THE ANALYSIS OF DISCRETE CHOICE EXPERIMENTS WITH CORRELATED ERROR STRUCTURE

In a stated preference discrete choice experiment each subject is typically presented with several choice sets, and each choice set contains a number of alternatives. The alternatives are defined in terms of their name (brand) and their attributes at specified levels. The task for the subject is to...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 30; no. 4; pp. 615 - 626
Main Authors Montopoli, George, Anderson, Donald A.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA Taylor & Francis Group 31.03.2001
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a stated preference discrete choice experiment each subject is typically presented with several choice sets, and each choice set contains a number of alternatives. The alternatives are defined in terms of their name (brand) and their attributes at specified levels. The task for the subject is to choose from each choice set the alternative with highest utility for them. The multinomial is an appropriate distribution for the responses to each choice set since each subject chooses one alternative, and the multinomial logit is a common model. If the responses to the several choice sets are independent, the likelihood function is simply the product of multinomials. The most common and generally preferred method of estimating the parameters of the model is maximum likelihood (that is, selecting as estimates those values that maximize the likelihood function). If the assumption of within-subject independence to successive choice tasks is violated (it is almost surely violated), the likelihood function is incorrect and maximum likelihood estimation is inappropriate. The most serious errors involve the estimation of the variance-covariance matrix of the model parameter estimates, and the corresponding variances of market shares and changes in market shares. In this paper we present an alternative method of estimation of the model parameter coefficients that incorporates a first-order within-subject covariance structure. The method involves the familiar log-odds transformation and application of the multivariate delta method. Estimation of the model coefficients after the transformation is a straightforward generalized least squares regression, and the corresponding improved estimate of the variance-covariance matrix is in closed form. Estimates of market share (and change in market share) follow from a second application of the multivariate delta method. The method and comparison with maximum likelihood estimation are illustrated with several simulated and actual data examples. Advantages of the proposed method are: 1) it incorporates the within-subject covariance structure; 2) it is completely data driven; 3) it requires no additional model assumptions; 4) assuming asymptotic normality, it provides a simple procedure for computing confidence regions on market shares and changes in market shares; and 5) it produces results that are asymptotically equivalent to those produced by maximum likelihood when the data are independent.
AbstractList In a stated preference discrete choice experiment each subject is typically presented with several choice sets, and each choice set contains a number of alternatives. The alternatives are defined in terms of their name (brand) and their attributes at specified levels. The task for the subject is to choose from each choice set the alternative with highest utility for them. The multinomial is an appropriate distribution for the responses to each choice set since each subject chooses one alternative, and the multinomial logit is a common model. If the responses to the several choice sets are independent, the likelihood function is simply the product of multinomials. The most common and generally preferred method of estimating the parameters of the model is maximum likelihood (that is, selecting as estimates those values that maximize the likelihood function). If the assumption of within-subject independence to successive choice tasks is violated (it is almost surely violated), the likelihood function is incorrect and maximum likelihood estimation is inappropriate. The most serious errors involve the estimation of the variance-covariance matrix of the model parameter estimates, and the corresponding variances of market shares and changes in market shares. In this paper we present an alternative method of estimation of the model parameter coefficients that incorporates a first-order within-subject covariance structure. The method involves the familiar log-odds transformation and application of the multivariate delta method. Estimation of the model coefficients after the transformation is a straightforward generalized least squares regression, and the corresponding improved estimate of the variance-covariance matrix is in closed form. Estimates of market share (and change in market share) follow from a second application of the multivariate delta method. The method and comparison with maximum likelihood estimation are illustrated with several simulated and actual data examples. Advantages of the proposed method are: 1) it incorporates the within-subject covariance structure; 2) it is completely data driven; 3) it requires no additional model assumptions; 4) assuming asymptotic normality, it provides a simple procedure for computing confidence regions on market shares and changes in market shares; and 5) it produces results that are asymptotically equivalent to those produced by maximum likelihood when the data are independent.
Author Anderson, Donald A.
Montopoli, George
Author_xml – sequence: 1
  givenname: George
  surname: Montopoli
  fullname: Montopoli, George
  organization: Department of Mathematics , Arizona Western College
– sequence: 2
  givenname: Donald A.
  surname: Anderson
  fullname: Anderson, Donald A.
  organization: StatDesign
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=996581$$DView record in Pascal Francis
BookMark eNp1kEFPgzAUgBszE-f06L2JZ7SlFNojYZ0QcZjSxXkitUCCYbAUErN_L2a6g9F3eZfve3n5LsGs67sKgBuM7jBi-D5XoYPRNC720BmYY0pcx8N0OwNzRHzsIO76F-ByGN4RwjRgZA4eVSxguA7T1zzJYbaCyySPpFACRnGWRAKK7bOQyZNYqxy-JCqGUSalSEMlllBImUmYK7mJ1EaKK3Be63aorr_3AmxWQkWxk2YPSRSmjiHYHR1uCKsYI57hAeLIJZpWtORuEFSVYS7WgefXuESIUBP4b0HJJqCmRJcl1yX3yQLcHu_u9WB0W1vdmWYo9rbZaXsoOPcpwxPlHClj-2GwVX0CMCq-ehVTr-LUa-LJL940ox6bvhutbtp_LXa0mq7u7U5_9LYti1Ef2t7-PEb-Vj8B_S165A
CODEN CSTMDC
CitedBy_id crossref_primary_10_1111_j_1745_4573_2009_00178_x
crossref_primary_10_2193_0022_541X_2006_70_375_DMIWSE_2_0_CO_2
Cites_doi 10.2307/3172669
10.1002/9780470316641
10.1093/biomet/36.1-2.47
10.2307/3151440
10.1007/BF02404072
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2001
2001 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2001
– notice: 2001 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1081/STA-100002140
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 626
ExternalDocumentID 996581
10_1081_STA_100002140
10352026
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHMOU
AI.
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
NA5
NHB
NY~
O9-
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
TWZ
UPT
UT5
UU3
VH1
WH7
XOL
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
07G
1TA
8VB
AAIKQ
AAKBW
ACGEE
AEUMN
AGCQS
AGLEN
AMXXU
BCCOT
BPLKW
C06
DWIFK
HF~
IQODW
IVXBP
LJTGL
NUSFT
QWB
TAQ
TASJS
TFMCV
UB9
UU8
V3K
V4Q
VOH
ZL0
ID FETCH-LOGICAL-c312t-9c38e8834c9709023a5e5d9277eec821a746f1d0035c76b7d8a5ef53add9ad963
ISSN 0361-0926
IngestDate Mon Jul 21 09:14:45 EDT 2025
Thu Apr 24 22:59:58 EDT 2025
Tue Jul 01 04:07:56 EDT 2025
Wed Dec 25 09:06:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Parameter estimation
Mathematical matrix
Error analysis
Choice
Error estimation
Confidence limit
Non parametric estimation
Tolerance limit
Computing
Utilities
Consumer
Least squares method
Example
Independent set
Multinomial distribution
Logit model
Likelihood function
Estimation error
Covariance analysis
Independence
Statistical estimation
Covariance matrix
Variance analysis
Confidence interval
Statistical regression
Simulation
Utility theory
Correlation analysis
Asymptotic normality
Independence test
Alternative method
Maximum likelihood
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-9c38e8834c9709023a5e5d9277eec821a746f1d0035c76b7d8a5ef53add9ad963
PageCount 12
ParticipantIDs pascalfrancis_primary_996581
crossref_primary_10_1081_STA_100002140
crossref_citationtrail_10_1081_STA_100002140
informaworld_taylorfrancis_310_1081_STA_100002140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 3/31/2001
PublicationDateYYYYMMDD 2001-03-31
PublicationDate_xml – month: 03
  year: 2001
  text: 3/31/2001
  day: 31
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2001
Publisher Taylor & Francis Group
Taylor & Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
References Koch G. K. (cit2140-9) 1974
Bishop Y. M.M. (cit2140-10) 1975
Anderson D. A. (cit2140-12) 1990
Hensher D. A. (cit2140-1) 1981
cit2140-3
Batsell R. R. (cit2140-5) 1991; 23
Seber G. A.F. (cit2140-11) 1977
Montopoli G. (cit2140-14) 1992
cit2140-6
cit2140-7
cit2140-4
Anderson D. A. (cit2140-13) 1991
Wishart J. (cit2140-8) 1949; 36
Ben-Akiva M. (cit2140-2) 1989
References_xml – volume-title: Applied discrete-choice modelling
  year: 1981
  ident: cit2140-1
– ident: cit2140-6
– ident: cit2140-4
  doi: 10.2307/3172669
– volume-title: Factors affecting user choice of national forest recreation sites
  year: 1990
  ident: cit2140-12
– volume-title: Discrete multivariate analysis: theory and practice
  year: 1975
  ident: cit2140-10
– volume-title: The analysis of discrete choice set experiments with correlated error structure and other related logistic topics
  year: 1992
  ident: cit2140-14
– volume-title: Discrete choice analysis: theory and application to travel demand
  year: 1989
  ident: cit2140-2
– ident: cit2140-7
  doi: 10.1002/9780470316641
– volume-title: Marketing Letters
  year: 1991
  ident: cit2140-13
– volume-title: A general methodology for the analysis of experiments with repeated measurement of categorical data
  year: 1974
  ident: cit2140-9
– volume-title: Linear regression analysis
  year: 1977
  ident: cit2140-11
– volume: 36
  start-page: 47
  year: 1949
  ident: cit2140-8
  publication-title: Biometrika
  doi: 10.1093/biomet/36.1-2.47
– ident: cit2140-3
  doi: 10.2307/3151440
– volume: 23
  start-page: 199
  year: 1991
  ident: cit2140-5
  publication-title: Marketing Letters
  doi: 10.1007/BF02404072
SSID ssj0015783
Score 1.5478431
Snippet In a stated preference discrete choice experiment each subject is typically presented with several choice sets, and each choice set contains a number of...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 615
SubjectTerms Consumer choice experiments
Exact sciences and technology
Log-odds analysis
Logistic regression
Mathematics
Multinomial logit model
Nonparametric inference
Parametric inference
Probability and statistics
Sciences and techniques of general use
Statistics
Title THE ANALYSIS OF DISCRETE CHOICE EXPERIMENTS WITH CORRELATED ERROR STRUCTURE
URI https://www.tandfonline.com/doi/abs/10.1081/STA-100002140
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuIzDBAPExkA-IC4hBcdJmhyjkCkF2qI0lcopip1YQkIFsezCX8_zR5wENmlwiSrLjtW85-f3-XsIvQpiHkWUhS6PROT6nFCXUQZWa9BwFvu8Zlz6IVfrMN_5H_bBfjYTo6yl647N-a8b60r-h6owBnSVVbL_QFn7UhiA30BfeAKF4Xk3GueZk6yTT1-2S9WC_P1ymxZZmTlpvlmmmZPtP4OdJuH6t2Cpl7l0S8keGSCtnKwoNgUohMUulZkPYyV1UjSi8mVl2ZFGdJ6ban4VdNDtp61WvpJYCLLrw-BsH7wMjVLttc4u3dFOMp94HEhfgieGSisYiz0DYd0LTs8FZWA_lqwm4vJ17DZQYjLUJZzmxg31m_4S5qCtyHBymbgqCOERDew0Bc3-4zKzKYYquB6RCpZXdvk9dN8Dc0J2uqDv1jbaBFJLt9E2_8tgscLyt5PdJ7rLBNlWptTWV3CqhG6HMtJRyofoxBgXONGc8gjN2sMperCyyLxXp-h4a0n5GH0EBsI9A-HNJe4ZCGsGwiMGwpKB8MBAWDEQtgz0BO0uszLNXdNdw-WUeJ0bcxq1cE59Hi9kci6tgzZoYvg-bcsjj9QLPxSkkaFmvgjZoolggggoXIhx3YDcfoqODt8P7TOEfdqKsG1oI_zApyKIGNgdPoF7lIH6GYoz9Kb_bhU30POyA8q36kYqnaHXdvoPjbly20QyJkLVKSeXIUFFb1lzMaGU3SGWMEjk_K57P0fHw9m4QEfdz-v2BeinHXupmOs3Wnh_oA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOVAOPAqopQV8QJxIwfEj9nEVskroPlCSFYs4RLFjX4oWxKYXfn3tJBt1Qb30bseOZ2zPjD99H8A7JrUQRPFACysCqjEJFFEua2WNVpLqWmlfh5wveLqiX9ZsPaAqtwOs0ufQtieK6M5qv7l9MXqAxOGPRTkJurp06NKD-_CASR559QLyaTG-IDhP7KWRuRtYhnzg1_yv-959tMdW6mGS9datlO0lLm7cO9Mn8GM34x5ucnl-1apz_fcfMse7_dJTeDyEo2jS-88zuGc2R_BoPnK5bo_g0MejPZ3zc7go0wRNFpPZ9yIr0HKKPmdFnCdlguJ0mcUJStZfXWroFQIK9C0rUxQvcy_L4Q5IlOT5MkdFma9iD7Z4AatpUsZpMOgxBJrgsA2kJsI4y1ItIw_nJDUzrJFhFBmjRYjriHKLG_84qSOuoka4BpYRd4TKunE7_SUcbH5tzDEgSozlpiGNpYwSy4RykSp1uSNWLmDh9gQ-7KxS6YGs3Gtm_Ky6R3OBK7dg1bhgJ_B-bP67Z-m4rSG-aeKq7coig4Erckufsz0_GEeQnjgHv7rDJ9_Cw7Scz6pZtrg4hcMdro3gMzho_1yZ1y7QadWbzqOvAT997qc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB21VKrgUL6K-K4PqCdCcew4znEVskoK7KIkq257iWLHvoAWBOHSX4-dZKNdEBfudpx4xvaM5-U9gBMvkJwTwRzJNXeoxMQRRJis1aukCKgshbT3kNcjFk_o76k3XZD6srBKm0Prliii2avt4n6odIeIw7-yfOA019KuyQ4-wxdmScPt3xvno76AYByxVUZmZtzAZR295pvuS8fRElmpRUmWT2aidKtwsXDsDNfh3_yFW7TJ7dlzLc7k_1dcjh_6og341gWjaNB6zyZ8UrMtWLvumVyftmDVRqMtmfM2XOZxhAajwdXfLMnQeIgukixMozxCYTxOwghF0xuTGFp9gAz9SfIYhePUinKY7RFFaTpOUZank9BCLb7DZBjlYex0agyOJNitnUASroxdqQx8C-Ykpae8KnB9XynJXVz6lGlc2dKk9JnwK24aaI-YDTQoK7POd2Bldj9Tu4AoUZqpilSaepRojwsTp1KTOWJhwhWm9-B0bpRCdlTlVjHjrmhK5hwXZsKKfsL24Gff_KHl6HivIV60cFE3lyKdfQvyTp_DJTfoRwgsbQ7e_8Ajf8DXm4thcZWMLg9gdQ5qI_gQVurHZ3VkopxaHDf-_AJNru1L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THE+ANALYSIS+OF+DISCRETE+CHOICE+EXPERIMENTS+WITH+CORRELATED+ERROR+STRUCTURE&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Montopoli%2C+George&rft.au=Anderson%2C+Donald+A.&rft.date=2001-03-31&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=30&rft.issue=4&rft.spage=615&rft.epage=626&rft_id=info:doi/10.1081%2FSTA-100002140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1081_STA_100002140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon