A systematic survey on explainable AI applied to fake news detection

The exponential proliferation of fake news in recent years has emphasized the demand for automated fake news detection. Several techniques for detecting fake news have yielded encouraging results. However, these detection systems lack explainability i.e., providing the reason for their prediction. T...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 122; p. 106087
Main Authors A.B., Athira, Kumar, S.D. Madhu, Chacko, Anu Mary
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exponential proliferation of fake news in recent years has emphasized the demand for automated fake news detection. Several techniques for detecting fake news have yielded encouraging results. However, these detection systems lack explainability i.e., providing the reason for their prediction. The critical advantage of explainability is the identification of bias and discrimination in detection algorithms. There are very few surveys conducted on the area of explainable AI applied to fake news detection. All of theses surveys summarize the existing methods in this area. Most of them are limited to the discussion of specific topics like datasets, evaluation methods, and potential future applications. In contrast, this survey looks at existing explainable AI methods and highlights the current state of the art in explainable fake news detection. We identify and enumerate a few open research problems based on our review of the existing explainable fake news detection techniques. We group the existing work in this area, by viewing it from four different perspectives: features used for the classification, explanation type, explainee type, and the metric used for explainability evaluation. The potential research topics in the above four groups which are unexplored so far and which need attention are also listed in this paper.
AbstractList The exponential proliferation of fake news in recent years has emphasized the demand for automated fake news detection. Several techniques for detecting fake news have yielded encouraging results. However, these detection systems lack explainability i.e., providing the reason for their prediction. The critical advantage of explainability is the identification of bias and discrimination in detection algorithms. There are very few surveys conducted on the area of explainable AI applied to fake news detection. All of theses surveys summarize the existing methods in this area. Most of them are limited to the discussion of specific topics like datasets, evaluation methods, and potential future applications. In contrast, this survey looks at existing explainable AI methods and highlights the current state of the art in explainable fake news detection. We identify and enumerate a few open research problems based on our review of the existing explainable fake news detection techniques. We group the existing work in this area, by viewing it from four different perspectives: features used for the classification, explanation type, explainee type, and the metric used for explainability evaluation. The potential research topics in the above four groups which are unexplored so far and which need attention are also listed in this paper.
ArticleNumber 106087
Author Kumar, S.D. Madhu
Chacko, Anu Mary
A.B., Athira
Author_xml – sequence: 1
  givenname: Athira
  orcidid: 0000-0003-4678-0893
  surname: A.B.
  fullname: A.B., Athira
  email: athira.bala.sree@gmail.com
– sequence: 2
  givenname: S.D. Madhu
  orcidid: 0000-0002-5276-8842
  surname: Kumar
  fullname: Kumar, S.D. Madhu
– sequence: 3
  givenname: Anu Mary
  surname: Chacko
  fullname: Chacko, Anu Mary
BookMark eNqFkM1KAzEUhYNUsK2-guQFpubHySQ7S_0rFNzoOtxJ7kjqNDMkY7Vv75Tq2tWBC-fjnm9GJrGLSMg1ZwvOuLrZLjC-Q99DWAgm5HhUTFdnZMp1JQtVKTMhU2ZKUXBTqQsyy3nLGJP6Vk3J_ZLmQx5wB0NwNH-mPR5oFyl-9y2ECHWLdLmmI74N6OnQ0QY-kEb8ytTjgG4IXbwk5w20Ga9-c07eHh9eV8_F5uVpvVpuCie5GAqjOXiUyNBB5SUYUEaj4XXZ-FJgA6bR4Bmva-mUUhqFcsIgK0vFtQYn50SduC51OSdsbJ_CDtLBcmaPLuzW_rmwRxf25GIs3p2KOH63D5hsdgGjQx_SOMH6LvyH-AHplW3c
CitedBy_id crossref_primary_10_1002_ett_4970
crossref_primary_10_3390_electronics12163457
crossref_primary_10_3390_systems11090458
crossref_primary_10_1177_21582440231217724
crossref_primary_10_1109_ACCESS_2024_3381038
crossref_primary_10_1038_s41598_024_59236_8
Cites_doi 10.1109/TMM.2016.2617078
10.1109/ICCSP48568.2020.9182398
10.1109/MIPR.2018.00092
10.3389/fdata.2021.688969
10.1016/j.ipm.2021.102618
10.1145/3386253
10.1109/ACCESS.2021.3100245
10.1145/3395046
10.1609/aaai.v34i10.7230
10.1109/BigMM.2019.00-44
10.1145/3359786
10.1002/asi.24359
10.1109/ICCV.2017.74
10.1145/3373464.3373473
10.1109/ICMLA51294.2020.00127
10.1016/j.ipm.2019.03.004
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2023.106087
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2023_106087
S0952197623002713
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c312t-981ade3e0eca7d3a9a698e91b5fd52efa9f8ad01bb3c6668e26c29e0556188ac3
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Thu Sep 26 17:02:49 EDT 2024
Fri Feb 23 02:35:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fake news detection
XAI
Explainable fake news detection
Fake news identification
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-981ade3e0eca7d3a9a698e91b5fd52efa9f8ad01bb3c6668e26c29e0556188ac3
ORCID 0000-0003-4678-0893
0000-0002-5276-8842
ParticipantIDs crossref_primary_10_1016_j_engappai_2023_106087
elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106087
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Cao, Zhang, Guo, Li (b11) 2018
Du, Liu, Hu (b7) 2019; 63
Shu, Mahudeswaran, Wang, Liu (b33) 2019
Yang, Pentyala, Mohseni, Du, Yuan, Linder, Ragan, Ji, Hu (b47) 2019
Lu, Li (b18) 2020
Mohseni, Zarei, Ragan (b21) 2021; 11
Singhal, S., Kabra, A., Sharma, M., Shah, R.R., Chakraborty, T., Kumaraguru, P., 2020. SpotFake+: A Multimodal Framework for Fake News Detection via Transfer Learning (Student Abstract). In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34 (10). pp. 13915–13916.
Ribeiro, Singh, Guestrin (b26) 2016
(b16) 2021
Reis, Correia, Murai, Veloso, Benevenuto (b25) 2019
Sharma, Sharma (b31) 2021
URL.
(b23) 2021
(b46) 2021
Wang (b43) 2017
Atakishiyev, Babiker, Farruque, Goebel1, Kima, Motallebi, Rabelo, Syed, Zaïane (b1) 2020
(b12) 2021
Ni, Li, Kao (b22) 2021; 9
Singhal, S., Shah, R.R., Chakraborty, T., Kumaraguru, P., Satoh, S., 2019. SpotFake: A Multi-modal Framework for Fake News Detection. In: 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). pp. 39–47.
(b19) 2021
Wu, Yuan, Ning (b45) 2021
.
Zhou, Zafarani (b49) 2019; 21
(b40) 2021
(b4) 2021
Kurasinski, L., Mihailescu, R.-C., 2020. Towards Machine Learning Explainability in Text Classification for Fake News Detection. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). pp. 775–781.
Singh, Ghosh, Sonagara (b37) 2021; 72
(b8) 2021
Shu, Zhou, Wang, Zafarani, Liu (b35) 2019
Ruchansky, Seo, Liu (b27) 2017
Mohseni, Yang, Pentyala, Du, Liu, Lupfer, Hu, Ji, Ragan (b20) 2020
Bhattarai, Granmo, Jiao (b3) 2021
Silva, Han, Luo, Karunasekera, Leckie (b36) 2021; 58
Shah, Kobti (b30) 2020
Wikipedia (b44) 2021
Classify.news (b5) 2021
Jin, Cao, Zhang, Zhou, Tian (b14) 2017; 19
Serrano, Smith (b29) 2019
Jain, Wallace (b13) 2019
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: 2017 IEEE International Conference on Computer Vision (ICCV). pp. 618–626.
Shu, K., Wang, S., Liu, H., 2018. Understanding User Profiles on Social Media for Fake News Detection. In: 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). pp. 430–435.
Zhou, Zafarani (b50) 2020; 53
Liu, Wu (b17) 2020; 38
(b9) 2021
(b10) 2021
Qiao, Wiechmann, Kerz (b24) 2020
Belle, Papantonis (b2) 2021; 4
Tanwar, V., Sharma, K., 2020. Multi-Model Fake News Detection based on Concatenation of Visual Latent Features. In: 2020 International Conference on Communication and Signal Processing (ICCSP). pp. 1344–1348.
Zhang, Ghorbani (b48) 2020; 57
Cui, Shu, Wang, Lee, Liu (b6) 2019
Shu, Cui, Wang, Lee, Liu (b32) 2019
(b42) 2021
Silva (10.1016/j.engappai.2023.106087_b36) 2021; 58
Classify.news (10.1016/j.engappai.2023.106087_b5) 2021
Zhou (10.1016/j.engappai.2023.106087_b50) 2020; 53
Wang (10.1016/j.engappai.2023.106087_b43) 2017
(10.1016/j.engappai.2023.106087_b23) 2021
Du (10.1016/j.engappai.2023.106087_b7) 2019; 63
Ni (10.1016/j.engappai.2023.106087_b22) 2021; 9
(10.1016/j.engappai.2023.106087_b8) 2021
(10.1016/j.engappai.2023.106087_b10) 2021
10.1016/j.engappai.2023.106087_b15
Ruchansky (10.1016/j.engappai.2023.106087_b27) 2017
Serrano (10.1016/j.engappai.2023.106087_b29) 2019
(10.1016/j.engappai.2023.106087_b42) 2021
(10.1016/j.engappai.2023.106087_b40) 2021
(10.1016/j.engappai.2023.106087_b9) 2021
Shu (10.1016/j.engappai.2023.106087_b33) 2019
Jain (10.1016/j.engappai.2023.106087_b13) 2019
Liu (10.1016/j.engappai.2023.106087_b17) 2020; 38
(10.1016/j.engappai.2023.106087_b46) 2021
10.1016/j.engappai.2023.106087_b28
Belle (10.1016/j.engappai.2023.106087_b2) 2021; 4
Qiao (10.1016/j.engappai.2023.106087_b24) 2020
Reis (10.1016/j.engappai.2023.106087_b25) 2019
Shah (10.1016/j.engappai.2023.106087_b30) 2020
Wikipedia (10.1016/j.engappai.2023.106087_b44) 2021
Mohseni (10.1016/j.engappai.2023.106087_b21) 2021; 11
Ribeiro (10.1016/j.engappai.2023.106087_b26) 2016
Guo (10.1016/j.engappai.2023.106087_b11) 2018
Lu (10.1016/j.engappai.2023.106087_b18) 2020
Sharma (10.1016/j.engappai.2023.106087_b31) 2021
10.1016/j.engappai.2023.106087_b38
10.1016/j.engappai.2023.106087_b39
Yang (10.1016/j.engappai.2023.106087_b47) 2019
10.1016/j.engappai.2023.106087_b34
Wu (10.1016/j.engappai.2023.106087_b45) 2021
Shu (10.1016/j.engappai.2023.106087_b35) 2019
Zhang (10.1016/j.engappai.2023.106087_b48) 2020; 57
(10.1016/j.engappai.2023.106087_b12) 2021
Bhattarai (10.1016/j.engappai.2023.106087_b3) 2021
(10.1016/j.engappai.2023.106087_b19) 2021
(10.1016/j.engappai.2023.106087_b4) 2021
Shu (10.1016/j.engappai.2023.106087_b32) 2019
(10.1016/j.engappai.2023.106087_b16) 2021
10.1016/j.engappai.2023.106087_b41
Jin (10.1016/j.engappai.2023.106087_b14) 2017; 19
Singh (10.1016/j.engappai.2023.106087_b37) 2021; 72
Mohseni (10.1016/j.engappai.2023.106087_b20) 2020
Cui (10.1016/j.engappai.2023.106087_b6) 2019
Zhou (10.1016/j.engappai.2023.106087_b49) 2019; 21
Atakishiyev (10.1016/j.engappai.2023.106087_b1) 2020
References_xml – year: 2021
  ident: b23
  article-title: Politifact.com
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: b26
  article-title: “Why should I trust you?”: Explaining the predictions of any classifier
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  contributor:
    fullname: Guestrin
– volume: 19
  start-page: 598
  year: 2017
  end-page: 608
  ident: b14
  article-title: Novel visual and statistical image features for microblogs news verification
  publication-title: IEEE Trans. Multimed.
  contributor:
    fullname: Tian
– year: 2021
  ident: b3
  article-title: Explainable tsetlin machine framework for fake news detection with credibility score assessment
  contributor:
    fullname: Jiao
– start-page: 403
  year: 2021
  end-page: 415
  ident: b45
  article-title: Incorporating relational knowledge in explainable fake news detection
  publication-title: Advances in Knowledge Discovery and Data Mining
  contributor:
    fullname: Ning
– volume: 4
  start-page: 39
  year: 2021
  ident: b2
  article-title: Principles and practice of explainable machine learning
  publication-title: Front. Big Data
  contributor:
    fullname: Papantonis
– start-page: 395
  year: 2019
  end-page: 405
  ident: b32
  article-title: DEFEND: Explainable fake news detection
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &Amp; Data Mining
  contributor:
    fullname: Liu
– volume: 38
  year: 2020
  ident: b17
  article-title: FNED: A deep network for fake news early detection on social media
  publication-title: ACM Trans. Inf. Syst.
  contributor:
    fullname: Wu
– volume: 63
  start-page: 68
  year: 2019
  end-page: 77
  ident: b7
  article-title: Techniques for interpretable machine learning
  publication-title: Commun. ACM
  contributor:
    fullname: Hu
– start-page: 14
  year: 2020
  end-page: 31
  ident: b24
  article-title: A language-based approach to fake news detection through interpretable features and BRNN
  publication-title: Proceedings of the 3rd International Workshop on Rumours and Deception in Social Media (RDSM)
  contributor:
    fullname: Kerz
– start-page: 17
  year: 2019
  end-page: 26
  ident: b25
  article-title: Explainable machine learning for fake news detection
  publication-title: Proceedings of the 10th ACM Conference on Web Science
  contributor:
    fullname: Benevenuto
– start-page: 3600
  year: 2019
  end-page: 3604
  ident: b47
  article-title: XFake: Explainable fake news detector with visualizations
  publication-title: The World Wide Web Conference
  contributor:
    fullname: Hu
– volume: 9
  start-page: 106907
  year: 2021
  end-page: 106917
  ident: b22
  article-title: MVAN: Multi-view attention networks for fake news detection on social media
  publication-title: IEEE Access
  contributor:
    fullname: Kao
– volume: 58
  year: 2021
  ident: b36
  article-title: Propagation2Vec: Embedding partial propagation networks for explainable fake news early detection
  publication-title: Inf. Process. Manage.
  contributor:
    fullname: Leckie
– year: 2021
  ident: b10
  article-title: Fullfact.org
– year: 2021
  ident: b16
  article-title: Lead stories
– year: 2021
  ident: b8
  article-title: Factmata.com
– volume: 72
  start-page: 3
  year: 2021
  end-page: 17
  ident: b37
  article-title: Detecting fake news stories via multimodal analysis
  publication-title: J. Assoc. Inf. Sci. Technol.
  contributor:
    fullname: Sonagara
– year: 2021
  ident: b44
  article-title: Fake news
  contributor:
    fullname: Wikipedia
– year: 2021
  ident: b9
  article-title: FakeNewsNet
– volume: 57
  year: 2020
  ident: b48
  article-title: An overview of online fake news: Characterization, detection, and discussion
  publication-title: Inf. Process. Manage.
  contributor:
    fullname: Ghorbani
– year: 2019
  ident: b33
  article-title: Hierarchical propagation networks for fake news detection: Investigation and exploitation
  contributor:
    fullname: Liu
– year: 2021
  ident: b12
  article-title: Hoax-slayer.com
– volume: 11
  year: 2021
  ident: b21
  article-title: A multidisciplinary survey and framework for design and evaluation of explainable AI systems
  publication-title: ACM Trans. Interact. Intell. Syst.
  contributor:
    fullname: Ragan
– year: 2019
  ident: b29
  article-title: Is attention interpretable?
  contributor:
    fullname: Smith
– start-page: 2961
  year: 2019
  end-page: 2964
  ident: b6
  article-title: DEFEND: A system for explainable fake news detection
  publication-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management
  contributor:
    fullname: Liu
– year: 2020
  ident: b1
  article-title: A multi-component framework for the analysis and design of explainable artificial intelligence
  contributor:
    fullname: Zaïane
– year: 2017
  ident: b43
  article-title: “Liar, liar pants on fire”: A new benchmark dataset for fake news detection
  contributor:
    fullname: Wang
– volume: 21
  start-page: 48
  year: 2019
  end-page: 60
  ident: b49
  article-title: Network-based fake news detection: A pattern-driven approach
  publication-title: SIGKDD Explor. Newsl.
  contributor:
    fullname: Zafarani
– start-page: 447
  year: 2021
  end-page: 458
  ident: b31
  article-title: Comment filtering based explainable fake news detection
  publication-title: Proceedings of Second International Conference on Computing, Communications, and Cyber-Security
  contributor:
    fullname: Sharma
– year: 2019
  ident: b13
  article-title: Attention is not explanation
  contributor:
    fullname: Wallace
– year: 2021
  ident: b4
  article-title: Claimbuster
– start-page: 797
  year: 2017
  end-page: 806
  ident: b27
  article-title: CSI: A hybrid deep model for fake news detection
  publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
  contributor:
    fullname: Liu
– year: 2021
  ident: b40
  article-title: Snopes.com
– volume: 53
  year: 2020
  ident: b50
  article-title: A survey of fake news: Fundamental theories, detection methods, and opportunities
  publication-title: ACM Comput. Surv.
  contributor:
    fullname: Zafarani
– year: 2020
  ident: b18
  article-title: GCAN: Graph-aware co-attention networks for explainable fake news detection on social media
  contributor:
    fullname: Li
– year: 2021
  ident: b46
  article-title: Xgboost
– start-page: 436
  year: 2019
  end-page: 439
  ident: b35
  article-title: The Role of User Profiles for Fake News Detection
  contributor:
    fullname: Liu
– year: 2021
  ident: b42
  article-title: Truthorfiction.com
– year: 2021
  ident: b5
  article-title: FullFact.org
  contributor:
    fullname: Classify.news
– year: 2018
  ident: b11
  article-title: Rumor Detection with Hierarchical Social Attention Network
  contributor:
    fullname: Li
– year: 2021
  ident: b19
  article-title: Media bias/fact check
– year: 2020
  ident: b20
  article-title: Machine learning explanations to prevent overtrust in fake news detection
  contributor:
    fullname: Ragan
– start-page: 1
  year: 2020
  end-page: 7
  ident: b30
  article-title: Multimodal fake news detection using a cultural algorithm with situational and normative knowledge
  publication-title: 2020 IEEE Congress on Evolutionary Computation (CEC)
  contributor:
    fullname: Kobti
– volume: 19
  start-page: 598
  issue: 3
  year: 2017
  ident: 10.1016/j.engappai.2023.106087_b14
  article-title: Novel visual and statistical image features for microblogs news verification
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2016.2617078
  contributor:
    fullname: Jin
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b46
– year: 2019
  ident: 10.1016/j.engappai.2023.106087_b33
  contributor:
    fullname: Shu
– ident: 10.1016/j.engappai.2023.106087_b41
  doi: 10.1109/ICCSP48568.2020.9182398
– volume: 11
  issue: 3–4
  year: 2021
  ident: 10.1016/j.engappai.2023.106087_b21
  article-title: A multidisciplinary survey and framework for design and evaluation of explainable AI systems
  publication-title: ACM Trans. Interact. Intell. Syst.
  contributor:
    fullname: Mohseni
– start-page: 17
  year: 2019
  ident: 10.1016/j.engappai.2023.106087_b25
  article-title: Explainable machine learning for fake news detection
  contributor:
    fullname: Reis
– year: 2017
  ident: 10.1016/j.engappai.2023.106087_b43
  contributor:
    fullname: Wang
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b16
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b44
  contributor:
    fullname: Wikipedia
– start-page: 797
  year: 2017
  ident: 10.1016/j.engappai.2023.106087_b27
  article-title: CSI: A hybrid deep model for fake news detection
  contributor:
    fullname: Ruchansky
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b23
– start-page: 3600
  year: 2019
  ident: 10.1016/j.engappai.2023.106087_b47
  article-title: XFake: Explainable fake news detector with visualizations
  contributor:
    fullname: Yang
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b19
– ident: 10.1016/j.engappai.2023.106087_b34
  doi: 10.1109/MIPR.2018.00092
– volume: 4
  start-page: 39
  year: 2021
  ident: 10.1016/j.engappai.2023.106087_b2
  article-title: Principles and practice of explainable machine learning
  publication-title: Front. Big Data
  doi: 10.3389/fdata.2021.688969
  contributor:
    fullname: Belle
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b4
– volume: 58
  issue: 5
  year: 2021
  ident: 10.1016/j.engappai.2023.106087_b36
  article-title: Propagation2Vec: Embedding partial propagation networks for explainable fake news early detection
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2021.102618
  contributor:
    fullname: Silva
– start-page: 1135
  year: 2016
  ident: 10.1016/j.engappai.2023.106087_b26
  article-title: “Why should I trust you?”: Explaining the predictions of any classifier
  contributor:
    fullname: Ribeiro
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b5
  contributor:
    fullname: Classify.news
– year: 2020
  ident: 10.1016/j.engappai.2023.106087_b1
  contributor:
    fullname: Atakishiyev
– volume: 38
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2023.106087_b17
  article-title: FNED: A deep network for fake news early detection on social media
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/3386253
  contributor:
    fullname: Liu
– volume: 9
  start-page: 106907
  year: 2021
  ident: 10.1016/j.engappai.2023.106087_b22
  article-title: MVAN: Multi-view attention networks for fake news detection on social media
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100245
  contributor:
    fullname: Ni
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b3
  contributor:
    fullname: Bhattarai
– start-page: 447
  year: 2021
  ident: 10.1016/j.engappai.2023.106087_b31
  article-title: Comment filtering based explainable fake news detection
  contributor:
    fullname: Sharma
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b42
– start-page: 395
  year: 2019
  ident: 10.1016/j.engappai.2023.106087_b32
  article-title: DEFEND: Explainable fake news detection
  contributor:
    fullname: Shu
– year: 2018
  ident: 10.1016/j.engappai.2023.106087_b11
  contributor:
    fullname: Guo
– start-page: 14
  year: 2020
  ident: 10.1016/j.engappai.2023.106087_b24
  article-title: A language-based approach to fake news detection through interpretable features and BRNN
  contributor:
    fullname: Qiao
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b12
– volume: 53
  issue: 5
  year: 2020
  ident: 10.1016/j.engappai.2023.106087_b50
  article-title: A survey of fake news: Fundamental theories, detection methods, and opportunities
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3395046
  contributor:
    fullname: Zhou
– year: 2020
  ident: 10.1016/j.engappai.2023.106087_b20
  contributor:
    fullname: Mohseni
– start-page: 436
  year: 2019
  ident: 10.1016/j.engappai.2023.106087_b35
  contributor:
    fullname: Shu
– year: 2019
  ident: 10.1016/j.engappai.2023.106087_b13
  contributor:
    fullname: Jain
– ident: 10.1016/j.engappai.2023.106087_b38
  doi: 10.1609/aaai.v34i10.7230
– ident: 10.1016/j.engappai.2023.106087_b39
  doi: 10.1109/BigMM.2019.00-44
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b40
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b10
– volume: 63
  start-page: 68
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2023.106087_b7
  article-title: Techniques for interpretable machine learning
  publication-title: Commun. ACM
  doi: 10.1145/3359786
  contributor:
    fullname: Du
– volume: 72
  start-page: 3
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2023.106087_b37
  article-title: Detecting fake news stories via multimodal analysis
  publication-title: J. Assoc. Inf. Sci. Technol.
  doi: 10.1002/asi.24359
  contributor:
    fullname: Singh
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b9
– ident: 10.1016/j.engappai.2023.106087_b28
  doi: 10.1109/ICCV.2017.74
– volume: 21
  start-page: 48
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2023.106087_b49
  article-title: Network-based fake news detection: A pattern-driven approach
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/3373464.3373473
  contributor:
    fullname: Zhou
– year: 2019
  ident: 10.1016/j.engappai.2023.106087_b29
  contributor:
    fullname: Serrano
– start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2023.106087_b30
  article-title: Multimodal fake news detection using a cultural algorithm with situational and normative knowledge
  contributor:
    fullname: Shah
– ident: 10.1016/j.engappai.2023.106087_b15
  doi: 10.1109/ICMLA51294.2020.00127
– volume: 57
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2023.106087_b48
  article-title: An overview of online fake news: Characterization, detection, and discussion
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2019.03.004
  contributor:
    fullname: Zhang
– year: 2021
  ident: 10.1016/j.engappai.2023.106087_b8
– year: 2020
  ident: 10.1016/j.engappai.2023.106087_b18
  contributor:
    fullname: Lu
– start-page: 403
  year: 2021
  ident: 10.1016/j.engappai.2023.106087_b45
  article-title: Incorporating relational knowledge in explainable fake news detection
  contributor:
    fullname: Wu
– start-page: 2961
  year: 2019
  ident: 10.1016/j.engappai.2023.106087_b6
  article-title: DEFEND: A system for explainable fake news detection
  contributor:
    fullname: Cui
SSID ssj0003846
Score 2.4677165
Snippet The exponential proliferation of fake news in recent years has emphasized the demand for automated fake news detection. Several techniques for detecting fake...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 106087
SubjectTerms Explainable fake news detection
Fake news detection
Fake news identification
Machine learning
XAI
Title A systematic survey on explainable AI applied to fake news detection
URI https://dx.doi.org/10.1016/j.engappai.2023.106087
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaqsrBwI8pReWBNc9WJPUaFqqWiA1DRLfKJWlAatSmChd-OnThqkZAYmKI82Un0xe-w9b33ALiOEQqUH5uDKo6cbuQRh3ksdnjImPKEYKSszn8_jgaT7t0UTRugV-fCGFqltf2VTS-ttZW4Fk03n83cRx0caHXTyhyavVXZubar3Z9e052vDc0jxFWyjh7smNFbWcLzjsxeaJ7TWcc0EdfCyDPUut8c1JbT6R-APRstwqT6oEPQkNkR2LeRI7R6udKiujlDLTsGNwncVGmGq_XyXX7CRQblR_5mM6ZgMoTUPqtYQEVfJTRRNhSyKBla2QmY9G-fegPHtkzQ4PpB4RDsUyFD6UlOYxFSQiOCJfEZUgIFUlGiMBWez1jI9cYFyyDiAZFlk0yMKQ9PQTNbZPIMQBUIhXwR-zwW3QhJholShNMg4LF-Q9gCbo1TmleVMdKaMjZPa2RTg2xaIdsCpIYz_fGPU22-_5h7_o-5F2DX3FUEr0vQLJZreaVDiYK1y7XSBjvJcDQYm-vo4Xn0DTTRy0A
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN407UEvvo31uQevlFeB3SOpNtQ-LrZJb2SfpmooaanRf-8uLFoTEw9eBwbIBzP7LZmZD4DbKAg86Ub6RxULrG7oYIs6NLKYT6l0OKe4nM4_noTJrPswD-YN0Kt7YXRZpcn9VU4vs7Wx2AZNO18s7EdFDlS4qWD29d5KK9e2FBvAKjpb8WCYTL4Sso-qfh11vqUdthqFnzsieyJ5ThYdrSOujKGjq-t-W6O21p3-AdgzhBHG1TMdgobIjsC-IY_QhOZamWp9htp2DO5i-D2oGa43qzfxAZcZFO_5q2magvEAEnOtYgkleRFQE23IRVEWaWUnYNa_n_YSy6gmKHxdr7AwcgkXvnAEIxH3CSYhRgK7NJA88IQkWCLCHZdSn6m9CxJeyDwsSp1MhAjzT0EzW2biDEDpcRm4PHJZxLthICjCUmJGPI9F6g5-G9g1TmleDcdI66qx57RGNtXIphWybYBrONMfrzlVGfwP3_N_-N6AnWQ6HqWjwWR4AXb1kare6xI0i9VGXClmUdBr8-V8AuJozFE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+survey+on+explainable+AI+applied+to+fake+news+detection&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=A.B.%2C+Athira&rft.au=Kumar%2C+S.D.+Madhu&rft.au=Chacko%2C+Anu+Mary&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=122&rft_id=info:doi/10.1016%2Fj.engappai.2023.106087&rft.externalDocID=S0952197623002713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon