A systematic survey on explainable AI applied to fake news detection
The exponential proliferation of fake news in recent years has emphasized the demand for automated fake news detection. Several techniques for detecting fake news have yielded encouraging results. However, these detection systems lack explainability i.e., providing the reason for their prediction. T...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 122; p. 106087 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exponential proliferation of fake news in recent years has emphasized the demand for automated fake news detection. Several techniques for detecting fake news have yielded encouraging results. However, these detection systems lack explainability i.e., providing the reason for their prediction. The critical advantage of explainability is the identification of bias and discrimination in detection algorithms. There are very few surveys conducted on the area of explainable AI applied to fake news detection. All of theses surveys summarize the existing methods in this area. Most of them are limited to the discussion of specific topics like datasets, evaluation methods, and potential future applications. In contrast, this survey looks at existing explainable AI methods and highlights the current state of the art in explainable fake news detection. We identify and enumerate a few open research problems based on our review of the existing explainable fake news detection techniques. We group the existing work in this area, by viewing it from four different perspectives: features used for the classification, explanation type, explainee type, and the metric used for explainability evaluation. The potential research topics in the above four groups which are unexplored so far and which need attention are also listed in this paper. |
---|---|
AbstractList | The exponential proliferation of fake news in recent years has emphasized the demand for automated fake news detection. Several techniques for detecting fake news have yielded encouraging results. However, these detection systems lack explainability i.e., providing the reason for their prediction. The critical advantage of explainability is the identification of bias and discrimination in detection algorithms. There are very few surveys conducted on the area of explainable AI applied to fake news detection. All of theses surveys summarize the existing methods in this area. Most of them are limited to the discussion of specific topics like datasets, evaluation methods, and potential future applications. In contrast, this survey looks at existing explainable AI methods and highlights the current state of the art in explainable fake news detection. We identify and enumerate a few open research problems based on our review of the existing explainable fake news detection techniques. We group the existing work in this area, by viewing it from four different perspectives: features used for the classification, explanation type, explainee type, and the metric used for explainability evaluation. The potential research topics in the above four groups which are unexplored so far and which need attention are also listed in this paper. |
ArticleNumber | 106087 |
Author | Kumar, S.D. Madhu Chacko, Anu Mary A.B., Athira |
Author_xml | – sequence: 1 givenname: Athira orcidid: 0000-0003-4678-0893 surname: A.B. fullname: A.B., Athira email: athira.bala.sree@gmail.com – sequence: 2 givenname: S.D. Madhu orcidid: 0000-0002-5276-8842 surname: Kumar fullname: Kumar, S.D. Madhu – sequence: 3 givenname: Anu Mary surname: Chacko fullname: Chacko, Anu Mary |
BookMark | eNqFkM1KAzEUhYNUsK2-guQFpubHySQ7S_0rFNzoOtxJ7kjqNDMkY7Vv75Tq2tWBC-fjnm9GJrGLSMg1ZwvOuLrZLjC-Q99DWAgm5HhUTFdnZMp1JQtVKTMhU2ZKUXBTqQsyy3nLGJP6Vk3J_ZLmQx5wB0NwNH-mPR5oFyl-9y2ECHWLdLmmI74N6OnQ0QY-kEb8ytTjgG4IXbwk5w20Ga9-c07eHh9eV8_F5uVpvVpuCie5GAqjOXiUyNBB5SUYUEaj4XXZ-FJgA6bR4Bmva-mUUhqFcsIgK0vFtQYn50SduC51OSdsbJ_CDtLBcmaPLuzW_rmwRxf25GIs3p2KOH63D5hsdgGjQx_SOMH6LvyH-AHplW3c |
CitedBy_id | crossref_primary_10_1002_ett_4970 crossref_primary_10_3390_electronics12163457 crossref_primary_10_3390_systems11090458 crossref_primary_10_1177_21582440231217724 crossref_primary_10_1109_ACCESS_2024_3381038 crossref_primary_10_1038_s41598_024_59236_8 |
Cites_doi | 10.1109/TMM.2016.2617078 10.1109/ICCSP48568.2020.9182398 10.1109/MIPR.2018.00092 10.3389/fdata.2021.688969 10.1016/j.ipm.2021.102618 10.1145/3386253 10.1109/ACCESS.2021.3100245 10.1145/3395046 10.1609/aaai.v34i10.7230 10.1109/BigMM.2019.00-44 10.1145/3359786 10.1002/asi.24359 10.1109/ICCV.2017.74 10.1145/3373464.3373473 10.1109/ICMLA51294.2020.00127 10.1016/j.ipm.2019.03.004 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2023.106087 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1873-6769 |
ExternalDocumentID | 10_1016_j_engappai_2023_106087 S0952197623002713 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c312t-981ade3e0eca7d3a9a698e91b5fd52efa9f8ad01bb3c6668e26c29e0556188ac3 |
IEDL.DBID | .~1 |
ISSN | 0952-1976 |
IngestDate | Thu Sep 26 17:02:49 EDT 2024 Fri Feb 23 02:35:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fake news detection XAI Explainable fake news detection Fake news identification Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-981ade3e0eca7d3a9a698e91b5fd52efa9f8ad01bb3c6668e26c29e0556188ac3 |
ORCID | 0000-0003-4678-0893 0000-0002-5276-8842 |
ParticipantIDs | crossref_primary_10_1016_j_engappai_2023_106087 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106087 |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Guo, Cao, Zhang, Guo, Li (b11) 2018 Du, Liu, Hu (b7) 2019; 63 Shu, Mahudeswaran, Wang, Liu (b33) 2019 Yang, Pentyala, Mohseni, Du, Yuan, Linder, Ragan, Ji, Hu (b47) 2019 Lu, Li (b18) 2020 Mohseni, Zarei, Ragan (b21) 2021; 11 Singhal, S., Kabra, A., Sharma, M., Shah, R.R., Chakraborty, T., Kumaraguru, P., 2020. SpotFake+: A Multimodal Framework for Fake News Detection via Transfer Learning (Student Abstract). In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34 (10). pp. 13915–13916. Ribeiro, Singh, Guestrin (b26) 2016 (b16) 2021 Reis, Correia, Murai, Veloso, Benevenuto (b25) 2019 Sharma, Sharma (b31) 2021 URL. (b23) 2021 (b46) 2021 Wang (b43) 2017 Atakishiyev, Babiker, Farruque, Goebel1, Kima, Motallebi, Rabelo, Syed, Zaïane (b1) 2020 (b12) 2021 Ni, Li, Kao (b22) 2021; 9 Singhal, S., Shah, R.R., Chakraborty, T., Kumaraguru, P., Satoh, S., 2019. SpotFake: A Multi-modal Framework for Fake News Detection. In: 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). pp. 39–47. (b19) 2021 Wu, Yuan, Ning (b45) 2021 . Zhou, Zafarani (b49) 2019; 21 (b40) 2021 (b4) 2021 Kurasinski, L., Mihailescu, R.-C., 2020. Towards Machine Learning Explainability in Text Classification for Fake News Detection. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). pp. 775–781. Singh, Ghosh, Sonagara (b37) 2021; 72 (b8) 2021 Shu, Zhou, Wang, Zafarani, Liu (b35) 2019 Ruchansky, Seo, Liu (b27) 2017 Mohseni, Yang, Pentyala, Du, Liu, Lupfer, Hu, Ji, Ragan (b20) 2020 Bhattarai, Granmo, Jiao (b3) 2021 Silva, Han, Luo, Karunasekera, Leckie (b36) 2021; 58 Shah, Kobti (b30) 2020 Wikipedia (b44) 2021 Classify.news (b5) 2021 Jin, Cao, Zhang, Zhou, Tian (b14) 2017; 19 Serrano, Smith (b29) 2019 Jain, Wallace (b13) 2019 Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: 2017 IEEE International Conference on Computer Vision (ICCV). pp. 618–626. Shu, K., Wang, S., Liu, H., 2018. Understanding User Profiles on Social Media for Fake News Detection. In: 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). pp. 430–435. Zhou, Zafarani (b50) 2020; 53 Liu, Wu (b17) 2020; 38 (b9) 2021 (b10) 2021 Qiao, Wiechmann, Kerz (b24) 2020 Belle, Papantonis (b2) 2021; 4 Tanwar, V., Sharma, K., 2020. Multi-Model Fake News Detection based on Concatenation of Visual Latent Features. In: 2020 International Conference on Communication and Signal Processing (ICCSP). pp. 1344–1348. Zhang, Ghorbani (b48) 2020; 57 Cui, Shu, Wang, Lee, Liu (b6) 2019 Shu, Cui, Wang, Lee, Liu (b32) 2019 (b42) 2021 Silva (10.1016/j.engappai.2023.106087_b36) 2021; 58 Classify.news (10.1016/j.engappai.2023.106087_b5) 2021 Zhou (10.1016/j.engappai.2023.106087_b50) 2020; 53 Wang (10.1016/j.engappai.2023.106087_b43) 2017 (10.1016/j.engappai.2023.106087_b23) 2021 Du (10.1016/j.engappai.2023.106087_b7) 2019; 63 Ni (10.1016/j.engappai.2023.106087_b22) 2021; 9 (10.1016/j.engappai.2023.106087_b8) 2021 (10.1016/j.engappai.2023.106087_b10) 2021 10.1016/j.engappai.2023.106087_b15 Ruchansky (10.1016/j.engappai.2023.106087_b27) 2017 Serrano (10.1016/j.engappai.2023.106087_b29) 2019 (10.1016/j.engappai.2023.106087_b42) 2021 (10.1016/j.engappai.2023.106087_b40) 2021 (10.1016/j.engappai.2023.106087_b9) 2021 Shu (10.1016/j.engappai.2023.106087_b33) 2019 Jain (10.1016/j.engappai.2023.106087_b13) 2019 Liu (10.1016/j.engappai.2023.106087_b17) 2020; 38 (10.1016/j.engappai.2023.106087_b46) 2021 10.1016/j.engappai.2023.106087_b28 Belle (10.1016/j.engappai.2023.106087_b2) 2021; 4 Qiao (10.1016/j.engappai.2023.106087_b24) 2020 Reis (10.1016/j.engappai.2023.106087_b25) 2019 Shah (10.1016/j.engappai.2023.106087_b30) 2020 Wikipedia (10.1016/j.engappai.2023.106087_b44) 2021 Mohseni (10.1016/j.engappai.2023.106087_b21) 2021; 11 Ribeiro (10.1016/j.engappai.2023.106087_b26) 2016 Guo (10.1016/j.engappai.2023.106087_b11) 2018 Lu (10.1016/j.engappai.2023.106087_b18) 2020 Sharma (10.1016/j.engappai.2023.106087_b31) 2021 10.1016/j.engappai.2023.106087_b38 10.1016/j.engappai.2023.106087_b39 Yang (10.1016/j.engappai.2023.106087_b47) 2019 10.1016/j.engappai.2023.106087_b34 Wu (10.1016/j.engappai.2023.106087_b45) 2021 Shu (10.1016/j.engappai.2023.106087_b35) 2019 Zhang (10.1016/j.engappai.2023.106087_b48) 2020; 57 (10.1016/j.engappai.2023.106087_b12) 2021 Bhattarai (10.1016/j.engappai.2023.106087_b3) 2021 (10.1016/j.engappai.2023.106087_b19) 2021 (10.1016/j.engappai.2023.106087_b4) 2021 Shu (10.1016/j.engappai.2023.106087_b32) 2019 (10.1016/j.engappai.2023.106087_b16) 2021 10.1016/j.engappai.2023.106087_b41 Jin (10.1016/j.engappai.2023.106087_b14) 2017; 19 Singh (10.1016/j.engappai.2023.106087_b37) 2021; 72 Mohseni (10.1016/j.engappai.2023.106087_b20) 2020 Cui (10.1016/j.engappai.2023.106087_b6) 2019 Zhou (10.1016/j.engappai.2023.106087_b49) 2019; 21 Atakishiyev (10.1016/j.engappai.2023.106087_b1) 2020 |
References_xml | – year: 2021 ident: b23 article-title: Politifact.com – start-page: 1135 year: 2016 end-page: 1144 ident: b26 article-title: “Why should I trust you?”: Explaining the predictions of any classifier publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining contributor: fullname: Guestrin – volume: 19 start-page: 598 year: 2017 end-page: 608 ident: b14 article-title: Novel visual and statistical image features for microblogs news verification publication-title: IEEE Trans. Multimed. contributor: fullname: Tian – year: 2021 ident: b3 article-title: Explainable tsetlin machine framework for fake news detection with credibility score assessment contributor: fullname: Jiao – start-page: 403 year: 2021 end-page: 415 ident: b45 article-title: Incorporating relational knowledge in explainable fake news detection publication-title: Advances in Knowledge Discovery and Data Mining contributor: fullname: Ning – volume: 4 start-page: 39 year: 2021 ident: b2 article-title: Principles and practice of explainable machine learning publication-title: Front. Big Data contributor: fullname: Papantonis – start-page: 395 year: 2019 end-page: 405 ident: b32 article-title: DEFEND: Explainable fake news detection publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &Amp; Data Mining contributor: fullname: Liu – volume: 38 year: 2020 ident: b17 article-title: FNED: A deep network for fake news early detection on social media publication-title: ACM Trans. Inf. Syst. contributor: fullname: Wu – volume: 63 start-page: 68 year: 2019 end-page: 77 ident: b7 article-title: Techniques for interpretable machine learning publication-title: Commun. ACM contributor: fullname: Hu – start-page: 14 year: 2020 end-page: 31 ident: b24 article-title: A language-based approach to fake news detection through interpretable features and BRNN publication-title: Proceedings of the 3rd International Workshop on Rumours and Deception in Social Media (RDSM) contributor: fullname: Kerz – start-page: 17 year: 2019 end-page: 26 ident: b25 article-title: Explainable machine learning for fake news detection publication-title: Proceedings of the 10th ACM Conference on Web Science contributor: fullname: Benevenuto – start-page: 3600 year: 2019 end-page: 3604 ident: b47 article-title: XFake: Explainable fake news detector with visualizations publication-title: The World Wide Web Conference contributor: fullname: Hu – volume: 9 start-page: 106907 year: 2021 end-page: 106917 ident: b22 article-title: MVAN: Multi-view attention networks for fake news detection on social media publication-title: IEEE Access contributor: fullname: Kao – volume: 58 year: 2021 ident: b36 article-title: Propagation2Vec: Embedding partial propagation networks for explainable fake news early detection publication-title: Inf. Process. Manage. contributor: fullname: Leckie – year: 2021 ident: b10 article-title: Fullfact.org – year: 2021 ident: b16 article-title: Lead stories – year: 2021 ident: b8 article-title: Factmata.com – volume: 72 start-page: 3 year: 2021 end-page: 17 ident: b37 article-title: Detecting fake news stories via multimodal analysis publication-title: J. Assoc. Inf. Sci. Technol. contributor: fullname: Sonagara – year: 2021 ident: b44 article-title: Fake news contributor: fullname: Wikipedia – year: 2021 ident: b9 article-title: FakeNewsNet – volume: 57 year: 2020 ident: b48 article-title: An overview of online fake news: Characterization, detection, and discussion publication-title: Inf. Process. Manage. contributor: fullname: Ghorbani – year: 2019 ident: b33 article-title: Hierarchical propagation networks for fake news detection: Investigation and exploitation contributor: fullname: Liu – year: 2021 ident: b12 article-title: Hoax-slayer.com – volume: 11 year: 2021 ident: b21 article-title: A multidisciplinary survey and framework for design and evaluation of explainable AI systems publication-title: ACM Trans. Interact. Intell. Syst. contributor: fullname: Ragan – year: 2019 ident: b29 article-title: Is attention interpretable? contributor: fullname: Smith – start-page: 2961 year: 2019 end-page: 2964 ident: b6 article-title: DEFEND: A system for explainable fake news detection publication-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management contributor: fullname: Liu – year: 2020 ident: b1 article-title: A multi-component framework for the analysis and design of explainable artificial intelligence contributor: fullname: Zaïane – year: 2017 ident: b43 article-title: “Liar, liar pants on fire”: A new benchmark dataset for fake news detection contributor: fullname: Wang – volume: 21 start-page: 48 year: 2019 end-page: 60 ident: b49 article-title: Network-based fake news detection: A pattern-driven approach publication-title: SIGKDD Explor. Newsl. contributor: fullname: Zafarani – start-page: 447 year: 2021 end-page: 458 ident: b31 article-title: Comment filtering based explainable fake news detection publication-title: Proceedings of Second International Conference on Computing, Communications, and Cyber-Security contributor: fullname: Sharma – year: 2019 ident: b13 article-title: Attention is not explanation contributor: fullname: Wallace – year: 2021 ident: b4 article-title: Claimbuster – start-page: 797 year: 2017 end-page: 806 ident: b27 article-title: CSI: A hybrid deep model for fake news detection publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management contributor: fullname: Liu – year: 2021 ident: b40 article-title: Snopes.com – volume: 53 year: 2020 ident: b50 article-title: A survey of fake news: Fundamental theories, detection methods, and opportunities publication-title: ACM Comput. Surv. contributor: fullname: Zafarani – year: 2020 ident: b18 article-title: GCAN: Graph-aware co-attention networks for explainable fake news detection on social media contributor: fullname: Li – year: 2021 ident: b46 article-title: Xgboost – start-page: 436 year: 2019 end-page: 439 ident: b35 article-title: The Role of User Profiles for Fake News Detection contributor: fullname: Liu – year: 2021 ident: b42 article-title: Truthorfiction.com – year: 2021 ident: b5 article-title: FullFact.org contributor: fullname: Classify.news – year: 2018 ident: b11 article-title: Rumor Detection with Hierarchical Social Attention Network contributor: fullname: Li – year: 2021 ident: b19 article-title: Media bias/fact check – year: 2020 ident: b20 article-title: Machine learning explanations to prevent overtrust in fake news detection contributor: fullname: Ragan – start-page: 1 year: 2020 end-page: 7 ident: b30 article-title: Multimodal fake news detection using a cultural algorithm with situational and normative knowledge publication-title: 2020 IEEE Congress on Evolutionary Computation (CEC) contributor: fullname: Kobti – volume: 19 start-page: 598 issue: 3 year: 2017 ident: 10.1016/j.engappai.2023.106087_b14 article-title: Novel visual and statistical image features for microblogs news verification publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2016.2617078 contributor: fullname: Jin – year: 2021 ident: 10.1016/j.engappai.2023.106087_b46 – year: 2019 ident: 10.1016/j.engappai.2023.106087_b33 contributor: fullname: Shu – ident: 10.1016/j.engappai.2023.106087_b41 doi: 10.1109/ICCSP48568.2020.9182398 – volume: 11 issue: 3–4 year: 2021 ident: 10.1016/j.engappai.2023.106087_b21 article-title: A multidisciplinary survey and framework for design and evaluation of explainable AI systems publication-title: ACM Trans. Interact. Intell. Syst. contributor: fullname: Mohseni – start-page: 17 year: 2019 ident: 10.1016/j.engappai.2023.106087_b25 article-title: Explainable machine learning for fake news detection contributor: fullname: Reis – year: 2017 ident: 10.1016/j.engappai.2023.106087_b43 contributor: fullname: Wang – year: 2021 ident: 10.1016/j.engappai.2023.106087_b16 – year: 2021 ident: 10.1016/j.engappai.2023.106087_b44 contributor: fullname: Wikipedia – start-page: 797 year: 2017 ident: 10.1016/j.engappai.2023.106087_b27 article-title: CSI: A hybrid deep model for fake news detection contributor: fullname: Ruchansky – year: 2021 ident: 10.1016/j.engappai.2023.106087_b23 – start-page: 3600 year: 2019 ident: 10.1016/j.engappai.2023.106087_b47 article-title: XFake: Explainable fake news detector with visualizations contributor: fullname: Yang – year: 2021 ident: 10.1016/j.engappai.2023.106087_b19 – ident: 10.1016/j.engappai.2023.106087_b34 doi: 10.1109/MIPR.2018.00092 – volume: 4 start-page: 39 year: 2021 ident: 10.1016/j.engappai.2023.106087_b2 article-title: Principles and practice of explainable machine learning publication-title: Front. Big Data doi: 10.3389/fdata.2021.688969 contributor: fullname: Belle – year: 2021 ident: 10.1016/j.engappai.2023.106087_b4 – volume: 58 issue: 5 year: 2021 ident: 10.1016/j.engappai.2023.106087_b36 article-title: Propagation2Vec: Embedding partial propagation networks for explainable fake news early detection publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2021.102618 contributor: fullname: Silva – start-page: 1135 year: 2016 ident: 10.1016/j.engappai.2023.106087_b26 article-title: “Why should I trust you?”: Explaining the predictions of any classifier contributor: fullname: Ribeiro – year: 2021 ident: 10.1016/j.engappai.2023.106087_b5 contributor: fullname: Classify.news – year: 2020 ident: 10.1016/j.engappai.2023.106087_b1 contributor: fullname: Atakishiyev – volume: 38 issue: 3 year: 2020 ident: 10.1016/j.engappai.2023.106087_b17 article-title: FNED: A deep network for fake news early detection on social media publication-title: ACM Trans. Inf. Syst. doi: 10.1145/3386253 contributor: fullname: Liu – volume: 9 start-page: 106907 year: 2021 ident: 10.1016/j.engappai.2023.106087_b22 article-title: MVAN: Multi-view attention networks for fake news detection on social media publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100245 contributor: fullname: Ni – year: 2021 ident: 10.1016/j.engappai.2023.106087_b3 contributor: fullname: Bhattarai – start-page: 447 year: 2021 ident: 10.1016/j.engappai.2023.106087_b31 article-title: Comment filtering based explainable fake news detection contributor: fullname: Sharma – year: 2021 ident: 10.1016/j.engappai.2023.106087_b42 – start-page: 395 year: 2019 ident: 10.1016/j.engappai.2023.106087_b32 article-title: DEFEND: Explainable fake news detection contributor: fullname: Shu – year: 2018 ident: 10.1016/j.engappai.2023.106087_b11 contributor: fullname: Guo – start-page: 14 year: 2020 ident: 10.1016/j.engappai.2023.106087_b24 article-title: A language-based approach to fake news detection through interpretable features and BRNN contributor: fullname: Qiao – year: 2021 ident: 10.1016/j.engappai.2023.106087_b12 – volume: 53 issue: 5 year: 2020 ident: 10.1016/j.engappai.2023.106087_b50 article-title: A survey of fake news: Fundamental theories, detection methods, and opportunities publication-title: ACM Comput. Surv. doi: 10.1145/3395046 contributor: fullname: Zhou – year: 2020 ident: 10.1016/j.engappai.2023.106087_b20 contributor: fullname: Mohseni – start-page: 436 year: 2019 ident: 10.1016/j.engappai.2023.106087_b35 contributor: fullname: Shu – year: 2019 ident: 10.1016/j.engappai.2023.106087_b13 contributor: fullname: Jain – ident: 10.1016/j.engappai.2023.106087_b38 doi: 10.1609/aaai.v34i10.7230 – ident: 10.1016/j.engappai.2023.106087_b39 doi: 10.1109/BigMM.2019.00-44 – year: 2021 ident: 10.1016/j.engappai.2023.106087_b40 – year: 2021 ident: 10.1016/j.engappai.2023.106087_b10 – volume: 63 start-page: 68 issue: 1 year: 2019 ident: 10.1016/j.engappai.2023.106087_b7 article-title: Techniques for interpretable machine learning publication-title: Commun. ACM doi: 10.1145/3359786 contributor: fullname: Du – volume: 72 start-page: 3 issue: 1 year: 2021 ident: 10.1016/j.engappai.2023.106087_b37 article-title: Detecting fake news stories via multimodal analysis publication-title: J. Assoc. Inf. Sci. Technol. doi: 10.1002/asi.24359 contributor: fullname: Singh – year: 2021 ident: 10.1016/j.engappai.2023.106087_b9 – ident: 10.1016/j.engappai.2023.106087_b28 doi: 10.1109/ICCV.2017.74 – volume: 21 start-page: 48 issue: 2 year: 2019 ident: 10.1016/j.engappai.2023.106087_b49 article-title: Network-based fake news detection: A pattern-driven approach publication-title: SIGKDD Explor. Newsl. doi: 10.1145/3373464.3373473 contributor: fullname: Zhou – year: 2019 ident: 10.1016/j.engappai.2023.106087_b29 contributor: fullname: Serrano – start-page: 1 year: 2020 ident: 10.1016/j.engappai.2023.106087_b30 article-title: Multimodal fake news detection using a cultural algorithm with situational and normative knowledge contributor: fullname: Shah – ident: 10.1016/j.engappai.2023.106087_b15 doi: 10.1109/ICMLA51294.2020.00127 – volume: 57 issue: 2 year: 2020 ident: 10.1016/j.engappai.2023.106087_b48 article-title: An overview of online fake news: Characterization, detection, and discussion publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2019.03.004 contributor: fullname: Zhang – year: 2021 ident: 10.1016/j.engappai.2023.106087_b8 – year: 2020 ident: 10.1016/j.engappai.2023.106087_b18 contributor: fullname: Lu – start-page: 403 year: 2021 ident: 10.1016/j.engappai.2023.106087_b45 article-title: Incorporating relational knowledge in explainable fake news detection contributor: fullname: Wu – start-page: 2961 year: 2019 ident: 10.1016/j.engappai.2023.106087_b6 article-title: DEFEND: A system for explainable fake news detection contributor: fullname: Cui |
SSID | ssj0003846 |
Score | 2.4677165 |
Snippet | The exponential proliferation of fake news in recent years has emphasized the demand for automated fake news detection. Several techniques for detecting fake... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 106087 |
SubjectTerms | Explainable fake news detection Fake news detection Fake news identification Machine learning XAI |
Title | A systematic survey on explainable AI applied to fake news detection |
URI | https://dx.doi.org/10.1016/j.engappai.2023.106087 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaqsrBwI8pReWBNc9WJPUaFqqWiA1DRLfKJWlAatSmChd-OnThqkZAYmKI82Un0xe-w9b33ALiOEQqUH5uDKo6cbuQRh3ksdnjImPKEYKSszn8_jgaT7t0UTRugV-fCGFqltf2VTS-ttZW4Fk03n83cRx0caHXTyhyavVXZubar3Z9e052vDc0jxFWyjh7smNFbWcLzjsxeaJ7TWcc0EdfCyDPUut8c1JbT6R-APRstwqT6oEPQkNkR2LeRI7R6udKiujlDLTsGNwncVGmGq_XyXX7CRQblR_5mM6ZgMoTUPqtYQEVfJTRRNhSyKBla2QmY9G-fegPHtkzQ4PpB4RDsUyFD6UlOYxFSQiOCJfEZUgIFUlGiMBWez1jI9cYFyyDiAZFlk0yMKQ9PQTNbZPIMQBUIhXwR-zwW3QhJholShNMg4LF-Q9gCbo1TmleVMdKaMjZPa2RTg2xaIdsCpIYz_fGPU22-_5h7_o-5F2DX3FUEr0vQLJZreaVDiYK1y7XSBjvJcDQYm-vo4Xn0DTTRy0A |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN407UEvvo31uQevlFeB3SOpNtQ-LrZJb2SfpmooaanRf-8uLFoTEw9eBwbIBzP7LZmZD4DbKAg86Ub6RxULrG7oYIs6NLKYT6l0OKe4nM4_noTJrPswD-YN0Kt7YXRZpcn9VU4vs7Wx2AZNO18s7EdFDlS4qWD29d5KK9e2FBvAKjpb8WCYTL4Sso-qfh11vqUdthqFnzsieyJ5ThYdrSOujKGjq-t-W6O21p3-AdgzhBHG1TMdgobIjsC-IY_QhOZamWp9htp2DO5i-D2oGa43qzfxAZcZFO_5q2magvEAEnOtYgkleRFQE23IRVEWaWUnYNa_n_YSy6gmKHxdr7AwcgkXvnAEIxH3CSYhRgK7NJA88IQkWCLCHZdSn6m9CxJeyDwsSp1MhAjzT0EzW2biDEDpcRm4PHJZxLthICjCUmJGPI9F6g5-G9g1TmleDcdI66qx57RGNtXIphWybYBrONMfrzlVGfwP3_N_-N6AnWQ6HqWjwWR4AXb1kare6xI0i9VGXClmUdBr8-V8AuJozFE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+survey+on+explainable+AI+applied+to+fake+news+detection&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=A.B.%2C+Athira&rft.au=Kumar%2C+S.D.+Madhu&rft.au=Chacko%2C+Anu+Mary&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=122&rft_id=info:doi/10.1016%2Fj.engappai.2023.106087&rft.externalDocID=S0952197623002713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |