Constrained minimum variance control for discrete-time stochastic linear systems

We propose a computational scheme for the solution of the so-called minimum variance control problem for discrete-time stochastic linear systems subject to an explicit constraint on the 2-norm of the input (random) sequence. In our approach, we utilize a state space framework in which the minimum va...

Full description

Saved in:
Bibliographic Details
Published inSystems & control letters Vol. 113; pp. 109 - 116
Main Author Bakolas, E.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2018
Subjects
Online AccessGet full text
ISSN0167-6911
1872-7956
DOI10.1016/j.sysconle.2018.02.001

Cover

Loading…
Abstract We propose a computational scheme for the solution of the so-called minimum variance control problem for discrete-time stochastic linear systems subject to an explicit constraint on the 2-norm of the input (random) sequence. In our approach, we utilize a state space framework in which the minimum variance control problem is interpreted as a finite-horizon stochastic optimal control problem with incomplete state information. We show that if the set of admissible control policies for the stochastic optimal control problem consists exclusively of sequences of causal (non-anticipative) control laws that can be expressed as linear combinations of all the past and present outputs of the system together with its past inputs, then the stochastic optimal control problem can be reduced to a deterministic, finite-dimensional optimization problem. Subsequently, we show that the latter optimization problem can be associated with an equivalent convex program and in particular, a quadratically constrained quadratic program (QCQP), by means of a bilinear transformation. Finally, we present numerical simulations that illustrate the key ideas of this work.
AbstractList We propose a computational scheme for the solution of the so-called minimum variance control problem for discrete-time stochastic linear systems subject to an explicit constraint on the 2-norm of the input (random) sequence. In our approach, we utilize a state space framework in which the minimum variance control problem is interpreted as a finite-horizon stochastic optimal control problem with incomplete state information. We show that if the set of admissible control policies for the stochastic optimal control problem consists exclusively of sequences of causal (non-anticipative) control laws that can be expressed as linear combinations of all the past and present outputs of the system together with its past inputs, then the stochastic optimal control problem can be reduced to a deterministic, finite-dimensional optimization problem. Subsequently, we show that the latter optimization problem can be associated with an equivalent convex program and in particular, a quadratically constrained quadratic program (QCQP), by means of a bilinear transformation. Finally, we present numerical simulations that illustrate the key ideas of this work.
Author Bakolas, E.
Author_xml – sequence: 1
  givenname: E.
  orcidid: 0000-0003-4104-0108
  surname: Bakolas
  fullname: Bakolas, E.
  email: bakolas@austin.utexas.edu
  organization: Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712-1221, USA
BookMark eNqFkMtKAzEUhoNUsK2-guQFZsylcwm4UIo3KOii-5BJzuApMxNJYqFvb0p146arsznfz_9_CzKb_ASE3HJWcsbru10ZD9H6aYBSMN6WTJSM8Qsy520jikZV9YzM82NT1IrzK7KIcccYE0zKOflY-ymmYHACR0eccPwe6d4ENJMFmlNT8APtfaAOow2QoEg4Ao3J208TE1o6ZNYEmkskGOM1uezNEOHm9y7J9vlpu34tNu8vb-vHTWElF6kw1QpY1YGrurYyQrZKKMVb1wtoVC9WVS0tSAcrIftGOWDGdRXUXQO1UsbIJalPsTb4GAP0-ivgaMJBc6aPWvRO_2nRRy2aCZ21ZPD-H2gxmYTHpQaH8_jDCYe8bY8QdLQI2ZXDADZp5_FcxA_p8Yhn
CitedBy_id crossref_primary_10_1146_annurev_control_070220_100858
crossref_primary_10_1137_23M1560902
crossref_primary_10_1109_MCS_2021_3076542
crossref_primary_10_1016_j_automatica_2021_110106
crossref_primary_10_1002_rnc_7346
crossref_primary_10_1002_cjce_24531
Cites_doi 10.1109/TAC.2008.2010886
10.1016/0005-1098(77)90067-X
10.1109/TCST.2003.816420
10.1109/CDC.2016.7798422
10.23919/ECC.2009.7074836
10.1016/S0959-1524(01)00026-9
10.1080/00207179.2017.1323351
10.1016/j.automatica.2005.08.023
10.1109/TAC.2011.2159422
10.1109/TAC.2015.2457791
10.1016/j.automatica.2011.09.048
10.1109/TAC.2015.2457784
10.1109/TAC.2016.2625048
10.1016/0005-1098(73)90073-3
10.1007/s10107-003-0454-y
10.1049/iet-cta.2011.0099
10.1016/0024-3795(89)90403-5
10.1049/ip-cta:20020751
10.1109/TAC.2010.2046053
10.1137/0306023
10.1016/S0005-1098(97)00066-6
10.1137/0327013
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sysconle.2018.02.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7956
EndPage 116
ExternalDocumentID 10_1016_j_sysconle_2018_02_001
S0167691118300227
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c312t-a54e05bed5b85a238929918df2e79f24563ce3de423f79de0adb5e6b7e699aa3
IEDL.DBID AIKHN
ISSN 0167-6911
IngestDate Thu Apr 24 23:10:00 EDT 2025
Tue Jul 01 03:29:08 EDT 2025
Fri Feb 23 02:32:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Discrete-time stochastic systems
Stochastic optimal control
Convex optimization
Minimum-variance control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-a54e05bed5b85a238929918df2e79f24563ce3de423f79de0adb5e6b7e699aa3
ORCID 0000-0003-4104-0108
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_sysconle_2018_02_001
crossref_citationtrail_10_1016_j_sysconle_2018_02_001
elsevier_sciencedirect_doi_10_1016_j_sysconle_2018_02_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationTitle Systems & control letters
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Stewart, Gorinevsky, Dumont (b3) 2003; 11
Primbs, Sung (b21) 2009; 54
Goulart, Kerrigan, Maciejowski (b19) 2006; 42
Skaf, Boyd (b22) 2010; 55
Huang (b14) 2002; 12
Chatterjee, Hokayem, Lygeros (b18) 2011; 56
Bertsekas (b26) 2009
Astrom, Borisson, Ljung, Wittenmark (b1) 1977; 13
Chen, Georgiou, Pavon (b6) 2016; 61
Paulson, Buehler, Braatz, Mesbah (b24) 2017
Bertsekas (b12) 1995
M. Korda, J. Cigler, On 1-norm stochastic optimal control with bounded control inputs, in: ACC (2011), 2011, pp. 60–65.
M. Agarwal, E. Cinquemani, D. Chatterjee, J. Lygeros, On convexity of stochastic optimization problems with constraints, in: ECC (2009), 2009, pp. 2827–2832.
Boyd, Vandenberghe (b16) 2004
Ben-Tal, Goryashko, Guslitzer, Nemirovski (b23) 2004; 99
E. Bakolas, Optimal covariance control for discrete-time stochastic linear systems subject to constraints, in: CDC (2016), 2016, pp. 1153–1158.
Silveira, Coelho (b13) 2011; 5
Duncan (b2) 2002; 149
Geerts (b11) 1989; 116
Praly, Lin, Kumar (b9) 1989; 27
.
Lorenzen, Dabbene, Tempo, Allgower (b25) 2017; 62
Wonham (b29) 1968; 6
Hokayem, Cinquemani, Chatterjee, Ramponi, Lygeros (b20) 2012; 48
G. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 2.1. 2014.
Francis (b10) 1979; 24
Astrom, Wittenmark (b7) 1973; 9
Li, Evans (b15) 1997; 33
Clarke, Gawthrop (b8) 1975; 122
Chen, Georgiou, Pavon (b5) 2016; 61
Skaf (10.1016/j.sysconle.2018.02.001_b22) 2010; 55
Astrom (10.1016/j.sysconle.2018.02.001_b1) 1977; 13
Primbs (10.1016/j.sysconle.2018.02.001_b21) 2009; 54
10.1016/j.sysconle.2018.02.001_b28
10.1016/j.sysconle.2018.02.001_b27
Li (10.1016/j.sysconle.2018.02.001_b15) 1997; 33
Huang (10.1016/j.sysconle.2018.02.001_b14) 2002; 12
Astrom (10.1016/j.sysconle.2018.02.001_b7) 1973; 9
Praly (10.1016/j.sysconle.2018.02.001_b9) 1989; 27
Clarke (10.1016/j.sysconle.2018.02.001_b8) 1975; 122
Goulart (10.1016/j.sysconle.2018.02.001_b19) 2006; 42
Duncan (10.1016/j.sysconle.2018.02.001_b2) 2002; 149
Ben-Tal (10.1016/j.sysconle.2018.02.001_b23) 2004; 99
Chen (10.1016/j.sysconle.2018.02.001_b5) 2016; 61
Wonham (10.1016/j.sysconle.2018.02.001_b29) 1968; 6
Silveira (10.1016/j.sysconle.2018.02.001_b13) 2011; 5
Boyd (10.1016/j.sysconle.2018.02.001_b16) 2004
Bertsekas (10.1016/j.sysconle.2018.02.001_b12) 1995
Chatterjee (10.1016/j.sysconle.2018.02.001_b18) 2011; 56
Stewart (10.1016/j.sysconle.2018.02.001_b3) 2003; 11
Lorenzen (10.1016/j.sysconle.2018.02.001_b25) 2017; 62
Hokayem (10.1016/j.sysconle.2018.02.001_b20) 2012; 48
10.1016/j.sysconle.2018.02.001_b4
10.1016/j.sysconle.2018.02.001_b17
Francis (10.1016/j.sysconle.2018.02.001_b10) 1979; 24
Geerts (10.1016/j.sysconle.2018.02.001_b11) 1989; 116
Paulson (10.1016/j.sysconle.2018.02.001_b24) 2017
Bertsekas (10.1016/j.sysconle.2018.02.001_b26) 2009
Chen (10.1016/j.sysconle.2018.02.001_b6) 2016; 61
References_xml – volume: 6
  start-page: 312
  year: 1968
  end-page: 326
  ident: b29
  article-title: On the separation theorem of stochastic control
  publication-title: SIAM J. Control
– volume: 12
  start-page: 707
  year: 2002
  end-page: 719
  ident: b14
  article-title: Minimum variance control and performance assessment of time-variant processes
  publication-title: J. Process Control
– volume: 48
  start-page: 77
  year: 2012
  end-page: 88
  ident: b20
  article-title: Stochastic receding horizon control with output feedback and bounded controls
  publication-title: Automatica
– start-page: 1
  year: 2017
  end-page: 14
  ident: b24
  article-title: Stochastic model predictive control with joint chance constraints
  publication-title: Internat. J. Control
– volume: 13
  start-page: 457
  year: 1977
  end-page: 476
  ident: b1
  article-title: Theory and applications of self-tuning regulators
  publication-title: Automatica
– volume: 62
  start-page: 3165
  year: 2017
  end-page: 3177
  ident: b25
  article-title: Constraint-tightening and stability in stochastic model predictive control
  publication-title: IEEE Trans. Automat. Control
– volume: 9
  start-page: 185
  year: 1973
  end-page: 199
  ident: b7
  article-title: On self tuning regulators
  publication-title: Automatica
– volume: 33
  start-page: 1531
  year: 1997
  end-page: 1537
  ident: b15
  article-title: Minimum-variance control of linear time-varying systems
  publication-title: Automatica
– volume: 55
  start-page: 2476
  year: 2010
  end-page: 2487
  ident: b22
  article-title: Design of affine controllers via convex optimization
  publication-title: IEEE Trans. Automat. Control
– reference: M. Agarwal, E. Cinquemani, D. Chatterjee, J. Lygeros, On convexity of stochastic optimization problems with constraints, in: ECC (2009), 2009, pp. 2827–2832.
– year: 2009
  ident: b26
  article-title: Convex Optimization Theory
– volume: 149
  start-page: 412
  year: 2002
  end-page: 413
  ident: b2
  article-title: Editorial special section: cross directional control
  publication-title: IEE Proc. - Control Theory Appl.
– volume: 5
  start-page: 1709
  year: 2011
  end-page: 1715
  ident: b13
  article-title: Generalised minimum variance control state-space design
  publication-title: IET Control Theory Appl.
– volume: 99
  start-page: 351
  year: 2004
  end-page: 376
  ident: b23
  article-title: Adjustable robust solutions of uncertain linear programs
  publication-title: Math. Program.
– year: 1995
  ident: b12
  article-title: Dynamic Programming and Optimal Control, Vol. I
– volume: 116
  start-page: 135
  year: 1989
  end-page: 181
  ident: b11
  article-title: All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimal cost
  publication-title: Linear Algebra Appl.
– volume: 61
  start-page: 1158
  year: 2016
  end-page: 1169
  ident: b5
  article-title: Optimal steering of a linear stochastic system to a final probability distribution, Part I
  publication-title: IEEE Trans. Automat. Control
– volume: 54
  start-page: 221
  year: 2009
  end-page: 230
  ident: b21
  article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise
  publication-title: IEEE Trans. Automat. Control
– volume: 61
  start-page: 1170
  year: 2016
  end-page: 1180
  ident: b6
  article-title: Optimal steering of a linear stochastic system to a final probability distribution, Part II
  publication-title: IEEE Trans. Automat. Control
– volume: 24
  start-page: 616
  year: 1979
  end-page: 621
  ident: b10
  article-title: The optimal linear-quadratic time-invariant regulator with cheap control
– volume: 42
  start-page: 523
  year: 2006
  end-page: 533
  ident: b19
  article-title: Optimization over state feedback policies for robust control with constraints
  publication-title: Automatica
– volume: 27
  start-page: 235
  year: 1989
  end-page: 266
  ident: b9
  article-title: A robust adaptive minimum variance controller
  publication-title: SIAM J. Control Optim.
– reference: G. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 2.1. 2014.
– reference: E. Bakolas, Optimal covariance control for discrete-time stochastic linear systems subject to constraints, in: CDC (2016), 2016, pp. 1153–1158.
– volume: 11
  start-page: 612
  year: 2003
  end-page: 628
  ident: b3
  article-title: Feedback controller design for a spatially distributed system: the paper machine problem
  publication-title: IEEE Trans. Control Syst. Technol.
– year: 2004
  ident: b16
  article-title: Convex Optimization
– reference: .
– volume: 56
  start-page: 2704
  year: 2011
  end-page: 2710
  ident: b18
  article-title: Stochastic receding horizon control with bounded control inputs: a vector space approach
  publication-title: IEEE Trans. Automat. Control
– reference: M. Korda, J. Cigler, On 1-norm stochastic optimal control with bounded control inputs, in: ACC (2011), 2011, pp. 60–65.
– volume: 122
  start-page: 929
  year: 1975
  end-page: 934
  ident: b8
  article-title: Self-tuning controller
  publication-title: Proc. IEEE
– volume: 54
  start-page: 221
  issue: 2
  year: 2009
  ident: 10.1016/j.sysconle.2018.02.001_b21
  article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2008.2010886
– volume: 13
  start-page: 457
  issue: 5
  year: 1977
  ident: 10.1016/j.sysconle.2018.02.001_b1
  article-title: Theory and applications of self-tuning regulators
  publication-title: Automatica
  doi: 10.1016/0005-1098(77)90067-X
– volume: 11
  start-page: 612
  issue: 5
  year: 2003
  ident: 10.1016/j.sysconle.2018.02.001_b3
  article-title: Feedback controller design for a spatially distributed system: the paper machine problem
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2003.816420
– ident: 10.1016/j.sysconle.2018.02.001_b4
  doi: 10.1109/CDC.2016.7798422
– ident: 10.1016/j.sysconle.2018.02.001_b17
  doi: 10.23919/ECC.2009.7074836
– volume: 12
  start-page: 707
  issue: 6
  year: 2002
  ident: 10.1016/j.sysconle.2018.02.001_b14
  article-title: Minimum variance control and performance assessment of time-variant processes
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(01)00026-9
– start-page: 1
  year: 2017
  ident: 10.1016/j.sysconle.2018.02.001_b24
  article-title: Stochastic model predictive control with joint chance constraints
  publication-title: Internat. J. Control
  doi: 10.1080/00207179.2017.1323351
– ident: 10.1016/j.sysconle.2018.02.001_b27
– volume: 42
  start-page: 523
  issue: 4
  year: 2006
  ident: 10.1016/j.sysconle.2018.02.001_b19
  article-title: Optimization over state feedback policies for robust control with constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.08.023
– volume: 56
  start-page: 2704
  issue: 11
  year: 2011
  ident: 10.1016/j.sysconle.2018.02.001_b18
  article-title: Stochastic receding horizon control with bounded control inputs: a vector space approach
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2011.2159422
– volume: 122
  start-page: 929
  issue: 9
  year: 1975
  ident: 10.1016/j.sysconle.2018.02.001_b8
  article-title: Self-tuning controller
  publication-title: Proc. IEEE
– volume: 61
  start-page: 1170
  issue: 5
  year: 2016
  ident: 10.1016/j.sysconle.2018.02.001_b6
  article-title: Optimal steering of a linear stochastic system to a final probability distribution, Part II
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2015.2457791
– volume: 48
  start-page: 77
  issue: 1
  year: 2012
  ident: 10.1016/j.sysconle.2018.02.001_b20
  article-title: Stochastic receding horizon control with output feedback and bounded controls
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.09.048
– volume: 61
  start-page: 1158
  issue: 5
  year: 2016
  ident: 10.1016/j.sysconle.2018.02.001_b5
  article-title: Optimal steering of a linear stochastic system to a final probability distribution, Part I
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2015.2457784
– volume: 62
  start-page: 3165
  issue: 7
  year: 2017
  ident: 10.1016/j.sysconle.2018.02.001_b25
  article-title: Constraint-tightening and stability in stochastic model predictive control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2016.2625048
– year: 2009
  ident: 10.1016/j.sysconle.2018.02.001_b26
– volume: 24
  start-page: 616
  issue: 4
  year: 1979
  ident: 10.1016/j.sysconle.2018.02.001_b10
  article-title: The optimal linear-quadratic time-invariant regulator with cheap control
– year: 2004
  ident: 10.1016/j.sysconle.2018.02.001_b16
– volume: 9
  start-page: 185
  issue: 2
  year: 1973
  ident: 10.1016/j.sysconle.2018.02.001_b7
  article-title: On self tuning regulators
  publication-title: Automatica
  doi: 10.1016/0005-1098(73)90073-3
– volume: 99
  start-page: 351
  issue: 2
  year: 2004
  ident: 10.1016/j.sysconle.2018.02.001_b23
  article-title: Adjustable robust solutions of uncertain linear programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0454-y
– year: 1995
  ident: 10.1016/j.sysconle.2018.02.001_b12
– ident: 10.1016/j.sysconle.2018.02.001_b28
– volume: 5
  start-page: 1709
  issue: 15
  year: 2011
  ident: 10.1016/j.sysconle.2018.02.001_b13
  article-title: Generalised minimum variance control state-space design
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2011.0099
– volume: 116
  start-page: 135
  issue: 4
  year: 1989
  ident: 10.1016/j.sysconle.2018.02.001_b11
  article-title: All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimal cost
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(89)90403-5
– volume: 149
  start-page: 412
  issue: 5
  year: 2002
  ident: 10.1016/j.sysconle.2018.02.001_b2
  article-title: Editorial special section: cross directional control
  publication-title: IEE Proc. - Control Theory Appl.
  doi: 10.1049/ip-cta:20020751
– volume: 55
  start-page: 2476
  issue: 11
  year: 2010
  ident: 10.1016/j.sysconle.2018.02.001_b22
  article-title: Design of affine controllers via convex optimization
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2010.2046053
– volume: 6
  start-page: 312
  issue: 2
  year: 1968
  ident: 10.1016/j.sysconle.2018.02.001_b29
  article-title: On the separation theorem of stochastic control
  publication-title: SIAM J. Control
  doi: 10.1137/0306023
– volume: 33
  start-page: 1531
  issue: 8
  year: 1997
  ident: 10.1016/j.sysconle.2018.02.001_b15
  article-title: Minimum-variance control of linear time-varying systems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(97)00066-6
– volume: 27
  start-page: 235
  issue: 2
  year: 1989
  ident: 10.1016/j.sysconle.2018.02.001_b9
  article-title: A robust adaptive minimum variance controller
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0327013
SSID ssj0002033
Score 2.2625124
Snippet We propose a computational scheme for the solution of the so-called minimum variance control problem for discrete-time stochastic linear systems subject to an...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Convex optimization
Discrete-time stochastic systems
Minimum-variance control
Stochastic optimal control
Title Constrained minimum variance control for discrete-time stochastic linear systems
URI https://dx.doi.org/10.1016/j.sysconle.2018.02.001
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEB2yXNpD6UrTJejQq-NFlm0dQ2hItxDaFHIzsiTThCQNWQq99Nur8RJSKPTQow0P7PFo9ITfvAG4CahLpcNDy02ltHwecIsrT1qu9JkjPCpU1rf21A96r_79iI0q0Cl7YVBWWdT-vKZn1bq4YxfRtBfjsf2CAvoA12pEMyO8KtQ9ygNWg3r77qHX3xZkz8knyqPFNwJ2GoUnrdXnyhw8p-iY6Ua5faf7-x61s-90D-GgIIyknT_TEVT0_Bj2d2wET2CAUzezWQ9aEfQKmW1m5MMcgvGLkkKMTgw7JdiDuzQ02cKR8sTwPvkm0KiZINkUS5L7Oq9OYdi9HXZ6VjEpwZLU9daWYL52WKIVSyJmIhwZ0sPdSKWeDnmK_zap1FRpw53SkCvtCJUwHSShDjgXgp5Bbf4-1-dAuBPpQAs0GvPNSTFN_Cg1oDRVkhlmQBvAytDEsnARxxecxqVcbBKXIY0xpLHjoW6uAfYWt8h9NP5E8DLy8Y-MiE2x_wN78Q_sJezhVa4zu4LaernR14Z4rJMmVFtfbtOkV-f5cdAs0uwb3nXcFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5qPagH8Yn1uQev2ybZbJI9SrFUbYtghd6WzT7Q0tbSh-DF3-5OHlpB6MFrkoHky2b2G_LNNwhdR9SnyuMx8a1SJOQRJ1wHivgqZJ4MqNRZ31q3F7Wfw_sBG1RQs-yFAVllkfvznJ5l6-JIo0CzMX19bTyBgD6CbzWhmRHeBtoMGY1B11f__NF5BF4-Tx4MvuHylTbhYX3-MXdl5wj8Mv0kN-_0_96hVnad1h7aLegivsnvaB9VzOQA7ayYCB6iR5i5mU16MBqDU8h4OcbvrgSG94kLKTp23BRDB-7MkWQCA-WxY33qRYJNMwaqKWc4d3WeH6F-67bfbJNiTgJR1A8WRLLQeCw1mqUJc_gmjvJwP9E2MDG38GeTKkO1cczJxlwbT-qUmSiNTcS5lPQYVSdvE3OCMPcSExkJNmOhqxNtGibWBVmrFXO8gNYQK6ERqvAQhwcciVIsNhQlpAIgFV4AqrkaanzHTXMXjbURvERe_FoPwqX6NbGn_4i9QlvtfrcjOne9hzO0DWdyxdk5qi5mS3PhKMgivcyW2Bff79tL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+minimum+variance+control+for+discrete-time+stochastic+linear+systems&rft.jtitle=Systems+%26+control+letters&rft.au=Bakolas%2C+E.&rft.date=2018-03-01&rft.issn=0167-6911&rft.volume=113&rft.spage=109&rft.epage=116&rft_id=info:doi/10.1016%2Fj.sysconle.2018.02.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysconle_2018_02_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon