A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples
Preprocessing of raw near-infrared (NIR) spectra is typically required prior to multivariate calibration since the measured spectra of complex samples are often subject to overwhelming background, light scattering, varying noises and other unexpected factors. Various preprocessing methods have been...
Saved in:
Published in | Chemometrics and intelligent laboratory systems Vol. 197; p. 103916 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Preprocessing of raw near-infrared (NIR) spectra is typically required prior to multivariate calibration since the measured spectra of complex samples are often subject to overwhelming background, light scattering, varying noises and other unexpected factors. Various preprocessing methods have been developed aimed at removing or reducing the interference of these effects. However, it is usually difficult to determine the best preprocessing method for a given data. Instead of selecting the best one, a selective ensemble preprocessing strategy is proposed for NIR spectral quantitative analysis. Firstly, numerous preprocessing methods and their combinations are obtained by full factorial design in order of baseline correction, scattering correction, smoothing and scaling. Then partial least squares (PLS) model is built for each preprocessing method. The models which have better predictions than PLS are selected and their predictions are averaged as the final prediction. The performance of the proposed method was tested with corn, blood and edible blend oil samples. Results demonstrate that the selective ensemble preprocessing method can give comparative or even better results than the traditional selected best preprocessing method. Therefore, in the framework of selective ensemble preprocessing, more accurate calibration can be obtained without searching the best preprocessing method.
•A selective ensemble preprocessing strategy is proposed for NIR spectral quantitative analysis.•Full factorial design is used to systematically produce multiple preprocessing methods.•The predictions of these models better than that of PLS are selected to integrate for the final predictions.•The method can give the best result compared with the ensemble preprocessing method and individual preprocessing methods. |
---|---|
AbstractList | Preprocessing of raw near-infrared (NIR) spectra is typically required prior to multivariate calibration since the measured spectra of complex samples are often subject to overwhelming background, light scattering, varying noises and other unexpected factors. Various preprocessing methods have been developed aimed at removing or reducing the interference of these effects. However, it is usually difficult to determine the best preprocessing method for a given data. Instead of selecting the best one, a selective ensemble preprocessing strategy is proposed for NIR spectral quantitative analysis. Firstly, numerous preprocessing methods and their combinations are obtained by full factorial design in order of baseline correction, scattering correction, smoothing and scaling. Then partial least squares (PLS) model is built for each preprocessing method. The models which have better predictions than PLS are selected and their predictions are averaged as the final prediction. The performance of the proposed method was tested with corn, blood and edible blend oil samples. Results demonstrate that the selective ensemble preprocessing method can give comparative or even better results than the traditional selected best preprocessing method. Therefore, in the framework of selective ensemble preprocessing, more accurate calibration can be obtained without searching the best preprocessing method.
•A selective ensemble preprocessing strategy is proposed for NIR spectral quantitative analysis.•Full factorial design is used to systematically produce multiple preprocessing methods.•The predictions of these models better than that of PLS are selected to integrate for the final predictions.•The method can give the best result compared with the ensemble preprocessing method and individual preprocessing methods. |
ArticleNumber | 103916 |
Author | Bian, Xihui Tan, Erxuan Wang, Kaiyi Guo, Yugao Zhang, Fei Diwu, Pengyao |
Author_xml | – sequence: 1 givenname: Xihui surname: Bian fullname: Bian, Xihui email: bianxihui@163.com organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China – sequence: 2 givenname: Kaiyi surname: Wang fullname: Wang, Kaiyi organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China – sequence: 3 givenname: Erxuan surname: Tan fullname: Tan, Erxuan organization: School of Chemical Engineering, Qinghai University, 810016, PR China – sequence: 4 givenname: Pengyao surname: Diwu fullname: Diwu, Pengyao organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China – sequence: 5 givenname: Fei surname: Zhang fullname: Zhang, Fei organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China – sequence: 6 givenname: Yugao surname: Guo fullname: Guo, Yugao organization: State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China |
BookMark | eNqFkMtOwzAQRS0EEm3hF5B_ICWO0ySWWFBVvKRKbGBt-TEprhw72KGif4_TwoZNVyN75lzNnCk6d94BQjckn5OcVLfbufqAzlsh50VOWPqkjFRnaEKamma0oOwcTdIgy-qSsks0jXGbj--STJBf4ggW1GB2gMFF6KQF3Afog1cQo3EbHIcgBtjscesDdiBCZlwbRACNY5_QICz-_BJuMIM45Agn7D6aiH2Lle96C984irHGK3TRChvh-rfO0Pvjw9vqOVu_Pr2slutMUVIMGVuUqlG6ZG0jCZRyURTQNApKqiWtalLoCqBRQlaUqgWDRus69VUrK1kJJukM3R1zVfAxBmi5OmznXVrXWE5yPsrjW_4nj4_y-FFewqt_eB9MJ8L-NHh_BCEdtzMQeFQGnAJtQlLFtTenIn4Aj32UFg |
CitedBy_id | crossref_primary_10_1016_j_saa_2023_122394 crossref_primary_10_1016_j_microc_2022_107804 crossref_primary_10_1016_j_chemolab_2022_104497 crossref_primary_10_1016_j_jfoodeng_2023_111917 crossref_primary_10_1080_05704928_2023_2211667 crossref_primary_10_1016_j_saa_2024_125427 crossref_primary_10_1016_j_lwt_2022_113304 crossref_primary_10_1007_s11694_022_01392_4 crossref_primary_10_1016_j_foodchem_2024_140108 crossref_primary_10_3390_agronomy13051420 crossref_primary_10_1016_j_biosystemseng_2022_03_003 crossref_primary_10_3390_molecules26206091 crossref_primary_10_3390_agronomy13071945 crossref_primary_10_1155_2024_1524148 crossref_primary_10_1002_cem_3511 crossref_primary_10_1002_fsn3_2383 crossref_primary_10_1063_5_0095556 crossref_primary_10_1007_s10457_023_00833_3 crossref_primary_10_1364_AO_439291 crossref_primary_10_1016_j_saa_2021_120841 crossref_primary_10_1016_j_trac_2022_116648 crossref_primary_10_1016_j_saa_2024_125617 crossref_primary_10_3390_s20061586 crossref_primary_10_3390_soilsystems5040069 crossref_primary_10_1016_j_trac_2020_116045 crossref_primary_10_1016_j_infrared_2023_104792 crossref_primary_10_1080_10408347_2021_2023460 crossref_primary_10_3390_agriculture14081291 crossref_primary_10_3390_agriculture14030466 crossref_primary_10_1016_j_saa_2022_121790 crossref_primary_10_1016_j_microc_2023_109461 crossref_primary_10_1016_j_saa_2021_120757 crossref_primary_10_1016_j_infrared_2023_104906 crossref_primary_10_1016_j_jafr_2023_100625 crossref_primary_10_1016_j_saa_2022_121788 crossref_primary_10_1016_j_biombioe_2023_106842 crossref_primary_10_1002_fsn3_2059 crossref_primary_10_3390_f15081309 crossref_primary_10_3390_horticulturae10111156 crossref_primary_10_1016_j_compag_2022_106934 crossref_primary_10_1016_j_lwt_2023_115150 crossref_primary_10_3390_agriculture14071184 crossref_primary_10_1002_pca_3076 crossref_primary_10_1016_j_aca_2024_342724 crossref_primary_10_1016_j_chemolab_2024_105205 crossref_primary_10_1016_j_chemolab_2020_104190 crossref_primary_10_1007_s00217_023_04298_7 crossref_primary_10_1016_j_vibspec_2023_103562 crossref_primary_10_1016_j_saa_2024_124710 crossref_primary_10_3389_fpls_2023_1121287 crossref_primary_10_1016_j_ocsci_2024_05_002 crossref_primary_10_3390_agriculture13101928 crossref_primary_10_3390_foods11162436 crossref_primary_10_1016_j_saa_2024_124396 crossref_primary_10_1016_j_compag_2022_107050 crossref_primary_10_3390_app11115103 crossref_primary_10_1016_j_foodres_2022_112192 crossref_primary_10_1016_j_infrared_2023_104958 crossref_primary_10_1016_j_microc_2025_113354 crossref_primary_10_1016_j_ijleo_2023_171110 crossref_primary_10_1080_00032719_2022_2063306 crossref_primary_10_3389_fpls_2021_759248 crossref_primary_10_1016_j_ijbiomac_2024_129421 crossref_primary_10_1016_j_fochx_2024_101574 crossref_primary_10_3390_app12020826 crossref_primary_10_1016_j_jpba_2024_116376 crossref_primary_10_1016_j_saa_2024_125217 crossref_primary_10_1016_j_talanta_2023_124310 crossref_primary_10_1016_j_jfca_2024_106346 crossref_primary_10_1039_D1AY00017A crossref_primary_10_3390_agriculture14101685 crossref_primary_10_1177_00037028211036515 crossref_primary_10_1016_j_infrared_2020_103543 crossref_primary_10_1016_j_infrared_2023_104730 crossref_primary_10_1039_D0AY00285B crossref_primary_10_1002_cem_70006 crossref_primary_10_1016_j_biosystemseng_2024_01_013 crossref_primary_10_1016_j_saa_2022_121569 crossref_primary_10_1016_j_microc_2023_109203 crossref_primary_10_1016_j_postharvbio_2020_111271 crossref_primary_10_1016_j_saa_2022_121842 crossref_primary_10_1016_j_asr_2025_01_048 crossref_primary_10_1021_acs_jchemed_2c00812 crossref_primary_10_1016_j_talanta_2024_126242 crossref_primary_10_1016_j_saa_2024_124917 crossref_primary_10_1016_j_cscee_2023_100384 |
Cites_doi | 10.1007/s00216-012-6364-1 10.1016/j.saa.2014.03.091 10.1016/0169-7439(95)80098-T 10.1016/j.aca.2015.04.045 10.1016/j.chemolab.2015.12.006 10.1002/cjoc.201180425 10.1016/j.saa.2016.03.017 10.1016/j.molstruc.2016.01.089 10.1016/j.aca.2008.04.031 10.1016/j.aca.2016.01.010 10.1366/0003702894202201 10.1016/j.talanta.2006.10.022 10.1016/j.trac.2019.01.018 10.3389/fchem.2018.00262 10.1016/j.aca.2018.01.013 10.1039/C1AY05525A 10.1016/j.saa.2018.07.094 10.1016/j.vibspec.2018.05.002 10.1016/j.aca.2016.04.029 10.1039/C6AY00731G 10.1039/c0ay00421a 10.1016/j.trac.2009.07.007 10.1016/j.aca.2019.01.022 10.1255/jnirs.32 10.1002/cem.2518 10.1021/acs.analchem.5b02832 10.1021/ar990163w 10.1016/j.snb.2018.04.093 10.1021/ac00162a020 10.1038/srep11647 10.1016/j.trac.2013.04.015 10.1016/j.aca.2010.03.036 10.1016/j.chemolab.2013.10.005 10.1016/j.chemolab.2017.02.008 10.1016/j.chemolab.2017.09.004 10.1002/cem.2922 10.1109/ACCESS.2018.2821441 10.1080/00401706.1969.10490666 10.1016/j.aca.2016.08.022 10.1016/j.chemolab.2018.08.013 10.1039/C3AY42270D 10.1016/j.aca.2011.05.048 10.1016/j.aca.2012.10.011 10.1016/j.jpba.2011.09.037 10.1021/ac60214a047 10.1366/0003702001950571 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chemolab.2019.103916 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3239 |
ExternalDocumentID | 10_1016_j_chemolab_2019_103916 S0169743919304964 |
GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABAOU ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCH SDF SDG SDP SES SPC SPCBC SSK SSW SSZ T5K UNMZH YK3 ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c312t-954c8cd49f8b1e4b522e88ce43db36712d6ee8cab633c59e8dd788ccfb6b6a9b3 |
IEDL.DBID | .~1 |
ISSN | 0169-7439 |
IngestDate | Thu Apr 24 22:54:59 EDT 2025 Tue Jul 01 03:17:14 EDT 2025 Fri Feb 23 02:49:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Full factorial design Preprocessing method Partial least squares Ensemble Multivariate calibration Near-infrared spectroscopy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-954c8cd49f8b1e4b522e88ce43db36712d6ee8cab633c59e8dd788ccfb6b6a9b3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chemolab_2019_103916 crossref_primary_10_1016_j_chemolab_2019_103916 elsevier_sciencedirect_doi_10_1016_j_chemolab_2019_103916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-15 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemometrics and intelligent laboratory systems |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Noda (bib16) 2016; 1124 Shao, Bian, Cai (bib32) 2010; 666 Brown (bib23) 2000 Bian, Li, Fan, Guo, Chang, Wang (bib3) 2016; 8 Zhao, Wu, Cheng, Shi, Qiao (bib13) 2016; 163 Li, Shao, Cai (bib27) 2007; 72 Yun, Bin, Liu, Xu, Yan, Cao, Xu (bib41) 2019; 1058 Bian, Diwu, Liu, Liu, Li, Tan (bib30) 2017 Shao, Bian, Liu, Zhang, Cai (bib28) 2010; 2 Zhang, Wang, Gao, Li, Zhang, Mao, Yu, Ding, Zhang (bib43) 2016; 151 Chen, Grant (bib24) 2012; 404 Zhao, Ma, Huang, Liu, Qiao, Wu (bib36) 2018; 6 Deng, Yun, Liang, Cao, Xu, Yi, Huang (bib46) 2015; 880 Helland, Naes, Isaksson (bib12) 1995; 29 Laxalde, Ruckebusch, Devos, Caillol, Wahl, Duponchel (bib20) 2011; 705 Gerretzen, Szymanska, Bart, Davies, van Manen, van den Heuvel, Jansen, Buydens (bib26) 2016; 938 Luo, Tan, Zhou, Liu, Xu, Song, Cui, Fu, Yang (bib33) 2013; 27 Cao, Deng, Zhu, Yao, Dong, Zhao (bib42) 2017; 31 Silalahi, Midi, Arasan, Mustafa, Caliman (bib19) 2018; 97 Xu, Yan, Cai, Yu, Jiang, Wu, Yu (bib45) 2013 Bian, Zhang, Liu, Wei, Tan, Lin, Chang, Guo (bib39) 2017; 170 Savitzky, Golay (bib9) 1964; 36 Bian, Li, Lin, Tan, Fan, Li (bib35) 2016; 925 Rinnan (bib6) 2014; 6 Kuenstner, Norris (bib47) 1994; 2 Bi, Yuan, Xiao, Wu, Shi, Xia, Chu, Zhang, Zhou (bib18) 2016; 909 Chen, Tan, Wu, Wang, Zhu (bib38) 2014; 130 Li, Jing (bib34) 2014; 130 Yun, Li, Deng, Cao (bib40) 2019; 113 Xu, Zhou, Tang, Wu, Jiang, Shen, Yu (bib44) 2008; 616 Zhu, Yuan, Song, Li, Fang, Guo, Zhu, Liu, Yan (bib21) 2018; 268 Lu, Wang, Cai, Meng, Xie, Zhao (bib17) 2012; 59 Shao, Leung, Chau (bib11) 2003; 36 Bian, Diwu, Zhang, Lin, Chen, Tan, Guo, Cheng (bib31) 2018; 1009 Rinnan, van den Berg, Engelsen (bib7) 2009; 28 Gerretzen, Szymanska, Jansen, Bart, van Manen, van den Heuvel, Buydens (bib25) 2015; 87 Xu, Ye, Yan, Shi, Cui, Fu, Yu (bib37) 2012; 754 Li (bib2) 2012; 4 Lee, Liong, Jemain (bib15) 2017; 163 Ali, Kabir, Arif, Swati, Khan, Ullah, Yu (bib10) 2018; 182 Brown, Vega-Montoto, Wentzell (bib22) 2000; 54 Zhao, Wu, Zhang, Shi, Ma, Qiao (bib1) 2015; 5 Liu, Huang, Wang, Cao (bib29) 2018; 6 Bian, Chen, Cai, Grant, Shao (bib8) 2011; 29 Liu, Wang, Li, Gao, Tan, Bian (bib4) 2019; 206 Engel, Gerretzen, Szymanska, Jansen, Downey, Blanchet, Buydens (bib5) 2013; 50 Barnes, Dhanoa, Susan (bib14) 1989; 43 Kennard, Stone (bib48) 1969; 11 Haaland, Thomas (bib49) 1988; 60 Liu (10.1016/j.chemolab.2019.103916_bib29) 2018; 6 Engel (10.1016/j.chemolab.2019.103916_bib5) 2013; 50 Zhao (10.1016/j.chemolab.2019.103916_bib13) 2016; 163 Gerretzen (10.1016/j.chemolab.2019.103916_bib26) 2016; 938 Bian (10.1016/j.chemolab.2019.103916_bib30) 2017 Bian (10.1016/j.chemolab.2019.103916_bib8) 2011; 29 Liu (10.1016/j.chemolab.2019.103916_bib4) 2019; 206 Bian (10.1016/j.chemolab.2019.103916_bib39) 2017; 170 Zhao (10.1016/j.chemolab.2019.103916_bib36) 2018; 6 Cao (10.1016/j.chemolab.2019.103916_bib42) 2017; 31 Silalahi (10.1016/j.chemolab.2019.103916_bib19) 2018; 97 Li (10.1016/j.chemolab.2019.103916_bib27) 2007; 72 Shao (10.1016/j.chemolab.2019.103916_bib11) 2003; 36 Kennard (10.1016/j.chemolab.2019.103916_bib48) 1969; 11 Kuenstner (10.1016/j.chemolab.2019.103916_bib47) 1994; 2 Luo (10.1016/j.chemolab.2019.103916_bib33) 2013; 27 Li (10.1016/j.chemolab.2019.103916_bib34) 2014; 130 Rinnan (10.1016/j.chemolab.2019.103916_bib6) 2014; 6 Bian (10.1016/j.chemolab.2019.103916_bib35) 2016; 925 Zhu (10.1016/j.chemolab.2019.103916_bib21) 2018; 268 Bian (10.1016/j.chemolab.2019.103916_bib31) 2018; 1009 Lu (10.1016/j.chemolab.2019.103916_bib17) 2012; 59 Shao (10.1016/j.chemolab.2019.103916_bib32) 2010; 666 Shao (10.1016/j.chemolab.2019.103916_bib28) 2010; 2 Yun (10.1016/j.chemolab.2019.103916_bib41) 2019; 1058 Chen (10.1016/j.chemolab.2019.103916_bib38) 2014; 130 Noda (10.1016/j.chemolab.2019.103916_bib16) 2016; 1124 Xu (10.1016/j.chemolab.2019.103916_bib45) 2013 Laxalde (10.1016/j.chemolab.2019.103916_bib20) 2011; 705 Helland (10.1016/j.chemolab.2019.103916_bib12) 1995; 29 Zhao (10.1016/j.chemolab.2019.103916_bib1) 2015; 5 Yun (10.1016/j.chemolab.2019.103916_bib40) 2019; 113 Haaland (10.1016/j.chemolab.2019.103916_bib49) 1988; 60 Bi (10.1016/j.chemolab.2019.103916_bib18) 2016; 909 Gerretzen (10.1016/j.chemolab.2019.103916_bib25) 2015; 87 Zhang (10.1016/j.chemolab.2019.103916_bib43) 2016; 151 Savitzky (10.1016/j.chemolab.2019.103916_bib9) 1964; 36 Lee (10.1016/j.chemolab.2019.103916_bib15) 2017; 163 Brown (10.1016/j.chemolab.2019.103916_bib23) 2000 Deng (10.1016/j.chemolab.2019.103916_bib46) 2015; 880 Barnes (10.1016/j.chemolab.2019.103916_bib14) 1989; 43 Xu (10.1016/j.chemolab.2019.103916_bib44) 2008; 616 Rinnan (10.1016/j.chemolab.2019.103916_bib7) 2009; 28 Bian (10.1016/j.chemolab.2019.103916_bib3) 2016; 8 Brown (10.1016/j.chemolab.2019.103916_bib22) 2000; 54 Li (10.1016/j.chemolab.2019.103916_bib2) 2012; 4 Chen (10.1016/j.chemolab.2019.103916_bib24) 2012; 404 Xu (10.1016/j.chemolab.2019.103916_bib37) 2012; 754 Ali (10.1016/j.chemolab.2019.103916_bib10) 2018; 182 |
References_xml | – volume: 5 start-page: 11647 year: 2015 ident: bib1 article-title: Optimization of parameter selection for partial least squares model development publication-title: Sci. Rep. – volume: 50 start-page: 96 year: 2013 end-page: 106 ident: bib5 article-title: Breaking with trends in pre-processing? publication-title: Trac. Trends Anal. Chem. – volume: 705 start-page: 227 year: 2011 end-page: 234 ident: bib20 article-title: Characterisation of heavy oils using near-infrared spectroscopy: optimisation of pre-processing methods and variable selection publication-title: Anal. Chim. Acta – volume: 36 start-page: 276 year: 2003 end-page: 283 ident: bib11 article-title: Wavelet: a new trend in chemistry publication-title: Accounts Chem. Res. – volume: 29 start-page: 233 year: 1995 end-page: 241 ident: bib12 article-title: Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data publication-title: Chemometr. Intell. Lab. Syst. – volume: 6 start-page: 7124 year: 2014 end-page: 7129 ident: bib6 article-title: Pre-processing in vibrational spectroscopy - when, why and how publication-title: Anal. Methods – volume: 938 start-page: 44 year: 2016 end-page: 52 ident: bib26 article-title: Boosting model performance and interpretation by entangling preprocessing selection and variable selection publication-title: Anal. Chim. Acta – volume: 11 start-page: 137 year: 1969 end-page: 148 ident: bib48 article-title: Computer aided design of experiments publication-title: Technometrics – volume: 130 start-page: 45 year: 2014 end-page: 49 ident: bib34 article-title: A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra publication-title: Chemometr. Intell. Lab. Syst. – start-page: 797302 year: 2013 ident: bib45 article-title: Nonlinear multivariate calibration of shelf life of preserved eggs (pidan) by near infrared spectroscopy: stacked least squares support vector machine with ensemble preprocessing publication-title: J. Spectrosc. – volume: 268 start-page: 299 year: 2018 end-page: 309 ident: bib21 article-title: High-speed sex identification and sorting of living silkworm pupae using near-infrared spectroscopy combined with chemometrics publication-title: Sens. Actuators B Chem. – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: bib9 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – volume: 1124 start-page: 29 year: 2016 end-page: 41 ident: bib16 article-title: Techniques useful in two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses publication-title: J. Mol. Struct. – volume: 6 start-page: 262 year: 2018 ident: bib36 article-title: Pharmaceutical analysis model robustness from bagging-PLS and PLS using systematic tracking mapping publication-title: Front. Chem. – volume: 206 start-page: 23 year: 2019 end-page: 30 ident: bib4 article-title: Rapid identification and quantification of panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 163 start-page: 64 year: 2017 end-page: 75 ident: bib15 article-title: A contemporary review on data preprocessing (DP) practice strategy in ATR-FTIR spectrum publication-title: Chemometr. Intell. Lab. Syst. – volume: 27 start-page: 198 year: 2013 end-page: 206 ident: bib33 article-title: Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression publication-title: J. Chemom. – volume: 151 start-page: 89 year: 2016 end-page: 94 ident: bib43 article-title: Improvement on enhanced Monte-Carlo outlier detection method publication-title: Chemometr. Intell. Lab. Syst. – year: 2017 ident: bib30 article-title: Ensemble calibration for the spectral quantitative analysis of complex samples publication-title: J. Chemom. – volume: 616 start-page: 138 year: 2008 end-page: 143 ident: bib44 article-title: Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration publication-title: Anal. Chim. Acta – volume: 909 start-page: 30 year: 2016 end-page: 40 ident: bib18 article-title: A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation publication-title: Anal. Chim. Acta – volume: 28 start-page: 1201 year: 2009 end-page: 1222 ident: bib7 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: Trac. Trends Anal. Chem. – volume: 31 year: 2017 ident: bib42 article-title: Ensemble partial least squares regression for descriptor selection, outlier detection, applicability domain assessment, and ensemble modeling in QSAR/QSPR modeling publication-title: J. Chemom. – volume: 59 start-page: 44 year: 2012 end-page: 49 ident: bib17 article-title: Rapid discrimination and quantification of alkaloids in Corydalis Tuber by near-infrared spectroscopy publication-title: J. Pharmaceut. Biomed. – volume: 163 start-page: 20 year: 2016 end-page: 27 ident: bib13 article-title: MDL and RMSEP assessment of spectral pretreatments by adding different noises in calibration/validation datasets publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 6 start-page: 20950 year: 2018 end-page: 20963 ident: bib29 article-title: ECoFFeS: a software using evolutionary computation for feature selection in drug discovery publication-title: IEEE Access – volume: 666 start-page: 32 year: 2010 end-page: 37 ident: bib32 article-title: An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis publication-title: Anal. Chim. Acta – volume: 113 start-page: 102 year: 2019 end-page: 115 ident: bib40 article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra publication-title: Trac. Trends Anal. Chem. – volume: 97 start-page: 55 year: 2018 end-page: 65 ident: bib19 article-title: Robust generalized multiplicative scatter correction algorithm on pretreatment of near infrared spectral data publication-title: Vib. Spectrosc. – volume: 2 start-page: 59 year: 1994 end-page: 65 ident: bib47 article-title: Spectrophotometry of human hemoglobin in the near infrared region from 1000-2500nm publication-title: J. Near Infrared Spectrosc. – volume: 43 start-page: 772 year: 1989 end-page: 777 ident: bib14 article-title: Lister standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra publication-title: Appl. Spectrosc. – volume: 182 start-page: 21 year: 2018 end-page: 30 ident: bib10 article-title: DBPPred-PDSD: machine learning approach for prediction of DNA-binding proteins using Discrete Wavelet Transform and optimized integrated features space publication-title: Chemometr. Intell. Lab. Syst. – volume: 754 start-page: 31 year: 2012 end-page: 38 ident: bib37 article-title: Combining local wavelength information and ensemble learning to enhance the specificity of class modeling techniques: identification of food geographical origins and adulteration publication-title: Anal. Chim. Acta – volume: 2 start-page: 1662 year: 2010 end-page: 1666 ident: bib28 article-title: Multivariate calibration methods in near infrared spectroscopic analysis publication-title: Anal. Methods – volume: 130 start-page: 245 year: 2014 end-page: 249 ident: bib38 article-title: Discrimination between authentic and adulterated liquors by near-infrared spectroscopy and ensemble classification publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 87 start-page: 12096 year: 2015 end-page: 12103 ident: bib25 article-title: Simple and effective way for data preprocessing selection based on design of experiments publication-title: Anal. Chem. – volume: 1058 start-page: 58 year: 2019 end-page: 69 ident: bib41 article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration publication-title: Anal. Chim. Acta – year: 2000 ident: bib23 article-title: Rational Approaches to Data Preprocessing in Multivariate Calibration – volume: 925 start-page: 16 year: 2016 end-page: 22 ident: bib35 article-title: High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples publication-title: Anal. Chim. Acta – volume: 29 start-page: 2525 year: 2011 end-page: 2532 ident: bib8 article-title: Rapid determination of metabolites in bio-fluid samples by Raman spectroscopy and optimum combinations of chemometric methods publication-title: Chin. J. Chem. – volume: 4 start-page: 254 year: 2012 end-page: 258 ident: bib2 article-title: Determination of diesel cetane number by consensus modeling based on uninformative variable elimination publication-title: Anal. Methods – volume: 880 start-page: 32 year: 2015 end-page: 41 ident: bib46 article-title: A new strategy to prevent over-fitting in partial least squares models based on model population analysis publication-title: Anal. Chim. Acta – volume: 54 start-page: 1055 year: 2000 end-page: 1068 ident: bib22 article-title: Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration publication-title: Appl. Spectrosc. – volume: 72 start-page: 217 year: 2007 end-page: 222 ident: bib27 article-title: A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples publication-title: Talanta – volume: 8 start-page: 4674 year: 2016 end-page: 4679 ident: bib3 article-title: Spectral quantitative analysis of complex samples based on extreme learning machine publication-title: Anal. Methods – volume: 1009 start-page: 20 year: 2018 end-page: 26 ident: bib31 article-title: Robust boosting neural networks with random weights for multivariate calibration of complex samples publication-title: Anal. Chim. Acta – volume: 170 start-page: 96 year: 2017 end-page: 101 ident: bib39 article-title: Rapid identification of milk samples by high and low frequency unfolded partial least squares discriminant analysis combined with near infrared spectroscopy publication-title: Chemometr. Intell. Lab. Syst. – volume: 404 start-page: 2317 year: 2012 end-page: 2327 ident: bib24 article-title: Evaluating the validity of spectral calibration models for quantitative analysis following signal preprocessing publication-title: Anal. Bioanal. Chem. – volume: 60 start-page: 1193 year: 1988 end-page: 1202 ident: bib49 article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information publication-title: Anal. Chim. – volume: 404 start-page: 2317 year: 2012 ident: 10.1016/j.chemolab.2019.103916_bib24 article-title: Evaluating the validity of spectral calibration models for quantitative analysis following signal preprocessing publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6364-1 – volume: 130 start-page: 245 year: 2014 ident: 10.1016/j.chemolab.2019.103916_bib38 article-title: Discrimination between authentic and adulterated liquors by near-infrared spectroscopy and ensemble classification publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2014.03.091 – volume: 29 start-page: 233 year: 1995 ident: 10.1016/j.chemolab.2019.103916_bib12 article-title: Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/0169-7439(95)80098-T – volume: 880 start-page: 32 year: 2015 ident: 10.1016/j.chemolab.2019.103916_bib46 article-title: A new strategy to prevent over-fitting in partial least squares models based on model population analysis publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2015.04.045 – volume: 151 start-page: 89 year: 2016 ident: 10.1016/j.chemolab.2019.103916_bib43 article-title: Improvement on enhanced Monte-Carlo outlier detection method publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.12.006 – volume: 29 start-page: 2525 year: 2011 ident: 10.1016/j.chemolab.2019.103916_bib8 article-title: Rapid determination of metabolites in bio-fluid samples by Raman spectroscopy and optimum combinations of chemometric methods publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201180425 – volume: 163 start-page: 20 year: 2016 ident: 10.1016/j.chemolab.2019.103916_bib13 article-title: MDL and RMSEP assessment of spectral pretreatments by adding different noises in calibration/validation datasets publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2016.03.017 – volume: 1124 start-page: 29 year: 2016 ident: 10.1016/j.chemolab.2019.103916_bib16 article-title: Techniques useful in two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2016.01.089 – volume: 616 start-page: 138 year: 2008 ident: 10.1016/j.chemolab.2019.103916_bib44 article-title: Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.04.031 – volume: 909 start-page: 30 year: 2016 ident: 10.1016/j.chemolab.2019.103916_bib18 article-title: A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.01.010 – volume: 43 start-page: 772 year: 1989 ident: 10.1016/j.chemolab.2019.103916_bib14 article-title: Lister standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra publication-title: Appl. Spectrosc. doi: 10.1366/0003702894202201 – volume: 72 start-page: 217 year: 2007 ident: 10.1016/j.chemolab.2019.103916_bib27 article-title: A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples publication-title: Talanta doi: 10.1016/j.talanta.2006.10.022 – volume: 113 start-page: 102 year: 2019 ident: 10.1016/j.chemolab.2019.103916_bib40 article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2019.01.018 – volume: 6 start-page: 262 year: 2018 ident: 10.1016/j.chemolab.2019.103916_bib36 article-title: Pharmaceutical analysis model robustness from bagging-PLS and PLS using systematic tracking mapping publication-title: Front. Chem. doi: 10.3389/fchem.2018.00262 – volume: 1009 start-page: 20 year: 2018 ident: 10.1016/j.chemolab.2019.103916_bib31 article-title: Robust boosting neural networks with random weights for multivariate calibration of complex samples publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.01.013 – volume: 4 start-page: 254 year: 2012 ident: 10.1016/j.chemolab.2019.103916_bib2 article-title: Determination of diesel cetane number by consensus modeling based on uninformative variable elimination publication-title: Anal. Methods doi: 10.1039/C1AY05525A – volume: 206 start-page: 23 year: 2019 ident: 10.1016/j.chemolab.2019.103916_bib4 article-title: Rapid identification and quantification of panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2018.07.094 – volume: 97 start-page: 55 year: 2018 ident: 10.1016/j.chemolab.2019.103916_bib19 article-title: Robust generalized multiplicative scatter correction algorithm on pretreatment of near infrared spectral data publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2018.05.002 – volume: 925 start-page: 16 year: 2016 ident: 10.1016/j.chemolab.2019.103916_bib35 article-title: High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.04.029 – volume: 8 start-page: 4674 year: 2016 ident: 10.1016/j.chemolab.2019.103916_bib3 article-title: Spectral quantitative analysis of complex samples based on extreme learning machine publication-title: Anal. Methods doi: 10.1039/C6AY00731G – volume: 2 start-page: 1662 year: 2010 ident: 10.1016/j.chemolab.2019.103916_bib28 article-title: Multivariate calibration methods in near infrared spectroscopic analysis publication-title: Anal. Methods doi: 10.1039/c0ay00421a – volume: 28 start-page: 1201 year: 2009 ident: 10.1016/j.chemolab.2019.103916_bib7 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2009.07.007 – volume: 1058 start-page: 58 year: 2019 ident: 10.1016/j.chemolab.2019.103916_bib41 article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.01.022 – volume: 2 start-page: 59 year: 1994 ident: 10.1016/j.chemolab.2019.103916_bib47 article-title: Spectrophotometry of human hemoglobin in the near infrared region from 1000-2500nm publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.32 – volume: 27 start-page: 198 year: 2013 ident: 10.1016/j.chemolab.2019.103916_bib33 article-title: Quantitative analysis of tea using ytterbium-based internal standard near-infrared spectroscopy coupled with boosting least-squares support vector regression publication-title: J. Chemom. doi: 10.1002/cem.2518 – start-page: 797302 year: 2013 ident: 10.1016/j.chemolab.2019.103916_bib45 article-title: Nonlinear multivariate calibration of shelf life of preserved eggs (pidan) by near infrared spectroscopy: stacked least squares support vector machine with ensemble preprocessing publication-title: J. Spectrosc. – volume: 87 start-page: 12096 year: 2015 ident: 10.1016/j.chemolab.2019.103916_bib25 article-title: Simple and effective way for data preprocessing selection based on design of experiments publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b02832 – volume: 36 start-page: 276 year: 2003 ident: 10.1016/j.chemolab.2019.103916_bib11 article-title: Wavelet: a new trend in chemistry publication-title: Accounts Chem. Res. doi: 10.1021/ar990163w – volume: 268 start-page: 299 year: 2018 ident: 10.1016/j.chemolab.2019.103916_bib21 article-title: High-speed sex identification and sorting of living silkworm pupae using near-infrared spectroscopy combined with chemometrics publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.04.093 – volume: 60 start-page: 1193 year: 1988 ident: 10.1016/j.chemolab.2019.103916_bib49 article-title: Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information publication-title: Anal. Chim. doi: 10.1021/ac00162a020 – volume: 5 start-page: 11647 year: 2015 ident: 10.1016/j.chemolab.2019.103916_bib1 article-title: Optimization of parameter selection for partial least squares model development publication-title: Sci. Rep. doi: 10.1038/srep11647 – volume: 50 start-page: 96 year: 2013 ident: 10.1016/j.chemolab.2019.103916_bib5 article-title: Breaking with trends in pre-processing? publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2013.04.015 – volume: 666 start-page: 32 year: 2010 ident: 10.1016/j.chemolab.2019.103916_bib32 article-title: An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2010.03.036 – volume: 130 start-page: 45 year: 2014 ident: 10.1016/j.chemolab.2019.103916_bib34 article-title: A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.10.005 – volume: 163 start-page: 64 year: 2017 ident: 10.1016/j.chemolab.2019.103916_bib15 article-title: A contemporary review on data preprocessing (DP) practice strategy in ATR-FTIR spectrum publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.02.008 – volume: 170 start-page: 96 year: 2017 ident: 10.1016/j.chemolab.2019.103916_bib39 article-title: Rapid identification of milk samples by high and low frequency unfolded partial least squares discriminant analysis combined with near infrared spectroscopy publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.09.004 – volume: 31 year: 2017 ident: 10.1016/j.chemolab.2019.103916_bib42 article-title: Ensemble partial least squares regression for descriptor selection, outlier detection, applicability domain assessment, and ensemble modeling in QSAR/QSPR modeling publication-title: J. Chemom. doi: 10.1002/cem.2922 – year: 2000 ident: 10.1016/j.chemolab.2019.103916_bib23 – volume: 6 start-page: 20950 year: 2018 ident: 10.1016/j.chemolab.2019.103916_bib29 article-title: ECoFFeS: a software using evolutionary computation for feature selection in drug discovery publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2821441 – volume: 11 start-page: 137 year: 1969 ident: 10.1016/j.chemolab.2019.103916_bib48 article-title: Computer aided design of experiments publication-title: Technometrics doi: 10.1080/00401706.1969.10490666 – volume: 938 start-page: 44 year: 2016 ident: 10.1016/j.chemolab.2019.103916_bib26 article-title: Boosting model performance and interpretation by entangling preprocessing selection and variable selection publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.08.022 – volume: 182 start-page: 21 year: 2018 ident: 10.1016/j.chemolab.2019.103916_bib10 article-title: DBPPred-PDSD: machine learning approach for prediction of DNA-binding proteins using Discrete Wavelet Transform and optimized integrated features space publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.08.013 – volume: 6 start-page: 7124 year: 2014 ident: 10.1016/j.chemolab.2019.103916_bib6 article-title: Pre-processing in vibrational spectroscopy - when, why and how publication-title: Anal. Methods doi: 10.1039/C3AY42270D – volume: 705 start-page: 227 year: 2011 ident: 10.1016/j.chemolab.2019.103916_bib20 article-title: Characterisation of heavy oils using near-infrared spectroscopy: optimisation of pre-processing methods and variable selection publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.05.048 – volume: 754 start-page: 31 year: 2012 ident: 10.1016/j.chemolab.2019.103916_bib37 article-title: Combining local wavelength information and ensemble learning to enhance the specificity of class modeling techniques: identification of food geographical origins and adulteration publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.10.011 – volume: 59 start-page: 44 year: 2012 ident: 10.1016/j.chemolab.2019.103916_bib17 article-title: Rapid discrimination and quantification of alkaloids in Corydalis Tuber by near-infrared spectroscopy publication-title: J. Pharmaceut. Biomed. doi: 10.1016/j.jpba.2011.09.037 – volume: 36 start-page: 1627 year: 1964 ident: 10.1016/j.chemolab.2019.103916_bib9 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 54 start-page: 1055 year: 2000 ident: 10.1016/j.chemolab.2019.103916_bib22 article-title: Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration publication-title: Appl. Spectrosc. doi: 10.1366/0003702001950571 – year: 2017 ident: 10.1016/j.chemolab.2019.103916_bib30 article-title: Ensemble calibration for the spectral quantitative analysis of complex samples publication-title: J. Chemom. |
SSID | ssj0016941 |
Score | 2.561227 |
Snippet | Preprocessing of raw near-infrared (NIR) spectra is typically required prior to multivariate calibration since the measured spectra of complex samples are... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103916 |
SubjectTerms | Ensemble Full factorial design Multivariate calibration Near-infrared spectroscopy Partial least squares Preprocessing method |
Title | A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples |
URI | https://dx.doi.org/10.1016/j.chemolab.2019.103916 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EHtpL6ZPaF3voNWqym3X3KFKxLfXSCt5CdrMLikZrFNpLf3tn8hALBQ89BUImCZNh5hsy3zeEPMjYBI67wLPKQYPC29rTfkd4TDoO-MSGMkai8OtQDEb8eRyOa6RXcWFwrLLM_UVOz7N1eaZVerO1nExab6gjgnAaIAjAXIGaoJx3MMqb39sxDx-JmoW-t_Lw6h2W8LQJfplDB6lxxEsh_1zh3vO_CtRO0emfkOMSLdJu8UKnpGbTM3LYq5a0nZNFl2b5JhtIWhQ6UjvXM0uXKFWZEwCgMNGsEKD9ooBPaQqR7UFUrXDwnOY8yxU84WMTpzndDO8Tl0IldOFoPnJuP2kW4zG7IKP-43tv4JU7FDzD_GDtqZAb3E-knNS-5RrglpXSWM4SzUTHDxJhrTSxFoyZUFmZJNAUG-O00CJWml2SerpI7RWhwpcJayehNcqhzJpi0jgT4I9DSFWi0yBh5bjIlALjuOdiFlWTZNOocniEDo8KhzdIa2u3LCQ29lqo6rtEv4Ilgjqwx_b6H7Y35CjAdhv3wYS3pL5ebewdYJK1vs-D7p4cdJ9eBsMfwbXkdQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qe9CL-MT63IPXWJNNtrvHUpRoay8qeAvZzS60aFr7AP33zuRRFAQPngKBScJkmPmGne8bgEuZmsCFLvCsctighNfa035XeFy6EPGJjWRKROGHkYifw_uX6KUB_ZoLQ2OVVe4vc3qRras7ncqbndl43HkkHRGC0whBEOaKcANapE4VNaHVuxvEo_VhAnE1S4lv5ZHBN6Lw5Apd84ZNpKYpL0UUdEWrz3-rUd_qzu0ObFeAkfXKb9qFhs33YLNf72nbh2mPLYplNpi3GDal9k2_WjYjtcqCA4C1iS1KDdpPhhCV5RjcHgbWnGbPWUG1nOMb3ldpXjDO6DlppVXCpo4VU-f2gy1Sui4O4Pn25qkfe9UaBc9wP1h6KgoNrShSTmrfhhoRl5XS2JBnmouuH2TCWmlSLTg3kbIyy7AvNsZpoUWqND-EZj7N7REw4cuMX2eRNcqR0pri0jgT0NkhZivRbUNUOy4xlcY4rbp4TephsklSOzwhhyelw9vQWdvNSpWNPy1U_V-SH_GSYCn4w_b4H7YXsBk_PQyT4d1ocAJbAXXftB4mOoXmcr6yZwhRlvq8CsEvlWTnJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+selective+ensemble+preprocessing+strategy+for+near-infrared+spectral+quantitative+analysis+of+complex+samples&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Bian%2C+Xihui&rft.au=Wang%2C+Kaiyi&rft.au=Tan%2C+Erxuan&rft.au=Diwu%2C+Pengyao&rft.date=2020-02-15&rft.pub=Elsevier+B.V&rft.issn=0169-7439&rft.eissn=1873-3239&rft.volume=197&rft_id=info:doi/10.1016%2Fj.chemolab.2019.103916&rft.externalDocID=S0169743919304964 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |