A crawling robot driven by multi-stable origami

Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 26; no. 9; pp. 94007 - 94017
Main Authors Pagano, Alexander, Yan, Tongxi, Chien, Brian, Wissa, A, Tawfick, S
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with a polygonal base, which expands and contracts through coupled longitudinal and rotational motion similar to a screw. We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels' deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow, and connected by 3D printed end plates. DC motors are used to actuate the expansion and contraction of the internal origami structures to achieve forward locomotion and steering. Beyond locomotion, this simple design can find applications in manipulators, booms, and active structures.
AbstractList Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with a polygonal base, which expands and contracts through coupled longitudinal and rotational motion similar to a screw. We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels' deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow, and connected by 3D printed end plates. DC motors are used to actuate the expansion and contraction of the internal origami structures to achieve forward locomotion and steering. Beyond locomotion, this simple design can find applications in manipulators, booms, and active structures.
Author Yan, Tongxi
Chien, Brian
Tawfick, S
Wissa, A
Pagano, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  surname: Pagano
  fullname: Pagano, Alexander
  organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America
– sequence: 2
  givenname: Tongxi
  surname: Yan
  fullname: Yan, Tongxi
  organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America
– sequence: 3
  givenname: Brian
  surname: Chien
  fullname: Chien, Brian
  organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America
– sequence: 4
  givenname: A
  surname: Wissa
  fullname: Wissa, A
  organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America
– sequence: 5
  givenname: S
  orcidid: 0000-0003-3645-527X
  surname: Tawfick
  fullname: Tawfick, S
  email: tawfick@illinois.edu
  organization: University of Illinois Urbana-Champaign , Urbana, IL, United States of America
BookMark eNp9j01LAzEURYNUsK3uXc7OjWPfy2SSybIUv0Bwo-AuZNKkpMxMSpIq_fe2VFyIurpwuefCmZDREAZLyCXCDULTzLDiWHJev820FhTtCRl_VyMyBslZiYLyMzJJaQ2A2FQ4JrN5YaL-6PywKmJoQy6W0b_boWh3Rb_tsi9T1m1nixD9Svf-nJw63SV78ZVT8np3-7J4KJ-e7x8X86fSVEhzKanglag5YA26Qc60MNI1zFIpjeUG6sppWzvGpHFL1nJhGLUtRVpBLVtWTQk__poYUorWKeOzzj4MOWrfKQR10FYHR3VwVEftPQg_wE30vY67_5CrI-LDRq3DNg57M5X6pChXUoFkAEJtlm6_vP5l-efxJ2Hbdt0
CODEN SMSTER
CitedBy_id crossref_primary_10_3390_s24061751
crossref_primary_10_1063_5_0010236
crossref_primary_10_1016_j_ast_2023_108301
crossref_primary_10_1016_j_engstruct_2025_119955
crossref_primary_10_1089_soro_2020_0075
crossref_primary_10_1016_j_ijsolstr_2018_05_011
crossref_primary_10_1089_soro_2023_0012
crossref_primary_10_1002_aisy_202200146
crossref_primary_10_1088_1361_665X_ab52c5
crossref_primary_10_1109_LRA_2025_3527282
crossref_primary_10_1038_s41467_022_29484_1
crossref_primary_10_1115_1_4053378
crossref_primary_10_1089_soro_2021_0118
crossref_primary_10_1016_j_cagd_2022_102105
crossref_primary_10_1016_j_compstruct_2021_115153
crossref_primary_10_1115_1_4055031
crossref_primary_10_3390_act11090243
crossref_primary_10_34133_research_0116
crossref_primary_10_1016_j_taml_2024_100500
crossref_primary_10_1016_j_sna_2023_114971
crossref_primary_10_1109_TMECH_2022_3175145
crossref_primary_10_1115_1_4046437
crossref_primary_10_1002_adma_202110384
crossref_primary_10_1093_pnasnexus_pgad098
crossref_primary_10_1016_j_ijmecsci_2024_109768
crossref_primary_10_1088_1361_665X_adaefb
crossref_primary_10_5194_ms_16_61_2025
crossref_primary_10_1115_1_4041782
crossref_primary_10_1016_j_ijsolstr_2024_112877
crossref_primary_10_1016_j_jmps_2024_105877
crossref_primary_10_1089_soro_2022_0197
crossref_primary_10_1115_1_4056637
crossref_primary_10_1016_j_mechmachtheory_2019_103605
crossref_primary_10_1089_soro_2021_0185
crossref_primary_10_1016_j_ijmecsci_2023_108143
crossref_primary_10_3390_app12052520
crossref_primary_10_3390_ma15051942
crossref_primary_10_1002_mame_202100671
crossref_primary_10_1080_15397734_2020_1833738
crossref_primary_10_1002_advs_202000636
crossref_primary_10_1115_1_4062272
crossref_primary_10_1038_s41467_022_30802_w
crossref_primary_10_1098_rspa_2021_0712
crossref_primary_10_1016_j_jmps_2024_105630
crossref_primary_10_1080_15376494_2024_2311844
crossref_primary_10_1016_j_tws_2022_109685
crossref_primary_10_1016_j_mechmachtheory_2024_105796
crossref_primary_10_1088_1361_665X_ad2f6f
crossref_primary_10_1016_j_ijmecsci_2023_108719
crossref_primary_10_1016_j_engstruct_2021_111894
crossref_primary_10_1089_soro_2021_0018
crossref_primary_10_1016_j_engstruct_2021_113399
crossref_primary_10_1177_1045389X20942326
crossref_primary_10_1002_adfm_202201891
crossref_primary_10_1016_j_istruc_2024_108088
crossref_primary_10_1007_s10659_021_09860_6
crossref_primary_10_1016_j_ymssp_2025_112365
crossref_primary_10_34133_cbsystems_0111
crossref_primary_10_1016_j_matdes_2022_110541
crossref_primary_10_1016_j_ijmecsci_2025_110037
crossref_primary_10_5194_ms_10_91_2019
crossref_primary_10_12677_ORF_2023_136683
crossref_primary_10_1089_soro_2023_0262
crossref_primary_10_1002_adma_202006939
crossref_primary_10_1177_00405175211016561
crossref_primary_10_1016_j_eml_2022_101653
crossref_primary_10_1002_adem_202400070
crossref_primary_10_1016_j_sna_2021_112815
crossref_primary_10_1016_j_tws_2025_112955
crossref_primary_10_1088_1361_665X_acc621
crossref_primary_10_1126_scirobotics_adk4533
crossref_primary_10_1089_soro_2021_0002
crossref_primary_10_1002_aisy_202400246
crossref_primary_10_1098_rsta_2024_0017
crossref_primary_10_1016_j_ijmecsci_2023_108167
crossref_primary_10_1007_s10338_024_00506_3
crossref_primary_10_3390_biomimetics8020192
crossref_primary_10_3390_act9020026
crossref_primary_10_1088_1361_665X_acd0e7
crossref_primary_10_1016_j_eml_2019_100552
crossref_primary_10_1063_5_0181085
crossref_primary_10_1115_1_4051439
crossref_primary_10_1088_1361_665X_ab524e
crossref_primary_10_1109_TMECH_2023_3321904
crossref_primary_10_1115_1_4041199
crossref_primary_10_1016_j_tws_2023_110859
crossref_primary_10_1002_aisy_202300468
crossref_primary_10_1088_1361_665X_abc36d
crossref_primary_10_1016_j_tws_2023_110980
crossref_primary_10_1002_aisy_202300866
crossref_primary_10_1016_j_eml_2022_101941
crossref_primary_10_1073_pnas_2110023118
crossref_primary_10_1016_j_tws_2025_113216
crossref_primary_10_1016_j_xinn_2023_100549
crossref_primary_10_1002_adma_202302066
crossref_primary_10_1038_s44172_024_00294_1
crossref_primary_10_1088_1361_665X_ad4d36
crossref_primary_10_1088_2631_7990_acf96a
crossref_primary_10_1103_PhysRevE_100_063001
crossref_primary_10_1016_j_tws_2023_110868
crossref_primary_10_1177_1045389X231181940
crossref_primary_10_1002_adfm_202304151
crossref_primary_10_1016_j_eml_2022_101950
crossref_primary_10_1016_j_eml_2020_100795
crossref_primary_10_1115_1_4064368
crossref_primary_10_1016_j_mechmachtheory_2022_105101
crossref_primary_10_1088_1361_665X_ac9020
crossref_primary_10_1016_j_compstruct_2023_117366
crossref_primary_10_1016_j_jsv_2022_117407
crossref_primary_10_1016_j_mechmachtheory_2024_105749
crossref_primary_10_1016_j_ijmecsci_2023_108104
crossref_primary_10_1088_1361_665X_ad46a3
crossref_primary_10_1016_j_compositesb_2022_109811
crossref_primary_10_1088_1361_665X_ac0d0f
crossref_primary_10_3390_machines11070763
crossref_primary_10_1115_1_4047437
crossref_primary_10_1103_PhysRevResearch_4_013128
crossref_primary_10_1016_j_jare_2023_10_004
crossref_primary_10_1038_s41578_018_0009_8
crossref_primary_10_1126_sciadv_abm7834
crossref_primary_10_1002_adfm_202106231
crossref_primary_10_1016_j_ijmecsci_2023_108515
crossref_primary_10_1115_1_4054361
crossref_primary_10_1002_advs_202303454
crossref_primary_10_1109_TMRB_2024_3472858
crossref_primary_10_1115_1_4052222
crossref_primary_10_1016_j_ast_2024_109844
crossref_primary_10_1016_j_engstruct_2023_117064
crossref_primary_10_1103_PhysRevE_101_063003
crossref_primary_10_3390_polym14194235
crossref_primary_10_1016_j_device_2023_100226
crossref_primary_10_1115_1_4063978
crossref_primary_10_1002_adpr_202400025
crossref_primary_10_1115_1_4066566
crossref_primary_10_1021_acsami_3c17978
crossref_primary_10_1109_LRA_2023_3251181
crossref_primary_10_1002_adma_201805282
crossref_primary_10_1073_pnas_2117649119
crossref_primary_10_1089_soro_2024_0166
Cites_doi 10.1557/opl.2012.536
10.2514/6.2013-1594
10.1109/IROS.2015.7353994
10.1038/nature03185
10.1126/science.1105169
10.1038/nmat4232
10.1109/TMECH.2012.2210239
10.1109/ICRA.2015.7139386
10.1126/science.1107976
10.1073/pnas.1217998110
10.1126/science.1252610
10.1038/nphys2676
10.1016/j.jtbi.2011.05.007
10.1007/978-3-319-23327-7_13
10.1115/1.4032098
10.1017/CBO9781107415324.004
10.1126/science.1252876
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/aa721e
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate A crawling robot driven by multi-stable origami
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_aa721e
smsaa721e
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c312t-927637560150a8164a7c9f84e299ce6c053fae5f449cfd4b67c42eb2123059b43
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Thu Apr 24 22:52:48 EDT 2025
Tue Jul 01 03:38:39 EDT 2025
Wed Aug 21 03:40:36 EDT 2024
Thu Jan 07 13:52:09 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-927637560150a8164a7c9f84e299ce6c053fae5f449cfd4b67c42eb2123059b43
Notes SMS-104678.R1
ORCID 0000-0003-3645-527X
PageCount 11
ParticipantIDs crossref_citationtrail_10_1088_1361_665X_aa721e
crossref_primary_10_1088_1361_665X_aa721e
iop_journals_10_1088_1361_665X_aa721e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
12
13
14
15
17
18
Nayakanti N (16) 2017
1
2
3
4
5
6
7
8
9
10
References_xml – ident: 6
  doi: 10.1557/opl.2012.536
– ident: 13
  doi: 10.2514/6.2013-1594
– ident: 12
  doi: 10.1109/IROS.2015.7353994
– ident: 1
  doi: 10.1038/nature03185
– ident: 5
  doi: 10.1126/science.1105169
– ident: 8
  doi: 10.1038/nmat4232
– ident: 9
  doi: 10.1109/TMECH.2012.2210239
– ident: 11
  doi: 10.1109/ICRA.2015.7139386
– ident: 4
  doi: 10.1126/science.1107976
– ident: 18
  doi: 10.1073/pnas.1217998110
– ident: 10
  doi: 10.1126/science.1252610
– year: 2017
  ident: 16
– ident: 2
  doi: 10.1038/nphys2676
– ident: 3
  doi: 10.1016/j.jtbi.2011.05.007
– ident: 17
  doi: 10.1007/978-3-319-23327-7_13
– ident: 15
  doi: 10.1115/1.4032098
– ident: 14
  doi: 10.1017/CBO9781107415324.004
– ident: 7
  doi: 10.1126/science.1252876
SSID ssj0011831
Score 2.5734081
Snippet Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 94007
SubjectTerms active structures
bistability
origami
Title A crawling robot driven by multi-stable origami
URI https://iopscience.iop.org/article/10.1088/1361-665X/aa721e
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60IujBR1V8k4MePKTtpkmaxVMRpQo-DhZ6EEKSzYKobWlXRH-9k91tUZEi3vYwOwkfyTyYyXwAR8KLhvSCUalUSrmJHDXMRFQ6ZST3Cfc5i8L1jex0-VVP9ObgdPoWZjAsTX8NP4tBwQWEZUOcqkdNibqk6NWNwfzFz8NCU0kZ6Asub--mJQQ8qzldXiw5RS89qVH-puGbT5rHdb-4mItVeJhsrugseaq9ZrbmPn7Mbfzn7tdgpQw9SbsQXYc536_C8peBhFVYzBtC3XgD6m3iRuYtPFYno4EdZCQZBcNI7DvJmxAphpX22ZPArGVeHjehe3F-f9ahJbkCdc2IZTRmaFlaIR8TDaMwaTItF6eKe_RPzkuHlzM1XqScxy5NuJUtxxmm4ejpMCKzvLkFlf6g77eBeGatY7GIE5ZwkXoTGYNRhTfK2QTjlR2oT-DVrpw8HggwnnVeAVdKB1B0AEUXoOzAyfSPYTF1Y4bsMWKty6s3niFHvsmNX8aaSR3rRs4Nr4dJuvtHVXuwxIJ3z1vN9qGSjV79AcYmmT3Mz-AncWraGw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VrajKgVepeBYf6IGDNxvH9jrHFXTFGw5F2puxHUeqCrur3SBEf33HThYBQqhSbzlMJsnEnvlGM54PYE940ZFeMCqVKik3qaOGmZRKp4zkvuA-siicX8ija34yEIOG5zSehRmNG9ffxst6UHBtwqYhTiVpJlGXFIPEGMxffDIuyjn4KDKZheH5x5dXT2UEXK-RMi-XnGKkntUp39LyIi7N4bOfhZn-EtzMXrDuLvndvq9s2_15NbvxP75gGRYbCEp6tfgKfPDDVVh4NphwFeZjY6ibfoGkR9zEPIRD62QysqOKFJPgIIl9JLEZkSK8tLeeBIYtc_drDa77P34eHNGGZIG6LGUVzRl6mG7Iy0THKEyeTNflpeIe45Tz0uEmLY0XJee5KwtuZddxhuk4RjxEZpZnX6E1HA39OhDPrHUsF3nBCi5Kb1JjEF14o5wtELdsQDIzsXbNBPJAhHGrYyVcKR0Mo4NhdG2YDdh_umNcT994R_Y72ls3W3D6jhx5ITe9m2omda47kSNe47_Y_EdVu_Dp6rCvz44vTrfgMwsBP3afbUOrmtz7HYQrlf0Wl-RfEHjffw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+crawling+robot+driven+by+multi-stable+origami&rft.jtitle=Smart+materials+and+structures&rft.au=Pagano%2C+Alexander&rft.au=Yan%2C+Tongxi&rft.au=Chien%2C+Brian&rft.au=Wissa%2C+A&rft.date=2017-09-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=26&rft.issue=9&rft.spage=94007&rft_id=info:doi/10.1088%2F1361-665X%2Faa721e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_aa721e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon