Prediction of mechanical response of hexagonal honeycomb SPS blast wall under explosive loading: In-depth review and empirical formula

Despite comprehensive prevention strategies, offshore operations consistently grapple with health, safety, and environmental (HSE) challenges. Though explosions on offshore structures are rare, their devastating impact cannot be understated. Blast walls, functioning as pivotal passive barriers, play...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 293; p. 116578
Main Authors Kim, Do Kyun, Looi, Chee Kean, Topa, Ameen, Cho, Nak Kyun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite comprehensive prevention strategies, offshore operations consistently grapple with health, safety, and environmental (HSE) challenges. Though explosions on offshore structures are rare, their devastating impact cannot be understated. Blast walls, functioning as pivotal passive barriers, play a crucial role in protecting the topsides of these structures by dissipating explosive energy. Sandwich panel structures (SPS), with their lightweight attributes, enhanced bending rigidity and exceptional energy absorption, are a cost-effective countermeasure. This study introduces a groundbreaking design guideline, anchored in the LS-Dyna nonlinear finite-element method (NLFEM), tailored for hexagonal SPS offshore blast walls under explosive strains. Our rigorous numerical simulations, encompassing 450 varied scenarios, meticulously evaluated an array of geometric configurations and explosive strengths (spanning from 1 kg to 3 kg of TNT). From these simulations, crucial parameters affecting maximum mid-span plate deflection were discerned. In addition to these simulations, our research offers in-depth technical reviews, shedding light on the nuances of the subject. An empirical formula was subsequently formulated to anticipate this deflection, corroborating its efficacy by FE simulation outcomes. This work provides invaluable guidance for refining early-stage offshore blast wall design. •An in-depth technical reviews on the mechanical response of blast wall by sandwich panel system (SPS) is conducted.•A useful empirical formula is developed and can be utilised in the Pre-FEED stage in predicting the maximum deflection of the blast wall.•The proposed diagram may help to optimise the topside space of the offshore platform.
AbstractList Despite comprehensive prevention strategies, offshore operations consistently grapple with health, safety, and environmental (HSE) challenges. Though explosions on offshore structures are rare, their devastating impact cannot be understated. Blast walls, functioning as pivotal passive barriers, play a crucial role in protecting the topsides of these structures by dissipating explosive energy. Sandwich panel structures (SPS), with their lightweight attributes, enhanced bending rigidity and exceptional energy absorption, are a cost-effective countermeasure. This study introduces a groundbreaking design guideline, anchored in the LS-Dyna nonlinear finite-element method (NLFEM), tailored for hexagonal SPS offshore blast walls under explosive strains. Our rigorous numerical simulations, encompassing 450 varied scenarios, meticulously evaluated an array of geometric configurations and explosive strengths (spanning from 1 kg to 3 kg of TNT). From these simulations, crucial parameters affecting maximum mid-span plate deflection were discerned. In addition to these simulations, our research offers in-depth technical reviews, shedding light on the nuances of the subject. An empirical formula was subsequently formulated to anticipate this deflection, corroborating its efficacy by FE simulation outcomes. This work provides invaluable guidance for refining early-stage offshore blast wall design. •An in-depth technical reviews on the mechanical response of blast wall by sandwich panel system (SPS) is conducted.•A useful empirical formula is developed and can be utilised in the Pre-FEED stage in predicting the maximum deflection of the blast wall.•The proposed diagram may help to optimise the topside space of the offshore platform.
ArticleNumber 116578
Author Looi, Chee Kean
Topa, Ameen
Kim, Do Kyun
Cho, Nak Kyun
Author_xml – sequence: 1
  givenname: Do Kyun
  orcidid: 0000-0001-5735-4625
  surname: Kim
  fullname: Kim, Do Kyun
  email: do.kim@snu.ac.kr
  organization: Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, Republic of Korea
– sequence: 2
  givenname: Chee Kean
  surname: Looi
  fullname: Looi, Chee Kean
  organization: Ocean and Ship Research Group, Department of Civil and Environmental Engineering, Petronas University of Technology, Seri Iskandar, Perak, Malaysia
– sequence: 3
  givenname: Ameen
  orcidid: 0000-0001-5579-1514
  surname: Topa
  fullname: Topa, Ameen
  organization: Department of Maritime Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
– sequence: 4
  givenname: Nak Kyun
  orcidid: 0000-0001-6836-8539
  surname: Cho
  fullname: Cho, Nak Kyun
  email: nkcho@seoultech.ac.kr
  organization: Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul, Republic of Korea
BookMark eNqFkM1KxDAUhYOM4Dj6CpIX6JjbNm0qLhTxZ2BAQV2HNL2dyZAmJal_L-Bz23F048bVhQPfOdzvkEycd0jICbA5MChON3OvUTl0q3nK0mwOUPBS7JEpiDJLeMrFhEwZS6tEMBAH5DDGDWOsKFg2JZ8PARujB-Md9S3tUK-VM1pZGjD23kXcxmt8VyvvxnQ9bn9o39X08eGR1lbFgb4pa-mLazBQfO-tj-YVqfWqMW51RhcuabAf1mPhq8E3qlxDsetN-F5pfeherDoi-62yEY9_7ow831w_Xd0ly_vbxdXlMtEZpENS8VyhKKGqVQ1agOB5nnKoBBQlVqyENq85b_OmblvMOAhIRcOycoRA8azKZuR816uDjzFgK7UZ1Pb7IShjJTC5dSo38tep3DqVO6cjXvzB-2A6FT7-By92II7PjRqCjNqg06P7gHqQjTf_VXwBqQ6Zhg
CitedBy_id crossref_primary_10_1016_j_istruc_2024_107698
crossref_primary_10_1016_j_engstruct_2025_119877
crossref_primary_10_1016_j_tws_2024_112144
crossref_primary_10_1177_14644207241266081
Cites_doi 10.1177/1099636210368470
10.1016/j.compositesb.2018.03.005
10.1016/S0143-974X(99)00022-X
10.1016/j.compstruct.2020.112711
10.1016/j.advengsoft.2018.09.011
10.12989/sem.2009.32.2.351
10.1016/j.compstruct.2022.116088
10.1016/j.compstruct.2017.04.037
10.1080/17445302.2018.1488340
10.1016/j.matdes.2009.10.058
10.1243/095440503771909944
10.1016/j.ijimpeng.2007.11.003
10.12989/sem.2014.51.5.755
10.1016/j.ijnaoe.2023.100562
10.1016/j.compstruct.2009.04.009
10.1016/j.compstruct.2010.03.002
10.1115/1.1629109
10.1007/s10853-010-4605-2
10.1016/j.ast.2019.01.031
10.3390/jmse10111743
10.1016/j.marstruc.2013.02.001
10.1080/17445302.2015.1035164
10.1016/j.ijimpeng.2009.11.003
10.3390/jmse8100766
10.1016/j.oceaneng.2019.106522
10.1016/j.ijmecsci.2021.106457
10.1016/j.ijimpeng.2022.104336
10.1590/1679-78255172
10.1016/j.ijimpeng.2008.12.004
10.1016/j.ijimpeng.2018.08.007
10.3390/jmse8080605
10.3390/met9121350
10.1016/j.conbuildmat.2012.04.081
10.1016/j.marstruc.2008.04.001
10.1016/j.oceaneng.2022.113393
10.1007/s00158-012-0845-x
10.1016/j.ijmecsci.2018.05.038
10.1016/j.corsci.2012.05.015
10.1016/j.tws.2019.04.029
10.1016/j.ijimpeng.2016.03.001
10.1016/j.oceaneng.2012.12.005
10.1016/j.proeng.2016.04.164
10.1002/srin.200705902
10.1016/j.ijmecsci.2020.106105
10.1016/j.ijimpeng.2005.01.005
10.1016/j.matdes.2008.04.027
10.1016/S0022-5096(00)00069-7
10.1016/j.dt.2019.09.010
10.1016/j.marstruc.2015.09.006
10.1016/j.compstruct.2009.04.010
10.1016/j.engstruct.2013.08.021
10.1177/1099636220975450
10.1016/j.ijimpeng.2018.10.003
10.1016/j.ijimpeng.2016.10.009
10.1016/j.ijnaoe.2020.06.007
10.1177/1099636220961756
10.1016/j.ijimpeng.2006.11.003
10.1016/j.ijimpeng.2007.06.008
10.1590/1679-78255351
10.1016/j.ijnaoe.2020.07.002
10.1016/j.compositesa.2015.09.025
10.1016/j.compstruct.2013.10.034
10.1080/17445302.2016.1262729
10.1016/j.tws.2021.108724
10.1016/j.compstruct.2017.03.018
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2023.116578
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2023_116578
S0029801823029621
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SSH
WUQ
ID FETCH-LOGICAL-c312t-954ae8719bab1c81854425198167e9071f4b55f4dbffe3518128d037ae81a5393
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Tue Jul 01 02:15:20 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Sat Aug 10 15:31:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Blast loading
Finite element simulations
Blast wall
Sandwich panel system
Metallic structures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-954ae8719bab1c81854425198167e9071f4b55f4dbffe3518128d037ae81a5393
ORCID 0000-0001-6836-8539
0000-0001-5579-1514
0000-0001-5735-4625
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2023_116578
crossref_primary_10_1016_j_oceaneng_2023_116578
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_116578
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lan, Feng, Huang, Zhou (bib40) 2019; 87
Chen, Cheng, Zhang, Cai, Liu (bib9) 2021; 201
Choung, Nam, Lee (bib12) 2013; 32
Czujko (bib15) 2001
Stanczak, Fras, Blanc, Pawlowski, Rusinek (bib75) 2019; 9
Yassin, Abidin, Kasiman, Mohd Noor, Abd Nazir (bib85) 2020
Kim, Wong, Hwang, Li, Cho (bib93) 2024
Paik, Kim, Lee, Jung, Kim (bib62) 2017; 12
Sohn, Kim, Kim, Paik (bib72) 2013; 60
Syed, Mohamed, Rahman (bib79) 2016; 145
Boh, Choo, Louca (bib4) 2003; 1
Khaire, Tiwari, Rathod, Iqbal, Topa (bib30) 2022; 171
Kim, Ng, Hwang, Sohn, Lee (bib34) 2018; 15
Zhu, Zhao, Lu, Gad (bib89) 2009; 36
Ebrahimi, Keyvani Someh, Norato, Vaziri (bib20) 2018; 144
Hyde (bib26) 1988
Paik, Kim (bib61) 2012; 63
Kim, Wong, Cho (bib35) 2020; 12
Liao (bib47) 2017
Nemat-Nasser, Guo, Kihl (bib57) 2001; 49
Zhu, Lu, Ruan, Shu (bib86) 2009; 32
Theobald, Langdon, Nurick, Pillay, Heyns, Merrett (bib81) 2010; 92
Choi, Shin, Choung, Kim, Seo, Kim, Wong, Kim (bib11) 2016
Imbalzano, Linforth, Ngo, Lee, Tran (bib27) 2018; 183
Wong, Kim (bib83) 2018; 126
Mays, Smith, Smith (bib54) 1995
Kuntjoro (bib39) 2005
Kim, Ng, Hwang (bib33) 2018; 68
Lin, Han, Yang, Zhang, Luan, Han, Xu, Zhang (bib48) 2022; 10
Karagiozova, Nurick, Langdon (bib29) 2009; 91
(bib68) 1992
Sun, Chen, Wang, Hazell, Li (bib78) 2018; 122
Brewerton (bib7) 1999
Zhu, Wang, Lu, Nurick (bib87) 2010; 37
Maurya, Singh (bib53) 2015; 2
Nurick, Langdon, Chi, Jacob (bib59) 2009; 91
Hagan, Jeswiet (bib25) 2003; 217
Zhu, Zhao, Lu, Wang (bib90) 2008; 35
Liu, Wang, Hui (bib49) 2018; 145
Rajendran, Lee (bib66) 2009; 22
Kim, Lim, Yu (bib32) 2019; 192
Sivaprasad, Lekkala, Latheef, Seo, Yoo, Jin, Kim (bib92) 2023; 268
Yassin, Abidin, Kasiman, Mohd Noor, Abd Nazir (bib84) 2018
Gungor, Topa, Kucukyildirim (bib24) 2021
Nayak, Singh, Belegundu, Yen (bib56) 2013; 47
Cullen (bib91) 1993; 49
Groeneveld (bib23) 2016
(bib19) 2013
Park, Cho (bib64) 2006; 32
Chi, Langdon, Nurick (bib10) 2010; 31
Pan, Louca (bib63) 1999; 52
Naik Parrikar, Kishore, Tilton, Shukla (bib55) 2022; 169
Wang, Qin, Wang, Yu, Wang, Zhang, Wang (bib82) 2017; 105
Command (bib13) 1974
Cormie, Mays, Smith (bib14) 2009
Li, Zhang, Wang, Wu, Zhao (bib46) 2014; 108
Langdon, Nurick, Yahya, Cantwell (bib42) 2010; 12
Sun, Zhang, Li, Fang, Wang, Li (bib77) 2019; 142
Zhu, Wang, Lu, Zhao (bib88) 2009; 30
(bib18) 2010
Larour, Rusinek, Klepaczko, Bleck (bib43) 2007; 78
Sohn, Kim, Seong, Kim, Ha, Seo, Paik (bib74) 2014; 51
Li, Li, Wang, Wu, Lu, Zhao (bib45) 2017; 173
Kundu, Chakraborti (bib38) 2010; 45
Oh, Race, Oterkus, Koo (bib60) 2020; 8
Lan, Huang, Zhou, Feng (bib41) 2020; 16
Dharmasena, Wadley, Xue, Hutchinson (bib16) 2008; 35
Fleck, Deshpande (bib22) 2004; 71
Sohn, Kim (bib71) 2019; 16
Kim, Yu, Lim, Cho (bib37) 2020; 8
Li, Li, Wang, Wu, Lu, Zhao (bib44) 2016; 80
Arifurrahman, Critchley, Horsfall (bib2) 2021; 23
Qi, Pei, Remennikov, Yang, Liu, Wang, Liao (bib65) 2020; 252
Sochet (bib70) 2017
Biggs (bib3) 1964
Kim, Wong, Lee, Yu, Kim (bib36) 2019; 14
Ma, Li, Li, Li, Wang, Wu (bib52) 2019; 123
(bib17) 2011
Boh, Choo, Louca (bib5) 2003
Fan, Liu, Xu (bib21) 2016; 93
Louca, Boh (bib50) 2004
Tabatabaei, Volz (bib80) 2012
Kim, Lim, Cho (bib31) 2020; 12
Slavik (bib69) 2012
Cadoni, Fenu, Forni (bib8) 2012; 35
Remennikov, Rose (bib67) 2007; 34
Sohn, Kim, Seo, Kim, Paik (bib73) 2016; 11
Alberdi, Przywara, Khandelwal (bib1) 2013; 56
Bohara, Linforth, Nguyen, Ghazlan, Ngo (bib6) 2022; 299
Storheim, Amdahl, Martens (bib76) 2015; 44
Lv, Li, Dong (bib51) 2021; 191
Ng (bib58) 2018
Kalubadanage, Remennikov, Ngo, Qi (bib28) 2021; 23
Zhu (10.1016/j.oceaneng.2023.116578_bib90) 2008; 35
Lv (10.1016/j.oceaneng.2023.116578_bib51) 2021; 191
Arifurrahman (10.1016/j.oceaneng.2023.116578_bib2) 2021; 23
Kim (10.1016/j.oceaneng.2023.116578_bib37) 2020; 8
Liao (10.1016/j.oceaneng.2023.116578_bib47) 2017
Louca (10.1016/j.oceaneng.2023.116578_bib50) 2004
Fleck (10.1016/j.oceaneng.2023.116578_bib22) 2004; 71
Sivaprasad (10.1016/j.oceaneng.2023.116578_bib92) 2023; 268
(10.1016/j.oceaneng.2023.116578_bib17) 2011
Lan (10.1016/j.oceaneng.2023.116578_bib41) 2020; 16
Liu (10.1016/j.oceaneng.2023.116578_bib49) 2018; 145
Zhu (10.1016/j.oceaneng.2023.116578_bib86) 2009; 32
Boh (10.1016/j.oceaneng.2023.116578_bib4) 2003; 1
Kim (10.1016/j.oceaneng.2023.116578_bib32) 2019; 192
Cormie (10.1016/j.oceaneng.2023.116578_bib14) 2009
Tabatabaei (10.1016/j.oceaneng.2023.116578_bib80) 2012
Theobald (10.1016/j.oceaneng.2023.116578_bib81) 2010; 92
Cadoni (10.1016/j.oceaneng.2023.116578_bib8) 2012; 35
Nurick (10.1016/j.oceaneng.2023.116578_bib59) 2009; 91
Cullen (10.1016/j.oceaneng.2023.116578_bib91) 1993; 49
Rajendran (10.1016/j.oceaneng.2023.116578_bib66) 2009; 22
Zhu (10.1016/j.oceaneng.2023.116578_bib89) 2009; 36
Karagiozova (10.1016/j.oceaneng.2023.116578_bib29) 2009; 91
Command (10.1016/j.oceaneng.2023.116578_bib13) 1974
Maurya (10.1016/j.oceaneng.2023.116578_bib53) 2015; 2
Slavik (10.1016/j.oceaneng.2023.116578_bib69) 2012
Sohn (10.1016/j.oceaneng.2023.116578_bib72) 2013; 60
Gungor (10.1016/j.oceaneng.2023.116578_bib24) 2021
Oh (10.1016/j.oceaneng.2023.116578_bib60) 2020; 8
Storheim (10.1016/j.oceaneng.2023.116578_bib76) 2015; 44
Bohara (10.1016/j.oceaneng.2023.116578_bib6) 2022; 299
Nemat-Nasser (10.1016/j.oceaneng.2023.116578_bib57) 2001; 49
Pan (10.1016/j.oceaneng.2023.116578_bib63) 1999; 52
Sochet (10.1016/j.oceaneng.2023.116578_bib70) 2017
Hagan (10.1016/j.oceaneng.2023.116578_bib25) 2003; 217
Fan (10.1016/j.oceaneng.2023.116578_bib21) 2016; 93
Chi (10.1016/j.oceaneng.2023.116578_bib10) 2010; 31
Kim (10.1016/j.oceaneng.2023.116578_bib93) 2024
Kundu (10.1016/j.oceaneng.2023.116578_bib38) 2010; 45
Sun (10.1016/j.oceaneng.2023.116578_bib77) 2019; 142
Paik (10.1016/j.oceaneng.2023.116578_bib62) 2017; 12
Sun (10.1016/j.oceaneng.2023.116578_bib78) 2018; 122
Wong (10.1016/j.oceaneng.2023.116578_bib83) 2018; 126
Biggs (10.1016/j.oceaneng.2023.116578_bib3) 1964
Larour (10.1016/j.oceaneng.2023.116578_bib43) 2007; 78
Nayak (10.1016/j.oceaneng.2023.116578_bib56) 2013; 47
Khaire (10.1016/j.oceaneng.2023.116578_bib30) 2022; 171
Groeneveld (10.1016/j.oceaneng.2023.116578_bib23) 2016
Alberdi (10.1016/j.oceaneng.2023.116578_bib1) 2013; 56
Hyde (10.1016/j.oceaneng.2023.116578_bib26) 1988
Li (10.1016/j.oceaneng.2023.116578_bib46) 2014; 108
Sohn (10.1016/j.oceaneng.2023.116578_bib73) 2016; 11
Brewerton (10.1016/j.oceaneng.2023.116578_bib7) 1999
Li (10.1016/j.oceaneng.2023.116578_bib44) 2016; 80
Kim (10.1016/j.oceaneng.2023.116578_bib35) 2020; 12
Kim (10.1016/j.oceaneng.2023.116578_bib36) 2019; 14
Kuntjoro (10.1016/j.oceaneng.2023.116578_bib39) 2005
Remennikov (10.1016/j.oceaneng.2023.116578_bib67) 2007; 34
Zhu (10.1016/j.oceaneng.2023.116578_bib87) 2010; 37
Wang (10.1016/j.oceaneng.2023.116578_bib82) 2017; 105
Paik (10.1016/j.oceaneng.2023.116578_bib61) 2012; 63
Dharmasena (10.1016/j.oceaneng.2023.116578_bib16) 2008; 35
Li (10.1016/j.oceaneng.2023.116578_bib45) 2017; 173
Yassin (10.1016/j.oceaneng.2023.116578_bib85) 2020
Choi (10.1016/j.oceaneng.2023.116578_bib11) 2016
(10.1016/j.oceaneng.2023.116578_bib19) 2013
Ebrahimi (10.1016/j.oceaneng.2023.116578_bib20) 2018; 144
Ng (10.1016/j.oceaneng.2023.116578_bib58) 2018
Imbalzano (10.1016/j.oceaneng.2023.116578_bib27) 2018; 183
Yassin (10.1016/j.oceaneng.2023.116578_bib84) 2018
Kim (10.1016/j.oceaneng.2023.116578_bib34) 2018; 15
Boh (10.1016/j.oceaneng.2023.116578_bib5) 2003
Kim (10.1016/j.oceaneng.2023.116578_bib33) 2018; 68
Stanczak (10.1016/j.oceaneng.2023.116578_bib75) 2019; 9
Syed (10.1016/j.oceaneng.2023.116578_bib79) 2016; 145
Naik Parrikar (10.1016/j.oceaneng.2023.116578_bib55) 2022; 169
Choung (10.1016/j.oceaneng.2023.116578_bib12) 2013; 32
(10.1016/j.oceaneng.2023.116578_bib68) 1992
Sohn (10.1016/j.oceaneng.2023.116578_bib71) 2019; 16
Zhu (10.1016/j.oceaneng.2023.116578_bib88) 2009; 30
Czujko (10.1016/j.oceaneng.2023.116578_bib15) 2001
Lin (10.1016/j.oceaneng.2023.116578_bib48) 2022; 10
Ma (10.1016/j.oceaneng.2023.116578_bib52) 2019; 123
Mays (10.1016/j.oceaneng.2023.116578_bib54) 1995
Park (10.1016/j.oceaneng.2023.116578_bib64) 2006; 32
Langdon (10.1016/j.oceaneng.2023.116578_bib42) 2010; 12
Kalubadanage (10.1016/j.oceaneng.2023.116578_bib28) 2021; 23
Sohn (10.1016/j.oceaneng.2023.116578_bib74) 2014; 51
Lan (10.1016/j.oceaneng.2023.116578_bib40) 2019; 87
Qi (10.1016/j.oceaneng.2023.116578_bib65) 2020; 252
(10.1016/j.oceaneng.2023.116578_bib18) 2010
Kim (10.1016/j.oceaneng.2023.116578_bib31) 2020; 12
Chen (10.1016/j.oceaneng.2023.116578_bib9) 2021; 201
References_xml – year: 2013
  ident: bib19
  article-title: Determination of Structural Capacity by Non-linear FE Analysis Methods
– volume: 60
  start-page: 149
  year: 2013
  end-page: 162
  ident: bib72
  article-title: Nonlinear structural consequence analysis of FPSO topside blastwalls
  publication-title: Ocean Eng.
– volume: 217
  start-page: 1571
  year: 2003
  end-page: 1579
  ident: bib25
  article-title: Effect of wall angle on Al 3003 strain hardening for parts formed by computer numerical control incremental forming
  publication-title: Proc. IME B J. Eng. Manufact.
– volume: 122
  start-page: 119
  year: 2018
  end-page: 136
  ident: bib78
  article-title: High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations
  publication-title: Int. J. Impact Eng.
– volume: 92
  start-page: 2465
  year: 2010
  end-page: 2475
  ident: bib81
  article-title: Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading
  publication-title: Compos. Struct.
– volume: 171
  year: 2022
  ident: bib30
  article-title: Perforation and energy dissipation behaviour of honeycomb core cylindrical sandwich shell subjected to conical shape projectile at high velocity impact
  publication-title: Thin-Walled Struct.
– volume: 191
  year: 2021
  ident: bib51
  article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson's ratio
  publication-title: Int. J. Mech. Sci.
– volume: 31
  start-page: 1887
  year: 2010
  end-page: 1899
  ident: bib10
  article-title: The influence of core height and face plate thickness on the response of honeycomb sandwich panels subjected to blast loading
  publication-title: Mater. Des.
– year: 2020
  ident: bib85
  article-title: 2D Finite Element Formulations for Heat, Solid and Fluid (With Matlab)
– volume: 32
  start-page: 351
  year: 2009
  end-page: 370
  ident: bib86
  article-title: Tearing of metallic sandwich panels subjected to air shock loading
  publication-title: Struct. Eng. Mech.
– volume: 142
  start-page: 499
  year: 2019
  end-page: 515
  ident: bib77
  article-title: Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading
  publication-title: Thin-Walled Struct.
– volume: 105
  start-page: 24
  year: 2017
  end-page: 38
  ident: bib82
  article-title: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations
  publication-title: Int. J. Impact Eng.
– volume: 12
  start-page: 657
  year: 2020
  end-page: 666
  ident: bib35
  article-title: An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation
  publication-title: Int. J. Nav. Archit. Ocean Eng.
– volume: 49
  year: 1993
  ident: bib91
  article-title: The public inquiry into the Piper Alpha disaster
  publication-title: Drill. Contractor
– volume: 91
  start-page: 442
  year: 2009
  end-page: 450
  ident: bib29
  article-title: Behaviour of sandwich panels subject to intense air blasts – Part 2: numerical simulation
  publication-title: Compos. Struct.
– volume: 252
  year: 2020
  ident: bib65
  article-title: Parametric study and optimization of the protect system containing a re-entrant hexagon cored sandwich panel under blast impact
  publication-title: Compos. Struct.
– volume: 14
  start-page: 176
  year: 2019
  end-page: 192
  ident: bib36
  article-title: A method for the empirical formulation of current profile
  publication-title: Ships Offshore Struct.
– year: 2018
  ident: bib58
  article-title: Development of Empirical Formula to Predict Maximum Displacement of Offshore Blast Walls Subjected to Hydrocarbon Explosions
– volume: 91
  start-page: 433
  year: 2009
  end-page: 441
  ident: bib59
  article-title: Behaviour of sandwich panels subjected to intense air blast – Part 1: experiments
  publication-title: Compos. Struct.
– volume: 22
  start-page: 99
  year: 2009
  end-page: 127
  ident: bib66
  article-title: Blast loaded plates
  publication-title: Mar. Struct.
– volume: 30
  start-page: 91
  year: 2009
  end-page: 100
  ident: bib88
  article-title: Analytical investigation and optimal design of sandwich panels subjected to shock loading
  publication-title: Mater. Des.
– year: 1964
  ident: bib3
  article-title: Introduction to Structural Dynamics
– volume: 35
  start-page: 1063
  year: 2008
  end-page: 1074
  ident: bib16
  article-title: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading
  publication-title: Int. J. Impact Eng.
– volume: 51
  start-page: 755
  year: 2014
  end-page: 771
  ident: bib74
  article-title: Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions
  publication-title: Struct. Eng. Mech.: Int. J.
– volume: 299
  year: 2022
  ident: bib6
  article-title: Dual-mechanism auxetic-core protective sandwich structure under blast loading
  publication-title: Compos. Struct.
– volume: 10
  year: 2022
  ident: bib48
  article-title: Numerical investigation on performance optimization of offshore sandwich blast walls with different honeycomb cores subjected to blast loading
  publication-title: J. Mar. Sci. Eng.
– year: 2012
  ident: bib69
  article-title: Blast Loading in LS-DYNA
– volume: 1
  start-page: 698
  year: 2003
  end-page: 703
  ident: bib4
  article-title: Failure modeling of corrugated panel subjected to dynamic blast loading
  publication-title: Structural Stability And Dynamics: With CD-ROM
– volume: 126
  start-page: 100
  year: 2018
  end-page: 109
  ident: bib83
  article-title: A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network
  publication-title: Adv. Eng. Software
– volume: 145
  start-page: 261
  year: 2018
  end-page: 269
  ident: bib49
  article-title: Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes
  publication-title: Compos. B Eng.
– year: 2011
  ident: bib17
  article-title: Final Report on the Investigation of the Macondo Well Blowout Deepwater Horizon Study Group (DHSG)
– year: 1992
  ident: bib68
  article-title: Interim Guidance Notes for the Design and Protection of Topside Structures against Explosion and Fire
– start-page: 223
  year: 2016
  end-page: 233
  ident: bib11
  article-title: Applicability of high manganese steel to FLNG storage tank considering collision damage
  publication-title: The 3rd International Conference on Ocean, Mechanical and Aerospace for Scientists & Engineers (OMASe 2016)
– volume: 80
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib44
  article-title: Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 16
  start-page: 617
  year: 2020
  end-page: 626
  ident: bib41
  article-title: Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading
  publication-title: Defence Technol.
– year: 2021
  ident: bib24
  article-title: Numerical investigation of innovative honeycomb-composite sandwich structure under bird-strike event
  publication-title: The 6th International Conference on Advances in Mechanical Engineering
– volume: 78
  start-page: 348
  year: 2007
  end-page: 358
  ident: bib43
  article-title: Effects of strain rate and identification of material constants for three automotive steels
  publication-title: Steel Res. Int.
– volume: 44
  start-page: 254
  year: 2015
  end-page: 287
  ident: bib76
  article-title: On the accuracy of fracture estimation in collision analysis of ship and offshore structures
  publication-title: Mar. Struct.
– year: 2003
  ident: bib5
  article-title: Force Based Failure Modeling of Corrugated Panel Subjected to Blast Loading
– volume: 169
  year: 2022
  ident: bib55
  article-title: Response of curved aluminum panels subjected to localized blast loading at extreme temperatures
  publication-title: Int. J. Impact Eng.
– start-page: 1
  year: 2012
  end-page: 10
  ident: bib80
  article-title: A Comparison between Three Different Blast Methods in LS-DYNA: LBE, MM-ALE, Coupling of LBE and MM-ALE, the 12th International LS-DYNA Users Conference
– year: 2010
  ident: bib18
  article-title: Design against Accidental Loads Det Norske Veritas
– year: 2009
  ident: bib14
  article-title: Blast Effects on Buildings
– volume: 34
  start-page: 1907
  year: 2007
  end-page: 1923
  ident: bib67
  article-title: Predicting the effectiveness of blast wall barriers using neural networks
  publication-title: Int. J. Impact Eng.
– volume: 145
  start-page: 1275
  year: 2016
  end-page: 1282
  ident: bib79
  article-title: Non-linear finite element analysis of offshore stainless steel blast wall under high impulsive pressure loads
  publication-title: Procedia Eng.
– volume: 35
  start-page: 937
  year: 2008
  end-page: 951
  ident: bib90
  article-title: Deformation and failure of blast-loaded metallic sandwich panels—experimental investigations
  publication-title: Int. J. Impact Eng.
– volume: 32
  start-page: 49
  year: 2013
  end-page: 67
  ident: bib12
  article-title: Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature
  publication-title: Mar. Struct.
– volume: 12
  start-page: 645
  year: 2020
  end-page: 656
  ident: bib31
  article-title: An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = Application to the ship's ballast tank
  publication-title: Int. J. Nav. Archit. Ocean Eng.
– year: 2018
  ident: bib84
  article-title: Finite Element Formulations for Statics and Dynamics of Plane Structures (With Matlab)
– year: 2017
  ident: bib47
  article-title: A Novel Offshore Platform Blast Wall Design with Energy Absorption Mechanism
– volume: 49
  start-page: 1823
  year: 2001
  end-page: 1846
  ident: bib57
  article-title: Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures
  publication-title: J. Mech. Phys. Solid.
– volume: 36
  start-page: 687
  year: 2009
  end-page: 699
  ident: bib89
  article-title: A numerical simulation of the blast impact of square metallic sandwich panels
  publication-title: Int. J. Impact Eng.
– volume: 52
  start-page: 171
  year: 1999
  end-page: 193
  ident: bib63
  article-title: Experimental and numerical studies on the response of stiffened plates subjected to gas explosions
  publication-title: J. Constr. Steel Res.
– volume: 144
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib20
  article-title: Blast-resilience of honeycomb sandwich panels
  publication-title: Int. J. Mech. Sci.
– volume: 71
  start-page: 386
  year: 2004
  end-page: 401
  ident: bib22
  article-title: The resistance of clamped sandwich beams to shock loading
  publication-title: J. Appl. Mech.
– volume: 123
  start-page: 126
  year: 2019
  end-page: 139
  ident: bib52
  article-title: Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins
  publication-title: Int. J. Impact Eng.
– volume: 45
  start-page: 5482
  year: 2010
  end-page: 5489
  ident: bib38
  article-title: Effect of strain rate on quasistatic tensile flow behaviour of solution annealed 304 austenitic stainless steel at room temperature
  publication-title: J. Mater. Sci.
– year: 2024
  ident: bib93
  article-title: A novel formula for predicting the ultimate compressive strength of the cylindrically curved plates
  publication-title: Int. J. Naval Arch. Ocean Eng.
– year: 2016
  ident: bib23
  article-title: Further Weight and Cost Saving of Fire and Blast Resistant Walls on Offshore Installations, through the New, 4 Th Type and a Comprehensive Decision Making Model, Offshore Technology Conference
– volume: 11
  start-page: 551
  year: 2016
  end-page: 560
  ident: bib73
  article-title: Strength assessment of stiffened blast walls in offshore installations under explosions
  publication-title: Ships Offshore Struct.
– volume: 35
  start-page: 399
  year: 2012
  end-page: 407
  ident: bib8
  article-title: Strain rate behaviour in tension of austenitic stainless steel used for reinforcing bars
  publication-title: Construct. Build. Mater.
– volume: 16
  start-page: e161
  year: 2019
  ident: bib71
  article-title: Dynamic structural response characteristics of new concept blast walls under hydrocarbon explosions
  publication-title: Lat. Am. J. Solid. Struct.
– year: 1988
  ident: bib26
  article-title: Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1, Fundamentals of Protective Design for Conventional Weapons (User's Guide)
– year: 1999
  ident: bib7
  article-title: Design Guide for Stainless Steel Blast Wall–Technical Note 5. Fire and Blast Information Group (FABIG)
– volume: 68
  start-page: 237
  year: 2018
  end-page: 245
  ident: bib33
  article-title: An empirical formulation to predict maximum deformation of blast wall under explosion
  publication-title: Struct. Eng. Mech.
– volume: 32
  start-page: 1721
  year: 2006
  end-page: 1736
  ident: bib64
  article-title: Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosion loadings
  publication-title: Int. J. Impact Eng.
– volume: 268
  start-page: 113393
  year: 2023
  ident: bib92
  article-title: Fatigue damage prediction of top tensioned riser subjected to vortex-induced vibrations using artificial neural networks
  publication-title: Ocean Eng
– volume: 183
  start-page: 242
  year: 2018
  end-page: 261
  ident: bib27
  article-title: Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs
  publication-title: Compos. Struct.
– volume: 9
  year: 2019
  ident: bib75
  article-title: Blast-induced compression of a thin-walled aluminum honeycomb structure—experiment and modeling
  publication-title: Metals
– volume: 23
  start-page: 3902
  year: 2021
  end-page: 3931
  ident: bib2
  article-title: Experimental and numerical study of auxetic sandwich panels on 160 grams of PE4 blast loading
  publication-title: J. Sandw. Struct. Mater.
– volume: 93
  start-page: 128
  year: 2016
  end-page: 135
  ident: bib21
  article-title: Blast resistance of metallic sandwich panels subjected to proximity underwater explosion
  publication-title: Int. J. Impact Eng.
– volume: 47
  start-page: 749
  year: 2013
  end-page: 763
  ident: bib56
  article-title: Process for design optimization of honeycomb core sandwich panels for blast load mitigation
  publication-title: Struct. Multidiscip. Optim.
– year: 2001
  ident: bib15
  article-title: Design of Offshore Facilities to Resist Gas Explosion Hazard: Engineering Handbook
– volume: 108
  start-page: 1001
  year: 2014
  end-page: 1008
  ident: bib46
  article-title: Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis
  publication-title: Compos. Struct.
– volume: 37
  start-page: 625
  year: 2010
  end-page: 637
  ident: bib87
  article-title: Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading
  publication-title: Int. J. Impact Eng.
– volume: 12
  start-page: S230
  year: 2017
  end-page: S256
  ident: bib62
  article-title: Test database of the mechanical properties of mild, high-tensile and stainless steel and aluminium alloy associated with cold temperatures and strain rates
  publication-title: Ships Offshore Struct.
– volume: 15
  start-page: e115
  year: 2018
  ident: bib34
  article-title: Recommended finite element formulations for the analysis of offshore blast walls in an explosion
  publication-title: Lat. Am. J. Solid. Struct.
– volume: 201
  year: 2021
  ident: bib9
  article-title: Blast resistance of metallic double arrowhead honeycomb sandwich panels with different core configurations under the paper tube-guided air blast loading
  publication-title: Int. J. Mech. Sci.
– volume: 12
  start-page: 733
  year: 2010
  end-page: 754
  ident: bib42
  article-title: The response of honeycomb core sandwich panels, with aluminum and composite face sheets, to blast loading
  publication-title: J. Sandw. Struct. Mater.
– volume: 192
  year: 2019
  ident: bib32
  article-title: Ultimate strength prediction of T-bar stiffened panel under longitudinal compression by data processing: a refined empirical formulation
  publication-title: Ocean Eng.
– year: 1995
  ident: bib54
  article-title: Blast Effects on Buildings: Design of Buildings to Optimize Resistance to Blast Loading
– year: 2017
  ident: bib70
  article-title: Blast Effects: Physical Properties of Shock Waves
– year: 1974
  ident: bib13
  article-title: Engineering Design Handbook: Explosions in Air Part One. AD/A-003 817 (AMC Pamphlet AMCP 706-181)
– volume: 23
  start-page: 4016
  year: 2021
  end-page: 4053
  ident: bib28
  article-title: Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels
  publication-title: J. Sandw. Struct. Mater.
– volume: 63
  start-page: 51
  year: 2012
  end-page: 58
  ident: bib61
  article-title: Advanced method for the development of an empirical model to predict time-dependent corrosion wastage
  publication-title: Corrosion Sci.
– volume: 56
  start-page: 2119
  year: 2013
  end-page: 2130
  ident: bib1
  article-title: Performance evaluation of sandwich panel systems for blast mitigation
  publication-title: Eng. Struct.
– volume: 8
  start-page: 605
  year: 2020
  ident: bib37
  article-title: Ultimate compressive strength of stiffened panel: an empirical formulation for flat-bar type
  publication-title: J. Mar. Sci. Eng.
– volume: 2
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib53
  article-title: Recent trends in blast resistant construction
  publication-title: GJESR Research Paper
– year: 2004
  ident: bib50
  article-title: Analysis and Design of Profiled Blast Walls
– year: 2005
  ident: bib39
  article-title: An Introduction to the Finite Element Method
– volume: 87
  start-page: 37
  year: 2019
  end-page: 47
  ident: bib40
  article-title: A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores
  publication-title: Aero. Sci. Technol.
– volume: 8
  start-page: 766
  year: 2020
  ident: bib60
  article-title: Burst pressure prediction of API 5L X-grade dented pipelines using deep neural network
  publication-title: J. Mar. Sci. Eng.
– volume: 173
  start-page: 242
  year: 2017
  end-page: 254
  ident: bib45
  article-title: Sandwich panels with layered graded aluminum honeycomb cores under blast loading
  publication-title: Compos. Struct.
– volume: 12
  start-page: 733
  issue: 6
  year: 2010
  ident: 10.1016/j.oceaneng.2023.116578_bib42
  article-title: The response of honeycomb core sandwich panels, with aluminum and composite face sheets, to blast loading
  publication-title: J. Sandw. Struct. Mater.
  doi: 10.1177/1099636210368470
– volume: 145
  start-page: 261
  year: 2018
  ident: 10.1016/j.oceaneng.2023.116578_bib49
  article-title: Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.03.005
– volume: 52
  start-page: 171
  issue: 2
  year: 1999
  ident: 10.1016/j.oceaneng.2023.116578_bib63
  article-title: Experimental and numerical studies on the response of stiffened plates subjected to gas explosions
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/S0143-974X(99)00022-X
– volume: 252
  year: 2020
  ident: 10.1016/j.oceaneng.2023.116578_bib65
  article-title: Parametric study and optimization of the protect system containing a re-entrant hexagon cored sandwich panel under blast impact
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112711
– volume: 126
  start-page: 100
  year: 2018
  ident: 10.1016/j.oceaneng.2023.116578_bib83
  article-title: A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2018.09.011
– year: 2017
  ident: 10.1016/j.oceaneng.2023.116578_bib70
– year: 2001
  ident: 10.1016/j.oceaneng.2023.116578_bib15
– volume: 32
  start-page: 351
  issue: 2
  year: 2009
  ident: 10.1016/j.oceaneng.2023.116578_bib86
  article-title: Tearing of metallic sandwich panels subjected to air shock loading
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2009.32.2.351
– volume: 299
  year: 2022
  ident: 10.1016/j.oceaneng.2023.116578_bib6
  article-title: Dual-mechanism auxetic-core protective sandwich structure under blast loading
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.116088
– year: 2016
  ident: 10.1016/j.oceaneng.2023.116578_bib23
– volume: 173
  start-page: 242
  year: 2017
  ident: 10.1016/j.oceaneng.2023.116578_bib45
  article-title: Sandwich panels with layered graded aluminum honeycomb cores under blast loading
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.04.037
– volume: 14
  start-page: 176
  issue: 2
  year: 2019
  ident: 10.1016/j.oceaneng.2023.116578_bib36
  article-title: A method for the empirical formulation of current profile
  publication-title: Ships Offshore Struct.
  doi: 10.1080/17445302.2018.1488340
– volume: 31
  start-page: 1887
  issue: 4
  year: 2010
  ident: 10.1016/j.oceaneng.2023.116578_bib10
  article-title: The influence of core height and face plate thickness on the response of honeycomb sandwich panels subjected to blast loading
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.10.058
– volume: 217
  start-page: 1571
  issue: 11
  year: 2003
  ident: 10.1016/j.oceaneng.2023.116578_bib25
  article-title: Effect of wall angle on Al 3003 strain hardening for parts formed by computer numerical control incremental forming
  publication-title: Proc. IME B J. Eng. Manufact.
  doi: 10.1243/095440503771909944
– volume: 35
  start-page: 937
  issue: 8
  year: 2008
  ident: 10.1016/j.oceaneng.2023.116578_bib90
  article-title: Deformation and failure of blast-loaded metallic sandwich panels—experimental investigations
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2007.11.003
– year: 2005
  ident: 10.1016/j.oceaneng.2023.116578_bib39
– volume: 51
  start-page: 755
  issue: 5
  year: 2014
  ident: 10.1016/j.oceaneng.2023.116578_bib74
  article-title: Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions
  publication-title: Struct. Eng. Mech.: Int. J.
  doi: 10.12989/sem.2014.51.5.755
– start-page: 223
  year: 2016
  ident: 10.1016/j.oceaneng.2023.116578_bib11
  article-title: Applicability of high manganese steel to FLNG storage tank considering collision damage
– start-page: 1
  year: 2012
  ident: 10.1016/j.oceaneng.2023.116578_bib80
– year: 2003
  ident: 10.1016/j.oceaneng.2023.116578_bib5
– year: 2011
  ident: 10.1016/j.oceaneng.2023.116578_bib17
– year: 2024
  ident: 10.1016/j.oceaneng.2023.116578_bib93
  article-title: A novel formula for predicting the ultimate compressive strength of the cylindrically curved plates
  publication-title: Int. J. Naval Arch. Ocean Eng.
  doi: 10.1016/j.ijnaoe.2023.100562
– year: 1964
  ident: 10.1016/j.oceaneng.2023.116578_bib3
– year: 1988
  ident: 10.1016/j.oceaneng.2023.116578_bib26
– volume: 91
  start-page: 433
  issue: 4
  year: 2009
  ident: 10.1016/j.oceaneng.2023.116578_bib59
  article-title: Behaviour of sandwich panels subjected to intense air blast – Part 1: experiments
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2009.04.009
– volume: 92
  start-page: 2465
  issue: 10
  year: 2010
  ident: 10.1016/j.oceaneng.2023.116578_bib81
  article-title: Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2010.03.002
– volume: 71
  start-page: 386
  issue: 3
  year: 2004
  ident: 10.1016/j.oceaneng.2023.116578_bib22
  article-title: The resistance of clamped sandwich beams to shock loading
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.1629109
– volume: 2
  start-page: 1
  issue: 9
  year: 2015
  ident: 10.1016/j.oceaneng.2023.116578_bib53
  article-title: Recent trends in blast resistant construction
  publication-title: GJESR Research Paper
– year: 2018
  ident: 10.1016/j.oceaneng.2023.116578_bib84
– volume: 45
  start-page: 5482
  issue: 20
  year: 2010
  ident: 10.1016/j.oceaneng.2023.116578_bib38
  article-title: Effect of strain rate on quasistatic tensile flow behaviour of solution annealed 304 austenitic stainless steel at room temperature
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-010-4605-2
– volume: 87
  start-page: 37
  year: 2019
  ident: 10.1016/j.oceaneng.2023.116578_bib40
  article-title: A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2019.01.031
– volume: 10
  issue: 11
  year: 2022
  ident: 10.1016/j.oceaneng.2023.116578_bib48
  article-title: Numerical investigation on performance optimization of offshore sandwich blast walls with different honeycomb cores subjected to blast loading
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10111743
– volume: 49
  issue: 4
  year: 1993
  ident: 10.1016/j.oceaneng.2023.116578_bib91
  article-title: The public inquiry into the Piper Alpha disaster
  publication-title: Drill. Contractor
– volume: 32
  start-page: 49
  year: 2013
  ident: 10.1016/j.oceaneng.2023.116578_bib12
  article-title: Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2013.02.001
– year: 1992
  ident: 10.1016/j.oceaneng.2023.116578_bib68
– year: 1999
  ident: 10.1016/j.oceaneng.2023.116578_bib7
– volume: 11
  start-page: 551
  issue: 5
  year: 2016
  ident: 10.1016/j.oceaneng.2023.116578_bib73
  article-title: Strength assessment of stiffened blast walls in offshore installations under explosions
  publication-title: Ships Offshore Struct.
  doi: 10.1080/17445302.2015.1035164
– volume: 37
  start-page: 625
  issue: 6
  year: 2010
  ident: 10.1016/j.oceaneng.2023.116578_bib87
  article-title: Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2009.11.003
– volume: 8
  start-page: 766
  issue: 10
  year: 2020
  ident: 10.1016/j.oceaneng.2023.116578_bib60
  article-title: Burst pressure prediction of API 5L X-grade dented pipelines using deep neural network
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse8100766
– volume: 192
  year: 2019
  ident: 10.1016/j.oceaneng.2023.116578_bib32
  article-title: Ultimate strength prediction of T-bar stiffened panel under longitudinal compression by data processing: a refined empirical formulation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106522
– volume: 201
  year: 2021
  ident: 10.1016/j.oceaneng.2023.116578_bib9
  article-title: Blast resistance of metallic double arrowhead honeycomb sandwich panels with different core configurations under the paper tube-guided air blast loading
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2021.106457
– volume: 169
  year: 2022
  ident: 10.1016/j.oceaneng.2023.116578_bib55
  article-title: Response of curved aluminum panels subjected to localized blast loading at extreme temperatures
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2022.104336
– volume: 15
  start-page: e115
  issue: 10
  year: 2018
  ident: 10.1016/j.oceaneng.2023.116578_bib34
  article-title: Recommended finite element formulations for the analysis of offshore blast walls in an explosion
  publication-title: Lat. Am. J. Solid. Struct.
  doi: 10.1590/1679-78255172
– volume: 36
  start-page: 687
  issue: 5
  year: 2009
  ident: 10.1016/j.oceaneng.2023.116578_bib89
  article-title: A numerical simulation of the blast impact of square metallic sandwich panels
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2008.12.004
– volume: 122
  start-page: 119
  year: 2018
  ident: 10.1016/j.oceaneng.2023.116578_bib78
  article-title: High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2018.08.007
– volume: 8
  start-page: 605
  issue: 8
  year: 2020
  ident: 10.1016/j.oceaneng.2023.116578_bib37
  article-title: Ultimate compressive strength of stiffened panel: an empirical formulation for flat-bar type
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse8080605
– volume: 9
  issue: 12
  year: 2019
  ident: 10.1016/j.oceaneng.2023.116578_bib75
  article-title: Blast-induced compression of a thin-walled aluminum honeycomb structure—experiment and modeling
  publication-title: Metals
  doi: 10.3390/met9121350
– volume: 35
  start-page: 399
  year: 2012
  ident: 10.1016/j.oceaneng.2023.116578_bib8
  article-title: Strain rate behaviour in tension of austenitic stainless steel used for reinforcing bars
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.04.081
– year: 2004
  ident: 10.1016/j.oceaneng.2023.116578_bib50
– year: 2009
  ident: 10.1016/j.oceaneng.2023.116578_bib14
– volume: 22
  start-page: 99
  issue: 2
  year: 2009
  ident: 10.1016/j.oceaneng.2023.116578_bib66
  article-title: Blast loaded plates
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2008.04.001
– year: 2012
  ident: 10.1016/j.oceaneng.2023.116578_bib69
– year: 2017
  ident: 10.1016/j.oceaneng.2023.116578_bib47
– volume: 268
  start-page: 113393
  year: 2023
  ident: 10.1016/j.oceaneng.2023.116578_bib92
  article-title: Fatigue damage prediction of top tensioned riser subjected to vortex-induced vibrations using artificial neural networks
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.113393
– volume: 47
  start-page: 749
  issue: 5
  year: 2013
  ident: 10.1016/j.oceaneng.2023.116578_bib56
  article-title: Process for design optimization of honeycomb core sandwich panels for blast load mitigation
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-012-0845-x
– volume: 144
  start-page: 1
  year: 2018
  ident: 10.1016/j.oceaneng.2023.116578_bib20
  article-title: Blast-resilience of honeycomb sandwich panels
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.05.038
– year: 2020
  ident: 10.1016/j.oceaneng.2023.116578_bib85
– volume: 63
  start-page: 51
  year: 2012
  ident: 10.1016/j.oceaneng.2023.116578_bib61
  article-title: Advanced method for the development of an empirical model to predict time-dependent corrosion wastage
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2012.05.015
– volume: 142
  start-page: 499
  year: 2019
  ident: 10.1016/j.oceaneng.2023.116578_bib77
  article-title: Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2019.04.029
– volume: 93
  start-page: 128
  year: 2016
  ident: 10.1016/j.oceaneng.2023.116578_bib21
  article-title: Blast resistance of metallic sandwich panels subjected to proximity underwater explosion
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2016.03.001
– year: 2018
  ident: 10.1016/j.oceaneng.2023.116578_bib58
– volume: 60
  start-page: 149
  year: 2013
  ident: 10.1016/j.oceaneng.2023.116578_bib72
  article-title: Nonlinear structural consequence analysis of FPSO topside blastwalls
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.12.005
– volume: 145
  start-page: 1275
  year: 2016
  ident: 10.1016/j.oceaneng.2023.116578_bib79
  article-title: Non-linear finite element analysis of offshore stainless steel blast wall under high impulsive pressure loads
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.04.164
– volume: 68
  start-page: 237
  issue: 2
  year: 2018
  ident: 10.1016/j.oceaneng.2023.116578_bib33
  article-title: An empirical formulation to predict maximum deformation of blast wall under explosion
  publication-title: Struct. Eng. Mech.
– volume: 78
  start-page: 348
  issue: 4
  year: 2007
  ident: 10.1016/j.oceaneng.2023.116578_bib43
  article-title: Effects of strain rate and identification of material constants for three automotive steels
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.200705902
– volume: 1
  start-page: 698
  year: 2003
  ident: 10.1016/j.oceaneng.2023.116578_bib4
  article-title: Failure modeling of corrugated panel subjected to dynamic blast loading
  publication-title: Structural Stability And Dynamics: With CD-ROM
– volume: 191
  year: 2021
  ident: 10.1016/j.oceaneng.2023.116578_bib51
  article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson's ratio
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.106105
– volume: 32
  start-page: 1721
  issue: 10
  year: 2006
  ident: 10.1016/j.oceaneng.2023.116578_bib64
  article-title: Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosion loadings
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2005.01.005
– volume: 30
  start-page: 91
  issue: 1
  year: 2009
  ident: 10.1016/j.oceaneng.2023.116578_bib88
  article-title: Analytical investigation and optimal design of sandwich panels subjected to shock loading
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2008.04.027
– volume: 49
  start-page: 1823
  issue: 8
  year: 2001
  ident: 10.1016/j.oceaneng.2023.116578_bib57
  article-title: Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/S0022-5096(00)00069-7
– volume: 16
  start-page: 617
  issue: 3
  year: 2020
  ident: 10.1016/j.oceaneng.2023.116578_bib41
  article-title: Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading
  publication-title: Defence Technol.
  doi: 10.1016/j.dt.2019.09.010
– volume: 44
  start-page: 254
  year: 2015
  ident: 10.1016/j.oceaneng.2023.116578_bib76
  article-title: On the accuracy of fracture estimation in collision analysis of ship and offshore structures
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2015.09.006
– volume: 91
  start-page: 442
  issue: 4
  year: 2009
  ident: 10.1016/j.oceaneng.2023.116578_bib29
  article-title: Behaviour of sandwich panels subject to intense air blasts – Part 2: numerical simulation
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2009.04.010
– volume: 56
  start-page: 2119
  year: 2013
  ident: 10.1016/j.oceaneng.2023.116578_bib1
  article-title: Performance evaluation of sandwich panel systems for blast mitigation
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2013.08.021
– volume: 23
  start-page: 4016
  issue: 8
  year: 2021
  ident: 10.1016/j.oceaneng.2023.116578_bib28
  article-title: Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels
  publication-title: J. Sandw. Struct. Mater.
  doi: 10.1177/1099636220975450
– volume: 123
  start-page: 126
  year: 2019
  ident: 10.1016/j.oceaneng.2023.116578_bib52
  article-title: Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2018.10.003
– volume: 105
  start-page: 24
  year: 2017
  ident: 10.1016/j.oceaneng.2023.116578_bib82
  article-title: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2016.10.009
– volume: 12
  start-page: 657
  year: 2020
  ident: 10.1016/j.oceaneng.2023.116578_bib35
  article-title: An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation
  publication-title: Int. J. Nav. Archit. Ocean Eng.
  doi: 10.1016/j.ijnaoe.2020.06.007
– volume: 23
  start-page: 3902
  issue: 8
  year: 2021
  ident: 10.1016/j.oceaneng.2023.116578_bib2
  article-title: Experimental and numerical study of auxetic sandwich panels on 160 grams of PE4 blast loading
  publication-title: J. Sandw. Struct. Mater.
  doi: 10.1177/1099636220961756
– year: 2021
  ident: 10.1016/j.oceaneng.2023.116578_bib24
  article-title: Numerical investigation of innovative honeycomb-composite sandwich structure under bird-strike event
– year: 2010
  ident: 10.1016/j.oceaneng.2023.116578_bib18
– year: 1995
  ident: 10.1016/j.oceaneng.2023.116578_bib54
– volume: 34
  start-page: 1907
  issue: 12
  year: 2007
  ident: 10.1016/j.oceaneng.2023.116578_bib67
  article-title: Predicting the effectiveness of blast wall barriers using neural networks
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2006.11.003
– year: 2013
  ident: 10.1016/j.oceaneng.2023.116578_bib19
– volume: 35
  start-page: 1063
  issue: 9
  year: 2008
  ident: 10.1016/j.oceaneng.2023.116578_bib16
  article-title: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2007.06.008
– volume: 16
  start-page: e161
  issue: 2
  year: 2019
  ident: 10.1016/j.oceaneng.2023.116578_bib71
  article-title: Dynamic structural response characteristics of new concept blast walls under hydrocarbon explosions
  publication-title: Lat. Am. J. Solid. Struct.
  doi: 10.1590/1679-78255351
– volume: 12
  start-page: 645
  year: 2020
  ident: 10.1016/j.oceaneng.2023.116578_bib31
  article-title: An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = Application to the ship's ballast tank
  publication-title: Int. J. Nav. Archit. Ocean Eng.
  doi: 10.1016/j.ijnaoe.2020.07.002
– year: 1974
  ident: 10.1016/j.oceaneng.2023.116578_bib13
– volume: 80
  start-page: 1
  year: 2016
  ident: 10.1016/j.oceaneng.2023.116578_bib44
  article-title: Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.09.025
– volume: 108
  start-page: 1001
  year: 2014
  ident: 10.1016/j.oceaneng.2023.116578_bib46
  article-title: Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2013.10.034
– volume: 12
  start-page: S230
  issue: Suppl. 1
  year: 2017
  ident: 10.1016/j.oceaneng.2023.116578_bib62
  article-title: Test database of the mechanical properties of mild, high-tensile and stainless steel and aluminium alloy associated with cold temperatures and strain rates
  publication-title: Ships Offshore Struct.
  doi: 10.1080/17445302.2016.1262729
– volume: 171
  year: 2022
  ident: 10.1016/j.oceaneng.2023.116578_bib30
  article-title: Perforation and energy dissipation behaviour of honeycomb core cylindrical sandwich shell subjected to conical shape projectile at high velocity impact
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.108724
– volume: 183
  start-page: 242
  year: 2018
  ident: 10.1016/j.oceaneng.2023.116578_bib27
  article-title: Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.03.018
SSID ssj0006603
Score 2.4159253
Snippet Despite comprehensive prevention strategies, offshore operations consistently grapple with health, safety, and environmental (HSE) challenges. Though...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116578
SubjectTerms Blast loading
Blast wall
Finite element simulations
Metallic structures
Sandwich panel system
Title Prediction of mechanical response of hexagonal honeycomb SPS blast wall under explosive loading: In-depth review and empirical formula
URI https://dx.doi.org/10.1016/j.oceaneng.2023.116578
Volume 293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEF1FcGmRUBta8dGiOfTqBHt3vSy3KAIlIFIkisTN2rVnSSLjRJFRy4Ujv5sdf7RBqsSBo1cea72zmnn2vjfD2I_YYyDnYWygVZYGwpkwsNpEQagcpmiUldU_3ctJPLoR57fytsOGrRaGaJVN7K9jehWtm5F-s5r95WxGGt9I-_hKJ0WRjisxuRCKdnnv6R_NI46PeEvzoLvXVMLznk8RpsDirkdNxHtUiYbarf0vQa0lnbNPbLtBizCoJ_SZdbDoso9rNQS7bOsnPb0pPL3Dnq9WdPRCyw0LB_dIyl5yBKxqNizS8BT_mDvC4DBdFPjoX97C9dU1WI-lS_ht8hxIXLYCJIoeMdwhX1Rs-xMYF0GGy3IKteoFTJEB3i9nVa0RIAz8kJsv7Obs9NdwFDS9FoKUh1EZaCkM-o8nbY0NU8riQpCo9TiMFfoP6NAJK6UTmXUOuSRccJwdceWNQiO55l_ZRuFnvMsAeZZGXKUu4lYgRlooacIsU8ajF-uiPSbbBU7SphA59cPIk5ZxNk9axyTkmKR2zB7r_7Vb1qU43rTQrf-SV5sq8fniDdv9d9gesA_-StTk7m9so1w94HePXUp7WG3OQ7Y5GF-MJi9CUfDv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iBx8gPvHtHLx21zZJa7yJKOtbUMFbSdqJu1K7y1JRLx793Wb60BUED17TTkkzaeZL830zjO2EDgNZB2M9FaWJJ6z2PaN04PmRxQR1ZGT5T_fiMuzcidN7eT_GDhstDNEq67W_WtPL1bpuadej2R70eqTxDZRbX-mkKFAhicknhPt8qYxB6_2b5xGGu7zhedDtIzLhx5aLETrH_KFFVcRblIqG6q39FqFGos7xHJut4SIcVD2aZ2OYL7DpkSSCC2zmip5eZ55eZB_XQzp7ofGGvoUnJGkveQKGFR0WqbmLr_qBQDh0-zm-ubc3cHN9A8aB6QJedJYBqcuGgMTRI4o7ZP2Sbr8PJ7mX4qDoQiV7AZ2ngE-DXplsBAgEP2d6id0dH90edry62IKXcD8oPCWFRrd7UkYbP6EwLgSpWvf8MEK3g_atMFJakRprkUsCBnvpLo-cka8lV3yZjeeuxysMkKdJwKPEBtwIxECJSGo_TSPt4IuxwSqTzQDHSZ2JnApiZHFDOXuMG8fE5Ji4cswqa3_ZDapcHH9aqMZ_8Y9ZFbuA8Yft2j9st9lk5_biPD4_uTxbZ1PuiqiY3htsvBg-46YDMoXZKifqJ8ar8n0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+mechanical+response+of+hexagonal+honeycomb+SPS+blast+wall+under+explosive+loading%3A+In-depth+review+and+empirical+formula&rft.jtitle=Ocean+engineering&rft.au=Kim%2C+Do+Kyun&rft.au=Looi%2C+Chee+Kean&rft.au=Topa%2C+Ameen&rft.au=Cho%2C+Nak+Kyun&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=293&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.116578&rft.externalDocID=S0029801823029621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon