Numerical simulation of the performance of the a-Si:H/a-SiGe:H/a-SiGe:H tandem solar cell
The computer program AMPS-1D(analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell at the radiation of AM1.5G(100 mW/cm2/ and room temperature. Firstly, three sub-cells with band gaps of 1.8, 1.6...
Saved in:
Published in | Journal of semiconductors Vol. 35; no. 3; pp. 91 - 96 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The computer program AMPS-1D(analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell at the radiation of AM1.5G(100 mW/cm2/ and room temperature. Firstly, three sub-cells with band gaps of 1.8, 1.6 and 1.4 eV are simulated, respectively. The simulation results indicate that the density of defect states is an important factor, which affects the open circuit voltage and the filling factor of the solar cell. The two-step current matching method and the control variate method are employed in the simulation. The results show that the best solar cell performance would be achieved when the intrinsic layer thickness from top to bottom is set to be 70, 180 and 220 nm, respectively. We also optimize the tunnel-junction structure of the solar cell reasonably, the simulation results show that the open circuit voltage, filling factor and conversion efficiency are all improved and the S-shape current density–voltage curve disappears during optimizing the tunnel-junction structure. Besides, the diagram of the energy band and the carrier recombination rate are also analyzed. Finally, our simulation data are compared to the experimental data published in other literature. It is demonstrated that the numerical results agree with the experimental ones very well. |
---|---|
AbstractList | The computer program AMPS-1D(analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell at the radiation of AM1.5G(100 mW/cm2/ and room temperature. Firstly, three sub-cells with band gaps of 1.8, 1.6 and 1.4 eV are simulated, respectively. The simulation results indicate that the density of defect states is an important factor, which affects the open circuit voltage and the filling factor of the solar cell. The two-step current matching method and the control variate method are employed in the simulation. The results show that the best solar cell performance would be achieved when the intrinsic layer thickness from top to bottom is set to be 70, 180 and 220 nm, respectively. We also optimize the tunnel-junction structure of the solar cell reasonably, the simulation results show that the open circuit voltage, filling factor and conversion efficiency are all improved and the S-shape current density–voltage curve disappears during optimizing the tunnel-junction structure. Besides, the diagram of the energy band and the carrier recombination rate are also analyzed. Finally, our simulation data are compared to the experimental data published in other literature. It is demonstrated that the numerical results agree with the experimental ones very well. The computer program AMPS-1D (analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell at the radiation of AM1.5G (100 mW/cm super(2)) and room temperature. Firstly, three sub-cells with band gaps of 1.8, 1.6 and 1.4 eV are simulated, respectively. The simulation results indicate that the density of defect states is an important factor, which affects the open circuit voltage and the filling factor of the solar cell. The two-step current matching method and the control variate method are employed in the simulation. The results show that the best solar cell performance would be achieved when the intrinsic layer thickness from top to bottom is set to be 70, 180 and 220 nm, respectively. We also optimize the tunnel-junction structure of the solar cell reasonably, the simulation results show that the open circuit voltage, filling factor and conversion efficiency are all improved and the S-shape current density-voltage curve disappears during optimizing the tunnel-junction structure. Besides, the diagram of the energy band and the carrier recombination rate are also analyzed. Finally, our simulation data are compared to the experimental data published in other literature. It is demonstrated that the numerical results agree with the experimental ones very well. |
Author | 柯少颖 王茺 潘涛 杨杰 杨宇 |
AuthorAffiliation | Institute of Optoelectronic Information Materials, Yunnan University, Kunming 650091, China |
Author_xml | – sequence: 1 fullname: 柯少颖 王茺 潘涛 杨杰 杨宇 |
BookMark | eNqFkE1OwzAQhb0oEm3hCEhhxybE9jh_YoUqaJEqWABry3Hs1iixWztZcBXOwp24Ag0tLLphNW9G8z3NvAkaWWcVQhcEXxNcFAnJchazkmYJpAkkGBgmMELjv_kpmoTwhvGuZ2SM-GPfKm-kaKJg2r4RnXE2cjrq1iraKK-db4WV6nck4mfz9fmxSAYxV0cy6oStVRsF1wgfSdU0Z-hEiyao80Odotf7u5fZIl4-zR9mt8tYAqFdXFaVrsqiqmugkGKCc11rSkTNCMOQqUwJSammtagEo2ktBAaNJa4lTnFWFDBFV3vfjXfbXoWOtyYMBwirXB84yWFwLXPYrd7sV6V3IXiluTTdz9-dF6bhBPMhSj5ExofIOKQc-D7KHZ0e0RtvWuHf_-UuD9za2dXW2NUfyEoCLE8xfAPz6YmW |
CitedBy_id | crossref_primary_10_1007_s11082_021_03259_2 crossref_primary_10_1007_s11664_019_07898_w crossref_primary_10_1007_s42341_019_00136_4 crossref_primary_10_1007_s12596_023_01435_z crossref_primary_10_1109_JPHOTOV_2017_2766522 crossref_primary_10_1016_j_ijleo_2022_169736 crossref_primary_10_1364_OE_26_00A626 crossref_primary_10_1142_S2047684117500178 |
Cites_doi | 10.1149/2.020202esl 10.1063/1.118761 10.1016/S0927-0248(02)00096-X 10.1016/j.solmat.2012.02.021 10.1063/1.89674 10.1016/S0927-0248(99)00139-7 10.1016/S0927-0248(00)00186-0 10.1016/j.tsf.2005.01.058 10.1016/j.spmi.2006.07.003 10.1016/j.jnoncrysol.2005.11.085 10.1143/JJAP.24.909 10.1016/S0927-0248(00)00195-1 10.3923/jas.2011.2932.2939 10.1016/j.mejo.2005.09.002 10.1016/j.sna.2005.12.038 10.1016/j.tsf.2012.10.060 10.1016/j.jnoncrysol.2005.12.053 10.1016/S0022-3093(98)00319-6 10.1016/S0038-1101(99)00135-5 10.1016/j.tsf.2011.12.083 10.1016/j.solmat.2004.07.025 10.1016/j.jnoncrysol.2011.12.103 10.1016/j.vacuum.2012.09.004 10.1016/j.egypro.2012.05.084 10.1007/s003390050987 10.1016/j.solmat.2011.10.010 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1088/1674-4926/35/3/034013 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Numerical simulation of the performance of the a-Si:H/a-SiGe:H/a-SiGe:H tandem solar cell |
EndPage | 96 |
ExternalDocumentID | 10_1088_1674_4926_35_3_034013 49134750 |
GroupedDBID | 02O 042 1WK 2B. 2C0 2RA 4.4 5B3 5VR 5VS 7.M 92H 92I 92L 92R 93N AAGCD AAJIO AALHV AATNI ABHWH ACAFW ACGFO ACGFS ACHIP AEFHF AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BBWZM CCEZO CEBXE CHBEP CJUJL CQIGP CRLBU CUBFJ CW9 EBS EDWGO EJD EQZZN FA0 IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NS0 NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGT W28 W92 ~WA -SI -S~ 5XA 5XJ AAYXX ACARI AERVB AGQPQ AOAED ARNYC CAJEI CITATION Q-- TGMPQ U1G U5S 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c312t-9bbfb98bdd32350107fdf21ad414036e6eac22f2daba425daa03f0c0dc0506883 |
ISSN | 1674-4926 |
IngestDate | Fri Jul 11 11:57:20 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Tue Jul 01 03:20:29 EDT 2025 Wed Feb 14 10:38:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-9bbfb98bdd32350107fdf21ad414036e6eac22f2daba425daa03f0c0dc0506883 |
Notes | 11-5781/TN The computer program AMPS-1D(analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell at the radiation of AM1.5G(100 mW/cm2/ and room temperature. Firstly, three sub-cells with band gaps of 1.8, 1.6 and 1.4 eV are simulated, respectively. The simulation results indicate that the density of defect states is an important factor, which affects the open circuit voltage and the filling factor of the solar cell. The two-step current matching method and the control variate method are employed in the simulation. The results show that the best solar cell performance would be achieved when the intrinsic layer thickness from top to bottom is set to be 70, 180 and 220 nm, respectively. We also optimize the tunnel-junction structure of the solar cell reasonably, the simulation results show that the open circuit voltage, filling factor and conversion efficiency are all improved and the S-shape current density–voltage curve disappears during optimizing the tunnel-junction structure. Besides, the diagram of the energy band and the carrier recombination rate are also analyzed. Finally, our simulation data are compared to the experimental data published in other literature. It is demonstrated that the numerical results agree with the experimental ones very well. tandem solar cell conversion efficiency tunnel junction optical band gap current matching ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1730107973 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1730107973 crossref_citationtrail_10_1088_1674_4926_35_3_034013 crossref_primary_10_1088_1674_4926_35_3_034013 chongqing_primary_49134750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of semiconductors |
PublicationTitleAlternate | Chinese Journal of Semiconductors |
PublicationYear | 2014 |
References | 22 23 24 26 Hu W (15) 2006; 25 27 28 29 Li M B (25) 2012; 40 31 10 32 11 Tissot J L (6) 2000 13 Yue G (30) 2008 14 16 17 18 Uesugi T (3) 1985; 24 Belfar A (12) 2011; 11 1 2 Hou J Y (19) 1991 4 5 7 8 9 20 21 |
References_xml | – ident: 24 doi: 10.1149/2.020202esl – ident: 31 doi: 10.1063/1.118761 – ident: 23 doi: 10.1016/S0927-0248(02)00096-X – ident: 16 – ident: 29 doi: 10.1016/j.solmat.2012.02.021 – ident: 1 doi: 10.1063/1.89674 – ident: 32 doi: 10.1016/S0927-0248(99)00139-7 – ident: 2 doi: 10.1016/S0927-0248(00)00186-0 – ident: 8 doi: 10.1016/j.tsf.2005.01.058 – ident: 5 doi: 10.1016/j.spmi.2006.07.003 – ident: 9 doi: 10.1016/j.jnoncrysol.2005.11.085 – volume: 24 start-page: 909 issn: 0021-4922 year: 1985 ident: 3 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.24.909 – ident: 20 doi: 10.1016/S0927-0248(00)00195-1 – volume: 11 start-page: 2932 year: 2011 ident: 12 publication-title: J Appl Sci doi: 10.3923/jas.2011.2932.2939 – ident: 14 doi: 10.1016/j.mejo.2005.09.002 – ident: 4 doi: 10.1016/j.sna.2005.12.038 – ident: 26 doi: 10.1016/j.tsf.2012.10.060 – volume: 25 start-page: 90 year: 2006 ident: 15 publication-title: J Infrared Millim – ident: 28 doi: 10.1016/j.jnoncrysol.2005.12.053 – ident: 18 doi: 10.1016/S0022-3093(98)00319-6 – ident: 21 doi: 10.1016/S0038-1101(99)00135-5 – ident: 10 doi: 10.1016/j.tsf.2011.12.083 – ident: 11 doi: 10.1016/j.solmat.2004.07.025 – ident: 27 doi: 10.1016/j.jnoncrysol.2011.12.103 – volume: 40 start-page: 934 issn: 0009-4536 year: 2012 ident: 25 publication-title: J Chin Chem Soc – ident: 22 doi: 10.1016/j.vacuum.2012.09.004 – year: 2000 ident: 6 – ident: 13 doi: 10.1016/j.egypro.2012.05.084 – year: 1991 ident: 19 – ident: 7 doi: 10.1007/s003390050987 – ident: 17 doi: 10.1016/j.solmat.2011.10.010 – year: 2008 ident: 30 |
SSID | ssj0067441 |
Score | 1.9523855 |
Snippet | The computer program AMPS-1D(analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H... The computer program AMPS-1D (analysis of microelectronic and photonic structures) has been employed to simulate the performance of the... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 91 |
SubjectTerms | a-Si Computer simulation Density Energy gaps (solid state) Mathematical models Open circuit voltage Photovoltaic cells Semiconductors Solar cells 串联 仿真结果 光子结构 填充因子 太阳能电池 性能 数值模拟 |
Title | Numerical simulation of the performance of the a-Si:H/a-SiGe:H/a-SiGe:H tandem solar cell |
URI | http://lib.cqvip.com/qk/94689X/201403/49134750.html https://www.proquest.com/docview/1730107973 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVWRUjwgKCA2HJRkPBTlG4SJ748JrtZVkgUJFqpb1YuDlRqdwu7-8Kn8BF8Af_ELzDjXDYFVC4vkTW2x5HnyDO2xzOEvIgqJoWMQo9LYTzQt6WXw-7H44pHoE-N4TWed7w-4ouT6NVpfDoafR14LW03xWH5-bfvSv5HqkADueIr2X-QbM8UCFAG-cIXJAzfv5Lx0ba5bzl312cXbR6u7tL_cvAioCXl3rszms1pOqUqWeDyDISX5lqSi0cN5sJd4xbYxWP-oTlLs5jKGZUJFhLbJ4toOqOKWcqMJpxmHBskcc-UZpLKlKYBVimoFTQTVCoqe79aWzNHlsAm9amCtoomITR3beMMOSCfKU0TF5vjqNIWoGtqSQrGl20h9Yck-DfgIIZnHkG0c_pql2kuIg9DHQ4QygbLcJMArFXoTcbcX1QFLK94atFxgjLDMBsYx8JnuOvcacjebzFCPwWBR0Q3QtiW2Aejb952mh9Y2UypPc_uxZiUk542YfGETZoRMJ7Hh9Xy_UewUq7aRVfNAmvrHN8ld9pNipM0iLtHRma5T24PQlfuk5vWdbhc3ye6R6GzQ6Gzqh2AnDNAYUdChH3_9mUxaaD2U9Fp8OZYvDmItwfkZJ4dTxdem7bDK1kQbjxVFHWhZFFVLMRra1_UVR0GeRVhbEhuOOj6MKzDKi9y0BhVnvus9ku_Kv0YUyCxh2RvuVqaR8SBvUXAylLEeaCiUgSF8f0q5GB2GgZWFhuTg34C9WUTnkV3QhqTqJtRXbYB7zHvyrm2jhdSahSKRqFoFmumG6GMyWHfrWP5hw7PO3FpWJtxZvKlWW3XOkD16Qsl2MF1P_qY3NqB_AnZ23zamqdg6m6KZxZfPwAtQ4fm |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+the+performance+of+the+a-Si%EF%BC%9AH%2Fa-SiGe%EF%BC%9AH%2Fa-SiGe%EF%BC%9AH+tandem+solar+cell&rft.jtitle=%E5%8D%8A%E5%AF%BC%E4%BD%93%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9F%AF%E5%B0%91%E9%A2%96+%E7%8E%8B%E8%8C%BA+%E6%BD%98%E6%B6%9B+%E6%9D%A8%E6%9D%B0+%E6%9D%A8%E5%AE%87&rft.date=2014-03-01&rft.issn=1674-4926&rft.issue=3&rft.spage=91&rft.epage=96&rft_id=info:doi/10.1088%2F1674-4926%2F35%2F3%2F034013&rft.externalDocID=49134750 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94689X%2F94689X.jpg |