Constrained minimum variance control for discrete-time stochastic linear systems
We propose a computational scheme for the solution of the so-called minimum variance control problem for discrete-time stochastic linear systems subject to an explicit constraint on the 2-norm of the input (random) sequence. In our approach, we utilize a state space framework in which the minimum va...
Saved in:
Published in | Systems & control letters Vol. 113; pp. 109 - 116 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-6911 1872-7956 |
DOI | 10.1016/j.sysconle.2018.02.001 |
Cover
Loading…
Abstract | We propose a computational scheme for the solution of the so-called minimum variance control problem for discrete-time stochastic linear systems subject to an explicit constraint on the 2-norm of the input (random) sequence. In our approach, we utilize a state space framework in which the minimum variance control problem is interpreted as a finite-horizon stochastic optimal control problem with incomplete state information. We show that if the set of admissible control policies for the stochastic optimal control problem consists exclusively of sequences of causal (non-anticipative) control laws that can be expressed as linear combinations of all the past and present outputs of the system together with its past inputs, then the stochastic optimal control problem can be reduced to a deterministic, finite-dimensional optimization problem. Subsequently, we show that the latter optimization problem can be associated with an equivalent convex program and in particular, a quadratically constrained quadratic program (QCQP), by means of a bilinear transformation. Finally, we present numerical simulations that illustrate the key ideas of this work. |
---|---|
AbstractList | We propose a computational scheme for the solution of the so-called minimum variance control problem for discrete-time stochastic linear systems subject to an explicit constraint on the 2-norm of the input (random) sequence. In our approach, we utilize a state space framework in which the minimum variance control problem is interpreted as a finite-horizon stochastic optimal control problem with incomplete state information. We show that if the set of admissible control policies for the stochastic optimal control problem consists exclusively of sequences of causal (non-anticipative) control laws that can be expressed as linear combinations of all the past and present outputs of the system together with its past inputs, then the stochastic optimal control problem can be reduced to a deterministic, finite-dimensional optimization problem. Subsequently, we show that the latter optimization problem can be associated with an equivalent convex program and in particular, a quadratically constrained quadratic program (QCQP), by means of a bilinear transformation. Finally, we present numerical simulations that illustrate the key ideas of this work. |
Author | Bakolas, E. |
Author_xml | – sequence: 1 givenname: E. orcidid: 0000-0003-4104-0108 surname: Bakolas fullname: Bakolas, E. email: bakolas@austin.utexas.edu organization: Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712-1221, USA |
BookMark | eNqFkMtKAzEUhoNUsK2-guQFZsylcwm4UIo3KOii-5BJzuApMxNJYqFvb0p146arsznfz_9_CzKb_ASE3HJWcsbru10ZD9H6aYBSMN6WTJSM8Qsy520jikZV9YzM82NT1IrzK7KIcccYE0zKOflY-ymmYHACR0eccPwe6d4ENJMFmlNT8APtfaAOow2QoEg4Ao3J208TE1o6ZNYEmkskGOM1uezNEOHm9y7J9vlpu34tNu8vb-vHTWElF6kw1QpY1YGrurYyQrZKKMVb1wtoVC9WVS0tSAcrIftGOWDGdRXUXQO1UsbIJalPsTb4GAP0-ivgaMJBc6aPWvRO_2nRRy2aCZ21ZPD-H2gxmYTHpQaH8_jDCYe8bY8QdLQI2ZXDADZp5_FcxA_p8Yhn |
CitedBy_id | crossref_primary_10_1146_annurev_control_070220_100858 crossref_primary_10_1137_23M1560902 crossref_primary_10_1109_MCS_2021_3076542 crossref_primary_10_1016_j_automatica_2021_110106 crossref_primary_10_1002_rnc_7346 crossref_primary_10_1002_cjce_24531 |
Cites_doi | 10.1109/TAC.2008.2010886 10.1016/0005-1098(77)90067-X 10.1109/TCST.2003.816420 10.1109/CDC.2016.7798422 10.23919/ECC.2009.7074836 10.1016/S0959-1524(01)00026-9 10.1080/00207179.2017.1323351 10.1016/j.automatica.2005.08.023 10.1109/TAC.2011.2159422 10.1109/TAC.2015.2457791 10.1016/j.automatica.2011.09.048 10.1109/TAC.2015.2457784 10.1109/TAC.2016.2625048 10.1016/0005-1098(73)90073-3 10.1007/s10107-003-0454-y 10.1049/iet-cta.2011.0099 10.1016/0024-3795(89)90403-5 10.1049/ip-cta:20020751 10.1109/TAC.2010.2046053 10.1137/0306023 10.1016/S0005-1098(97)00066-6 10.1137/0327013 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sysconle.2018.02.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7956 |
EndPage | 116 |
ExternalDocumentID | 10_1016_j_sysconle_2018_02_001 S0167691118300227 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE J1W JJJVA KOM LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K TN5 WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-a54e05bed5b85a238929918df2e79f24563ce3de423f79de0adb5e6b7e699aa3 |
IEDL.DBID | AIKHN |
ISSN | 0167-6911 |
IngestDate | Thu Apr 24 23:10:00 EDT 2025 Tue Jul 01 03:29:08 EDT 2025 Fri Feb 23 02:32:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Discrete-time stochastic systems Stochastic optimal control Convex optimization Minimum-variance control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-a54e05bed5b85a238929918df2e79f24563ce3de423f79de0adb5e6b7e699aa3 |
ORCID | 0000-0003-4104-0108 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_sysconle_2018_02_001 crossref_citationtrail_10_1016_j_sysconle_2018_02_001 elsevier_sciencedirect_doi_10_1016_j_sysconle_2018_02_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 2018-03-00 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationTitle | Systems & control letters |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Stewart, Gorinevsky, Dumont (b3) 2003; 11 Primbs, Sung (b21) 2009; 54 Goulart, Kerrigan, Maciejowski (b19) 2006; 42 Skaf, Boyd (b22) 2010; 55 Huang (b14) 2002; 12 Chatterjee, Hokayem, Lygeros (b18) 2011; 56 Bertsekas (b26) 2009 Astrom, Borisson, Ljung, Wittenmark (b1) 1977; 13 Chen, Georgiou, Pavon (b6) 2016; 61 Paulson, Buehler, Braatz, Mesbah (b24) 2017 Bertsekas (b12) 1995 M. Korda, J. Cigler, On 1-norm stochastic optimal control with bounded control inputs, in: ACC (2011), 2011, pp. 60–65. M. Agarwal, E. Cinquemani, D. Chatterjee, J. Lygeros, On convexity of stochastic optimization problems with constraints, in: ECC (2009), 2009, pp. 2827–2832. Boyd, Vandenberghe (b16) 2004 Ben-Tal, Goryashko, Guslitzer, Nemirovski (b23) 2004; 99 E. Bakolas, Optimal covariance control for discrete-time stochastic linear systems subject to constraints, in: CDC (2016), 2016, pp. 1153–1158. Silveira, Coelho (b13) 2011; 5 Duncan (b2) 2002; 149 Geerts (b11) 1989; 116 Praly, Lin, Kumar (b9) 1989; 27 . Lorenzen, Dabbene, Tempo, Allgower (b25) 2017; 62 Wonham (b29) 1968; 6 Hokayem, Cinquemani, Chatterjee, Ramponi, Lygeros (b20) 2012; 48 G. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 2.1. 2014. Francis (b10) 1979; 24 Astrom, Wittenmark (b7) 1973; 9 Li, Evans (b15) 1997; 33 Clarke, Gawthrop (b8) 1975; 122 Chen, Georgiou, Pavon (b5) 2016; 61 Skaf (10.1016/j.sysconle.2018.02.001_b22) 2010; 55 Astrom (10.1016/j.sysconle.2018.02.001_b1) 1977; 13 Primbs (10.1016/j.sysconle.2018.02.001_b21) 2009; 54 10.1016/j.sysconle.2018.02.001_b28 10.1016/j.sysconle.2018.02.001_b27 Li (10.1016/j.sysconle.2018.02.001_b15) 1997; 33 Huang (10.1016/j.sysconle.2018.02.001_b14) 2002; 12 Astrom (10.1016/j.sysconle.2018.02.001_b7) 1973; 9 Praly (10.1016/j.sysconle.2018.02.001_b9) 1989; 27 Clarke (10.1016/j.sysconle.2018.02.001_b8) 1975; 122 Goulart (10.1016/j.sysconle.2018.02.001_b19) 2006; 42 Duncan (10.1016/j.sysconle.2018.02.001_b2) 2002; 149 Ben-Tal (10.1016/j.sysconle.2018.02.001_b23) 2004; 99 Chen (10.1016/j.sysconle.2018.02.001_b5) 2016; 61 Wonham (10.1016/j.sysconle.2018.02.001_b29) 1968; 6 Silveira (10.1016/j.sysconle.2018.02.001_b13) 2011; 5 Boyd (10.1016/j.sysconle.2018.02.001_b16) 2004 Bertsekas (10.1016/j.sysconle.2018.02.001_b12) 1995 Chatterjee (10.1016/j.sysconle.2018.02.001_b18) 2011; 56 Stewart (10.1016/j.sysconle.2018.02.001_b3) 2003; 11 Lorenzen (10.1016/j.sysconle.2018.02.001_b25) 2017; 62 Hokayem (10.1016/j.sysconle.2018.02.001_b20) 2012; 48 10.1016/j.sysconle.2018.02.001_b4 10.1016/j.sysconle.2018.02.001_b17 Francis (10.1016/j.sysconle.2018.02.001_b10) 1979; 24 Geerts (10.1016/j.sysconle.2018.02.001_b11) 1989; 116 Paulson (10.1016/j.sysconle.2018.02.001_b24) 2017 Bertsekas (10.1016/j.sysconle.2018.02.001_b26) 2009 Chen (10.1016/j.sysconle.2018.02.001_b6) 2016; 61 |
References_xml | – volume: 6 start-page: 312 year: 1968 end-page: 326 ident: b29 article-title: On the separation theorem of stochastic control publication-title: SIAM J. Control – volume: 12 start-page: 707 year: 2002 end-page: 719 ident: b14 article-title: Minimum variance control and performance assessment of time-variant processes publication-title: J. Process Control – volume: 48 start-page: 77 year: 2012 end-page: 88 ident: b20 article-title: Stochastic receding horizon control with output feedback and bounded controls publication-title: Automatica – start-page: 1 year: 2017 end-page: 14 ident: b24 article-title: Stochastic model predictive control with joint chance constraints publication-title: Internat. J. Control – volume: 13 start-page: 457 year: 1977 end-page: 476 ident: b1 article-title: Theory and applications of self-tuning regulators publication-title: Automatica – volume: 62 start-page: 3165 year: 2017 end-page: 3177 ident: b25 article-title: Constraint-tightening and stability in stochastic model predictive control publication-title: IEEE Trans. Automat. Control – volume: 9 start-page: 185 year: 1973 end-page: 199 ident: b7 article-title: On self tuning regulators publication-title: Automatica – volume: 33 start-page: 1531 year: 1997 end-page: 1537 ident: b15 article-title: Minimum-variance control of linear time-varying systems publication-title: Automatica – volume: 55 start-page: 2476 year: 2010 end-page: 2487 ident: b22 article-title: Design of affine controllers via convex optimization publication-title: IEEE Trans. Automat. Control – reference: M. Agarwal, E. Cinquemani, D. Chatterjee, J. Lygeros, On convexity of stochastic optimization problems with constraints, in: ECC (2009), 2009, pp. 2827–2832. – year: 2009 ident: b26 article-title: Convex Optimization Theory – volume: 149 start-page: 412 year: 2002 end-page: 413 ident: b2 article-title: Editorial special section: cross directional control publication-title: IEE Proc. - Control Theory Appl. – volume: 5 start-page: 1709 year: 2011 end-page: 1715 ident: b13 article-title: Generalised minimum variance control state-space design publication-title: IET Control Theory Appl. – volume: 99 start-page: 351 year: 2004 end-page: 376 ident: b23 article-title: Adjustable robust solutions of uncertain linear programs publication-title: Math. Program. – year: 1995 ident: b12 article-title: Dynamic Programming and Optimal Control, Vol. I – volume: 116 start-page: 135 year: 1989 end-page: 181 ident: b11 article-title: All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimal cost publication-title: Linear Algebra Appl. – volume: 61 start-page: 1158 year: 2016 end-page: 1169 ident: b5 article-title: Optimal steering of a linear stochastic system to a final probability distribution, Part I publication-title: IEEE Trans. Automat. Control – volume: 54 start-page: 221 year: 2009 end-page: 230 ident: b21 article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise publication-title: IEEE Trans. Automat. Control – volume: 61 start-page: 1170 year: 2016 end-page: 1180 ident: b6 article-title: Optimal steering of a linear stochastic system to a final probability distribution, Part II publication-title: IEEE Trans. Automat. Control – volume: 24 start-page: 616 year: 1979 end-page: 621 ident: b10 article-title: The optimal linear-quadratic time-invariant regulator with cheap control – volume: 42 start-page: 523 year: 2006 end-page: 533 ident: b19 article-title: Optimization over state feedback policies for robust control with constraints publication-title: Automatica – volume: 27 start-page: 235 year: 1989 end-page: 266 ident: b9 article-title: A robust adaptive minimum variance controller publication-title: SIAM J. Control Optim. – reference: G. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 2.1. 2014. – reference: E. Bakolas, Optimal covariance control for discrete-time stochastic linear systems subject to constraints, in: CDC (2016), 2016, pp. 1153–1158. – volume: 11 start-page: 612 year: 2003 end-page: 628 ident: b3 article-title: Feedback controller design for a spatially distributed system: the paper machine problem publication-title: IEEE Trans. Control Syst. Technol. – year: 2004 ident: b16 article-title: Convex Optimization – reference: . – volume: 56 start-page: 2704 year: 2011 end-page: 2710 ident: b18 article-title: Stochastic receding horizon control with bounded control inputs: a vector space approach publication-title: IEEE Trans. Automat. Control – reference: M. Korda, J. Cigler, On 1-norm stochastic optimal control with bounded control inputs, in: ACC (2011), 2011, pp. 60–65. – volume: 122 start-page: 929 year: 1975 end-page: 934 ident: b8 article-title: Self-tuning controller publication-title: Proc. IEEE – volume: 54 start-page: 221 issue: 2 year: 2009 ident: 10.1016/j.sysconle.2018.02.001_b21 article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2008.2010886 – volume: 13 start-page: 457 issue: 5 year: 1977 ident: 10.1016/j.sysconle.2018.02.001_b1 article-title: Theory and applications of self-tuning regulators publication-title: Automatica doi: 10.1016/0005-1098(77)90067-X – volume: 11 start-page: 612 issue: 5 year: 2003 ident: 10.1016/j.sysconle.2018.02.001_b3 article-title: Feedback controller design for a spatially distributed system: the paper machine problem publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2003.816420 – ident: 10.1016/j.sysconle.2018.02.001_b4 doi: 10.1109/CDC.2016.7798422 – ident: 10.1016/j.sysconle.2018.02.001_b17 doi: 10.23919/ECC.2009.7074836 – volume: 12 start-page: 707 issue: 6 year: 2002 ident: 10.1016/j.sysconle.2018.02.001_b14 article-title: Minimum variance control and performance assessment of time-variant processes publication-title: J. Process Control doi: 10.1016/S0959-1524(01)00026-9 – start-page: 1 year: 2017 ident: 10.1016/j.sysconle.2018.02.001_b24 article-title: Stochastic model predictive control with joint chance constraints publication-title: Internat. J. Control doi: 10.1080/00207179.2017.1323351 – ident: 10.1016/j.sysconle.2018.02.001_b27 – volume: 42 start-page: 523 issue: 4 year: 2006 ident: 10.1016/j.sysconle.2018.02.001_b19 article-title: Optimization over state feedback policies for robust control with constraints publication-title: Automatica doi: 10.1016/j.automatica.2005.08.023 – volume: 56 start-page: 2704 issue: 11 year: 2011 ident: 10.1016/j.sysconle.2018.02.001_b18 article-title: Stochastic receding horizon control with bounded control inputs: a vector space approach publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2011.2159422 – volume: 122 start-page: 929 issue: 9 year: 1975 ident: 10.1016/j.sysconle.2018.02.001_b8 article-title: Self-tuning controller publication-title: Proc. IEEE – volume: 61 start-page: 1170 issue: 5 year: 2016 ident: 10.1016/j.sysconle.2018.02.001_b6 article-title: Optimal steering of a linear stochastic system to a final probability distribution, Part II publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2015.2457791 – volume: 48 start-page: 77 issue: 1 year: 2012 ident: 10.1016/j.sysconle.2018.02.001_b20 article-title: Stochastic receding horizon control with output feedback and bounded controls publication-title: Automatica doi: 10.1016/j.automatica.2011.09.048 – volume: 61 start-page: 1158 issue: 5 year: 2016 ident: 10.1016/j.sysconle.2018.02.001_b5 article-title: Optimal steering of a linear stochastic system to a final probability distribution, Part I publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2015.2457784 – volume: 62 start-page: 3165 issue: 7 year: 2017 ident: 10.1016/j.sysconle.2018.02.001_b25 article-title: Constraint-tightening and stability in stochastic model predictive control publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2016.2625048 – year: 2009 ident: 10.1016/j.sysconle.2018.02.001_b26 – volume: 24 start-page: 616 issue: 4 year: 1979 ident: 10.1016/j.sysconle.2018.02.001_b10 article-title: The optimal linear-quadratic time-invariant regulator with cheap control – year: 2004 ident: 10.1016/j.sysconle.2018.02.001_b16 – volume: 9 start-page: 185 issue: 2 year: 1973 ident: 10.1016/j.sysconle.2018.02.001_b7 article-title: On self tuning regulators publication-title: Automatica doi: 10.1016/0005-1098(73)90073-3 – volume: 99 start-page: 351 issue: 2 year: 2004 ident: 10.1016/j.sysconle.2018.02.001_b23 article-title: Adjustable robust solutions of uncertain linear programs publication-title: Math. Program. doi: 10.1007/s10107-003-0454-y – year: 1995 ident: 10.1016/j.sysconle.2018.02.001_b12 – ident: 10.1016/j.sysconle.2018.02.001_b28 – volume: 5 start-page: 1709 issue: 15 year: 2011 ident: 10.1016/j.sysconle.2018.02.001_b13 article-title: Generalised minimum variance control state-space design publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2011.0099 – volume: 116 start-page: 135 issue: 4 year: 1989 ident: 10.1016/j.sysconle.2018.02.001_b11 article-title: All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimal cost publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(89)90403-5 – volume: 149 start-page: 412 issue: 5 year: 2002 ident: 10.1016/j.sysconle.2018.02.001_b2 article-title: Editorial special section: cross directional control publication-title: IEE Proc. - Control Theory Appl. doi: 10.1049/ip-cta:20020751 – volume: 55 start-page: 2476 issue: 11 year: 2010 ident: 10.1016/j.sysconle.2018.02.001_b22 article-title: Design of affine controllers via convex optimization publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2010.2046053 – volume: 6 start-page: 312 issue: 2 year: 1968 ident: 10.1016/j.sysconle.2018.02.001_b29 article-title: On the separation theorem of stochastic control publication-title: SIAM J. Control doi: 10.1137/0306023 – volume: 33 start-page: 1531 issue: 8 year: 1997 ident: 10.1016/j.sysconle.2018.02.001_b15 article-title: Minimum-variance control of linear time-varying systems publication-title: Automatica doi: 10.1016/S0005-1098(97)00066-6 – volume: 27 start-page: 235 issue: 2 year: 1989 ident: 10.1016/j.sysconle.2018.02.001_b9 article-title: A robust adaptive minimum variance controller publication-title: SIAM J. Control Optim. doi: 10.1137/0327013 |
SSID | ssj0002033 |
Score | 2.2625124 |
Snippet | We propose a computational scheme for the solution of the so-called minimum variance control problem for discrete-time stochastic linear systems subject to an... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109 |
SubjectTerms | Convex optimization Discrete-time stochastic systems Minimum-variance control Stochastic optimal control |
Title | Constrained minimum variance control for discrete-time stochastic linear systems |
URI | https://dx.doi.org/10.1016/j.sysconle.2018.02.001 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEB2yXNpD6UrTJejQq-NFlm0dQ2hItxDaFHIzsiTThCQNWQq99Nur8RJSKPTQow0P7PFo9ITfvAG4CahLpcNDy02ltHwecIsrT1qu9JkjPCpU1rf21A96r_79iI0q0Cl7YVBWWdT-vKZn1bq4YxfRtBfjsf2CAvoA12pEMyO8KtQ9ygNWg3r77qHX3xZkz8knyqPFNwJ2GoUnrdXnyhw8p-iY6Ua5faf7-x61s-90D-GgIIyknT_TEVT0_Bj2d2wET2CAUzezWQ9aEfQKmW1m5MMcgvGLkkKMTgw7JdiDuzQ02cKR8sTwPvkm0KiZINkUS5L7Oq9OYdi9HXZ6VjEpwZLU9daWYL52WKIVSyJmIhwZ0sPdSKWeDnmK_zap1FRpw53SkCvtCJUwHSShDjgXgp5Bbf4-1-dAuBPpQAs0GvPNSTFN_Cg1oDRVkhlmQBvAytDEsnARxxecxqVcbBKXIY0xpLHjoW6uAfYWt8h9NP5E8DLy8Y-MiE2x_wN78Q_sJezhVa4zu4LaernR14Z4rJMmVFtfbtOkV-f5cdAs0uwb3nXcFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qPagH8Yn1uQev2ybZbJI9SrFUbYtghd6WzT7Q0tbSh-DF3-5OHlpB6MFrkoHky2b2G_LNNwhdR9SnyuMx8a1SJOQRJ1wHivgqZJ4MqNRZ31q3F7Wfw_sBG1RQs-yFAVllkfvznJ5l6-JIo0CzMX19bTyBgD6CbzWhmRHeBtoMGY1B11f__NF5BF4-Tx4MvuHylTbhYX3-MXdl5wj8Mv0kN-_0_96hVnad1h7aLegivsnvaB9VzOQA7ayYCB6iR5i5mU16MBqDU8h4OcbvrgSG94kLKTp23BRDB-7MkWQCA-WxY33qRYJNMwaqKWc4d3WeH6F-67bfbJNiTgJR1A8WRLLQeCw1mqUJc_gmjvJwP9E2MDG38GeTKkO1cczJxlwbT-qUmSiNTcS5lPQYVSdvE3OCMPcSExkJNmOhqxNtGibWBVmrFXO8gNYQK6ERqvAQhwcciVIsNhQlpAIgFV4AqrkaanzHTXMXjbURvERe_FoPwqX6NbGn_4i9QlvtfrcjOne9hzO0DWdyxdk5qi5mS3PhKMgivcyW2Bff79tL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+minimum+variance+control+for+discrete-time+stochastic+linear+systems&rft.jtitle=Systems+%26+control+letters&rft.au=Bakolas%2C+E.&rft.date=2018-03-01&rft.issn=0167-6911&rft.volume=113&rft.spage=109&rft.epage=116&rft_id=info:doi/10.1016%2Fj.sysconle.2018.02.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysconle_2018_02_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon |