THE ANALYSIS OF DISCRETE CHOICE EXPERIMENTS WITH CORRELATED ERROR STRUCTURE
In a stated preference discrete choice experiment each subject is typically presented with several choice sets, and each choice set contains a number of alternatives. The alternatives are defined in terms of their name (brand) and their attributes at specified levels. The task for the subject is to...
Saved in:
Published in | Communications in statistics. Theory and methods Vol. 30; no. 4; pp. 615 - 626 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
Taylor & Francis Group
31.03.2001
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In a stated preference discrete choice experiment each subject is typically presented with several choice sets, and each choice set contains a number of alternatives. The alternatives are defined in terms of their name (brand) and their attributes at specified levels. The task for the subject is to choose from each choice set the alternative with highest utility for them. The multinomial is an appropriate distribution for the responses to each choice set since each subject chooses one alternative, and the multinomial logit is a common model. If the responses to the several choice sets are independent, the likelihood function is simply the product of multinomials. The most common and generally preferred method of estimating the parameters of the model is maximum likelihood (that is, selecting as estimates those values that maximize the likelihood function). If the assumption of within-subject independence to successive choice tasks is violated (it is almost surely violated), the likelihood function is incorrect and maximum likelihood estimation is inappropriate. The most serious errors involve the estimation of the variance-covariance matrix of the model parameter estimates, and the corresponding variances of market shares and changes in market shares.
In this paper we present an alternative method of estimation of the model parameter coefficients that incorporates a first-order within-subject covariance structure. The method involves the familiar log-odds transformation and application of the multivariate delta method. Estimation of the model coefficients after the transformation is a straightforward generalized least squares regression, and the corresponding improved estimate of the variance-covariance matrix is in closed form. Estimates of market share (and change in market share) follow from a second application of the multivariate delta method. The method and comparison with maximum likelihood estimation are illustrated with several simulated and actual data examples.
Advantages of the proposed method are: 1) it incorporates the within-subject covariance structure; 2) it is completely data driven; 3) it requires no additional model assumptions; 4) assuming asymptotic normality, it provides a simple procedure for computing confidence regions on market shares and changes in market shares; and 5) it produces results that are asymptotically equivalent to those produced by maximum likelihood when the data are independent. |
---|---|
AbstractList | In a stated preference discrete choice experiment each subject is typically presented with several choice sets, and each choice set contains a number of alternatives. The alternatives are defined in terms of their name (brand) and their attributes at specified levels. The task for the subject is to choose from each choice set the alternative with highest utility for them. The multinomial is an appropriate distribution for the responses to each choice set since each subject chooses one alternative, and the multinomial logit is a common model. If the responses to the several choice sets are independent, the likelihood function is simply the product of multinomials. The most common and generally preferred method of estimating the parameters of the model is maximum likelihood (that is, selecting as estimates those values that maximize the likelihood function). If the assumption of within-subject independence to successive choice tasks is violated (it is almost surely violated), the likelihood function is incorrect and maximum likelihood estimation is inappropriate. The most serious errors involve the estimation of the variance-covariance matrix of the model parameter estimates, and the corresponding variances of market shares and changes in market shares.
In this paper we present an alternative method of estimation of the model parameter coefficients that incorporates a first-order within-subject covariance structure. The method involves the familiar log-odds transformation and application of the multivariate delta method. Estimation of the model coefficients after the transformation is a straightforward generalized least squares regression, and the corresponding improved estimate of the variance-covariance matrix is in closed form. Estimates of market share (and change in market share) follow from a second application of the multivariate delta method. The method and comparison with maximum likelihood estimation are illustrated with several simulated and actual data examples.
Advantages of the proposed method are: 1) it incorporates the within-subject covariance structure; 2) it is completely data driven; 3) it requires no additional model assumptions; 4) assuming asymptotic normality, it provides a simple procedure for computing confidence regions on market shares and changes in market shares; and 5) it produces results that are asymptotically equivalent to those produced by maximum likelihood when the data are independent. |
Author | Anderson, Donald A. Montopoli, George |
Author_xml | – sequence: 1 givenname: George surname: Montopoli fullname: Montopoli, George organization: Department of Mathematics , Arizona Western College – sequence: 2 givenname: Donald A. surname: Anderson fullname: Anderson, Donald A. organization: StatDesign |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=996581$$DView record in Pascal Francis |
BookMark | eNp1kEFPgzAUgBszE-f06L2JZ7SlFNojYZ0QcZjSxXkitUCCYbAUErN_L2a6g9F3eZfve3n5LsGs67sKgBuM7jBi-D5XoYPRNC720BmYY0pcx8N0OwNzRHzsIO76F-ByGN4RwjRgZA4eVSxguA7T1zzJYbaCyySPpFACRnGWRAKK7bOQyZNYqxy-JCqGUSalSEMlllBImUmYK7mJ1EaKK3Be63aorr_3AmxWQkWxk2YPSRSmjiHYHR1uCKsYI57hAeLIJZpWtORuEFSVYS7WgefXuESIUBP4b0HJJqCmRJcl1yX3yQLcHu_u9WB0W1vdmWYo9rbZaXsoOPcpwxPlHClj-2GwVX0CMCq-ehVTr-LUa-LJL940ox6bvhutbtp_LXa0mq7u7U5_9LYti1Ef2t7-PEb-Vj8B_S165A |
CODEN | CSTMDC |
CitedBy_id | crossref_primary_10_1111_j_1745_4573_2009_00178_x crossref_primary_10_2193_0022_541X_2006_70_375_DMIWSE_2_0_CO_2 |
Cites_doi | 10.2307/3172669 10.1002/9780470316641 10.1093/biomet/36.1-2.47 10.2307/3151440 10.1007/BF02404072 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2001 2001 INIST-CNRS |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2001 – notice: 2001 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1081/STA-100002140 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1532-415X |
EndPage | 626 |
ExternalDocumentID | 996581 10_1081_STA_100002140 10352026 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AGROQ AHMOU AI. AIJEM AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW EBS EJD E~A E~B F5P GTTXZ H13 HZ~ H~P IPNFZ J.P K1G KYCEM M4Z NA5 NHB NY~ O9- QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF TWZ UPT UT5 UU3 VH1 WH7 XOL ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 07G 1TA 8VB AAIKQ AAKBW ACGEE AEUMN AGCQS AGLEN AMXXU BCCOT BPLKW C06 DWIFK HF~ IQODW IVXBP LJTGL NUSFT QWB TAQ TASJS TFMCV UB9 UU8 V3K V4Q VOH ZL0 |
ID | FETCH-LOGICAL-c312t-9c38e8834c9709023a5e5d9277eec821a746f1d0035c76b7d8a5ef53add9ad963 |
ISSN | 0361-0926 |
IngestDate | Mon Jul 21 09:14:45 EDT 2025 Thu Apr 24 22:59:58 EDT 2025 Tue Jul 01 04:07:56 EDT 2025 Wed Dec 25 09:06:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Parameter estimation Mathematical matrix Error analysis Choice Error estimation Confidence limit Non parametric estimation Tolerance limit Computing Utilities Consumer Least squares method Example Independent set Multinomial distribution Logit model Likelihood function Estimation error Covariance analysis Independence Statistical estimation Covariance matrix Variance analysis Confidence interval Statistical regression Simulation Utility theory Correlation analysis Asymptotic normality Independence test Alternative method Maximum likelihood |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-9c38e8834c9709023a5e5d9277eec821a746f1d0035c76b7d8a5ef53add9ad963 |
PageCount | 12 |
ParticipantIDs | pascalfrancis_primary_996581 crossref_primary_10_1081_STA_100002140 crossref_citationtrail_10_1081_STA_100002140 informaworld_taylorfrancis_310_1081_STA_100002140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 3/31/2001 |
PublicationDateYYYYMMDD | 2001-03-31 |
PublicationDate_xml | – month: 03 year: 2001 text: 3/31/2001 day: 31 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA |
PublicationTitle | Communications in statistics. Theory and methods |
PublicationYear | 2001 |
Publisher | Taylor & Francis Group Taylor & Francis |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis |
References | Koch G. K. (cit2140-9) 1974 Bishop Y. M.M. (cit2140-10) 1975 Anderson D. A. (cit2140-12) 1990 Hensher D. A. (cit2140-1) 1981 cit2140-3 Batsell R. R. (cit2140-5) 1991; 23 Seber G. A.F. (cit2140-11) 1977 Montopoli G. (cit2140-14) 1992 cit2140-6 cit2140-7 cit2140-4 Anderson D. A. (cit2140-13) 1991 Wishart J. (cit2140-8) 1949; 36 Ben-Akiva M. (cit2140-2) 1989 |
References_xml | – volume-title: Applied discrete-choice modelling year: 1981 ident: cit2140-1 – ident: cit2140-6 – ident: cit2140-4 doi: 10.2307/3172669 – volume-title: Factors affecting user choice of national forest recreation sites year: 1990 ident: cit2140-12 – volume-title: Discrete multivariate analysis: theory and practice year: 1975 ident: cit2140-10 – volume-title: The analysis of discrete choice set experiments with correlated error structure and other related logistic topics year: 1992 ident: cit2140-14 – volume-title: Discrete choice analysis: theory and application to travel demand year: 1989 ident: cit2140-2 – ident: cit2140-7 doi: 10.1002/9780470316641 – volume-title: Marketing Letters year: 1991 ident: cit2140-13 – volume-title: A general methodology for the analysis of experiments with repeated measurement of categorical data year: 1974 ident: cit2140-9 – volume-title: Linear regression analysis year: 1977 ident: cit2140-11 – volume: 36 start-page: 47 year: 1949 ident: cit2140-8 publication-title: Biometrika doi: 10.1093/biomet/36.1-2.47 – ident: cit2140-3 doi: 10.2307/3151440 – volume: 23 start-page: 199 year: 1991 ident: cit2140-5 publication-title: Marketing Letters doi: 10.1007/BF02404072 |
SSID | ssj0015783 |
Score | 1.5478431 |
Snippet | In a stated preference discrete choice experiment each subject is typically presented with several choice sets, and each choice set contains a number of... |
SourceID | pascalfrancis crossref informaworld |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 615 |
SubjectTerms | Consumer choice experiments Exact sciences and technology Log-odds analysis Logistic regression Mathematics Multinomial logit model Nonparametric inference Parametric inference Probability and statistics Sciences and techniques of general use Statistics |
Title | THE ANALYSIS OF DISCRETE CHOICE EXPERIMENTS WITH CORRELATED ERROR STRUCTURE |
URI | https://www.tandfonline.com/doi/abs/10.1081/STA-100002140 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuIzDBAPExkA-IC4hBcdJmhyjkCkF2qI0lcopip1YQkIFsezCX8_zR5wENmlwiSrLjtW85-f3-XsIvQpiHkWUhS6PROT6nFCXUQZWa9BwFvu8Zlz6IVfrMN_5H_bBfjYTo6yl647N-a8b60r-h6owBnSVVbL_QFn7UhiA30BfeAKF4Xk3GueZk6yTT1-2S9WC_P1ymxZZmTlpvlmmmZPtP4OdJuH6t2Cpl7l0S8keGSCtnKwoNgUohMUulZkPYyV1UjSi8mVl2ZFGdJ6ban4VdNDtp61WvpJYCLLrw-BsH7wMjVLttc4u3dFOMp94HEhfgieGSisYiz0DYd0LTs8FZWA_lqwm4vJ17DZQYjLUJZzmxg31m_4S5qCtyHBymbgqCOERDew0Bc3-4zKzKYYquB6RCpZXdvk9dN8Dc0J2uqDv1jbaBFJLt9E2_8tgscLyt5PdJ7rLBNlWptTWV3CqhG6HMtJRyofoxBgXONGc8gjN2sMperCyyLxXp-h4a0n5GH0EBsI9A-HNJe4ZCGsGwiMGwpKB8MBAWDEQtgz0BO0uszLNXdNdw-WUeJ0bcxq1cE59Hi9kci6tgzZoYvg-bcsjj9QLPxSkkaFmvgjZoolggggoXIhx3YDcfoqODt8P7TOEfdqKsG1oI_zApyKIGNgdPoF7lIH6GYoz9Kb_bhU30POyA8q36kYqnaHXdvoPjbly20QyJkLVKSeXIUFFb1lzMaGU3SGWMEjk_K57P0fHw9m4QEfdz-v2BeinHXupmOs3Wnh_oA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOVAOPAqopQV8QJxIwfEj9nEVskroPlCSFYs4RLFjX4oWxKYXfn3tJBt1Qb30bseOZ2zPjD99H8A7JrUQRPFACysCqjEJFFEua2WNVpLqWmlfh5wveLqiX9ZsPaAqtwOs0ufQtieK6M5qv7l9MXqAxOGPRTkJurp06NKD-_CASR559QLyaTG-IDhP7KWRuRtYhnzg1_yv-959tMdW6mGS9datlO0lLm7cO9Mn8GM34x5ucnl-1apz_fcfMse7_dJTeDyEo2jS-88zuGc2R_BoPnK5bo_g0MejPZ3zc7go0wRNFpPZ9yIr0HKKPmdFnCdlguJ0mcUJStZfXWroFQIK9C0rUxQvcy_L4Q5IlOT5MkdFma9iD7Z4AatpUsZpMOgxBJrgsA2kJsI4y1ItIw_nJDUzrJFhFBmjRYjriHKLG_84qSOuoka4BpYRd4TKunE7_SUcbH5tzDEgSozlpiGNpYwSy4RykSp1uSNWLmDh9gQ-7KxS6YGs3Gtm_Ky6R3OBK7dg1bhgJ_B-bP67Z-m4rSG-aeKq7coig4Erckufsz0_GEeQnjgHv7rDJ9_Cw7Scz6pZtrg4hcMdro3gMzho_1yZ1y7QadWbzqOvAT997qc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB21VKrgUL6K-K4PqCdCcew4znEVskoK7KIkq257iWLHvoAWBOHSX4-dZKNdEBfudpx4xvaM5-U9gBMvkJwTwRzJNXeoxMQRRJis1aukCKgshbT3kNcjFk_o76k3XZD6srBKm0Prliii2avt4n6odIeIw7-yfOA019KuyQ4-wxdmScPt3xvno76AYByxVUZmZtzAZR295pvuS8fRElmpRUmWT2aidKtwsXDsDNfh3_yFW7TJ7dlzLc7k_1dcjh_6og341gWjaNB6zyZ8UrMtWLvumVyftmDVRqMtmfM2XOZxhAajwdXfLMnQeIgukixMozxCYTxOwghF0xuTGFp9gAz9SfIYhePUinKY7RFFaTpOUZank9BCLb7DZBjlYex0agyOJNitnUASroxdqQx8C-Ykpae8KnB9XynJXVz6lGlc2dKk9JnwK24aaI-YDTQoK7POd2Bldj9Tu4AoUZqpilSaepRojwsTp1KTOWJhwhWm9-B0bpRCdlTlVjHjrmhK5hwXZsKKfsL24Gff_KHl6HivIV60cFE3lyKdfQvyTp_DJTfoRwgsbQ7e_8Ajf8DXm4thcZWMLg9gdQ5qI_gQVurHZ3VkopxaHDf-_AJNru1L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THE+ANALYSIS+OF+DISCRETE+CHOICE+EXPERIMENTS+WITH+CORRELATED+ERROR+STRUCTURE&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Montopoli%2C+George&rft.au=Anderson%2C+Donald+A.&rft.date=2001-03-31&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=30&rft.issue=4&rft.spage=615&rft.epage=626&rft_id=info:doi/10.1081%2FSTA-100002140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1081_STA_100002140 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon |