDqPwSz5DPh3j9STVzhkDv8S5TQi0CzLbOSnA_M_Yo7Ot57-jIR5H8Qjh2S76NvVgl2_If9qrDuOjPX_Bzo4-fT88zvrKDBmIopxnFopCQd5gQHA6KCkVBE-mn_Y6twJKEDmqokK674IMLAWqQlAoGm8lCBAv2Xo7afEV44HOCtYubwBCVTuhVQDZFEiKjIZGul02XO6NgR62PFbPuDDd87nWJnLURI6axNFd9mE1YpogO-6hfU8bZfp7O7uHjt-hm13OjCBaEx1GZWOmPrz-z6nesCdljIvp3Dh7bJ02Cd-SYjN3-90BvgGZ_PcQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RaBy4FFAlKcP9MAhu0kcx86BA6IsLYXSA5X2ZuyxA6u22dVml4r-Kf4KP4lxkl21CFVceuBmKbbleMaeh2e-AXiRChW71JSR8EgGinFJpFSOkRDWZeiERRNyhz_u5zuH2fuhGK7Az2UuzHjSXf09arZAwe0WdgFxqp_wPInyXAz7xqIsTX_iyi6qcs__OCWbrX61u00E3krTwdvPb3airqxAhDxJZ5HBJJEYF770aFUphZBYOrJblFOx4Zgij71MMk_Mysk6kCgzj9LzwhmBHDnNuwrXBCdZHTIGPx0sny3ofDQl-oo8i0gzWLyL_m3VF-TgKv3rObE2uA2_FhvSRrMc9eYz28OzP7Ai_6MduwO3OhWbvW6XdxdWfLUBN88BL27A9SbwFet7cPxuapx3rAmsDEK-9Y2yycifjdsaQSNkJ35mWqTd-dTXjBR9djpy3prKse_B4RBGsQBVWs27Nn3xTV4l-2amDZZJ9fU-HF7Jjz-AtWpc-YfASjoTPrdxgVhmueVKliiKxJPCprAQdhP6C37Q2MGzhyohx7oJE1BKByrqQEXdUnETXi5HTFpokkv6bhFz6O5-qi_pxy70q09qzamvDo6xtNDEOI_-carncONge6A_7O7vPYb1NIQCNZ6rJ7BG9PJPSZeb2WfN-WHw5arZ7zfSiFd7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graded+multifunctional+piezoelectric+metastructures+for+wideband+vibration+attenuation+and+energy+harvesting&rft.jtitle=Smart+materials+and+structures&rft.au=Alshaqaq%2C+M&rft.au=Erturk%2C+A&rft.date=2021-01-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=30&rft.issue=1&rft.spage=15029&rft_id=info:doi/10.1088%2F1361-665X%2Fabc7fa&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_abc7fa |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |