A crawling robot driven by multi-stable origami
Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami...
Saved in:
Published in | Smart materials and structures Vol. 26; no. 9; pp. 94007 - 94017 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with a polygonal base, which expands and contracts through coupled longitudinal and rotational motion similar to a screw. We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels' deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow, and connected by 3D printed end plates. DC motors are used to actuate the expansion and contraction of the internal origami structures to achieve forward locomotion and steering. Beyond locomotion, this simple design can find applications in manipulators, booms, and active structures. |
---|---|
AbstractList | Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with a polygonal base, which expands and contracts through coupled longitudinal and rotational motion similar to a screw. We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels' deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow, and connected by 3D printed end plates. DC motors are used to actuate the expansion and contraction of the internal origami structures to achieve forward locomotion and steering. Beyond locomotion, this simple design can find applications in manipulators, booms, and active structures. |
Author | Yan, Tongxi Chien, Brian Tawfick, S Wissa, A Pagano, Alexander |
Author_xml | – sequence: 1 givenname: Alexander surname: Pagano fullname: Pagano, Alexander organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America – sequence: 2 givenname: Tongxi surname: Yan fullname: Yan, Tongxi organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America – sequence: 3 givenname: Brian surname: Chien fullname: Chien, Brian organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America – sequence: 4 givenname: A surname: Wissa fullname: Wissa, A organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America – sequence: 5 givenname: S orcidid: 0000-0003-3645-527X surname: Tawfick fullname: Tawfick, S email: tawfick@illinois.edu organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America |
BookMark | eNp9j01LAzEURYNUsK3uXc7OjWPfy2SSybIUv0Bwo-AuZNKkpMxMSpIq_fe2VFyIurpwuefCmZDREAZLyCXCDULTzLDiWHJev820FhTtCRl_VyMyBslZiYLyMzJJaQ2A2FQ4JrN5YaL-6PywKmJoQy6W0b_boWh3Rb_tsi9T1m1nixD9Svf-nJw63SV78ZVT8np3-7J4KJ-e7x8X86fSVEhzKanglag5YA26Qc60MNI1zFIpjeUG6sppWzvGpHFL1nJhGLUtRVpBLVtWTQk__poYUorWKeOzzj4MOWrfKQR10FYHR3VwVEftPQg_wE30vY67_5CrI-LDRq3DNg57M5X6pChXUoFkAEJtlm6_vP5l-efxJ2Hbdt0 |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_3390_s24061751 crossref_primary_10_1063_5_0010236 crossref_primary_10_1016_j_ast_2023_108301 crossref_primary_10_1016_j_engstruct_2025_119955 crossref_primary_10_1089_soro_2020_0075 crossref_primary_10_1016_j_ijsolstr_2018_05_011 crossref_primary_10_1089_soro_2023_0012 crossref_primary_10_1002_aisy_202200146 crossref_primary_10_1088_1361_665X_ab52c5 crossref_primary_10_1109_LRA_2025_3527282 crossref_primary_10_1038_s41467_022_29484_1 crossref_primary_10_1115_1_4053378 crossref_primary_10_1089_soro_2021_0118 crossref_primary_10_1016_j_cagd_2022_102105 crossref_primary_10_1016_j_compstruct_2021_115153 crossref_primary_10_1115_1_4055031 crossref_primary_10_3390_act11090243 crossref_primary_10_34133_research_0116 crossref_primary_10_1016_j_taml_2024_100500 crossref_primary_10_1016_j_sna_2023_114971 crossref_primary_10_1109_TMECH_2022_3175145 crossref_primary_10_1115_1_4046437 crossref_primary_10_1002_adma_202110384 crossref_primary_10_1093_pnasnexus_pgad098 crossref_primary_10_1016_j_ijmecsci_2024_109768 crossref_primary_10_1088_1361_665X_adaefb crossref_primary_10_5194_ms_16_61_2025 crossref_primary_10_1115_1_4041782 crossref_primary_10_1016_j_ijsolstr_2024_112877 crossref_primary_10_1016_j_jmps_2024_105877 crossref_primary_10_1089_soro_2022_0197 crossref_primary_10_1115_1_4056637 crossref_primary_10_1016_j_mechmachtheory_2019_103605 crossref_primary_10_1089_soro_2021_0185 crossref_primary_10_1016_j_ijmecsci_2023_108143 crossref_primary_10_3390_app12052520 crossref_primary_10_3390_ma15051942 crossref_primary_10_1002_mame_202100671 crossref_primary_10_1080_15397734_2020_1833738 crossref_primary_10_1002_advs_202000636 crossref_primary_10_1115_1_4062272 crossref_primary_10_1038_s41467_022_30802_w crossref_primary_10_1098_rspa_2021_0712 crossref_primary_10_1016_j_jmps_2024_105630 crossref_primary_10_1080_15376494_2024_2311844 crossref_primary_10_1016_j_tws_2022_109685 crossref_primary_10_1016_j_mechmachtheory_2024_105796 crossref_primary_10_1088_1361_665X_ad2f6f crossref_primary_10_1016_j_ijmecsci_2023_108719 crossref_primary_10_1016_j_engstruct_2021_111894 crossref_primary_10_1089_soro_2021_0018 crossref_primary_10_1016_j_engstruct_2021_113399 crossref_primary_10_1177_1045389X20942326 crossref_primary_10_1002_adfm_202201891 crossref_primary_10_1016_j_istruc_2024_108088 crossref_primary_10_1007_s10659_021_09860_6 crossref_primary_10_1016_j_ymssp_2025_112365 crossref_primary_10_34133_cbsystems_0111 crossref_primary_10_1016_j_matdes_2022_110541 crossref_primary_10_1016_j_ijmecsci_2025_110037 crossref_primary_10_5194_ms_10_91_2019 crossref_primary_10_12677_ORF_2023_136683 crossref_primary_10_1089_soro_2023_0262 crossref_primary_10_1002_adma_202006939 crossref_primary_10_1177_00405175211016561 crossref_primary_10_1016_j_eml_2022_101653 crossref_primary_10_1002_adem_202400070 crossref_primary_10_1016_j_sna_2021_112815 crossref_primary_10_1016_j_tws_2025_112955 crossref_primary_10_1088_1361_665X_acc621 crossref_primary_10_1126_scirobotics_adk4533 crossref_primary_10_1089_soro_2021_0002 crossref_primary_10_1002_aisy_202400246 crossref_primary_10_1098_rsta_2024_0017 crossref_primary_10_1016_j_ijmecsci_2023_108167 crossref_primary_10_1007_s10338_024_00506_3 crossref_primary_10_3390_biomimetics8020192 crossref_primary_10_3390_act9020026 crossref_primary_10_1088_1361_665X_acd0e7 crossref_primary_10_1016_j_eml_2019_100552 crossref_primary_10_1063_5_0181085 crossref_primary_10_1115_1_4051439 crossref_primary_10_1088_1361_665X_ab524e crossref_primary_10_1109_TMECH_2023_3321904 crossref_primary_10_1115_1_4041199 crossref_primary_10_1016_j_tws_2023_110859 crossref_primary_10_1002_aisy_202300468 crossref_primary_10_1088_1361_665X_abc36d crossref_primary_10_1016_j_tws_2023_110980 crossref_primary_10_1002_aisy_202300866 crossref_primary_10_1016_j_eml_2022_101941 crossref_primary_10_1073_pnas_2110023118 crossref_primary_10_1016_j_tws_2025_113216 crossref_primary_10_1016_j_xinn_2023_100549 crossref_primary_10_1002_adma_202302066 crossref_primary_10_1038_s44172_024_00294_1 crossref_primary_10_1088_1361_665X_ad4d36 crossref_primary_10_1088_2631_7990_acf96a crossref_primary_10_1103_PhysRevE_100_063001 crossref_primary_10_1016_j_tws_2023_110868 crossref_primary_10_1177_1045389X231181940 crossref_primary_10_1002_adfm_202304151 crossref_primary_10_1016_j_eml_2022_101950 crossref_primary_10_1016_j_eml_2020_100795 crossref_primary_10_1115_1_4064368 crossref_primary_10_1016_j_mechmachtheory_2022_105101 crossref_primary_10_1088_1361_665X_ac9020 crossref_primary_10_1016_j_compstruct_2023_117366 crossref_primary_10_1016_j_jsv_2022_117407 crossref_primary_10_1016_j_mechmachtheory_2024_105749 crossref_primary_10_1016_j_ijmecsci_2023_108104 crossref_primary_10_1088_1361_665X_ad46a3 crossref_primary_10_1016_j_compositesb_2022_109811 crossref_primary_10_1088_1361_665X_ac0d0f crossref_primary_10_3390_machines11070763 crossref_primary_10_1115_1_4047437 crossref_primary_10_1103_PhysRevResearch_4_013128 crossref_primary_10_1016_j_jare_2023_10_004 crossref_primary_10_1038_s41578_018_0009_8 crossref_primary_10_1126_sciadv_abm7834 crossref_primary_10_1002_adfm_202106231 crossref_primary_10_1016_j_ijmecsci_2023_108515 crossref_primary_10_1115_1_4054361 crossref_primary_10_1002_advs_202303454 crossref_primary_10_1109_TMRB_2024_3472858 crossref_primary_10_1115_1_4052222 crossref_primary_10_1016_j_ast_2024_109844 crossref_primary_10_1016_j_engstruct_2023_117064 crossref_primary_10_1103_PhysRevE_101_063003 crossref_primary_10_3390_polym14194235 crossref_primary_10_1016_j_device_2023_100226 crossref_primary_10_1115_1_4063978 crossref_primary_10_1002_adpr_202400025 crossref_primary_10_1115_1_4066566 crossref_primary_10_1021_acsami_3c17978 crossref_primary_10_1109_LRA_2023_3251181 crossref_primary_10_1002_adma_201805282 crossref_primary_10_1073_pnas_2117649119 crossref_primary_10_1089_soro_2024_0166 |
Cites_doi | 10.1557/opl.2012.536 10.2514/6.2013-1594 10.1109/IROS.2015.7353994 10.1038/nature03185 10.1126/science.1105169 10.1038/nmat4232 10.1109/TMECH.2012.2210239 10.1109/ICRA.2015.7139386 10.1126/science.1107976 10.1073/pnas.1217998110 10.1126/science.1252610 10.1038/nphys2676 10.1016/j.jtbi.2011.05.007 10.1007/978-3-319-23327-7_13 10.1115/1.4032098 10.1017/CBO9781107415324.004 10.1126/science.1252876 |
ContentType | Journal Article |
Copyright | 2017 IOP Publishing Ltd |
Copyright_xml | – notice: 2017 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/aa721e |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | A crawling robot driven by multi-stable origami |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_aa721e smsaa721e |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c312t-927637560150a8164a7c9f84e299ce6c053fae5f449cfd4b67c42eb2123059b43 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Thu Apr 24 22:52:48 EDT 2025 Tue Jul 01 03:38:39 EDT 2025 Wed Aug 21 03:40:36 EDT 2024 Thu Jan 07 13:52:09 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-927637560150a8164a7c9f84e299ce6c053fae5f449cfd4b67c42eb2123059b43 |
Notes | SMS-104678.R1 |
ORCID | 0000-0003-3645-527X |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_665X_aa721e crossref_primary_10_1088_1361_665X_aa721e iop_journals_10_1088_1361_665X_aa721e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 11 12 13 14 15 17 18 Nayakanti N (16) 2017 1 2 3 4 5 6 7 8 9 10 |
References_xml | – ident: 6 doi: 10.1557/opl.2012.536 – ident: 13 doi: 10.2514/6.2013-1594 – ident: 12 doi: 10.1109/IROS.2015.7353994 – ident: 1 doi: 10.1038/nature03185 – ident: 5 doi: 10.1126/science.1105169 – ident: 8 doi: 10.1038/nmat4232 – ident: 9 doi: 10.1109/TMECH.2012.2210239 – ident: 11 doi: 10.1109/ICRA.2015.7139386 – ident: 4 doi: 10.1126/science.1107976 – ident: 18 doi: 10.1073/pnas.1217998110 – ident: 10 doi: 10.1126/science.1252610 – year: 2017 ident: 16 – ident: 2 doi: 10.1038/nphys2676 – ident: 3 doi: 10.1016/j.jtbi.2011.05.007 – ident: 17 doi: 10.1007/978-3-319-23327-7_13 – ident: 15 doi: 10.1115/1.4032098 – ident: 14 doi: 10.1017/CBO9781107415324.004 – ident: 7 doi: 10.1126/science.1252876 |
SSID | ssj0011831 |
Score | 2.5734081 |
Snippet | Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 94007 |
SubjectTerms | active structures bistability origami |
Title | A crawling robot driven by multi-stable origami |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/aa721e |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60IujBR1V8k4MePKTtpkmaxVMRpQo-DhZ6EEKSzYKobWlXRH-9k91tUZEi3vYwOwkfyTyYyXwAR8KLhvSCUalUSrmJHDXMRFQ6ZST3Cfc5i8L1jex0-VVP9ObgdPoWZjAsTX8NP4tBwQWEZUOcqkdNibqk6NWNwfzFz8NCU0kZ6Asub--mJQQ8qzldXiw5RS89qVH-puGbT5rHdb-4mItVeJhsrugseaq9ZrbmPn7Mbfzn7tdgpQw9SbsQXYc536_C8peBhFVYzBtC3XgD6m3iRuYtPFYno4EdZCQZBcNI7DvJmxAphpX22ZPArGVeHjehe3F-f9ahJbkCdc2IZTRmaFlaIR8TDaMwaTItF6eKe_RPzkuHlzM1XqScxy5NuJUtxxmm4ejpMCKzvLkFlf6g77eBeGatY7GIE5ZwkXoTGYNRhTfK2QTjlR2oT-DVrpw8HggwnnVeAVdKB1B0AEUXoOzAyfSPYTF1Y4bsMWKty6s3niFHvsmNX8aaSR3rRs4Nr4dJuvtHVXuwxIJ3z1vN9qGSjV79AcYmmT3Mz-AncWraGw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VrajKgVepeBYf6IGDNxvH9jrHFXTFGw5F2puxHUeqCrur3SBEf33HThYBQqhSbzlMJsnEnvlGM54PYE940ZFeMCqVKik3qaOGmZRKp4zkvuA-siicX8ija34yEIOG5zSehRmNG9ffxst6UHBtwqYhTiVpJlGXFIPEGMxffDIuyjn4KDKZheH5x5dXT2UEXK-RMi-XnGKkntUp39LyIi7N4bOfhZn-EtzMXrDuLvndvq9s2_15NbvxP75gGRYbCEp6tfgKfPDDVVh4NphwFeZjY6ibfoGkR9zEPIRD62QysqOKFJPgIIl9JLEZkSK8tLeeBIYtc_drDa77P34eHNGGZIG6LGUVzRl6mG7Iy0THKEyeTNflpeIe45Tz0uEmLY0XJee5KwtuZddxhuk4RjxEZpZnX6E1HA39OhDPrHUsF3nBCi5Kb1JjEF14o5wtELdsQDIzsXbNBPJAhHGrYyVcKR0Mo4NhdG2YDdh_umNcT994R_Y72ls3W3D6jhx5ITe9m2omda47kSNe47_Y_EdVu_Dp6rCvz44vTrfgMwsBP3afbUOrmtz7HYQrlf0Wl-RfEHjffw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+crawling+robot+driven+by+multi-stable+origami&rft.jtitle=Smart+materials+and+structures&rft.au=Pagano%2C+Alexander&rft.au=Yan%2C+Tongxi&rft.au=Chien%2C+Brian&rft.au=Wissa%2C+A&rft.date=2017-09-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=26&rft.issue=9&rft.spage=94007&rft_id=info:doi/10.1088%2F1361-665X%2Faa721e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_aa721e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |