Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability

Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications. In this paper, a five-dimension (5D) double-memristor hyperchaotic system (DMHS) is modeled by introducing two active magnetron memristor models into the Kolmogorov-type...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 32; no. 1; pp. 10507 - 301
Main Authors Jiao, Xiaodong, Yuan, Mingfeng, Tao, Jin, Sun, Hao, Sun, Qinglin, Chen, Zengqiang
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.01.2023
College of Artificial Intelligence,Nankai University,Tianjin 300350,China%Department of Earth and Space Science and Engineering,York University,Toronto M3J 1P3,Canada
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications. In this paper, a five-dimension (5D) double-memristor hyperchaotic system (DMHS) is modeled by introducing two active magnetron memristor models into the Kolmogorov-type formula. The boundness condition of the proposed hyperchaotic system is proved. Coexisting bifurcation diagram and numerical verification explain the bistability. The rich dynamics of the system are demonstrated by the dynamic evolution map and the basin. The simulation results reveal the existence of transient hyperchaos and hidden extreme multistability in the presented DMHS. The NIST tests show that the generated signal sequence is highly random, which is feasible for encryption purposes. Furthermore, the system is implemented based on a FPGA experimental platform, which benefits the further applications of the proposed hyperchaos.
AbstractList Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications. In this paper, a five-dimension (5D) double-memristor hyperchaotic system (DMHS) is modeled by introduc-ing two active magnetron memristor models into the Kolmogorov-type formula. The boundness condition of the proposed hyperchaotic system is proved. Coexisting bifurcation diagram and numerical verification explain the bistability. The rich dynamics of the system are demonstrated by the dynamic evolution map and the basin. The simulation results reveal the existence of transient hyperchaos and hidden extreme multistability in the presented DMHS. The NIST tests show that the generated signal sequence is highly random, which is feasible for encryption purposes. Furthermore, the system is implemented based on a FPGA experimental platform, which benefits the further applications of the proposed hyperchaos.
Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications. In this paper, a five-dimension (5D) double-memristor hyperchaotic system (DMHS) is modeled by introducing two active magnetron memristor models into the Kolmogorov-type formula. The boundness condition of the proposed hyperchaotic system is proved. Coexisting bifurcation diagram and numerical verification explain the bistability. The rich dynamics of the system are demonstrated by the dynamic evolution map and the basin. The simulation results reveal the existence of transient hyperchaos and hidden extreme multistability in the presented DMHS. The NIST tests show that the generated signal sequence is highly random, which is feasible for encryption purposes. Furthermore, the system is implemented based on a FPGA experimental platform, which benefits the further applications of the proposed hyperchaos.
Author Sun, Qinglin
Yuan, Mingfeng
Jiao, Xiaodong
Tao, Jin
Sun, Hao
Chen, Zengqiang
AuthorAffiliation College of Artificial Intelligence,Nankai University,Tianjin 300350,China%Department of Earth and Space Science and Engineering,York University,Toronto M3J 1P3,Canada
AuthorAffiliation_xml – name: College of Artificial Intelligence,Nankai University,Tianjin 300350,China%Department of Earth and Space Science and Engineering,York University,Toronto M3J 1P3,Canada
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Jiao
  fullname: Jiao, Xiaodong
  organization: College of Artificial Intelligence, Nankai University , China
– sequence: 2
  givenname: Mingfeng
  surname: Yuan
  fullname: Yuan, Mingfeng
  organization: Department of Earth and Space Science and Engineering, York University , Canada
– sequence: 3
  givenname: Jin
  surname: Tao
  fullname: Tao, Jin
  organization: College of Artificial Intelligence, Nankai University , China
– sequence: 4
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  organization: College of Artificial Intelligence, Nankai University , China
– sequence: 5
  givenname: Qinglin
  surname: Sun
  fullname: Sun, Qinglin
  organization: College of Artificial Intelligence, Nankai University , China
– sequence: 6
  givenname: Zengqiang
  surname: Chen
  fullname: Chen, Zengqiang
  organization: College of Artificial Intelligence, Nankai University , China
BookMark eNp1kD1PwzAQhj0UibawM3pjIfQcJ2kzooovAWIBic1y7UvqKokr26Wkvx5XQTAxnXR63vd0z4SMOtshIRcMrhksFjNWzLOEQV7MpMqxzEdk_Ls6JRPvNwAFg5SPyccLts74YB1d91t0ai2tp6ajktbYoZONOaCmT7ZpbW2d_UxCxKjvfcCW7k1YU_wKDluk7a4JsUmuTGNCf0ZOKtl4PP-ZU_J-d_u2fEieX-8flzfPieIsDUnJdak4VJUqJPIMs7wEKEutCpUD5oplimmpV0zqKuWVAq1gni7mRYTjqwWfksuhdy-7Sna12Nid6-JFcaj3jcA0vgkMOIskDKRy1nuHldg600rXCwbi6E0cJYmjJDF4i5GrIWLs9q_4X_wbvmp0nQ
CitedBy_id crossref_primary_10_1140_epjp_s13360_023_04515_y
crossref_primary_10_1088_1751_8121_acfb54
crossref_primary_10_1088_1674_1056_ace1d9
Cites_doi 10.1109/SIBCON.2015.7147034
10.1016/j.cnsns.2020.105390
10.1063/1.4958296
10.1016/j.apm.2019.03.037
10.1007/s11071-017-3752-2
10.1016/j.chaos.2019.01.015
10.1140/epjst/e2015-02472-1
10.1063/1.5006214
10.1142/S0218127416501455
10.1016/j.chaos.2020.109606
10.1016/j.chaos.2020.110000
110.1007/s11071-019-05067-6
10.1007/s11071-017-3507-0
10.1142/S0218127414500345
10.1007/s11071-020-05687-3
10.1007/s11071-019-05385-9
10.1140/epjst/e2015-02476-9
10.1142/S0218127418500815
10.1007/s11071-019-04890-1
10.1016/j.chaos.2019.07.004
10.1007/s11071-009-9558-0
10.1109/MWSCAS.2016.7870134
10.1007/s11071-018-4524-3
10.1016/j.chaos.2021.111369
10.1016/j.cnsns.2020.105494
10.1007/s11071-021-06910-5
10.25103/jestr.082.26
10.1142/S0218127420300190
10.1016/j.chaos.2016.11.016
10.1007/s10470-018-1252-z
10.1155/2018/8649294
10.1007/s11071-016-3277-0
10.1142/S0218127418501675
110.1155/2020/4627597
10.1016/0893-6080(95)00033-V
10.1016/j.chaos.2020.109815
ContentType Journal Article
Copyright 2023 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ac5e95
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 301
ExternalDocumentID zgwl_e202301031
10_1088_1674_1056_ac5e95
cpb_32_1_010507
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
CITATION
02O
1WK
2B.
4A8
92I
93N
AALHV
AERVB
AFUIB
AHSEE
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c312t-93d9c30ffc6ae34e4590099dc6c50e5c14c1dadb1adf23fc0dc072876e3408863
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Wed Nov 06 04:37:29 EST 2024
Fri Aug 23 01:26:31 EDT 2024
Wed Aug 21 03:35:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords FPGA implementation
extreme multistability
memristor-based hyperchaos
hidden attractor
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-93d9c30ffc6ae34e4590099dc6c50e5c14c1dadb1adf23fc0dc072876e3408863
PageCount 8
ParticipantIDs crossref_primary_10_1088_1674_1056_ac5e95
iop_journals_10_1088_1674_1056_ac5e95
wanfang_journals_zgwl_e202301031
PublicationCentury 2000
PublicationDate 20230101
2023-01-01
2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2023
Publisher Chinese Physical Society and IOP Publishing Ltd
College of Artificial Intelligence,Nankai University,Tianjin 300350,China%Department of Earth and Space Science and Engineering,York University,Toronto M3J 1P3,Canada
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
– name: College of Artificial Intelligence,Nankai University,Tianjin 300350,China%Department of Earth and Space Science and Engineering,York University,Toronto M3J 1P3,Canada
References Wang (cpb_32_1_010507bib4) 2019; 97
Mezatio (cpb_32_1_010507bib14) 2019; 120
Dong (cpb_32_1_010507bib38) 2019; 73
Messias (cpb_32_1_010507bib20) 2017; 88
Dong (cpb_32_1_010507bib26) 2020; 2020
Li (cpb_32_1_010507bib12) 2018; 94
Jiang (cpb_32_1_010507bib16) 2021; 68
Faradja (cpb_32_1_010507bib31) 2020; 132
Zhang (cpb_32_1_010507bib17) 2020; 139
Zhang (cpb_32_1_010507bib24) 2018; 28
Min (cpb_32_1_010507bib3) 2021; 152
Chen (cpb_32_1_010507bib2) 2021; 106
Bi (cpb_32_1_010507bib25) 2020; 138
Yuan (cpb_32_1_010507bib37) 2016; 26
Dong (cpb_32_1_010507bib27) 2018; 28
Peng (cpb_32_1_010507bib10) 2018; 2018
Chen (cpb_32_1_010507bib34) 1995; 8
Chang (cpb_32_1_010507bib29) 2020; 30
Lin (cpb_32_1_010507bib21) 2020; 99
Li (cpb_32_1_010507bib22) 2018; 24
Rukhin (cpb_32_1_010507bib39) 2001
Vaidyanathan (cpb_32_1_010507bib33) 2014; 8
Lin (cpb_32_1_010507bib1) 2020; 100
Wang (cpb_32_1_010507bib30) 2020; 92
Wu (cpb_32_1_010507bib15) 2010; 26
Vaidyanathan (cpb_32_1_010507bib18) 2014; 8
Pham (cpb_32_1_010507bib32) 2015; 224
Bao (cpb_32_1_010507bib6) 2017; 99
Peng (cpb_32_1_010507bib11) 2017; 90
Zhang (cpb_32_1_010507bib28) 2018; 28
Zhang (cpb_32_1_010507bib13) 2019; 127
Danilin (cpb_32_1_010507bib8) 2015
Bao (cpb_32_1_010507bib36) 2017; 89
Lin (cpb_32_1_010507bib7) 2020; 90
Panahi (cpb_32_1_010507bib19) 2019; 98
Jafari (cpb_32_1_010507bib23) 2015; 224
Bao (cpb_32_1_010507bib5) 2019; 96
Cang (cpb_32_1_010507bib35) 2010; 59
Abunahla (cpb_32_1_010507bib9) 2017
References_xml – start-page: 1
  year: 2015
  ident: cpb_32_1_010507bib8
  doi: 10.1109/SIBCON.2015.7147034
  contributor:
    fullname: Danilin
– volume: 90
  year: 2020
  ident: cpb_32_1_010507bib7
  publication-title: Commun. Nonlinear Sci.
  doi: 10.1016/j.cnsns.2020.105390
  contributor:
    fullname: Lin
– volume: 26
  year: 2016
  ident: cpb_32_1_010507bib37
  publication-title: Chaos
  doi: 10.1063/1.4958296
  contributor:
    fullname: Yuan
– volume: 73
  start-page: 40
  year: 2019
  ident: cpb_32_1_010507bib38
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.03.037
  contributor:
    fullname: Dong
– volume: 90
  start-page: 1607
  year: 2017
  ident: cpb_32_1_010507bib11
  publication-title: Nonlin. Dyn.
  doi: 10.1007/s11071-017-3752-2
  contributor:
    fullname: Peng
– volume: 120
  start-page: 100
  year: 2019
  ident: cpb_32_1_010507bib14
  publication-title: Chaos Solit. Fract.
  doi: 10.1016/j.chaos.2019.01.015
  contributor:
    fullname: Mezatio
– volume: 224
  start-page: 1469
  year: 2015
  ident: cpb_32_1_010507bib23
  publication-title: Euro. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2015-02472-1
  contributor:
    fullname: Jafari
– volume: 28
  year: 2018
  ident: cpb_32_1_010507bib28
  publication-title: Chaos
  doi: 10.1063/1.5006214
  contributor:
    fullname: Zhang
– volume: 68
  start-page: 4935
  year: 2021
  ident: cpb_32_1_010507bib16
  publication-title: IEEE T. Circuits
  doi: 10.1142/S0218127416501455
  contributor:
    fullname: Jiang
– volume: 132
  year: 2020
  ident: cpb_32_1_010507bib31
  publication-title: Chaos Solit. Fract.
  doi: 10.1016/j.chaos.2020.109606
  contributor:
    fullname: Faradja
– volume: 139
  year: 2020
  ident: cpb_32_1_010507bib17
  publication-title: Chaos Solit. Fract.
  doi: 10.1016/j.chaos.2020.110000
  contributor:
    fullname: Zhang
– volume: 97
  start-page: 1477
  year: 2019
  ident: cpb_32_1_010507bib4
  publication-title: Nonlin. Dyn.
  doi: 110.1007/s11071-019-05067-6
  contributor:
    fullname: Wang
– volume: 89
  start-page: 1157
  year: 2017
  ident: cpb_32_1_010507bib36
  publication-title: Nonlin. Dyn.
  doi: 10.1007/s11071-017-3507-0
  contributor:
    fullname: Bao
– volume: 24
  year: 2018
  ident: cpb_32_1_010507bib22
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127414500345
  contributor:
    fullname: Li
– volume: 100
  start-page: 3667
  year: 2020
  ident: cpb_32_1_010507bib1
  publication-title: Nonlin. Dyn.
  doi: 10.1007/s11071-020-05687-3
  contributor:
    fullname: Lin
– volume: 99
  start-page: 2369
  year: 2020
  ident: cpb_32_1_010507bib21
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05385-9
  contributor:
    fullname: Lin
– volume: 224
  start-page: 1507
  year: 2015
  ident: cpb_32_1_010507bib32
  publication-title: Euro. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2015-02476-9
  contributor:
    fullname: Pham
– volume: 28
  year: 2018
  ident: cpb_32_1_010507bib27
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127418500815
  contributor:
    fullname: Dong
– volume: 96
  start-page: 1879
  year: 2019
  ident: cpb_32_1_010507bib5
  publication-title: Chaos Solit. Fract.
  doi: 10.1007/s11071-019-04890-1
  contributor:
    fullname: Bao
– volume: 127
  start-page: 354
  year: 2019
  ident: cpb_32_1_010507bib13
  publication-title: Chaos Solit. Fract.
  doi: 10.1016/j.chaos.2019.07.004
  contributor:
    fullname: Zhang
– volume: 59
  start-page: 515
  year: 2010
  ident: cpb_32_1_010507bib35
  publication-title: Nonlin. Dyn.
  doi: 10.1007/s11071-009-9558-0
  contributor:
    fullname: Cang
– year: 2017
  ident: cpb_32_1_010507bib9
  doi: 10.1109/MWSCAS.2016.7870134
  contributor:
    fullname: Abunahla
– volume: 94
  start-page: 2785
  year: 2018
  ident: cpb_32_1_010507bib12
  publication-title: Nonlin. Dyn.
  doi: 10.1007/s11071-018-4524-3
  contributor:
    fullname: Li
– volume: 152
  year: 2021
  ident: cpb_32_1_010507bib3
  publication-title: Chaos Solit. Fract.
  doi: 10.1016/j.chaos.2021.111369
  contributor:
    fullname: Min
– volume: 92
  year: 2020
  ident: cpb_32_1_010507bib30
  publication-title: Commun. Nonlinear Sci.
  doi: 10.1016/j.cnsns.2020.105494
  contributor:
    fullname: Wang
– start-page: 800
  year: 2001
  ident: cpb_32_1_010507bib39
  contributor:
    fullname: Rukhin
– volume: 106
  start-page: 2559
  year: 2021
  ident: cpb_32_1_010507bib2
  publication-title: Nonlin. Dyn.
  doi: 10.1007/s11071-021-06910-5
  contributor:
    fullname: Chen
– volume: 8
  start-page: 205
  year: 2014
  ident: cpb_32_1_010507bib33
  publication-title: J. Engineer. Techn. Rev.
  doi: 10.25103/jestr.082.26
  contributor:
    fullname: Vaidyanathan
– volume: 30
  start-page: 434
  year: 2020
  ident: cpb_32_1_010507bib29
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127420300190
  contributor:
    fullname: Chang
– volume: 99
  year: 2017
  ident: cpb_32_1_010507bib6
  publication-title: Chaos Solit. Fract.
  doi: 10.1016/j.chaos.2016.11.016
  contributor:
    fullname: Bao
– volume: 26
  year: 2010
  ident: cpb_32_1_010507bib15
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127416501455
  contributor:
    fullname: Wu
– volume: 98
  start-page: 85
  year: 2019
  ident: cpb_32_1_010507bib19
  publication-title: Analog Integrated Circuits and Signal Processing
  doi: 10.1007/s10470-018-1252-z
  contributor:
    fullname: Panahi
– volume: 8
  start-page: 205
  year: 2014
  ident: cpb_32_1_010507bib18
  publication-title: Journal of Engineering Science and Technology Review
  doi: 10.25103/jestr.082.26
  contributor:
    fullname: Vaidyanathan
– volume: 2018
  start-page: 1
  year: 2018
  ident: cpb_32_1_010507bib10
  publication-title: J. Electric. Comput. Engineer.
  doi: 10.1155/2018/8649294
  contributor:
    fullname: Peng
– volume: 88
  start-page: 1
  year: 2017
  ident: cpb_32_1_010507bib20
  publication-title: Nonlin. Dyn.
  doi: 10.1007/s11071-016-3277-0
  contributor:
    fullname: Messias
– volume: 28
  year: 2018
  ident: cpb_32_1_010507bib24
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127418501675
  contributor:
    fullname: Zhang
– volume: 2020
  start-page: 1
  year: 2020
  ident: cpb_32_1_010507bib26
  publication-title: Complexity
  doi: 110.1155/2020/4627597
  contributor:
    fullname: Dong
– volume: 8
  start-page: 915
  year: 1995
  ident: cpb_32_1_010507bib34
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(95)00033-V
  contributor:
    fullname: Chen
– volume: 138
  year: 2020
  ident: cpb_32_1_010507bib25
  publication-title: Chaos Solit. Fract.
  doi: 10.1016/j.chaos.2020.109815
  contributor:
    fullname: Bi
SSID ssj0061023
Score 2.3533125
Snippet Memristor chaotic systems have aroused great attention in recent years with their potentials expected in engineering applications. In this paper, a...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Publisher
StartPage 10507
SubjectTerms extreme multistability
FPGA implementation
hidden attractor
memristor-based hyperchaos
Title Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
URI https://iopscience.iop.org/article/10.1088/1674-1056/ac5e95
https://d.wanfangdata.com.cn/periodical/zgwl-e202301031
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GEBIX3ojxUg5w4JCta9KuESeEmAZowIFJOyBVrZOUia2d9gCxX0_SdLyEEOLWg5s2duLYjv0ZoSMeKy1VyUmDCUEYUCCcK580XE8KpVeIL029c_vGb3XYVdfrltDpey1MNixUf1U_WqBgy8IiIS6ombx5YhrG1yLwJPcW0CLVW8V4Xpe3d3M17BtMAuNtzamLO8qfRvhyJi3o7-YVPKmK0uTTYdNcRQ_z37Q5Jk_V6SSuwuwbguM_57GGVgojFJ9Z0nVUkukGWsqTQWG8ibptOcghB0b4UbupBk0pG-NeiiOcWJTq3kwKfJ31B1mSjbJnYgK52IJCYxPZxVrlm8AjzvMVtQGap-C-bqFO8-L-vEWKDgwEaN2dEE4FB-ooBX4kKZPM9BjlXIAPniM9qDOoi0jE9UgolypwBDgN1wiYMj1Fn26jcpqlcgdhTzjgsIbygkAyEE4sA-lrey-CWASOiiroZC6DcGiBNsL8gjwIQsOp0HAqtJyqoGPN1LDYbeNf6HAhxg_aWfLSD6VpGp93uNj941B7aNm8Y4Mv-6g8GU3lgTZHJvFhvuzeABvm2fQ
link.rule.ids 315,783,787,4031,27935,27936,27937,38877,53854
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54CMSFN2I8c4ADh2zdmnTNEQETMAY7MGm30jrJmNjaaRsg9uvJoxMPIYTErQcnaezEcRz7M0JHPFFaqpKTKhWCUPCBcK4CUq0wKZReIYE0-c6N2-CyRa_brJ3XObW5MNkgV_1F_emAgh0L84C4sGTi5okpGF-KgUnOSgOhZtG83rnMgOdf3TWnqjgwuATmxjVtkb9T_tTLl3NpVo9ts3hSFaedTwdObQU9TH_VxZk8FZ_HSREm31Ac_zGXVbScG6P41JGvoRmZrqMFGxQKow3Ubsi-hR4Y4kd9XTWoStkId1Mc445Dq-5OpMD1rNfPOtkweyHGoYsdODQ2Hl6sVb9xQGIbt6gNURuK-7aJWrWL-7NLkldiIOCXK2PCfcHB95SCIJY-ldTUGuVcQADMkwzKFMoiFkk5FqriK_AEeNWKEbRP9TQDfwvNpVkqtxFmwgOPVhULQ0lBeIkMZaDtvhgSEXoqLqCTqRyigQPciOxDeRhGhluR4VbkuFVAx5qxUb7rRr_Q4VyUH7STzmsvkqZ4vK10sfPHrg7RYvO8Ft1c3dZ30ZJp7vwxe2huPHyW-9pCGScHdhW-A4ly31Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memristor+hyperchaos+in+a+generalized+Kolmogorov-type+system+with+extreme+multistability&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Xiaodong+Jiao&rft.au=Mingfeng+Yuan&rft.au=Jin+Tao&rft.au=Hao+Sun&rft.date=2023&rft.pub=College+of+Artificial+Intelligence%2CNankai+University%2CTianjin+300350%2CChina%25Department+of+Earth+and+Space+Science+and+Engineering%2CYork+University%2CToronto+M3J+1P3%2CCanada&rft.issn=1674-1056&rft.volume=32&rft.issue=1&rft.spage=294&rft.epage=301&rft_id=info:doi/10.1088%2F1674-1056%2Fac5e95&rft.externalDocID=zgwl_e202301031
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg