A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples

Preprocessing of raw near-infrared (NIR) spectra is typically required prior to multivariate calibration since the measured spectra of complex samples are often subject to overwhelming background, light scattering, varying noises and other unexpected factors. Various preprocessing methods have been...

Full description

Saved in:
Bibliographic Details
Published inChemometrics and intelligent laboratory systems Vol. 197; p. 103916
Main Authors Bian, Xihui, Wang, Kaiyi, Tan, Erxuan, Diwu, Pengyao, Zhang, Fei, Guo, Yugao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Preprocessing of raw near-infrared (NIR) spectra is typically required prior to multivariate calibration since the measured spectra of complex samples are often subject to overwhelming background, light scattering, varying noises and other unexpected factors. Various preprocessing methods have been developed aimed at removing or reducing the interference of these effects. However, it is usually difficult to determine the best preprocessing method for a given data. Instead of selecting the best one, a selective ensemble preprocessing strategy is proposed for NIR spectral quantitative analysis. Firstly, numerous preprocessing methods and their combinations are obtained by full factorial design in order of baseline correction, scattering correction, smoothing and scaling. Then partial least squares (PLS) model is built for each preprocessing method. The models which have better predictions than PLS are selected and their predictions are averaged as the final prediction. The performance of the proposed method was tested with corn, blood and edible blend oil samples. Results demonstrate that the selective ensemble preprocessing method can give comparative or even better results than the traditional selected best preprocessing method. Therefore, in the framework of selective ensemble preprocessing, more accurate calibration can be obtained without searching the best preprocessing method. •A selective ensemble preprocessing strategy is proposed for NIR spectral quantitative analysis.•Full factorial design is used to systematically produce multiple preprocessing methods.•The predictions of these models better than that of PLS are selected to integrate for the final predictions.•The method can give the best result compared with the ensemble preprocessing method and individual preprocessing methods.
AbstractList Preprocessing of raw near-infrared (NIR) spectra is typically required prior to multivariate calibration since the measured spectra of complex samples are often subject to overwhelming background, light scattering, varying noises and other unexpected factors. Various preprocessing methods have been developed aimed at removing or reducing the interference of these effects. However, it is usually difficult to determine the best preprocessing method for a given data. Instead of selecting the best one, a selective ensemble preprocessing strategy is proposed for NIR spectral quantitative analysis. Firstly, numerous preprocessing methods and their combinations are obtained by full factorial design in order of baseline correction, scattering correction, smoothing and scaling. Then partial least squares (PLS) model is built for each preprocessing method. The models which have better predictions than PLS are selected and their predictions are averaged as the final prediction. The performance of the proposed method was tested with corn, blood and edible blend oil samples. Results demonstrate that the selective ensemble preprocessing method can give comparative or even better results than the traditional selected best preprocessing method. Therefore, in the framework of selective ensemble preprocessing, more accurate calibration can be obtained without searching the best preprocessing method. •A selective ensemble preprocessing strategy is proposed for NIR spectral quantitative analysis.•Full factorial design is used to systematically produce multiple preprocessing methods.•The predictions of these models better than that of PLS are selected to integrate for the final predictions.•The method can give the best result compared with the ensemble preprocessing method and individual preprocessing methods.
ArticleNumber 103916
Author Bian, Xihui
Tan, Erxuan
Wang, Kaiyi
Guo, Yugao
Zhang, Fei
Diwu, Pengyao
Author_xml – sequence: 1
  givenname: Xihui
  surname: Bian
  fullname: Bian, Xihui
  email: bianxihui@163.com
  organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China
– sequence: 2
  givenname: Kaiyi
  surname: Wang
  fullname: Wang, Kaiyi
  organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China
– sequence: 3
  givenname: Erxuan
  surname: Tan
  fullname: Tan, Erxuan
  organization: School of Chemical Engineering, Qinghai University, 810016, PR China
– sequence: 4
  givenname: Pengyao
  surname: Diwu
  fullname: Diwu, Pengyao
  organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China
– sequence: 5
  givenname: Fei
  surname: Zhang
  fullname: Zhang, Fei
  organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China
– sequence: 6
  givenname: Yugao
  surname: Guo
  fullname: Guo, Yugao
  organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China
BookMark eNqFkMtOwzAQRS0EEm3hF5B_ICWO0ySWWFBVvKRKbGBt-TEprhw72KGif4_TwoZNVyN75lzNnCk6d94BQjckn5OcVLfbufqAzlsh50VOWPqkjFRnaEKamma0oOwcTdIgy-qSsks0jXGbj--STJBf4ggW1GB2gMFF6KQF3Afog1cQo3EbHIcgBtjscesDdiBCZlwbRACNY5_QICz-_BJuMIM45Agn7D6aiH2Lle96C984irHGK3TRChvh-rfO0Pvjw9vqOVu_Pr2slutMUVIMGVuUqlG6ZG0jCZRyURTQNApKqiWtalLoCqBRQlaUqgWDRus69VUrK1kJJukM3R1zVfAxBmi5OmznXVrXWE5yPsrjW_4nj4_y-FFewqt_eB9MJ8L-NHh_BCEdtzMQeFQGnAJtQlLFtTenIn4Aj32UFg
CitedBy_id crossref_primary_10_1016_j_saa_2023_122394
crossref_primary_10_1016_j_microc_2022_107804
crossref_primary_10_1016_j_chemolab_2022_104497
crossref_primary_10_1016_j_jfoodeng_2023_111917
crossref_primary_10_1080_05704928_2023_2211667
crossref_primary_10_1016_j_saa_2024_125427
crossref_primary_10_1016_j_lwt_2022_113304
crossref_primary_10_1007_s11694_022_01392_4
crossref_primary_10_1016_j_foodchem_2024_140108
crossref_primary_10_3390_agronomy13051420
crossref_primary_10_1016_j_biosystemseng_2022_03_003
crossref_primary_10_3390_molecules26206091
crossref_primary_10_3390_agronomy13071945
crossref_primary_10_1155_2024_1524148
crossref_primary_10_1002_cem_3511
crossref_primary_10_1002_fsn3_2383
crossref_primary_10_1063_5_0095556
crossref_primary_10_1007_s10457_023_00833_3
crossref_primary_10_1364_AO_439291
crossref_primary_10_1016_j_saa_2021_120841
crossref_primary_10_1016_j_trac_2022_116648
crossref_primary_10_1016_j_saa_2024_125617
crossref_primary_10_3390_s20061586
crossref_primary_10_3390_soilsystems5040069
crossref_primary_10_1016_j_trac_2020_116045
crossref_primary_10_1016_j_infrared_2023_104792
crossref_primary_10_1080_10408347_2021_2023460
crossref_primary_10_3390_agriculture14081291
crossref_primary_10_3390_agriculture14030466
crossref_primary_10_1016_j_saa_2022_121790
crossref_primary_10_1016_j_microc_2023_109461
crossref_primary_10_1016_j_saa_2021_120757
crossref_primary_10_1016_j_infrared_2023_104906
crossref_primary_10_1016_j_jafr_2023_100625
crossref_primary_10_1016_j_saa_2022_121788
crossref_primary_10_1016_j_biombioe_2023_106842
crossref_primary_10_1002_fsn3_2059
crossref_primary_10_3390_f15081309
crossref_primary_10_3390_horticulturae10111156
crossref_primary_10_1016_j_compag_2022_106934
crossref_primary_10_1016_j_lwt_2023_115150
crossref_primary_10_3390_agriculture14071184
crossref_primary_10_1002_pca_3076
crossref_primary_10_1016_j_aca_2024_342724
crossref_primary_10_1016_j_chemolab_2024_105205
crossref_primary_10_1016_j_chemolab_2020_104190
crossref_primary_10_1007_s00217_023_04298_7
crossref_primary_10_1016_j_vibspec_2023_103562
crossref_primary_10_1016_j_saa_2024_124710
crossref_primary_10_3389_fpls_2023_1121287
crossref_primary_10_1016_j_ocsci_2024_05_002
crossref_primary_10_3390_agriculture13101928
crossref_primary_10_3390_foods11162436
crossref_primary_10_1016_j_saa_2024_124396
crossref_primary_10_1016_j_compag_2022_107050
crossref_primary_10_3390_app11115103
crossref_primary_10_1016_j_foodres_2022_112192
crossref_primary_10_1016_j_infrared_2023_104958
crossref_primary_10_1016_j_microc_2025_113354
crossref_primary_10_1016_j_ijleo_2023_171110
crossref_primary_10_1080_00032719_2022_2063306
crossref_primary_10_3389_fpls_2021_759248
crossref_primary_10_1016_j_ijbiomac_2024_129421
crossref_primary_10_1016_j_fochx_2024_101574
crossref_primary_10_3390_app12020826
crossref_primary_10_1016_j_jpba_2024_116376
crossref_primary_10_1016_j_saa_2024_125217
crossref_primary_10_1016_j_talanta_2023_124310
crossref_primary_10_1016_j_jfca_2024_106346
crossref_primary_10_1039_D1AY00017A
crossref_primary_10_3390_agriculture14101685
crossref_primary_10_1177_00037028211036515
crossref_primary_10_1016_j_infrared_2020_103543
crossref_primary_10_1016_j_infrared_2023_104730
crossref_primary_10_1039_D0AY00285B
crossref_primary_10_1002_cem_70006
crossref_primary_10_1016_j_biosystemseng_2024_01_013
crossref_primary_10_1016_j_saa_2022_121569
crossref_primary_10_1016_j_microc_2023_109203
crossref_primary_10_1016_j_postharvbio_2020_111271
crossref_primary_10_1016_j_saa_2022_121842
crossref_primary_10_1016_j_asr_2025_01_048
crossref_primary_10_1021_acs_jchemed_2c00812
crossref_primary_10_1016_j_talanta_2024_126242
crossref_primary_10_1016_j_saa_2024_124917
crossref_primary_10_1016_j_cscee_2023_100384
Cites_doi 10.1007/s00216-012-6364-1
10.1016/j.saa.2014.03.091
10.1016/0169-7439(95)80098-T
10.1016/j.aca.2015.04.045
10.1016/j.chemolab.2015.12.006
10.1002/cjoc.201180425
10.1016/j.saa.2016.03.017
10.1016/j.molstruc.2016.01.089
10.1016/j.aca.2008.04.031
10.1016/j.aca.2016.01.010
10.1366/0003702894202201
10.1016/j.talanta.2006.10.022
10.1016/j.trac.2019.01.018
10.3389/fchem.2018.00262
10.1016/j.aca.2018.01.013
10.1039/C1AY05525A
10.1016/j.saa.2018.07.094
10.1016/j.vibspec.2018.05.002
10.1016/j.aca.2016.04.029
10.1039/C6AY00731G
10.1039/c0ay00421a
10.1016/j.trac.2009.07.007
10.1016/j.aca.2019.01.022
10.1255/jnirs.32
10.1002/cem.2518
10.1021/acs.analchem.5b02832
10.1021/ar990163w
10.1016/j.snb.2018.04.093
10.1021/ac00162a020
10.1038/srep11647
10.1016/j.trac.2013.04.015
10.1016/j.aca.2010.03.036
10.1016/j.chemolab.2013.10.005
10.1016/j.chemolab.2017.02.008
10.1016/j.chemolab.2017.09.004
10.1002/cem.2922
10.1109/ACCESS.2018.2821441
10.1080/00401706.1969.10490666
10.1016/j.aca.2016.08.022
10.1016/j.chemolab.2018.08.013
10.1039/C3AY42270D
10.1016/j.aca.2011.05.048
10.1016/j.aca.2012.10.011
10.1016/j.jpba.2011.09.037
10.1021/ac60214a047
10.1366/0003702001950571
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemolab.2019.103916
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
ExternalDocumentID 10_1016_j_chemolab_2019_103916
S0169743919304964
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c312t-954c8cd49f8b1e4b522e88ce43db36712d6ee8cab633c59e8dd788ccfb6b6a9b3
IEDL.DBID .~1
ISSN 0169-7439
IngestDate Thu Apr 24 22:54:59 EDT 2025
Tue Jul 01 03:17:14 EDT 2025
Fri Feb 23 02:49:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Full factorial design
Preprocessing method
Partial least squares
Ensemble
Multivariate calibration
Near-infrared spectroscopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-954c8cd49f8b1e4b522e88ce43db36712d6ee8cab633c59e8dd788ccfb6b6a9b3
ParticipantIDs crossref_citationtrail_10_1016_j_chemolab_2019_103916
crossref_primary_10_1016_j_chemolab_2019_103916
elsevier_sciencedirect_doi_10_1016_j_chemolab_2019_103916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Noda (bib16) 2016; 1124
Shao, Bian, Cai (bib32) 2010; 666
Brown (bib23) 2000
Bian, Li, Fan, Guo, Chang, Wang (bib3) 2016; 8
Zhao, Wu, Cheng, Shi, Qiao (bib13) 2016; 163
Li, Shao, Cai (bib27) 2007; 72
Yun, Bin, Liu, Xu, Yan, Cao, Xu (bib41) 2019; 1058
Bian, Diwu, Liu, Liu, Li, Tan (bib30) 2017
Shao, Bian, Liu, Zhang, Cai (bib28) 2010; 2
Zhang, Wang, Gao, Li, Zhang, Mao, Yu, Ding, Zhang (bib43) 2016; 151
Chen, Grant (bib24) 2012; 404
Zhao, Ma, Huang, Liu, Qiao, Wu (bib36) 2018; 6
Deng, Yun, Liang, Cao, Xu, Yi, Huang (bib46) 2015; 880
Helland, Naes, Isaksson (bib12) 1995; 29
Laxalde, Ruckebusch, Devos, Caillol, Wahl, Duponchel (bib20) 2011; 705
Gerretzen, Szymanska, Bart, Davies, van Manen, van den Heuvel, Jansen, Buydens (bib26) 2016; 938
Luo, Tan, Zhou, Liu, Xu, Song, Cui, Fu, Yang (bib33) 2013; 27
Cao, Deng, Zhu, Yao, Dong, Zhao (bib42) 2017; 31
Silalahi, Midi, Arasan, Mustafa, Caliman (bib19) 2018; 97
Xu, Yan, Cai, Yu, Jiang, Wu, Yu (bib45) 2013
Bian, Zhang, Liu, Wei, Tan, Lin, Chang, Guo (bib39) 2017; 170
Savitzky, Golay (bib9) 1964; 36
Bian, Li, Lin, Tan, Fan, Li (bib35) 2016; 925
Rinnan (bib6) 2014; 6
Kuenstner, Norris (bib47) 1994; 2
Bi, Yuan, Xiao, Wu, Shi, Xia, Chu, Zhang, Zhou (bib18) 2016; 909
Chen, Tan, Wu, Wang, Zhu (bib38) 2014; 130
Li, Jing (bib34) 2014; 130
Yun, Li, Deng, Cao (bib40) 2019; 113
Xu, Zhou, Tang, Wu, Jiang, Shen, Yu (bib44) 2008; 616
Zhu, Yuan, Song, Li, Fang, Guo, Zhu, Liu, Yan (bib21) 2018; 268
Lu, Wang, Cai, Meng, Xie, Zhao (bib17) 2012; 59
Shao, Leung, Chau (bib11) 2003; 36
Bian, Diwu, Zhang, Lin, Chen, Tan, Guo, Cheng (bib31) 2018; 1009
Rinnan, van den Berg, Engelsen (bib7) 2009; 28
Gerretzen, Szymanska, Jansen, Bart, van Manen, van den Heuvel, Buydens (bib25) 2015; 87
Xu, Ye, Yan, Shi, Cui, Fu, Yu (bib37) 2012; 754
Li (bib2) 2012; 4
Lee, Liong, Jemain (bib15) 2017; 163
Ali, Kabir, Arif, Swati, Khan, Ullah, Yu (bib10) 2018; 182
Brown, Vega-Montoto, Wentzell (bib22) 2000; 54
Zhao, Wu, Zhang, Shi, Ma, Qiao (bib1) 2015; 5
Liu, Huang, Wang, Cao (bib29) 2018; 6
Bian, Chen, Cai, Grant, Shao (bib8) 2011; 29
Liu, Wang, Li, Gao, Tan, Bian (bib4) 2019; 206
Engel, Gerretzen, Szymanska, Jansen, Downey, Blanchet, Buydens (bib5) 2013; 50
Barnes, Dhanoa, Susan (bib14) 1989; 43
Kennard, Stone (bib48) 1969; 11
Haaland, Thomas (bib49) 1988; 60
Liu (10.1016/j.chemolab.2019.103916_bib29) 2018; 6
Engel (10.1016/j.chemolab.2019.103916_bib5) 2013; 50
Zhao (10.1016/j.chemolab.2019.103916_bib13) 2016; 163
Gerretzen (10.1016/j.chemolab.2019.103916_bib26) 2016; 938
Bian (10.1016/j.chemolab.2019.103916_bib30) 2017
Bian (10.1016/j.chemolab.2019.103916_bib8) 2011; 29
Liu (10.1016/j.chemolab.2019.103916_bib4) 2019; 206
Bian (10.1016/j.chemolab.2019.103916_bib39) 2017; 170
Zhao (10.1016/j.chemolab.2019.103916_bib36) 2018; 6
Cao (10.1016/j.chemolab.2019.103916_bib42) 2017; 31
Silalahi (10.1016/j.chemolab.2019.103916_bib19) 2018; 97
Li (10.1016/j.chemolab.2019.103916_bib27) 2007; 72
Shao (10.1016/j.chemolab.2019.103916_bib11) 2003; 36
Kennard (10.1016/j.chemolab.2019.103916_bib48) 1969; 11
Kuenstner (10.1016/j.chemolab.2019.103916_bib47) 1994; 2
Luo (10.1016/j.chemolab.2019.103916_bib33) 2013; 27
Li (10.1016/j.chemolab.2019.103916_bib34) 2014; 130
Rinnan (10.1016/j.chemolab.2019.103916_bib6) 2014; 6
Bian (10.1016/j.chemolab.2019.103916_bib35) 2016; 925
Zhu (10.1016/j.chemolab.2019.103916_bib21) 2018; 268
Bian (10.1016/j.chemolab.2019.103916_bib31) 2018; 1009
Lu (10.1016/j.chemolab.2019.103916_bib17) 2012; 59
Shao (10.1016/j.chemolab.2019.103916_bib32) 2010; 666
Shao (10.1016/j.chemolab.2019.103916_bib28) 2010; 2
Yun (10.1016/j.chemolab.2019.103916_bib41) 2019; 1058
Chen (10.1016/j.chemolab.2019.103916_bib38) 2014; 130
Noda (10.1016/j.chemolab.2019.103916_bib16) 2016; 1124
Xu (10.1016/j.chemolab.2019.103916_bib45) 2013
Laxalde (10.1016/j.chemolab.2019.103916_bib20) 2011; 705
Helland (10.1016/j.chemolab.2019.103916_bib12) 1995; 29
Zhao (10.1016/j.chemolab.2019.103916_bib1) 2015; 5
Yun (10.1016/j.chemolab.2019.103916_bib40) 2019; 113
Haaland (10.1016/j.chemolab.2019.103916_bib49) 1988; 60
Bi (10.1016/j.chemolab.2019.103916_bib18) 2016; 909
Gerretzen (10.1016/j.chemolab.2019.103916_bib25) 2015; 87
Zhang (10.1016/j.chemolab.2019.103916_bib43) 2016; 151
Savitzky (10.1016/j.chemolab.2019.103916_bib9) 1964; 36
Lee (10.1016/j.chemolab.2019.103916_bib15) 2017; 163
Brown (10.1016/j.chemolab.2019.103916_bib23) 2000
Deng (10.1016/j.chemolab.2019.103916_bib46) 2015; 880
Barnes (10.1016/j.chemolab.2019.103916_bib14) 1989; 43
Xu (10.1016/j.chemolab.2019.103916_bib44) 2008; 616
Rinnan (10.1016/j.chemolab.2019.103916_bib7) 2009; 28
Bian (10.1016/j.chemolab.2019.103916_bib3) 2016; 8
Brown (10.1016/j.chemolab.2019.103916_bib22) 2000; 54
Li (10.1016/j.chemolab.2019.103916_bib2) 2012; 4
Chen (10.1016/j.chemolab.2019.103916_bib24) 2012; 404
Xu (10.1016/j.chemolab.2019.103916_bib37) 2012; 754
Ali (10.1016/j.chemolab.2019.103916_bib10) 2018; 182
References_xml – volume: 5
  start-page: 11647
  year: 2015
  ident: bib1
  article-title: Optimization of parameter selection for partial least squares model development
  publication-title: Sci. Rep.
– volume: 50
  start-page: 96
  year: 2013
  end-page: 106
  ident: bib5
  article-title: Breaking with trends in pre-processing?
  publication-title: Trac. Trends Anal. Chem.
– volume: 705
  start-page: 227
  year: 2011
  end-page: 234
  ident: bib20
  article-title: Characterisation of heavy oils using near-infrared spectroscopy: optimisation of pre-processing methods and variable selection
  publication-title: Anal. Chim. Acta
– volume: 36
  start-page: 276
  year: 2003
  end-page: 283
  ident: bib11
  article-title: Wavelet: a new trend in chemistry
  publication-title: Accounts Chem. Res.
– volume: 29
  start-page: 233
  year: 1995
  end-page: 241
  ident: bib12
  article-title: Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 6
  start-page: 7124
  year: 2014
  end-page: 7129
  ident: bib6
  article-title: Pre-processing in vibrational spectroscopy - when, why and how
  publication-title: Anal. Methods
– volume: 938
  start-page: 44
  year: 2016
  end-page: 52
  ident: bib26
  article-title: Boosting model performance and interpretation by entangling preprocessing selection and variable selection
  publication-title: Anal. Chim. Acta
– volume: 11
  start-page: 137
  year: 1969
  end-page: 148
  ident: bib48
  article-title: Computer aided design of experiments
  publication-title: Technometrics
– volume: 130
  start-page: 45
  year: 2014
  end-page: 49
  ident: bib34
  article-title: A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra
  publication-title: Chemometr. Intell. Lab. Syst.
– start-page: 797302
  year: 2013
  ident: bib45
  article-title: Nonlinear multivariate calibration of shelf life of preserved eggs (pidan) by near infrared spectroscopy: stacked least squares support vector machine with ensemble preprocessing
  publication-title: J. Spectrosc.
– volume: 268
  start-page: 299
  year: 2018
  end-page: 309
  ident: bib21
  article-title: High-speed sex identification and sorting of living silkworm pupae using near-infrared spectroscopy combined with chemometrics
  publication-title: Sens. Actuators B Chem.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: bib9
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– volume: 1124
  start-page: 29
  year: 2016
  end-page: 41
  ident: bib16
  article-title: Techniques useful in two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses
  publication-title: J. Mol. Struct.
– volume: 6
  start-page: 262
  year: 2018
  ident: bib36
  article-title: Pharmaceutical analysis model robustness from bagging-PLS and PLS using systematic tracking mapping
  publication-title: Front. Chem.
– volume: 206
  start-page: 23
  year: 2019
  end-page: 30
  ident: bib4
  article-title: Rapid identification and quantification of panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 163
  start-page: 64
  year: 2017
  end-page: 75
  ident: bib15
  article-title: A contemporary review on data preprocessing (DP) practice strategy in ATR-FTIR spectrum
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 27
  start-page: 198
  year: 2013
  end-page: 206
  ident: bib33
  article-title: Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression
  publication-title: J. Chemom.
– volume: 151
  start-page: 89
  year: 2016
  end-page: 94
  ident: bib43
  article-title: Improvement on enhanced Monte-Carlo outlier detection method
  publication-title: Chemometr. Intell. Lab. Syst.
– year: 2017
  ident: bib30
  article-title: Ensemble calibration for the spectral quantitative analysis of complex samples
  publication-title: J. Chemom.
– volume: 616
  start-page: 138
  year: 2008
  end-page: 143
  ident: bib44
  article-title: Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration
  publication-title: Anal. Chim. Acta
– volume: 909
  start-page: 30
  year: 2016
  end-page: 40
  ident: bib18
  article-title: A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation
  publication-title: Anal. Chim. Acta
– volume: 28
  start-page: 1201
  year: 2009
  end-page: 1222
  ident: bib7
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: Trac. Trends Anal. Chem.
– volume: 31
  year: 2017
  ident: bib42
  article-title: Ensemble partial least squares regression for descriptor selection, outlier detection, applicability domain assessment, and ensemble modeling in QSAR/QSPR modeling
  publication-title: J. Chemom.
– volume: 59
  start-page: 44
  year: 2012
  end-page: 49
  ident: bib17
  article-title: Rapid discrimination and quantification of alkaloids in Corydalis Tuber by near-infrared spectroscopy
  publication-title: J. Pharmaceut. Biomed.
– volume: 163
  start-page: 20
  year: 2016
  end-page: 27
  ident: bib13
  article-title: MDL and RMSEP assessment of spectral pretreatments by adding different noises in calibration/validation datasets
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 6
  start-page: 20950
  year: 2018
  end-page: 20963
  ident: bib29
  article-title: ECoFFeS: a software using evolutionary computation for feature selection in drug discovery
  publication-title: IEEE Access
– volume: 666
  start-page: 32
  year: 2010
  end-page: 37
  ident: bib32
  article-title: An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
  publication-title: Anal. Chim. Acta
– volume: 113
  start-page: 102
  year: 2019
  end-page: 115
  ident: bib40
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: Trac. Trends Anal. Chem.
– volume: 97
  start-page: 55
  year: 2018
  end-page: 65
  ident: bib19
  article-title: Robust generalized multiplicative scatter correction algorithm on pretreatment of near infrared spectral data
  publication-title: Vib. Spectrosc.
– volume: 2
  start-page: 59
  year: 1994
  end-page: 65
  ident: bib47
  article-title: Spectrophotometry of human hemoglobin in the near infrared region from 1000-2500nm
  publication-title: J. Near Infrared Spectrosc.
– volume: 43
  start-page: 772
  year: 1989
  end-page: 777
  ident: bib14
  article-title: Lister standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Appl. Spectrosc.
– volume: 182
  start-page: 21
  year: 2018
  end-page: 30
  ident: bib10
  article-title: DBPPred-PDSD: machine learning approach for prediction of DNA-binding proteins using Discrete Wavelet Transform and optimized integrated features space
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 754
  start-page: 31
  year: 2012
  end-page: 38
  ident: bib37
  article-title: Combining local wavelength information and ensemble learning to enhance the specificity of class modeling techniques: identification of food geographical origins and adulteration
  publication-title: Anal. Chim. Acta
– volume: 2
  start-page: 1662
  year: 2010
  end-page: 1666
  ident: bib28
  article-title: Multivariate calibration methods in near infrared spectroscopic analysis
  publication-title: Anal. Methods
– volume: 130
  start-page: 245
  year: 2014
  end-page: 249
  ident: bib38
  article-title: Discrimination between authentic and adulterated liquors by near-infrared spectroscopy and ensemble classification
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 87
  start-page: 12096
  year: 2015
  end-page: 12103
  ident: bib25
  article-title: Simple and effective way for data preprocessing selection based on design of experiments
  publication-title: Anal. Chem.
– volume: 1058
  start-page: 58
  year: 2019
  end-page: 69
  ident: bib41
  article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration
  publication-title: Anal. Chim. Acta
– year: 2000
  ident: bib23
  article-title: Rational Approaches to Data Preprocessing in Multivariate Calibration
– volume: 925
  start-page: 16
  year: 2016
  end-page: 22
  ident: bib35
  article-title: High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples
  publication-title: Anal. Chim. Acta
– volume: 29
  start-page: 2525
  year: 2011
  end-page: 2532
  ident: bib8
  article-title: Rapid determination of metabolites in bio-fluid samples by Raman spectroscopy and optimum combinations of chemometric methods
  publication-title: Chin. J. Chem.
– volume: 4
  start-page: 254
  year: 2012
  end-page: 258
  ident: bib2
  article-title: Determination of diesel cetane number by consensus modeling based on uninformative variable elimination
  publication-title: Anal. Methods
– volume: 880
  start-page: 32
  year: 2015
  end-page: 41
  ident: bib46
  article-title: A new strategy to prevent over-fitting in partial least squares models based on model population analysis
  publication-title: Anal. Chim. Acta
– volume: 54
  start-page: 1055
  year: 2000
  end-page: 1068
  ident: bib22
  article-title: Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration
  publication-title: Appl. Spectrosc.
– volume: 72
  start-page: 217
  year: 2007
  end-page: 222
  ident: bib27
  article-title: A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples
  publication-title: Talanta
– volume: 8
  start-page: 4674
  year: 2016
  end-page: 4679
  ident: bib3
  article-title: Spectral quantitative analysis of complex samples based on extreme learning machine
  publication-title: Anal. Methods
– volume: 1009
  start-page: 20
  year: 2018
  end-page: 26
  ident: bib31
  article-title: Robust boosting neural networks with random weights for multivariate calibration of complex samples
  publication-title: Anal. Chim. Acta
– volume: 170
  start-page: 96
  year: 2017
  end-page: 101
  ident: bib39
  article-title: Rapid identification of milk samples by high and low frequency unfolded partial least squares discriminant analysis combined with near infrared spectroscopy
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 404
  start-page: 2317
  year: 2012
  end-page: 2327
  ident: bib24
  article-title: Evaluating the validity of spectral calibration models for quantitative analysis following signal preprocessing
  publication-title: Anal. Bioanal. Chem.
– volume: 60
  start-page: 1193
  year: 1988
  end-page: 1202
  ident: bib49
  article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
  publication-title: Anal. Chim.
– volume: 404
  start-page: 2317
  year: 2012
  ident: 10.1016/j.chemolab.2019.103916_bib24
  article-title: Evaluating the validity of spectral calibration models for quantitative analysis following signal preprocessing
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-6364-1
– volume: 130
  start-page: 245
  year: 2014
  ident: 10.1016/j.chemolab.2019.103916_bib38
  article-title: Discrimination between authentic and adulterated liquors by near-infrared spectroscopy and ensemble classification
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2014.03.091
– volume: 29
  start-page: 233
  year: 1995
  ident: 10.1016/j.chemolab.2019.103916_bib12
  article-title: Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)80098-T
– volume: 880
  start-page: 32
  year: 2015
  ident: 10.1016/j.chemolab.2019.103916_bib46
  article-title: A new strategy to prevent over-fitting in partial least squares models based on model population analysis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2015.04.045
– volume: 151
  start-page: 89
  year: 2016
  ident: 10.1016/j.chemolab.2019.103916_bib43
  article-title: Improvement on enhanced Monte-Carlo outlier detection method
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.12.006
– volume: 29
  start-page: 2525
  year: 2011
  ident: 10.1016/j.chemolab.2019.103916_bib8
  article-title: Rapid determination of metabolites in bio-fluid samples by Raman spectroscopy and optimum combinations of chemometric methods
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201180425
– volume: 163
  start-page: 20
  year: 2016
  ident: 10.1016/j.chemolab.2019.103916_bib13
  article-title: MDL and RMSEP assessment of spectral pretreatments by adding different noises in calibration/validation datasets
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2016.03.017
– volume: 1124
  start-page: 29
  year: 2016
  ident: 10.1016/j.chemolab.2019.103916_bib16
  article-title: Techniques useful in two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2016.01.089
– volume: 616
  start-page: 138
  year: 2008
  ident: 10.1016/j.chemolab.2019.103916_bib44
  article-title: Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.04.031
– volume: 909
  start-page: 30
  year: 2016
  ident: 10.1016/j.chemolab.2019.103916_bib18
  article-title: A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.01.010
– volume: 43
  start-page: 772
  year: 1989
  ident: 10.1016/j.chemolab.2019.103916_bib14
  article-title: Lister standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702894202201
– volume: 72
  start-page: 217
  year: 2007
  ident: 10.1016/j.chemolab.2019.103916_bib27
  article-title: A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples
  publication-title: Talanta
  doi: 10.1016/j.talanta.2006.10.022
– volume: 113
  start-page: 102
  year: 2019
  ident: 10.1016/j.chemolab.2019.103916_bib40
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.01.018
– volume: 6
  start-page: 262
  year: 2018
  ident: 10.1016/j.chemolab.2019.103916_bib36
  article-title: Pharmaceutical analysis model robustness from bagging-PLS and PLS using systematic tracking mapping
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00262
– volume: 1009
  start-page: 20
  year: 2018
  ident: 10.1016/j.chemolab.2019.103916_bib31
  article-title: Robust boosting neural networks with random weights for multivariate calibration of complex samples
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.01.013
– volume: 4
  start-page: 254
  year: 2012
  ident: 10.1016/j.chemolab.2019.103916_bib2
  article-title: Determination of diesel cetane number by consensus modeling based on uninformative variable elimination
  publication-title: Anal. Methods
  doi: 10.1039/C1AY05525A
– volume: 206
  start-page: 23
  year: 2019
  ident: 10.1016/j.chemolab.2019.103916_bib4
  article-title: Rapid identification and quantification of panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2018.07.094
– volume: 97
  start-page: 55
  year: 2018
  ident: 10.1016/j.chemolab.2019.103916_bib19
  article-title: Robust generalized multiplicative scatter correction algorithm on pretreatment of near infrared spectral data
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2018.05.002
– volume: 925
  start-page: 16
  year: 2016
  ident: 10.1016/j.chemolab.2019.103916_bib35
  article-title: High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.04.029
– volume: 8
  start-page: 4674
  year: 2016
  ident: 10.1016/j.chemolab.2019.103916_bib3
  article-title: Spectral quantitative analysis of complex samples based on extreme learning machine
  publication-title: Anal. Methods
  doi: 10.1039/C6AY00731G
– volume: 2
  start-page: 1662
  year: 2010
  ident: 10.1016/j.chemolab.2019.103916_bib28
  article-title: Multivariate calibration methods in near infrared spectroscopic analysis
  publication-title: Anal. Methods
  doi: 10.1039/c0ay00421a
– volume: 28
  start-page: 1201
  year: 2009
  ident: 10.1016/j.chemolab.2019.103916_bib7
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.07.007
– volume: 1058
  start-page: 58
  year: 2019
  ident: 10.1016/j.chemolab.2019.103916_bib41
  article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.01.022
– volume: 2
  start-page: 59
  year: 1994
  ident: 10.1016/j.chemolab.2019.103916_bib47
  article-title: Spectrophotometry of human hemoglobin in the near infrared region from 1000-2500nm
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.32
– volume: 27
  start-page: 198
  year: 2013
  ident: 10.1016/j.chemolab.2019.103916_bib33
  article-title: Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression
  publication-title: J. Chemom.
  doi: 10.1002/cem.2518
– start-page: 797302
  year: 2013
  ident: 10.1016/j.chemolab.2019.103916_bib45
  article-title: Nonlinear multivariate calibration of shelf life of preserved eggs (pidan) by near infrared spectroscopy: stacked least squares support vector machine with ensemble preprocessing
  publication-title: J. Spectrosc.
– volume: 87
  start-page: 12096
  year: 2015
  ident: 10.1016/j.chemolab.2019.103916_bib25
  article-title: Simple and effective way for data preprocessing selection based on design of experiments
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b02832
– volume: 36
  start-page: 276
  year: 2003
  ident: 10.1016/j.chemolab.2019.103916_bib11
  article-title: Wavelet: a new trend in chemistry
  publication-title: Accounts Chem. Res.
  doi: 10.1021/ar990163w
– volume: 268
  start-page: 299
  year: 2018
  ident: 10.1016/j.chemolab.2019.103916_bib21
  article-title: High-speed sex identification and sorting of living silkworm pupae using near-infrared spectroscopy combined with chemometrics
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.04.093
– volume: 60
  start-page: 1193
  year: 1988
  ident: 10.1016/j.chemolab.2019.103916_bib49
  article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information
  publication-title: Anal. Chim.
  doi: 10.1021/ac00162a020
– volume: 5
  start-page: 11647
  year: 2015
  ident: 10.1016/j.chemolab.2019.103916_bib1
  article-title: Optimization of parameter selection for partial least squares model development
  publication-title: Sci. Rep.
  doi: 10.1038/srep11647
– volume: 50
  start-page: 96
  year: 2013
  ident: 10.1016/j.chemolab.2019.103916_bib5
  article-title: Breaking with trends in pre-processing?
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2013.04.015
– volume: 666
  start-page: 32
  year: 2010
  ident: 10.1016/j.chemolab.2019.103916_bib32
  article-title: An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.03.036
– volume: 130
  start-page: 45
  year: 2014
  ident: 10.1016/j.chemolab.2019.103916_bib34
  article-title: A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.10.005
– volume: 163
  start-page: 64
  year: 2017
  ident: 10.1016/j.chemolab.2019.103916_bib15
  article-title: A contemporary review on data preprocessing (DP) practice strategy in ATR-FTIR spectrum
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.02.008
– volume: 170
  start-page: 96
  year: 2017
  ident: 10.1016/j.chemolab.2019.103916_bib39
  article-title: Rapid identification of milk samples by high and low frequency unfolded partial least squares discriminant analysis combined with near infrared spectroscopy
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.09.004
– volume: 31
  year: 2017
  ident: 10.1016/j.chemolab.2019.103916_bib42
  article-title: Ensemble partial least squares regression for descriptor selection, outlier detection, applicability domain assessment, and ensemble modeling in QSAR/QSPR modeling
  publication-title: J. Chemom.
  doi: 10.1002/cem.2922
– year: 2000
  ident: 10.1016/j.chemolab.2019.103916_bib23
– volume: 6
  start-page: 20950
  year: 2018
  ident: 10.1016/j.chemolab.2019.103916_bib29
  article-title: ECoFFeS: a software using evolutionary computation for feature selection in drug discovery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2821441
– volume: 11
  start-page: 137
  year: 1969
  ident: 10.1016/j.chemolab.2019.103916_bib48
  article-title: Computer aided design of experiments
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490666
– volume: 938
  start-page: 44
  year: 2016
  ident: 10.1016/j.chemolab.2019.103916_bib26
  article-title: Boosting model performance and interpretation by entangling preprocessing selection and variable selection
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.08.022
– volume: 182
  start-page: 21
  year: 2018
  ident: 10.1016/j.chemolab.2019.103916_bib10
  article-title: DBPPred-PDSD: machine learning approach for prediction of DNA-binding proteins using Discrete Wavelet Transform and optimized integrated features space
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.08.013
– volume: 6
  start-page: 7124
  year: 2014
  ident: 10.1016/j.chemolab.2019.103916_bib6
  article-title: Pre-processing in vibrational spectroscopy - when, why and how
  publication-title: Anal. Methods
  doi: 10.1039/C3AY42270D
– volume: 705
  start-page: 227
  year: 2011
  ident: 10.1016/j.chemolab.2019.103916_bib20
  article-title: Characterisation of heavy oils using near-infrared spectroscopy: optimisation of pre-processing methods and variable selection
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.05.048
– volume: 754
  start-page: 31
  year: 2012
  ident: 10.1016/j.chemolab.2019.103916_bib37
  article-title: Combining local wavelength information and ensemble learning to enhance the specificity of class modeling techniques: identification of food geographical origins and adulteration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.10.011
– volume: 59
  start-page: 44
  year: 2012
  ident: 10.1016/j.chemolab.2019.103916_bib17
  article-title: Rapid discrimination and quantification of alkaloids in Corydalis Tuber by near-infrared spectroscopy
  publication-title: J. Pharmaceut. Biomed.
  doi: 10.1016/j.jpba.2011.09.037
– volume: 36
  start-page: 1627
  year: 1964
  ident: 10.1016/j.chemolab.2019.103916_bib9
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 54
  start-page: 1055
  year: 2000
  ident: 10.1016/j.chemolab.2019.103916_bib22
  article-title: Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702001950571
– year: 2017
  ident: 10.1016/j.chemolab.2019.103916_bib30
  article-title: Ensemble calibration for the spectral quantitative analysis of complex samples
  publication-title: J. Chemom.
SSID ssj0016941
Score 2.561227
Snippet Preprocessing of raw near-infrared (NIR) spectra is typically required prior to multivariate calibration since the measured spectra of complex samples are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103916
SubjectTerms Ensemble
Full factorial design
Multivariate calibration
Near-infrared spectroscopy
Partial least squares
Preprocessing method
Title A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples
URI https://dx.doi.org/10.1016/j.chemolab.2019.103916
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EHtpL6ZPaF3voNWqym3X3KFKxLfXSCt5CdrMLikZrFNpLf3tn8hALBQ89BUImCZNh5hsy3zeEPMjYBI67wLPKQYPC29rTfkd4TDoO-MSGMkai8OtQDEb8eRyOa6RXcWFwrLLM_UVOz7N1eaZVerO1nExab6gjgnAaIAjAXIGaoJx3MMqb39sxDx-JmoW-t_Lw6h2W8LQJfplDB6lxxEsh_1zh3vO_CtRO0emfkOMSLdJu8UKnpGbTM3LYq5a0nZNFl2b5JhtIWhQ6UjvXM0uXKFWZEwCgMNGsEKD9ooBPaQqR7UFUrXDwnOY8yxU84WMTpzndDO8Tl0IldOFoPnJuP2kW4zG7IKP-43tv4JU7FDzD_GDtqZAb3E-knNS-5RrglpXSWM4SzUTHDxJhrTSxFoyZUFmZJNAUG-O00CJWml2SerpI7RWhwpcJayehNcqhzJpi0jgT4I9DSFWi0yBh5bjIlALjuOdiFlWTZNOocniEDo8KhzdIa2u3LCQ29lqo6rtEv4Ilgjqwx_b6H7Y35CjAdhv3wYS3pL5ebewdYJK1vs-D7p4cdJ9eBsMfwbXkdQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe9CL-MT63IPXWJNNtrvHUpRoay8qeAvZzS60aFr7AP33zuRRFAQPngKBScJkmPmGne8bgEuZmsCFLvCsctighNfa035XeFy6EPGJjWRKROGHkYifw_uX6KUB_ZoLQ2OVVe4vc3qRras7ncqbndl43HkkHRGC0whBEOaKcANapE4VNaHVuxvEo_VhAnE1S4lv5ZHBN6Lw5Apd84ZNpKYpL0UUdEWrz3-rUd_qzu0ObFeAkfXKb9qFhs33YLNf72nbh2mPLYplNpi3GDal9k2_WjYjtcqCA4C1iS1KDdpPhhCV5RjcHgbWnGbPWUG1nOMb3ldpXjDO6DlppVXCpo4VU-f2gy1Sui4O4Pn25qkfe9UaBc9wP1h6KgoNrShSTmrfhhoRl5XS2JBnmouuH2TCWmlSLTg3kbIyy7AvNsZpoUWqND-EZj7N7REw4cuMX2eRNcqR0pri0jgT0NkhZivRbUNUOy4xlcY4rbp4TephsklSOzwhhyelw9vQWdvNSpWNPy1U_V-SH_GSYCn4w_b4H7YXsBk_PQyT4d1ocAJbAXXftB4mOoXmcr6yZwhRlvq8CsEvlWTnJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+selective+ensemble+preprocessing+strategy+for+near-infrared+spectral+quantitative+analysis+of+complex+samples&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Bian%2C+Xihui&rft.au=Wang%2C+Kaiyi&rft.au=Tan%2C+Erxuan&rft.au=Diwu%2C+Pengyao&rft.date=2020-02-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.eissn=1873-3239&rft.volume=197&rft_id=info:doi/10.1016%2Fj.chemolab.2019.103916&rft.externalDocID=S0169743919304964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon