Prediction of mechanical response of hexagonal honeycomb SPS blast wall under explosive loading: In-depth review and empirical formula
Despite comprehensive prevention strategies, offshore operations consistently grapple with health, safety, and environmental (HSE) challenges. Though explosions on offshore structures are rare, their devastating impact cannot be understated. Blast walls, functioning as pivotal passive barriers, play...
Saved in:
Published in | Ocean engineering Vol. 293; p. 116578 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite comprehensive prevention strategies, offshore operations consistently grapple with health, safety, and environmental (HSE) challenges. Though explosions on offshore structures are rare, their devastating impact cannot be understated. Blast walls, functioning as pivotal passive barriers, play a crucial role in protecting the topsides of these structures by dissipating explosive energy. Sandwich panel structures (SPS), with their lightweight attributes, enhanced bending rigidity and exceptional energy absorption, are a cost-effective countermeasure. This study introduces a groundbreaking design guideline, anchored in the LS-Dyna nonlinear finite-element method (NLFEM), tailored for hexagonal SPS offshore blast walls under explosive strains. Our rigorous numerical simulations, encompassing 450 varied scenarios, meticulously evaluated an array of geometric configurations and explosive strengths (spanning from 1 kg to 3 kg of TNT). From these simulations, crucial parameters affecting maximum mid-span plate deflection were discerned. In addition to these simulations, our research offers in-depth technical reviews, shedding light on the nuances of the subject. An empirical formula was subsequently formulated to anticipate this deflection, corroborating its efficacy by FE simulation outcomes. This work provides invaluable guidance for refining early-stage offshore blast wall design.
•An in-depth technical reviews on the mechanical response of blast wall by sandwich panel system (SPS) is conducted.•A useful empirical formula is developed and can be utilised in the Pre-FEED stage in predicting the maximum deflection of the blast wall.•The proposed diagram may help to optimise the topside space of the offshore platform. |
---|---|
AbstractList | Despite comprehensive prevention strategies, offshore operations consistently grapple with health, safety, and environmental (HSE) challenges. Though explosions on offshore structures are rare, their devastating impact cannot be understated. Blast walls, functioning as pivotal passive barriers, play a crucial role in protecting the topsides of these structures by dissipating explosive energy. Sandwich panel structures (SPS), with their lightweight attributes, enhanced bending rigidity and exceptional energy absorption, are a cost-effective countermeasure. This study introduces a groundbreaking design guideline, anchored in the LS-Dyna nonlinear finite-element method (NLFEM), tailored for hexagonal SPS offshore blast walls under explosive strains. Our rigorous numerical simulations, encompassing 450 varied scenarios, meticulously evaluated an array of geometric configurations and explosive strengths (spanning from 1 kg to 3 kg of TNT). From these simulations, crucial parameters affecting maximum mid-span plate deflection were discerned. In addition to these simulations, our research offers in-depth technical reviews, shedding light on the nuances of the subject. An empirical formula was subsequently formulated to anticipate this deflection, corroborating its efficacy by FE simulation outcomes. This work provides invaluable guidance for refining early-stage offshore blast wall design.
•An in-depth technical reviews on the mechanical response of blast wall by sandwich panel system (SPS) is conducted.•A useful empirical formula is developed and can be utilised in the Pre-FEED stage in predicting the maximum deflection of the blast wall.•The proposed diagram may help to optimise the topside space of the offshore platform. |
ArticleNumber | 116578 |
Author | Looi, Chee Kean Topa, Ameen Kim, Do Kyun Cho, Nak Kyun |
Author_xml | – sequence: 1 givenname: Do Kyun orcidid: 0000-0001-5735-4625 surname: Kim fullname: Kim, Do Kyun email: do.kim@snu.ac.kr organization: Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, Republic of Korea – sequence: 2 givenname: Chee Kean surname: Looi fullname: Looi, Chee Kean organization: Ocean and Ship Research Group, Department of Civil and Environmental Engineering, Petronas University of Technology, Seri Iskandar, Perak, Malaysia – sequence: 3 givenname: Ameen orcidid: 0000-0001-5579-1514 surname: Topa fullname: Topa, Ameen organization: Department of Maritime Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia – sequence: 4 givenname: Nak Kyun orcidid: 0000-0001-6836-8539 surname: Cho fullname: Cho, Nak Kyun email: nkcho@seoultech.ac.kr organization: Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul, Republic of Korea |
BookMark | eNqFkM1KxDAUhYOM4Dj6CpIX6JjbNm0qLhTxZ2BAQV2HNL2dyZAmJal_L-Bz23F048bVhQPfOdzvkEycd0jICbA5MChON3OvUTl0q3nK0mwOUPBS7JEpiDJLeMrFhEwZS6tEMBAH5DDGDWOsKFg2JZ8PARujB-Md9S3tUK-VM1pZGjD23kXcxmt8VyvvxnQ9bn9o39X08eGR1lbFgb4pa-mLazBQfO-tj-YVqfWqMW51RhcuabAf1mPhq8E3qlxDsetN-F5pfeherDoi-62yEY9_7ow831w_Xd0ly_vbxdXlMtEZpENS8VyhKKGqVQ1agOB5nnKoBBQlVqyENq85b_OmblvMOAhIRcOycoRA8azKZuR816uDjzFgK7UZ1Pb7IShjJTC5dSo38tep3DqVO6cjXvzB-2A6FT7-By92II7PjRqCjNqg06P7gHqQjTf_VXwBqQ6Zhg |
CitedBy_id | crossref_primary_10_1016_j_istruc_2024_107698 crossref_primary_10_1016_j_engstruct_2025_119877 crossref_primary_10_1016_j_tws_2024_112144 crossref_primary_10_1177_14644207241266081 |
Cites_doi | 10.1177/1099636210368470 10.1016/j.compositesb.2018.03.005 10.1016/S0143-974X(99)00022-X 10.1016/j.compstruct.2020.112711 10.1016/j.advengsoft.2018.09.011 10.12989/sem.2009.32.2.351 10.1016/j.compstruct.2022.116088 10.1016/j.compstruct.2017.04.037 10.1080/17445302.2018.1488340 10.1016/j.matdes.2009.10.058 10.1243/095440503771909944 10.1016/j.ijimpeng.2007.11.003 10.12989/sem.2014.51.5.755 10.1016/j.ijnaoe.2023.100562 10.1016/j.compstruct.2009.04.009 10.1016/j.compstruct.2010.03.002 10.1115/1.1629109 10.1007/s10853-010-4605-2 10.1016/j.ast.2019.01.031 10.3390/jmse10111743 10.1016/j.marstruc.2013.02.001 10.1080/17445302.2015.1035164 10.1016/j.ijimpeng.2009.11.003 10.3390/jmse8100766 10.1016/j.oceaneng.2019.106522 10.1016/j.ijmecsci.2021.106457 10.1016/j.ijimpeng.2022.104336 10.1590/1679-78255172 10.1016/j.ijimpeng.2008.12.004 10.1016/j.ijimpeng.2018.08.007 10.3390/jmse8080605 10.3390/met9121350 10.1016/j.conbuildmat.2012.04.081 10.1016/j.marstruc.2008.04.001 10.1016/j.oceaneng.2022.113393 10.1007/s00158-012-0845-x 10.1016/j.ijmecsci.2018.05.038 10.1016/j.corsci.2012.05.015 10.1016/j.tws.2019.04.029 10.1016/j.ijimpeng.2016.03.001 10.1016/j.oceaneng.2012.12.005 10.1016/j.proeng.2016.04.164 10.1002/srin.200705902 10.1016/j.ijmecsci.2020.106105 10.1016/j.ijimpeng.2005.01.005 10.1016/j.matdes.2008.04.027 10.1016/S0022-5096(00)00069-7 10.1016/j.dt.2019.09.010 10.1016/j.marstruc.2015.09.006 10.1016/j.compstruct.2009.04.010 10.1016/j.engstruct.2013.08.021 10.1177/1099636220975450 10.1016/j.ijimpeng.2018.10.003 10.1016/j.ijimpeng.2016.10.009 10.1016/j.ijnaoe.2020.06.007 10.1177/1099636220961756 10.1016/j.ijimpeng.2006.11.003 10.1016/j.ijimpeng.2007.06.008 10.1590/1679-78255351 10.1016/j.ijnaoe.2020.07.002 10.1016/j.compositesa.2015.09.025 10.1016/j.compstruct.2013.10.034 10.1080/17445302.2016.1262729 10.1016/j.tws.2021.108724 10.1016/j.compstruct.2017.03.018 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2023.116578 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2023_116578 S0029801823029621 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SSH WUQ |
ID | FETCH-LOGICAL-c312t-954ae8719bab1c81854425198167e9071f4b55f4dbffe3518128d037ae81a5393 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 02:15:20 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Sat Aug 10 15:31:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Blast loading Finite element simulations Blast wall Sandwich panel system Metallic structures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-954ae8719bab1c81854425198167e9071f4b55f4dbffe3518128d037ae81a5393 |
ORCID | 0000-0001-6836-8539 0000-0001-5579-1514 0000-0001-5735-4625 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2023_116578 crossref_primary_10_1016_j_oceaneng_2023_116578 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_116578 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lan, Feng, Huang, Zhou (bib40) 2019; 87 Chen, Cheng, Zhang, Cai, Liu (bib9) 2021; 201 Choung, Nam, Lee (bib12) 2013; 32 Czujko (bib15) 2001 Stanczak, Fras, Blanc, Pawlowski, Rusinek (bib75) 2019; 9 Yassin, Abidin, Kasiman, Mohd Noor, Abd Nazir (bib85) 2020 Kim, Wong, Hwang, Li, Cho (bib93) 2024 Paik, Kim, Lee, Jung, Kim (bib62) 2017; 12 Sohn, Kim, Kim, Paik (bib72) 2013; 60 Syed, Mohamed, Rahman (bib79) 2016; 145 Boh, Choo, Louca (bib4) 2003; 1 Khaire, Tiwari, Rathod, Iqbal, Topa (bib30) 2022; 171 Kim, Ng, Hwang, Sohn, Lee (bib34) 2018; 15 Zhu, Zhao, Lu, Gad (bib89) 2009; 36 Ebrahimi, Keyvani Someh, Norato, Vaziri (bib20) 2018; 144 Hyde (bib26) 1988 Paik, Kim (bib61) 2012; 63 Kim, Wong, Cho (bib35) 2020; 12 Liao (bib47) 2017 Nemat-Nasser, Guo, Kihl (bib57) 2001; 49 Zhu, Lu, Ruan, Shu (bib86) 2009; 32 Theobald, Langdon, Nurick, Pillay, Heyns, Merrett (bib81) 2010; 92 Choi, Shin, Choung, Kim, Seo, Kim, Wong, Kim (bib11) 2016 Imbalzano, Linforth, Ngo, Lee, Tran (bib27) 2018; 183 Wong, Kim (bib83) 2018; 126 Mays, Smith, Smith (bib54) 1995 Kuntjoro (bib39) 2005 Kim, Ng, Hwang (bib33) 2018; 68 Lin, Han, Yang, Zhang, Luan, Han, Xu, Zhang (bib48) 2022; 10 Karagiozova, Nurick, Langdon (bib29) 2009; 91 (bib68) 1992 Sun, Chen, Wang, Hazell, Li (bib78) 2018; 122 Brewerton (bib7) 1999 Zhu, Wang, Lu, Nurick (bib87) 2010; 37 Maurya, Singh (bib53) 2015; 2 Nurick, Langdon, Chi, Jacob (bib59) 2009; 91 Hagan, Jeswiet (bib25) 2003; 217 Zhu, Zhao, Lu, Wang (bib90) 2008; 35 Liu, Wang, Hui (bib49) 2018; 145 Rajendran, Lee (bib66) 2009; 22 Kim, Lim, Yu (bib32) 2019; 192 Sivaprasad, Lekkala, Latheef, Seo, Yoo, Jin, Kim (bib92) 2023; 268 Yassin, Abidin, Kasiman, Mohd Noor, Abd Nazir (bib84) 2018 Gungor, Topa, Kucukyildirim (bib24) 2021 Nayak, Singh, Belegundu, Yen (bib56) 2013; 47 Cullen (bib91) 1993; 49 Groeneveld (bib23) 2016 (bib19) 2013 Park, Cho (bib64) 2006; 32 Chi, Langdon, Nurick (bib10) 2010; 31 Pan, Louca (bib63) 1999; 52 Naik Parrikar, Kishore, Tilton, Shukla (bib55) 2022; 169 Wang, Qin, Wang, Yu, Wang, Zhang, Wang (bib82) 2017; 105 Command (bib13) 1974 Cormie, Mays, Smith (bib14) 2009 Li, Zhang, Wang, Wu, Zhao (bib46) 2014; 108 Langdon, Nurick, Yahya, Cantwell (bib42) 2010; 12 Sun, Zhang, Li, Fang, Wang, Li (bib77) 2019; 142 Zhu, Wang, Lu, Zhao (bib88) 2009; 30 (bib18) 2010 Larour, Rusinek, Klepaczko, Bleck (bib43) 2007; 78 Sohn, Kim, Seong, Kim, Ha, Seo, Paik (bib74) 2014; 51 Li, Li, Wang, Wu, Lu, Zhao (bib45) 2017; 173 Kundu, Chakraborti (bib38) 2010; 45 Oh, Race, Oterkus, Koo (bib60) 2020; 8 Lan, Huang, Zhou, Feng (bib41) 2020; 16 Dharmasena, Wadley, Xue, Hutchinson (bib16) 2008; 35 Fleck, Deshpande (bib22) 2004; 71 Sohn, Kim (bib71) 2019; 16 Kim, Yu, Lim, Cho (bib37) 2020; 8 Li, Li, Wang, Wu, Lu, Zhao (bib44) 2016; 80 Arifurrahman, Critchley, Horsfall (bib2) 2021; 23 Qi, Pei, Remennikov, Yang, Liu, Wang, Liao (bib65) 2020; 252 Sochet (bib70) 2017 Biggs (bib3) 1964 Kim, Wong, Lee, Yu, Kim (bib36) 2019; 14 Ma, Li, Li, Li, Wang, Wu (bib52) 2019; 123 (bib17) 2011 Boh, Choo, Louca (bib5) 2003 Fan, Liu, Xu (bib21) 2016; 93 Louca, Boh (bib50) 2004 Tabatabaei, Volz (bib80) 2012 Kim, Lim, Cho (bib31) 2020; 12 Slavik (bib69) 2012 Cadoni, Fenu, Forni (bib8) 2012; 35 Remennikov, Rose (bib67) 2007; 34 Sohn, Kim, Seo, Kim, Paik (bib73) 2016; 11 Alberdi, Przywara, Khandelwal (bib1) 2013; 56 Bohara, Linforth, Nguyen, Ghazlan, Ngo (bib6) 2022; 299 Storheim, Amdahl, Martens (bib76) 2015; 44 Lv, Li, Dong (bib51) 2021; 191 Ng (bib58) 2018 Kalubadanage, Remennikov, Ngo, Qi (bib28) 2021; 23 Zhu (10.1016/j.oceaneng.2023.116578_bib90) 2008; 35 Lv (10.1016/j.oceaneng.2023.116578_bib51) 2021; 191 Arifurrahman (10.1016/j.oceaneng.2023.116578_bib2) 2021; 23 Kim (10.1016/j.oceaneng.2023.116578_bib37) 2020; 8 Liao (10.1016/j.oceaneng.2023.116578_bib47) 2017 Louca (10.1016/j.oceaneng.2023.116578_bib50) 2004 Fleck (10.1016/j.oceaneng.2023.116578_bib22) 2004; 71 Sivaprasad (10.1016/j.oceaneng.2023.116578_bib92) 2023; 268 (10.1016/j.oceaneng.2023.116578_bib17) 2011 Lan (10.1016/j.oceaneng.2023.116578_bib41) 2020; 16 Liu (10.1016/j.oceaneng.2023.116578_bib49) 2018; 145 Zhu (10.1016/j.oceaneng.2023.116578_bib86) 2009; 32 Boh (10.1016/j.oceaneng.2023.116578_bib4) 2003; 1 Kim (10.1016/j.oceaneng.2023.116578_bib32) 2019; 192 Cormie (10.1016/j.oceaneng.2023.116578_bib14) 2009 Tabatabaei (10.1016/j.oceaneng.2023.116578_bib80) 2012 Theobald (10.1016/j.oceaneng.2023.116578_bib81) 2010; 92 Cadoni (10.1016/j.oceaneng.2023.116578_bib8) 2012; 35 Nurick (10.1016/j.oceaneng.2023.116578_bib59) 2009; 91 Cullen (10.1016/j.oceaneng.2023.116578_bib91) 1993; 49 Rajendran (10.1016/j.oceaneng.2023.116578_bib66) 2009; 22 Zhu (10.1016/j.oceaneng.2023.116578_bib89) 2009; 36 Karagiozova (10.1016/j.oceaneng.2023.116578_bib29) 2009; 91 Command (10.1016/j.oceaneng.2023.116578_bib13) 1974 Maurya (10.1016/j.oceaneng.2023.116578_bib53) 2015; 2 Slavik (10.1016/j.oceaneng.2023.116578_bib69) 2012 Sohn (10.1016/j.oceaneng.2023.116578_bib72) 2013; 60 Gungor (10.1016/j.oceaneng.2023.116578_bib24) 2021 Oh (10.1016/j.oceaneng.2023.116578_bib60) 2020; 8 Storheim (10.1016/j.oceaneng.2023.116578_bib76) 2015; 44 Bohara (10.1016/j.oceaneng.2023.116578_bib6) 2022; 299 Nemat-Nasser (10.1016/j.oceaneng.2023.116578_bib57) 2001; 49 Pan (10.1016/j.oceaneng.2023.116578_bib63) 1999; 52 Sochet (10.1016/j.oceaneng.2023.116578_bib70) 2017 Hagan (10.1016/j.oceaneng.2023.116578_bib25) 2003; 217 Fan (10.1016/j.oceaneng.2023.116578_bib21) 2016; 93 Chi (10.1016/j.oceaneng.2023.116578_bib10) 2010; 31 Kim (10.1016/j.oceaneng.2023.116578_bib93) 2024 Kundu (10.1016/j.oceaneng.2023.116578_bib38) 2010; 45 Sun (10.1016/j.oceaneng.2023.116578_bib77) 2019; 142 Paik (10.1016/j.oceaneng.2023.116578_bib62) 2017; 12 Sun (10.1016/j.oceaneng.2023.116578_bib78) 2018; 122 Wong (10.1016/j.oceaneng.2023.116578_bib83) 2018; 126 Biggs (10.1016/j.oceaneng.2023.116578_bib3) 1964 Larour (10.1016/j.oceaneng.2023.116578_bib43) 2007; 78 Nayak (10.1016/j.oceaneng.2023.116578_bib56) 2013; 47 Khaire (10.1016/j.oceaneng.2023.116578_bib30) 2022; 171 Groeneveld (10.1016/j.oceaneng.2023.116578_bib23) 2016 Alberdi (10.1016/j.oceaneng.2023.116578_bib1) 2013; 56 Hyde (10.1016/j.oceaneng.2023.116578_bib26) 1988 Li (10.1016/j.oceaneng.2023.116578_bib46) 2014; 108 Sohn (10.1016/j.oceaneng.2023.116578_bib73) 2016; 11 Brewerton (10.1016/j.oceaneng.2023.116578_bib7) 1999 Li (10.1016/j.oceaneng.2023.116578_bib44) 2016; 80 Kim (10.1016/j.oceaneng.2023.116578_bib35) 2020; 12 Kim (10.1016/j.oceaneng.2023.116578_bib36) 2019; 14 Kuntjoro (10.1016/j.oceaneng.2023.116578_bib39) 2005 Remennikov (10.1016/j.oceaneng.2023.116578_bib67) 2007; 34 Zhu (10.1016/j.oceaneng.2023.116578_bib87) 2010; 37 Wang (10.1016/j.oceaneng.2023.116578_bib82) 2017; 105 Paik (10.1016/j.oceaneng.2023.116578_bib61) 2012; 63 Dharmasena (10.1016/j.oceaneng.2023.116578_bib16) 2008; 35 Li (10.1016/j.oceaneng.2023.116578_bib45) 2017; 173 Yassin (10.1016/j.oceaneng.2023.116578_bib85) 2020 Choi (10.1016/j.oceaneng.2023.116578_bib11) 2016 (10.1016/j.oceaneng.2023.116578_bib19) 2013 Ebrahimi (10.1016/j.oceaneng.2023.116578_bib20) 2018; 144 Ng (10.1016/j.oceaneng.2023.116578_bib58) 2018 Imbalzano (10.1016/j.oceaneng.2023.116578_bib27) 2018; 183 Yassin (10.1016/j.oceaneng.2023.116578_bib84) 2018 Kim (10.1016/j.oceaneng.2023.116578_bib34) 2018; 15 Boh (10.1016/j.oceaneng.2023.116578_bib5) 2003 Kim (10.1016/j.oceaneng.2023.116578_bib33) 2018; 68 Stanczak (10.1016/j.oceaneng.2023.116578_bib75) 2019; 9 Syed (10.1016/j.oceaneng.2023.116578_bib79) 2016; 145 Naik Parrikar (10.1016/j.oceaneng.2023.116578_bib55) 2022; 169 Choung (10.1016/j.oceaneng.2023.116578_bib12) 2013; 32 (10.1016/j.oceaneng.2023.116578_bib68) 1992 Sohn (10.1016/j.oceaneng.2023.116578_bib71) 2019; 16 Zhu (10.1016/j.oceaneng.2023.116578_bib88) 2009; 30 Czujko (10.1016/j.oceaneng.2023.116578_bib15) 2001 Lin (10.1016/j.oceaneng.2023.116578_bib48) 2022; 10 Ma (10.1016/j.oceaneng.2023.116578_bib52) 2019; 123 Mays (10.1016/j.oceaneng.2023.116578_bib54) 1995 Park (10.1016/j.oceaneng.2023.116578_bib64) 2006; 32 Langdon (10.1016/j.oceaneng.2023.116578_bib42) 2010; 12 Kalubadanage (10.1016/j.oceaneng.2023.116578_bib28) 2021; 23 Sohn (10.1016/j.oceaneng.2023.116578_bib74) 2014; 51 Lan (10.1016/j.oceaneng.2023.116578_bib40) 2019; 87 Qi (10.1016/j.oceaneng.2023.116578_bib65) 2020; 252 (10.1016/j.oceaneng.2023.116578_bib18) 2010 Kim (10.1016/j.oceaneng.2023.116578_bib31) 2020; 12 Chen (10.1016/j.oceaneng.2023.116578_bib9) 2021; 201 |
References_xml | – year: 2013 ident: bib19 article-title: Determination of Structural Capacity by Non-linear FE Analysis Methods – volume: 60 start-page: 149 year: 2013 end-page: 162 ident: bib72 article-title: Nonlinear structural consequence analysis of FPSO topside blastwalls publication-title: Ocean Eng. – volume: 217 start-page: 1571 year: 2003 end-page: 1579 ident: bib25 article-title: Effect of wall angle on Al 3003 strain hardening for parts formed by computer numerical control incremental forming publication-title: Proc. IME B J. Eng. Manufact. – volume: 122 start-page: 119 year: 2018 end-page: 136 ident: bib78 article-title: High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations publication-title: Int. J. Impact Eng. – volume: 92 start-page: 2465 year: 2010 end-page: 2475 ident: bib81 article-title: Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading publication-title: Compos. Struct. – volume: 171 year: 2022 ident: bib30 article-title: Perforation and energy dissipation behaviour of honeycomb core cylindrical sandwich shell subjected to conical shape projectile at high velocity impact publication-title: Thin-Walled Struct. – volume: 191 year: 2021 ident: bib51 article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson's ratio publication-title: Int. J. Mech. Sci. – volume: 31 start-page: 1887 year: 2010 end-page: 1899 ident: bib10 article-title: The influence of core height and face plate thickness on the response of honeycomb sandwich panels subjected to blast loading publication-title: Mater. Des. – year: 2020 ident: bib85 article-title: 2D Finite Element Formulations for Heat, Solid and Fluid (With Matlab) – volume: 32 start-page: 351 year: 2009 end-page: 370 ident: bib86 article-title: Tearing of metallic sandwich panels subjected to air shock loading publication-title: Struct. Eng. Mech. – volume: 142 start-page: 499 year: 2019 end-page: 515 ident: bib77 article-title: Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading publication-title: Thin-Walled Struct. – volume: 105 start-page: 24 year: 2017 end-page: 38 ident: bib82 article-title: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations publication-title: Int. J. Impact Eng. – volume: 12 start-page: 657 year: 2020 end-page: 666 ident: bib35 article-title: An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation publication-title: Int. J. Nav. Archit. Ocean Eng. – volume: 49 year: 1993 ident: bib91 article-title: The public inquiry into the Piper Alpha disaster publication-title: Drill. Contractor – volume: 91 start-page: 442 year: 2009 end-page: 450 ident: bib29 article-title: Behaviour of sandwich panels subject to intense air blasts – Part 2: numerical simulation publication-title: Compos. Struct. – volume: 252 year: 2020 ident: bib65 article-title: Parametric study and optimization of the protect system containing a re-entrant hexagon cored sandwich panel under blast impact publication-title: Compos. Struct. – volume: 14 start-page: 176 year: 2019 end-page: 192 ident: bib36 article-title: A method for the empirical formulation of current profile publication-title: Ships Offshore Struct. – year: 2018 ident: bib58 article-title: Development of Empirical Formula to Predict Maximum Displacement of Offshore Blast Walls Subjected to Hydrocarbon Explosions – volume: 91 start-page: 433 year: 2009 end-page: 441 ident: bib59 article-title: Behaviour of sandwich panels subjected to intense air blast – Part 1: experiments publication-title: Compos. Struct. – volume: 22 start-page: 99 year: 2009 end-page: 127 ident: bib66 article-title: Blast loaded plates publication-title: Mar. Struct. – volume: 30 start-page: 91 year: 2009 end-page: 100 ident: bib88 article-title: Analytical investigation and optimal design of sandwich panels subjected to shock loading publication-title: Mater. Des. – year: 1964 ident: bib3 article-title: Introduction to Structural Dynamics – volume: 35 start-page: 1063 year: 2008 end-page: 1074 ident: bib16 article-title: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading publication-title: Int. J. Impact Eng. – volume: 51 start-page: 755 year: 2014 end-page: 771 ident: bib74 article-title: Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions publication-title: Struct. Eng. Mech.: Int. J. – volume: 299 year: 2022 ident: bib6 article-title: Dual-mechanism auxetic-core protective sandwich structure under blast loading publication-title: Compos. Struct. – volume: 10 year: 2022 ident: bib48 article-title: Numerical investigation on performance optimization of offshore sandwich blast walls with different honeycomb cores subjected to blast loading publication-title: J. Mar. Sci. Eng. – year: 2012 ident: bib69 article-title: Blast Loading in LS-DYNA – volume: 1 start-page: 698 year: 2003 end-page: 703 ident: bib4 article-title: Failure modeling of corrugated panel subjected to dynamic blast loading publication-title: Structural Stability And Dynamics: With CD-ROM – volume: 126 start-page: 100 year: 2018 end-page: 109 ident: bib83 article-title: A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network publication-title: Adv. Eng. Software – volume: 145 start-page: 261 year: 2018 end-page: 269 ident: bib49 article-title: Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes publication-title: Compos. B Eng. – year: 2011 ident: bib17 article-title: Final Report on the Investigation of the Macondo Well Blowout Deepwater Horizon Study Group (DHSG) – year: 1992 ident: bib68 article-title: Interim Guidance Notes for the Design and Protection of Topside Structures against Explosion and Fire – start-page: 223 year: 2016 end-page: 233 ident: bib11 article-title: Applicability of high manganese steel to FLNG storage tank considering collision damage publication-title: The 3rd International Conference on Ocean, Mechanical and Aerospace for Scientists & Engineers (OMASe 2016) – volume: 80 start-page: 1 year: 2016 end-page: 12 ident: bib44 article-title: Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading publication-title: Compos. Appl. Sci. Manuf. – volume: 16 start-page: 617 year: 2020 end-page: 626 ident: bib41 article-title: Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading publication-title: Defence Technol. – year: 2021 ident: bib24 article-title: Numerical investigation of innovative honeycomb-composite sandwich structure under bird-strike event publication-title: The 6th International Conference on Advances in Mechanical Engineering – volume: 78 start-page: 348 year: 2007 end-page: 358 ident: bib43 article-title: Effects of strain rate and identification of material constants for three automotive steels publication-title: Steel Res. Int. – volume: 44 start-page: 254 year: 2015 end-page: 287 ident: bib76 article-title: On the accuracy of fracture estimation in collision analysis of ship and offshore structures publication-title: Mar. Struct. – year: 2003 ident: bib5 article-title: Force Based Failure Modeling of Corrugated Panel Subjected to Blast Loading – volume: 169 year: 2022 ident: bib55 article-title: Response of curved aluminum panels subjected to localized blast loading at extreme temperatures publication-title: Int. J. Impact Eng. – start-page: 1 year: 2012 end-page: 10 ident: bib80 article-title: A Comparison between Three Different Blast Methods in LS-DYNA: LBE, MM-ALE, Coupling of LBE and MM-ALE, the 12th International LS-DYNA Users Conference – year: 2010 ident: bib18 article-title: Design against Accidental Loads Det Norske Veritas – year: 2009 ident: bib14 article-title: Blast Effects on Buildings – volume: 34 start-page: 1907 year: 2007 end-page: 1923 ident: bib67 article-title: Predicting the effectiveness of blast wall barriers using neural networks publication-title: Int. J. Impact Eng. – volume: 145 start-page: 1275 year: 2016 end-page: 1282 ident: bib79 article-title: Non-linear finite element analysis of offshore stainless steel blast wall under high impulsive pressure loads publication-title: Procedia Eng. – volume: 35 start-page: 937 year: 2008 end-page: 951 ident: bib90 article-title: Deformation and failure of blast-loaded metallic sandwich panels—experimental investigations publication-title: Int. J. Impact Eng. – volume: 32 start-page: 49 year: 2013 end-page: 67 ident: bib12 article-title: Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature publication-title: Mar. Struct. – volume: 12 start-page: 645 year: 2020 end-page: 656 ident: bib31 article-title: An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = Application to the ship's ballast tank publication-title: Int. J. Nav. Archit. Ocean Eng. – year: 2018 ident: bib84 article-title: Finite Element Formulations for Statics and Dynamics of Plane Structures (With Matlab) – year: 2017 ident: bib47 article-title: A Novel Offshore Platform Blast Wall Design with Energy Absorption Mechanism – volume: 49 start-page: 1823 year: 2001 end-page: 1846 ident: bib57 article-title: Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures publication-title: J. Mech. Phys. Solid. – volume: 36 start-page: 687 year: 2009 end-page: 699 ident: bib89 article-title: A numerical simulation of the blast impact of square metallic sandwich panels publication-title: Int. J. Impact Eng. – volume: 52 start-page: 171 year: 1999 end-page: 193 ident: bib63 article-title: Experimental and numerical studies on the response of stiffened plates subjected to gas explosions publication-title: J. Constr. Steel Res. – volume: 144 start-page: 1 year: 2018 end-page: 9 ident: bib20 article-title: Blast-resilience of honeycomb sandwich panels publication-title: Int. J. Mech. Sci. – volume: 71 start-page: 386 year: 2004 end-page: 401 ident: bib22 article-title: The resistance of clamped sandwich beams to shock loading publication-title: J. Appl. Mech. – volume: 123 start-page: 126 year: 2019 end-page: 139 ident: bib52 article-title: Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins publication-title: Int. J. Impact Eng. – volume: 45 start-page: 5482 year: 2010 end-page: 5489 ident: bib38 article-title: Effect of strain rate on quasistatic tensile flow behaviour of solution annealed 304 austenitic stainless steel at room temperature publication-title: J. Mater. Sci. – year: 2024 ident: bib93 article-title: A novel formula for predicting the ultimate compressive strength of the cylindrically curved plates publication-title: Int. J. Naval Arch. Ocean Eng. – year: 2016 ident: bib23 article-title: Further Weight and Cost Saving of Fire and Blast Resistant Walls on Offshore Installations, through the New, 4 Th Type and a Comprehensive Decision Making Model, Offshore Technology Conference – volume: 11 start-page: 551 year: 2016 end-page: 560 ident: bib73 article-title: Strength assessment of stiffened blast walls in offshore installations under explosions publication-title: Ships Offshore Struct. – volume: 35 start-page: 399 year: 2012 end-page: 407 ident: bib8 article-title: Strain rate behaviour in tension of austenitic stainless steel used for reinforcing bars publication-title: Construct. Build. Mater. – volume: 16 start-page: e161 year: 2019 ident: bib71 article-title: Dynamic structural response characteristics of new concept blast walls under hydrocarbon explosions publication-title: Lat. Am. J. Solid. Struct. – year: 1988 ident: bib26 article-title: Microcomputer Programs CONWEP and FUNPRO, Applications of TM 5-855-1, Fundamentals of Protective Design for Conventional Weapons (User's Guide) – year: 1999 ident: bib7 article-title: Design Guide for Stainless Steel Blast Wall–Technical Note 5. Fire and Blast Information Group (FABIG) – volume: 68 start-page: 237 year: 2018 end-page: 245 ident: bib33 article-title: An empirical formulation to predict maximum deformation of blast wall under explosion publication-title: Struct. Eng. Mech. – volume: 32 start-page: 1721 year: 2006 end-page: 1736 ident: bib64 article-title: Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosion loadings publication-title: Int. J. Impact Eng. – volume: 268 start-page: 113393 year: 2023 ident: bib92 article-title: Fatigue damage prediction of top tensioned riser subjected to vortex-induced vibrations using artificial neural networks publication-title: Ocean Eng – volume: 183 start-page: 242 year: 2018 end-page: 261 ident: bib27 article-title: Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs publication-title: Compos. Struct. – volume: 9 year: 2019 ident: bib75 article-title: Blast-induced compression of a thin-walled aluminum honeycomb structure—experiment and modeling publication-title: Metals – volume: 23 start-page: 3902 year: 2021 end-page: 3931 ident: bib2 article-title: Experimental and numerical study of auxetic sandwich panels on 160 grams of PE4 blast loading publication-title: J. Sandw. Struct. Mater. – volume: 93 start-page: 128 year: 2016 end-page: 135 ident: bib21 article-title: Blast resistance of metallic sandwich panels subjected to proximity underwater explosion publication-title: Int. J. Impact Eng. – volume: 47 start-page: 749 year: 2013 end-page: 763 ident: bib56 article-title: Process for design optimization of honeycomb core sandwich panels for blast load mitigation publication-title: Struct. Multidiscip. Optim. – year: 2001 ident: bib15 article-title: Design of Offshore Facilities to Resist Gas Explosion Hazard: Engineering Handbook – volume: 108 start-page: 1001 year: 2014 end-page: 1008 ident: bib46 article-title: Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis publication-title: Compos. Struct. – volume: 37 start-page: 625 year: 2010 end-page: 637 ident: bib87 article-title: Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading publication-title: Int. J. Impact Eng. – volume: 12 start-page: S230 year: 2017 end-page: S256 ident: bib62 article-title: Test database of the mechanical properties of mild, high-tensile and stainless steel and aluminium alloy associated with cold temperatures and strain rates publication-title: Ships Offshore Struct. – volume: 15 start-page: e115 year: 2018 ident: bib34 article-title: Recommended finite element formulations for the analysis of offshore blast walls in an explosion publication-title: Lat. Am. J. Solid. Struct. – volume: 201 year: 2021 ident: bib9 article-title: Blast resistance of metallic double arrowhead honeycomb sandwich panels with different core configurations under the paper tube-guided air blast loading publication-title: Int. J. Mech. Sci. – volume: 12 start-page: 733 year: 2010 end-page: 754 ident: bib42 article-title: The response of honeycomb core sandwich panels, with aluminum and composite face sheets, to blast loading publication-title: J. Sandw. Struct. Mater. – volume: 192 year: 2019 ident: bib32 article-title: Ultimate strength prediction of T-bar stiffened panel under longitudinal compression by data processing: a refined empirical formulation publication-title: Ocean Eng. – year: 1995 ident: bib54 article-title: Blast Effects on Buildings: Design of Buildings to Optimize Resistance to Blast Loading – year: 2017 ident: bib70 article-title: Blast Effects: Physical Properties of Shock Waves – year: 1974 ident: bib13 article-title: Engineering Design Handbook: Explosions in Air Part One. AD/A-003 817 (AMC Pamphlet AMCP 706-181) – volume: 23 start-page: 4016 year: 2021 end-page: 4053 ident: bib28 article-title: Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels publication-title: J. Sandw. Struct. Mater. – volume: 63 start-page: 51 year: 2012 end-page: 58 ident: bib61 article-title: Advanced method for the development of an empirical model to predict time-dependent corrosion wastage publication-title: Corrosion Sci. – volume: 56 start-page: 2119 year: 2013 end-page: 2130 ident: bib1 article-title: Performance evaluation of sandwich panel systems for blast mitigation publication-title: Eng. Struct. – volume: 8 start-page: 605 year: 2020 ident: bib37 article-title: Ultimate compressive strength of stiffened panel: an empirical formulation for flat-bar type publication-title: J. Mar. Sci. Eng. – volume: 2 start-page: 1 year: 2015 end-page: 8 ident: bib53 article-title: Recent trends in blast resistant construction publication-title: GJESR Research Paper – year: 2004 ident: bib50 article-title: Analysis and Design of Profiled Blast Walls – year: 2005 ident: bib39 article-title: An Introduction to the Finite Element Method – volume: 87 start-page: 37 year: 2019 end-page: 47 ident: bib40 article-title: A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores publication-title: Aero. Sci. Technol. – volume: 8 start-page: 766 year: 2020 ident: bib60 article-title: Burst pressure prediction of API 5L X-grade dented pipelines using deep neural network publication-title: J. Mar. Sci. Eng. – volume: 173 start-page: 242 year: 2017 end-page: 254 ident: bib45 article-title: Sandwich panels with layered graded aluminum honeycomb cores under blast loading publication-title: Compos. Struct. – volume: 12 start-page: 733 issue: 6 year: 2010 ident: 10.1016/j.oceaneng.2023.116578_bib42 article-title: The response of honeycomb core sandwich panels, with aluminum and composite face sheets, to blast loading publication-title: J. Sandw. Struct. Mater. doi: 10.1177/1099636210368470 – volume: 145 start-page: 261 year: 2018 ident: 10.1016/j.oceaneng.2023.116578_bib49 article-title: Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.03.005 – volume: 52 start-page: 171 issue: 2 year: 1999 ident: 10.1016/j.oceaneng.2023.116578_bib63 article-title: Experimental and numerical studies on the response of stiffened plates subjected to gas explosions publication-title: J. Constr. Steel Res. doi: 10.1016/S0143-974X(99)00022-X – volume: 252 year: 2020 ident: 10.1016/j.oceaneng.2023.116578_bib65 article-title: Parametric study and optimization of the protect system containing a re-entrant hexagon cored sandwich panel under blast impact publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112711 – volume: 126 start-page: 100 year: 2018 ident: 10.1016/j.oceaneng.2023.116578_bib83 article-title: A simplified method to predict fatigue damage of TTR subjected to short-term VIV using artificial neural network publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2018.09.011 – year: 2017 ident: 10.1016/j.oceaneng.2023.116578_bib70 – year: 2001 ident: 10.1016/j.oceaneng.2023.116578_bib15 – volume: 32 start-page: 351 issue: 2 year: 2009 ident: 10.1016/j.oceaneng.2023.116578_bib86 article-title: Tearing of metallic sandwich panels subjected to air shock loading publication-title: Struct. Eng. Mech. doi: 10.12989/sem.2009.32.2.351 – volume: 299 year: 2022 ident: 10.1016/j.oceaneng.2023.116578_bib6 article-title: Dual-mechanism auxetic-core protective sandwich structure under blast loading publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.116088 – year: 2016 ident: 10.1016/j.oceaneng.2023.116578_bib23 – volume: 173 start-page: 242 year: 2017 ident: 10.1016/j.oceaneng.2023.116578_bib45 article-title: Sandwich panels with layered graded aluminum honeycomb cores under blast loading publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.04.037 – volume: 14 start-page: 176 issue: 2 year: 2019 ident: 10.1016/j.oceaneng.2023.116578_bib36 article-title: A method for the empirical formulation of current profile publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2018.1488340 – volume: 31 start-page: 1887 issue: 4 year: 2010 ident: 10.1016/j.oceaneng.2023.116578_bib10 article-title: The influence of core height and face plate thickness on the response of honeycomb sandwich panels subjected to blast loading publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.10.058 – volume: 217 start-page: 1571 issue: 11 year: 2003 ident: 10.1016/j.oceaneng.2023.116578_bib25 article-title: Effect of wall angle on Al 3003 strain hardening for parts formed by computer numerical control incremental forming publication-title: Proc. IME B J. Eng. Manufact. doi: 10.1243/095440503771909944 – volume: 35 start-page: 937 issue: 8 year: 2008 ident: 10.1016/j.oceaneng.2023.116578_bib90 article-title: Deformation and failure of blast-loaded metallic sandwich panels—experimental investigations publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2007.11.003 – year: 2005 ident: 10.1016/j.oceaneng.2023.116578_bib39 – volume: 51 start-page: 755 issue: 5 year: 2014 ident: 10.1016/j.oceaneng.2023.116578_bib74 article-title: Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions publication-title: Struct. Eng. Mech.: Int. J. doi: 10.12989/sem.2014.51.5.755 – start-page: 223 year: 2016 ident: 10.1016/j.oceaneng.2023.116578_bib11 article-title: Applicability of high manganese steel to FLNG storage tank considering collision damage – start-page: 1 year: 2012 ident: 10.1016/j.oceaneng.2023.116578_bib80 – year: 2003 ident: 10.1016/j.oceaneng.2023.116578_bib5 – year: 2011 ident: 10.1016/j.oceaneng.2023.116578_bib17 – year: 2024 ident: 10.1016/j.oceaneng.2023.116578_bib93 article-title: A novel formula for predicting the ultimate compressive strength of the cylindrically curved plates publication-title: Int. J. Naval Arch. Ocean Eng. doi: 10.1016/j.ijnaoe.2023.100562 – year: 1964 ident: 10.1016/j.oceaneng.2023.116578_bib3 – year: 1988 ident: 10.1016/j.oceaneng.2023.116578_bib26 – volume: 91 start-page: 433 issue: 4 year: 2009 ident: 10.1016/j.oceaneng.2023.116578_bib59 article-title: Behaviour of sandwich panels subjected to intense air blast – Part 1: experiments publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2009.04.009 – volume: 92 start-page: 2465 issue: 10 year: 2010 ident: 10.1016/j.oceaneng.2023.116578_bib81 article-title: Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2010.03.002 – volume: 71 start-page: 386 issue: 3 year: 2004 ident: 10.1016/j.oceaneng.2023.116578_bib22 article-title: The resistance of clamped sandwich beams to shock loading publication-title: J. Appl. Mech. doi: 10.1115/1.1629109 – volume: 2 start-page: 1 issue: 9 year: 2015 ident: 10.1016/j.oceaneng.2023.116578_bib53 article-title: Recent trends in blast resistant construction publication-title: GJESR Research Paper – year: 2018 ident: 10.1016/j.oceaneng.2023.116578_bib84 – volume: 45 start-page: 5482 issue: 20 year: 2010 ident: 10.1016/j.oceaneng.2023.116578_bib38 article-title: Effect of strain rate on quasistatic tensile flow behaviour of solution annealed 304 austenitic stainless steel at room temperature publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-4605-2 – volume: 87 start-page: 37 year: 2019 ident: 10.1016/j.oceaneng.2023.116578_bib40 article-title: A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2019.01.031 – volume: 10 issue: 11 year: 2022 ident: 10.1016/j.oceaneng.2023.116578_bib48 article-title: Numerical investigation on performance optimization of offshore sandwich blast walls with different honeycomb cores subjected to blast loading publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10111743 – volume: 49 issue: 4 year: 1993 ident: 10.1016/j.oceaneng.2023.116578_bib91 article-title: The public inquiry into the Piper Alpha disaster publication-title: Drill. Contractor – volume: 32 start-page: 49 year: 2013 ident: 10.1016/j.oceaneng.2023.116578_bib12 article-title: Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2013.02.001 – year: 1992 ident: 10.1016/j.oceaneng.2023.116578_bib68 – year: 1999 ident: 10.1016/j.oceaneng.2023.116578_bib7 – volume: 11 start-page: 551 issue: 5 year: 2016 ident: 10.1016/j.oceaneng.2023.116578_bib73 article-title: Strength assessment of stiffened blast walls in offshore installations under explosions publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2015.1035164 – volume: 37 start-page: 625 issue: 6 year: 2010 ident: 10.1016/j.oceaneng.2023.116578_bib87 article-title: Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2009.11.003 – volume: 8 start-page: 766 issue: 10 year: 2020 ident: 10.1016/j.oceaneng.2023.116578_bib60 article-title: Burst pressure prediction of API 5L X-grade dented pipelines using deep neural network publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse8100766 – volume: 192 year: 2019 ident: 10.1016/j.oceaneng.2023.116578_bib32 article-title: Ultimate strength prediction of T-bar stiffened panel under longitudinal compression by data processing: a refined empirical formulation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106522 – volume: 201 year: 2021 ident: 10.1016/j.oceaneng.2023.116578_bib9 article-title: Blast resistance of metallic double arrowhead honeycomb sandwich panels with different core configurations under the paper tube-guided air blast loading publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2021.106457 – volume: 169 year: 2022 ident: 10.1016/j.oceaneng.2023.116578_bib55 article-title: Response of curved aluminum panels subjected to localized blast loading at extreme temperatures publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2022.104336 – volume: 15 start-page: e115 issue: 10 year: 2018 ident: 10.1016/j.oceaneng.2023.116578_bib34 article-title: Recommended finite element formulations for the analysis of offshore blast walls in an explosion publication-title: Lat. Am. J. Solid. Struct. doi: 10.1590/1679-78255172 – volume: 36 start-page: 687 issue: 5 year: 2009 ident: 10.1016/j.oceaneng.2023.116578_bib89 article-title: A numerical simulation of the blast impact of square metallic sandwich panels publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2008.12.004 – volume: 122 start-page: 119 year: 2018 ident: 10.1016/j.oceaneng.2023.116578_bib78 article-title: High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2018.08.007 – volume: 8 start-page: 605 issue: 8 year: 2020 ident: 10.1016/j.oceaneng.2023.116578_bib37 article-title: Ultimate compressive strength of stiffened panel: an empirical formulation for flat-bar type publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse8080605 – volume: 9 issue: 12 year: 2019 ident: 10.1016/j.oceaneng.2023.116578_bib75 article-title: Blast-induced compression of a thin-walled aluminum honeycomb structure—experiment and modeling publication-title: Metals doi: 10.3390/met9121350 – volume: 35 start-page: 399 year: 2012 ident: 10.1016/j.oceaneng.2023.116578_bib8 article-title: Strain rate behaviour in tension of austenitic stainless steel used for reinforcing bars publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2012.04.081 – year: 2004 ident: 10.1016/j.oceaneng.2023.116578_bib50 – year: 2009 ident: 10.1016/j.oceaneng.2023.116578_bib14 – volume: 22 start-page: 99 issue: 2 year: 2009 ident: 10.1016/j.oceaneng.2023.116578_bib66 article-title: Blast loaded plates publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2008.04.001 – year: 2012 ident: 10.1016/j.oceaneng.2023.116578_bib69 – year: 2017 ident: 10.1016/j.oceaneng.2023.116578_bib47 – volume: 268 start-page: 113393 year: 2023 ident: 10.1016/j.oceaneng.2023.116578_bib92 article-title: Fatigue damage prediction of top tensioned riser subjected to vortex-induced vibrations using artificial neural networks publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113393 – volume: 47 start-page: 749 issue: 5 year: 2013 ident: 10.1016/j.oceaneng.2023.116578_bib56 article-title: Process for design optimization of honeycomb core sandwich panels for blast load mitigation publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-012-0845-x – volume: 144 start-page: 1 year: 2018 ident: 10.1016/j.oceaneng.2023.116578_bib20 article-title: Blast-resilience of honeycomb sandwich panels publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.05.038 – year: 2020 ident: 10.1016/j.oceaneng.2023.116578_bib85 – volume: 63 start-page: 51 year: 2012 ident: 10.1016/j.oceaneng.2023.116578_bib61 article-title: Advanced method for the development of an empirical model to predict time-dependent corrosion wastage publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2012.05.015 – volume: 142 start-page: 499 year: 2019 ident: 10.1016/j.oceaneng.2023.116578_bib77 article-title: Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2019.04.029 – volume: 93 start-page: 128 year: 2016 ident: 10.1016/j.oceaneng.2023.116578_bib21 article-title: Blast resistance of metallic sandwich panels subjected to proximity underwater explosion publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2016.03.001 – year: 2018 ident: 10.1016/j.oceaneng.2023.116578_bib58 – volume: 60 start-page: 149 year: 2013 ident: 10.1016/j.oceaneng.2023.116578_bib72 article-title: Nonlinear structural consequence analysis of FPSO topside blastwalls publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.12.005 – volume: 145 start-page: 1275 year: 2016 ident: 10.1016/j.oceaneng.2023.116578_bib79 article-title: Non-linear finite element analysis of offshore stainless steel blast wall under high impulsive pressure loads publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.04.164 – volume: 68 start-page: 237 issue: 2 year: 2018 ident: 10.1016/j.oceaneng.2023.116578_bib33 article-title: An empirical formulation to predict maximum deformation of blast wall under explosion publication-title: Struct. Eng. Mech. – volume: 78 start-page: 348 issue: 4 year: 2007 ident: 10.1016/j.oceaneng.2023.116578_bib43 article-title: Effects of strain rate and identification of material constants for three automotive steels publication-title: Steel Res. Int. doi: 10.1002/srin.200705902 – volume: 1 start-page: 698 year: 2003 ident: 10.1016/j.oceaneng.2023.116578_bib4 article-title: Failure modeling of corrugated panel subjected to dynamic blast loading publication-title: Structural Stability And Dynamics: With CD-ROM – volume: 191 year: 2021 ident: 10.1016/j.oceaneng.2023.116578_bib51 article-title: Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson's ratio publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.106105 – volume: 32 start-page: 1721 issue: 10 year: 2006 ident: 10.1016/j.oceaneng.2023.116578_bib64 article-title: Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosion loadings publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2005.01.005 – volume: 30 start-page: 91 issue: 1 year: 2009 ident: 10.1016/j.oceaneng.2023.116578_bib88 article-title: Analytical investigation and optimal design of sandwich panels subjected to shock loading publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.04.027 – volume: 49 start-page: 1823 issue: 8 year: 2001 ident: 10.1016/j.oceaneng.2023.116578_bib57 article-title: Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures publication-title: J. Mech. Phys. Solid. doi: 10.1016/S0022-5096(00)00069-7 – volume: 16 start-page: 617 issue: 3 year: 2020 ident: 10.1016/j.oceaneng.2023.116578_bib41 article-title: Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading publication-title: Defence Technol. doi: 10.1016/j.dt.2019.09.010 – volume: 44 start-page: 254 year: 2015 ident: 10.1016/j.oceaneng.2023.116578_bib76 article-title: On the accuracy of fracture estimation in collision analysis of ship and offshore structures publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2015.09.006 – volume: 91 start-page: 442 issue: 4 year: 2009 ident: 10.1016/j.oceaneng.2023.116578_bib29 article-title: Behaviour of sandwich panels subject to intense air blasts – Part 2: numerical simulation publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2009.04.010 – volume: 56 start-page: 2119 year: 2013 ident: 10.1016/j.oceaneng.2023.116578_bib1 article-title: Performance evaluation of sandwich panel systems for blast mitigation publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2013.08.021 – volume: 23 start-page: 4016 issue: 8 year: 2021 ident: 10.1016/j.oceaneng.2023.116578_bib28 article-title: Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels publication-title: J. Sandw. Struct. Mater. doi: 10.1177/1099636220975450 – volume: 123 start-page: 126 year: 2019 ident: 10.1016/j.oceaneng.2023.116578_bib52 article-title: Blast response of gradient honeycomb sandwich panels with basalt fiber metal laminates as skins publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2018.10.003 – volume: 105 start-page: 24 year: 2017 ident: 10.1016/j.oceaneng.2023.116578_bib82 article-title: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2016.10.009 – volume: 12 start-page: 657 year: 2020 ident: 10.1016/j.oceaneng.2023.116578_bib35 article-title: An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation publication-title: Int. J. Nav. Archit. Ocean Eng. doi: 10.1016/j.ijnaoe.2020.06.007 – volume: 23 start-page: 3902 issue: 8 year: 2021 ident: 10.1016/j.oceaneng.2023.116578_bib2 article-title: Experimental and numerical study of auxetic sandwich panels on 160 grams of PE4 blast loading publication-title: J. Sandw. Struct. Mater. doi: 10.1177/1099636220961756 – year: 2021 ident: 10.1016/j.oceaneng.2023.116578_bib24 article-title: Numerical investigation of innovative honeycomb-composite sandwich structure under bird-strike event – year: 2010 ident: 10.1016/j.oceaneng.2023.116578_bib18 – year: 1995 ident: 10.1016/j.oceaneng.2023.116578_bib54 – volume: 34 start-page: 1907 issue: 12 year: 2007 ident: 10.1016/j.oceaneng.2023.116578_bib67 article-title: Predicting the effectiveness of blast wall barriers using neural networks publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2006.11.003 – year: 2013 ident: 10.1016/j.oceaneng.2023.116578_bib19 – volume: 35 start-page: 1063 issue: 9 year: 2008 ident: 10.1016/j.oceaneng.2023.116578_bib16 article-title: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2007.06.008 – volume: 16 start-page: e161 issue: 2 year: 2019 ident: 10.1016/j.oceaneng.2023.116578_bib71 article-title: Dynamic structural response characteristics of new concept blast walls under hydrocarbon explosions publication-title: Lat. Am. J. Solid. Struct. doi: 10.1590/1679-78255351 – volume: 12 start-page: 645 year: 2020 ident: 10.1016/j.oceaneng.2023.116578_bib31 article-title: An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = Application to the ship's ballast tank publication-title: Int. J. Nav. Archit. Ocean Eng. doi: 10.1016/j.ijnaoe.2020.07.002 – year: 1974 ident: 10.1016/j.oceaneng.2023.116578_bib13 – volume: 80 start-page: 1 year: 2016 ident: 10.1016/j.oceaneng.2023.116578_bib44 article-title: Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.09.025 – volume: 108 start-page: 1001 year: 2014 ident: 10.1016/j.oceaneng.2023.116578_bib46 article-title: Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2013.10.034 – volume: 12 start-page: S230 issue: Suppl. 1 year: 2017 ident: 10.1016/j.oceaneng.2023.116578_bib62 article-title: Test database of the mechanical properties of mild, high-tensile and stainless steel and aluminium alloy associated with cold temperatures and strain rates publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2016.1262729 – volume: 171 year: 2022 ident: 10.1016/j.oceaneng.2023.116578_bib30 article-title: Perforation and energy dissipation behaviour of honeycomb core cylindrical sandwich shell subjected to conical shape projectile at high velocity impact publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.108724 – volume: 183 start-page: 242 year: 2018 ident: 10.1016/j.oceaneng.2023.116578_bib27 article-title: Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.03.018 |
SSID | ssj0006603 |
Score | 2.4159253 |
Snippet | Despite comprehensive prevention strategies, offshore operations consistently grapple with health, safety, and environmental (HSE) challenges. Though... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 116578 |
SubjectTerms | Blast loading Blast wall Finite element simulations Metallic structures Sandwich panel system |
Title | Prediction of mechanical response of hexagonal honeycomb SPS blast wall under explosive loading: In-depth review and empirical formula |
URI | https://dx.doi.org/10.1016/j.oceaneng.2023.116578 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEF1FcGmRUBta8dGiOfTqBHt3vSy3KAIlIFIkisTN2rVnSSLjRJFRy4Ujv5sdf7RBqsSBo1cea72zmnn2vjfD2I_YYyDnYWygVZYGwpkwsNpEQagcpmiUldU_3ctJPLoR57fytsOGrRaGaJVN7K9jehWtm5F-s5r95WxGGt9I-_hKJ0WRjisxuRCKdnnv6R_NI46PeEvzoLvXVMLznk8RpsDirkdNxHtUiYbarf0vQa0lnbNPbLtBizCoJ_SZdbDoso9rNQS7bOsnPb0pPL3Dnq9WdPRCyw0LB_dIyl5yBKxqNizS8BT_mDvC4DBdFPjoX97C9dU1WI-lS_ht8hxIXLYCJIoeMdwhX1Rs-xMYF0GGy3IKteoFTJEB3i9nVa0RIAz8kJsv7Obs9NdwFDS9FoKUh1EZaCkM-o8nbY0NU8riQpCo9TiMFfoP6NAJK6UTmXUOuSRccJwdceWNQiO55l_ZRuFnvMsAeZZGXKUu4lYgRlooacIsU8ajF-uiPSbbBU7SphA59cPIk5ZxNk9axyTkmKR2zB7r_7Vb1qU43rTQrf-SV5sq8fniDdv9d9gesA_-StTk7m9so1w94HePXUp7WG3OQ7Y5GF-MJi9CUfDv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iBx8gPvHtHLx21zZJa7yJKOtbUMFbSdqJu1K7y1JRLx793Wb60BUED17TTkkzaeZL830zjO2EDgNZB2M9FaWJJ6z2PaN04PmRxQR1ZGT5T_fiMuzcidN7eT_GDhstDNEq67W_WtPL1bpuadej2R70eqTxDZRbX-mkKFAhicknhPt8qYxB6_2b5xGGu7zhedDtIzLhx5aLETrH_KFFVcRblIqG6q39FqFGos7xHJut4SIcVD2aZ2OYL7DpkSSCC2zmip5eZ55eZB_XQzp7ofGGvoUnJGkveQKGFR0WqbmLr_qBQDh0-zm-ubc3cHN9A8aB6QJedJYBqcuGgMTRI4o7ZP2Sbr8PJ7mX4qDoQiV7AZ2ngE-DXplsBAgEP2d6id0dH90edry62IKXcD8oPCWFRrd7UkYbP6EwLgSpWvf8MEK3g_atMFJakRprkUsCBnvpLo-cka8lV3yZjeeuxysMkKdJwKPEBtwIxECJSGo_TSPt4IuxwSqTzQDHSZ2JnApiZHFDOXuMG8fE5Ji4cswqa3_ZDapcHH9aqMZ_8Y9ZFbuA8Yft2j9st9lk5_biPD4_uTxbZ1PuiqiY3htsvBg-46YDMoXZKifqJ8ar8n0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+mechanical+response+of+hexagonal+honeycomb+SPS+blast+wall+under+explosive+loading%3A+In-depth+review+and+empirical+formula&rft.jtitle=Ocean+engineering&rft.au=Kim%2C+Do+Kyun&rft.au=Looi%2C+Chee+Kean&rft.au=Topa%2C+Ameen&rft.au=Cho%2C+Nak+Kyun&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=293&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.116578&rft.externalDocID=S0029801823029621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |