Enhanced CMAS and hot corrosion degradation of YSZ thermal barrier coating with nano powders
Thermal barrier coatings are used to protect hot section parts of gas turbine engines. These coatings are subject to corrosion due to impurity elements in the fuel and dust absorbed from the atmosphere into the engine. The rough and porous surface nature of plasma-sprayed coatings facilitates the pe...
Saved in:
Published in | Surface & coatings technology Vol. 481; p. 130624 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0257-8972 |
DOI | 10.1016/j.surfcoat.2024.130624 |
Cover
Abstract | Thermal barrier coatings are used to protect hot section parts of gas turbine engines. These coatings are subject to corrosion due to impurity elements in the fuel and dust absorbed from the atmosphere into the engine. The rough and porous surface nature of plasma-sprayed coatings facilitates the penetration of these factors into the coating. Coatings are damaged prematurely as a result of corrosion. In this study, nano-structure YSZ, YSZ + Al2O3, YSZ + TiO2, and YSZ + Al2O3 + TiO2 coatings were deposited on plasma sprayed YSZ coating by electrophoretic deposition method. Hot corrosion and CMAS resistance were investigated. The coatings were characterized by SEM, XRD, AFM, and microhardness before corrosion tests. The changes in the coatings after corrosion tests were characterized by SEM and XRD. The penetration behavior of corrosive factors was examined by elemental mapping with EDS. Nanostructure coatings deposited on APS YSZ made the surfaces of as-sprayed coatings more stable. The ability of these nanolayers to prevent pure penetration into coatings during hot corrosion and CMAS is limited. However, the Al2O3 + TiO2-doped nanostructure YSZ reduced the bond-layer oxidation. In addition, the addition of Al2O3 + TiO2 to the EPD deposited layer also reduced the tetragonal-monoclinic phase transformation that occurred in YSZ as a result of corrosion. Al2O3 and TiO2 additives alone are not effective in improving the corrosion behavior of coatings. Nanostructured coatings deposited with the EPD technique can help protect plasma-sprayed thermal barrier coatings against corrosion.
•Approximately 20 μm thick nanostructured coatings were successfully deposited on plasma-sprayed YSZ using the EPD method•Surface porosities in plasma sprayed coating are eliminated. Surface roughness has been reduced.•In hot corrosion and CMAS corrosion tests, the least pure penetration was obtained in Al2O3+TiO2 doped nano YSZ.•Nanostructured coatings deposited with the EPD technique have great potential in protecting APS TBC against corrosion |
---|---|
AbstractList | Thermal barrier coatings are used to protect hot section parts of gas turbine engines. These coatings are subject to corrosion due to impurity elements in the fuel and dust absorbed from the atmosphere into the engine. The rough and porous surface nature of plasma-sprayed coatings facilitates the penetration of these factors into the coating. Coatings are damaged prematurely as a result of corrosion. In this study, nano-structure YSZ, YSZ + Al2O3, YSZ + TiO2, and YSZ + Al2O3 + TiO2 coatings were deposited on plasma sprayed YSZ coating by electrophoretic deposition method. Hot corrosion and CMAS resistance were investigated. The coatings were characterized by SEM, XRD, AFM, and microhardness before corrosion tests. The changes in the coatings after corrosion tests were characterized by SEM and XRD. The penetration behavior of corrosive factors was examined by elemental mapping with EDS. Nanostructure coatings deposited on APS YSZ made the surfaces of as-sprayed coatings more stable. The ability of these nanolayers to prevent pure penetration into coatings during hot corrosion and CMAS is limited. However, the Al2O3 + TiO2-doped nanostructure YSZ reduced the bond-layer oxidation. In addition, the addition of Al2O3 + TiO2 to the EPD deposited layer also reduced the tetragonal-monoclinic phase transformation that occurred in YSZ as a result of corrosion. Al2O3 and TiO2 additives alone are not effective in improving the corrosion behavior of coatings. Nanostructured coatings deposited with the EPD technique can help protect plasma-sprayed thermal barrier coatings against corrosion.
•Approximately 20 μm thick nanostructured coatings were successfully deposited on plasma-sprayed YSZ using the EPD method•Surface porosities in plasma sprayed coating are eliminated. Surface roughness has been reduced.•In hot corrosion and CMAS corrosion tests, the least pure penetration was obtained in Al2O3+TiO2 doped nano YSZ.•Nanostructured coatings deposited with the EPD technique have great potential in protecting APS TBC against corrosion |
ArticleNumber | 130624 |
Author | KARABAŞ, Muhammet AKDOĞAN EKER, Ayşegül AVCI, Ali KÜÇÜKYILDIRIM, Bedri Onur ÖZÇELİK, Abdulkadir |
Author_xml | – sequence: 1 givenname: Abdulkadir surname: ÖZÇELİK fullname: ÖZÇELİK, Abdulkadir organization: Department of Mechanical Engineering, Yildiz Technical University, Istanbul, Türkiye – sequence: 2 givenname: Ayşegül surname: AKDOĞAN EKER fullname: AKDOĞAN EKER, Ayşegül organization: Department of Mechanical Engineering, Yildiz Technical University, Istanbul, Türkiye – sequence: 3 givenname: Muhammet surname: KARABAŞ fullname: KARABAŞ, Muhammet organization: Faculty of Aeronautics and Astronautics, Kırklareli University, Kırklareli, Türkiye – sequence: 4 givenname: Ali surname: AVCI fullname: AVCI, Ali email: aliavci@hakkari.edu.tr organization: Yildiz Technical University Advanced Materials Research Group, Istanbul, Türkiye – sequence: 5 givenname: Bedri Onur surname: KÜÇÜKYILDIRIM fullname: KÜÇÜKYILDIRIM, Bedri Onur organization: Department of Mechanical Engineering, Yildiz Technical University, Istanbul, Türkiye |
BookMark | eNqFkMtOwzAQRb0oEi3wC8g_kOJX40RiQVWVh1TEorAAIVmOM25ctXblGCr-noTChk1XM5tz584ZoYEPHhC6pGRMCc2v1uP2I1oTdBozwsSYcpIzMUBDwiYyK0rJTtGobdeEECpLMUTvc99ob6DGs8fpEmtf4yYkbEKMoXXB4xpWUdc69Xuw-HX5hlMDcas3uNIxOoi4P-f8Cu9darDXPuBd2NcQ23N0YvWmhYvfeYZebufPs_ts8XT3MJsuMsMpS1lhNUhbFKKStgRqciNELnJbETMhnAPIklZGCmaN5VybGiww4IUkhWYGBD9D14dc05VuI1hlXPqpnKJ2G0WJ6u2otfqzo3o76mCnw_N_-C66rY5fx8GbAwjdc5-dCtUaB71NF8EkVQd3LOIbeqSJkg |
CitedBy_id | crossref_primary_10_55546_jmm_1468390 crossref_primary_10_1016_j_mtcomm_2025_112289 crossref_primary_10_1016_j_surfcoat_2025_131850 crossref_primary_10_46519_ij3dptdi_1546843 crossref_primary_10_1021_acsanm_4c01347 |
Cites_doi | 10.1016/j.jeurceramsoc.2013.08.006 10.1016/j.ceramint.2023.09.172 10.1016/j.ceramint.2019.12.200 10.1007/s42452-023-05354-3 10.35193/bseufbd.909078 10.1016/j.surfcoat.2009.09.055 10.1016/j.ceramint.2023.07.203 10.1016/j.corsci.2023.111172 10.1177/14644207231178174 10.1016/j.surfcoat.2006.07.018 10.1016/j.jmst.2018.11.016 10.1007/s11085-017-9715-7 10.1016/B978-0-12-813870-0.00007-3 10.1016/j.materresbull.2013.05.034 10.1016/j.ceramint.2017.03.092 10.1016/j.surfcoat.2022.128701 10.1016/j.corsci.2023.111689 10.1007/s44251-023-00005-6 10.3139/146.111920 10.1016/j.ceramint.2013.05.066 10.1016/j.surfcoat.2022.129053 10.1016/j.corsci.2023.111742 10.1111/jace.16498 10.1016/j.carbon.2006.06.021 10.1016/j.surfcoat.2023.130000 10.1016/j.ceramint.2019.09.120 10.1007/s40145-021-0457-2 10.3390/coatings13091623 10.1016/j.ceramint.2017.03.035 10.1016/j.jeurceramsoc.2020.07.004 10.1007/s43207-022-00268-z 10.1016/j.surfcoat.2022.128799 10.1007/s11666-010-9535-7 10.1016/j.ceramint.2022.08.214 10.1016/j.ceramint.2022.01.024 10.3390/coatings11121474 10.1007/s11666-020-01142-2 10.1016/j.jmapro.2023.04.052 10.1088/2053-1591/ab4956 10.1088/2053-1591/aac63d 10.1134/S0020168516110054 10.1177/0021998317702438 10.1111/j.1151-2916.1996.tb08929.x 10.1080/02670844.2022.2096183 10.1016/j.corsci.2020.108968 10.26599/JAC.2023.9220781 10.1016/j.surfrep.2005.08.003 10.1016/j.matpr.2020.12.578 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.surfcoat.2024.130624 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_surfcoat_2024_130624 S0257897224002548 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q AAQXK AATTM AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SMS SPG SSH WUQ |
ID | FETCH-LOGICAL-c312t-8fae7f884b7f9e1c6c44646fb0c5033ee791bc742fcf33acdefe2e38708a2ce43 |
IEDL.DBID | AIKHN |
ISSN | 0257-8972 |
IngestDate | Thu Apr 24 23:10:24 EDT 2025 Tue Jul 01 03:08:17 EDT 2025 Sat Oct 19 15:54:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanocoatings Electrophoretic Thermal barrier coating CMAS and hot corrosion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-8fae7f884b7f9e1c6c44646fb0c5033ee791bc742fcf33acdefe2e38708a2ce43 |
ParticipantIDs | crossref_citationtrail_10_1016_j_surfcoat_2024_130624 crossref_primary_10_1016_j_surfcoat_2024_130624 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2024_130624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-15 |
PublicationDateYYYYMMDD | 2024-04-15 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Zhang, Han, Liu (bb0075) 2022; 38 Guo, Zhang, Liu, Yang, Dai (bb0230) Jul. 2023; 218 Lu (bb0165) Dec. 2022; 48 de la Roche, Gómez, Alvarado-Orozco, Toro (bb0190) Dec. 2020; 40 Guo (bb0025) Sep. 2023; 1 Sarkar, Nicholson (bb0125) Aug. 1996; 79 Li, Jiang, Gao, Sun, Jin, Fan (bb0020) 2021; 10 Poursaeidi, Jamalabad, Rahimi, Sigaroodi (bb0210) Dec. 2022; 451 Wei, Cai, Meng, Tahir, Zhang (bb0255) Feb. 2020; 46 Zhou (bb0240) 2019; 102 Avci, Eker, Karabas (bb0180) Jul. 2020; 111 Khanali, Ariaee, Rajabi, Baghshahi (bb0130) Mar. 2017; 52 Li, Yang (bb0160) Jan. 2019 Kumar, Moledina, Liu, Chen, Patnaik (bb0100) Dec. 01, 2021; 11 Tsai, Lee, Hsu (bb0195) 2007; 201, no. 9-11 SPEC. ISS Avci, Karabaş, Akdoğan Eker, Akman, Aslan (bb0095) 2023 Liu (bb0030) May 2019; 35 Wu, Guo, Zhou, Wang, Gong (bb0115) Dec. 2010; 19 Jamali, Mozafarinia, Shoja-Razavi, Ahmadi-Pidani (bb0215) Feb. 2014; 34 Li, Yu, Guo, Ye, Zan (bb0250) Sep. 2022; 445 Jun, Jonsson, Jordan, Cooper (bb0015) 2023; 5 Mohan, Yao, Patterson, Sohn (bb0140) Dec. 2009; 204 Avcı, Karabaş, Akdoğan Eker, Akman, Aslan (bb0185) May 2023 Ahmadi, Aghajani (bb0135) Jun. 2017; 43 Han, Zou, Wu, Chen, Zhang (bb0040) Sep. 2022; 446 Das, Basu (bb0145) Sep. 2013; 48 Li, Wu, He, Wang, Guo (bb0050) Apr. 2022; 48 Abbas, Ajeel, Ali Bash, Kadhim (bb0175) 2021; 42 Jun, Jonsson, Jordan, Cooper (bb0005) May 2023; 5 Wang (bb0235) Jan. 2021; 30 Ghasemi, Shoja-Razavi, Mozafarinia, Jamali (bb0090) Dec. 2013; 39 Liu (bb0085) 2023; vol. 97 Butt, Cappella, Kappl (bb0170) 2005; 59 Mohan, Yao, Patterson, Sohn (bb0055) Dec. 2009; 204 Mehboob, Liu, Xu, Hussain, Mehboob, Tahir (bb0070) May 2020; 46 Bal, Karabaş, Yılmaz Taptık (bb0155) 2018; 5 Samani, Kermani, Razavi, Farvizi, Mobasherpour (bb0105) Oct. 2019; 6 Yang (bb0080) Mar. 2024; 50 Li, Jiang, Gao, Sun, Jin, Fan (bb0010) Jun. 2021; 10 Karaoglanli, Ozgurluk, Gulec, Ozkan, Binal (bb0065) Nov. 2023; 473 Ozgurluk (bb0260) Dec. 2021; 8 Boccaccini, Cho, Roether, Thomas, Jane Minay, Shaffer (bb0150) Dec. 2006; 44 Guo, Li, Li (bb0225) Sep. 2023; 12 Guo, Zhang, Gao, Yan (bb0060) Jan. 2024; 226 Guo, Xin, Hu (bb0045) Dec. 2020; 177 Wu, Gao, Guo, Guo (bb0205) Oct. 2023; 49 Zou, Gao, Xu, Zhang, Chang (bb0220) Sep. 2023; 13 Tolpygo (bb0035) 2017; 88 Bal, Karabaş (bb0245) Mar. 2023; 60 Li (bb0200) Jul. 2017; 43 Lu (bb0120) 2012; 538–541 Javadi Sigaroodi, Rahimi, Poursaeidi, Montakhabi (bb0265) Feb. 2024; 227 Kalinina, Efimov, Safronov (bb0110) Dec. 2016; 52 Liu (10.1016/j.surfcoat.2024.130624_bb0030) 2019; 35 Wu (10.1016/j.surfcoat.2024.130624_bb0115) 2010; 19 Jamali (10.1016/j.surfcoat.2024.130624_bb0215) 2014; 34 Li (10.1016/j.surfcoat.2024.130624_bb0160) 2019 Bal (10.1016/j.surfcoat.2024.130624_bb0245) 2023; 60 Wei (10.1016/j.surfcoat.2024.130624_bb0255) 2020; 46 Khanali (10.1016/j.surfcoat.2024.130624_bb0130) 2017; 52 Mehboob (10.1016/j.surfcoat.2024.130624_bb0070) 2020; 46 Liu (10.1016/j.surfcoat.2024.130624_bb0085) 2023; vol. 97 Avci (10.1016/j.surfcoat.2024.130624_bb0180) 2020; 111 Wu (10.1016/j.surfcoat.2024.130624_bb0205) 2023; 49 Karaoglanli (10.1016/j.surfcoat.2024.130624_bb0065) 2023; 473 Tsai (10.1016/j.surfcoat.2024.130624_bb0195) 2007; 201, no. 9-11 SPEC. ISS Mohan (10.1016/j.surfcoat.2024.130624_bb0140) 2009; 204 Li (10.1016/j.surfcoat.2024.130624_bb0200) 2017; 43 Wang (10.1016/j.surfcoat.2024.130624_bb0075) 2022; 38 de la Roche (10.1016/j.surfcoat.2024.130624_bb0190) 2020; 40 Boccaccini (10.1016/j.surfcoat.2024.130624_bb0150) 2006; 44 Li (10.1016/j.surfcoat.2024.130624_bb0250) 2022; 445 Kumar (10.1016/j.surfcoat.2024.130624_bb0100) 2021; 11 Tolpygo (10.1016/j.surfcoat.2024.130624_bb0035) 2017; 88 Guo (10.1016/j.surfcoat.2024.130624_bb0225) 2023; 12 Guo (10.1016/j.surfcoat.2024.130624_bb0025) 2023; 1 Guo (10.1016/j.surfcoat.2024.130624_bb0045) 2020; 177 Li (10.1016/j.surfcoat.2024.130624_bb0050) 2022; 48 Butt (10.1016/j.surfcoat.2024.130624_bb0170) 2005; 59 Bal (10.1016/j.surfcoat.2024.130624_bb0155) 2018; 5 Lu (10.1016/j.surfcoat.2024.130624_bb0120) 2012; 538–541 Zhou (10.1016/j.surfcoat.2024.130624_bb0240) 2019; 102 Jun (10.1016/j.surfcoat.2024.130624_bb0005) 2023; 5 Guo (10.1016/j.surfcoat.2024.130624_bb0230) 2023; 218 Guo (10.1016/j.surfcoat.2024.130624_bb0060) 2024; 226 Ghasemi (10.1016/j.surfcoat.2024.130624_bb0090) 2013; 39 Javadi Sigaroodi (10.1016/j.surfcoat.2024.130624_bb0265) 2024; 227 Lu (10.1016/j.surfcoat.2024.130624_bb0165) 2022; 48 Avcı (10.1016/j.surfcoat.2024.130624_bb0185) 2023 Ozgurluk (10.1016/j.surfcoat.2024.130624_bb0260) 2021; 8 Mohan (10.1016/j.surfcoat.2024.130624_bb0055) 2009; 204 Yang (10.1016/j.surfcoat.2024.130624_bb0080) 2024; 50 Wang (10.1016/j.surfcoat.2024.130624_bb0235) 2021; 30 Li (10.1016/j.surfcoat.2024.130624_bb0020) 2021; 10 Zou (10.1016/j.surfcoat.2024.130624_bb0220) 2023; 13 Avci (10.1016/j.surfcoat.2024.130624_bb0095) 2023 Sarkar (10.1016/j.surfcoat.2024.130624_bb0125) 1996; 79 Han (10.1016/j.surfcoat.2024.130624_bb0040) 2022; 446 Das (10.1016/j.surfcoat.2024.130624_bb0145) 2013; 48 Samani (10.1016/j.surfcoat.2024.130624_bb0105) 2019; 6 Li (10.1016/j.surfcoat.2024.130624_bb0010) 2021; 10 Kalinina (10.1016/j.surfcoat.2024.130624_bb0110) 2016; 52 Ahmadi (10.1016/j.surfcoat.2024.130624_bb0135) 2017; 43 Jun (10.1016/j.surfcoat.2024.130624_bb0015) 2023; 5 Abbas (10.1016/j.surfcoat.2024.130624_bb0175) 2021; 42 Poursaeidi (10.1016/j.surfcoat.2024.130624_bb0210) 2022; 451 |
References_xml | – volume: 177 year: Dec. 2020 ident: bb0045 article-title: Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings publication-title: Corros. Sci. – volume: 50 start-page: 7218 year: Mar. 2024 end-page: 7229 ident: bb0080 article-title: CMAS infiltration behavior of atmospheric plasma-sprayed thermal barrier coating with tailored pore structures publication-title: Ceram. Int. – volume: 218 year: Jul. 2023 ident: bb0230 article-title: CMAS + sea salt corrosion to thermal barrier coatings publication-title: Corros. Sci. – volume: 79 start-page: 1987 year: Aug. 1996 end-page: 2002 ident: bb0125 article-title: Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics publication-title: J. Am. Ceram. Soc. – volume: 5 year: 2018 ident: bb0155 article-title: The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings publication-title: Mater Res Express – volume: 6 year: Oct. 2019 ident: bb0105 article-title: A comparative study on the microstructure, hot corrosion behavior and mechanical properties of duplex and functionally graded nanostructured/conventional YSZ thermal barrier coatings publication-title: Mater Res Express – volume: 39 start-page: 9483 year: Dec. 2013 end-page: 9490 ident: bb0090 article-title: Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings publication-title: Ceram. Int. – volume: 111 start-page: 567 year: Jul. 2020 end-page: 580 ident: bb0180 article-title: An investigation of oxidation, hot corrosion, and thermal shock behavior of atmospheric plasma-sprayed YSZ–Al2O3 composite thermal barrier coatings publication-title: Int. J. Mater. Res. – volume: 8 start-page: 604 year: Dec. 2021 end-page: 613 ident: bb0260 article-title: Kalsiyumoksit (CaO) ve Magnezyumoksit (MgO) İçeriğine Sahip Termal Bariyer Kaplamaların (TBCs) Mikroyapısal ve Mekaniksel Özelliklerinin İncelenmesi publication-title: Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi – volume: 13 year: Sep. 2023 ident: bb0220 article-title: CMAS corrosion behavior of nanostructured YSZ and Gd-Yb-Y-stabilized zirconia coatings publication-title: Coatings – year: May 2023 ident: bb0185 article-title: Hot corrosion and CMAS degradation of laser-glazed YSZ coating with optimum parameter publication-title: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications – volume: 102 start-page: 6357 year: 2019 end-page: 6371 ident: bb0240 article-title: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits publication-title: J. Am. Ceram. Soc. – volume: 473 year: Nov. 2023 ident: bb0065 article-title: Effect of coating degradation on the hot corrosion behavior of yttria-stabilized zirconia (YSZ) and blast furnace slag (BFS) coatings publication-title: Surf Coat Technol – volume: 44 start-page: 3149 year: Dec. 2006 end-page: 3160 ident: bb0150 article-title: Electrophoretic deposition of carbon nanotubes publication-title: Carbon N Y – volume: 38 start-page: 393 year: 2022 end-page: 401 ident: bb0075 article-title: Corrosion resistance of modified YSZ coatings subjected to CMAS attacks publication-title: Surf. Eng. – volume: 446 year: Sep. 2022 ident: bb0040 article-title: Improving CMAS-corrosion resistance of YSZ-based thermal barrier coatings with Al2O3 addition publication-title: Surf Coat Technol – volume: 538–541 start-page: 386 year: 2012 end-page: 390 ident: bb0120 article-title: Study of YSZ/Al2O3 composite coatings produced by electrophoretic deposition publication-title: Adv. Mat. Res. – volume: 201, no. 9-11 SPEC. ISS start-page: 5143 year: 2007 end-page: 5147 ident: bb0195 article-title: Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5 publication-title: Surf Coat Technol – volume: 227 year: Feb. 2024 ident: bb0265 article-title: Impact of bond coat types on calcium-magnesium-alumina-silicate and hot corrosion behavior in thermal barrier coatings publication-title: Corros. Sci. – volume: 52 start-page: 1301 year: Dec. 2016 end-page: 1306 ident: bb0110 article-title: Preparation of YSZ/Al2O3 composite coatings via electrophoretic deposition of nanopowders publication-title: Inorg. Mater. – volume: 445 year: Sep. 2022 ident: bb0250 article-title: Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis publication-title: Surf Coat Technol – volume: 10 start-page: 551 year: Jun. 2021 end-page: 564 ident: bb0010 article-title: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion publication-title: Journal of Advanced Ceramics – start-page: 221 year: Jan. 2019 end-page: 255 ident: bb0160 article-title: Structure evolution of multiscaled thermal barrier coatings during thermal exposure publication-title: Advanced Nanomaterials and Coatings by Thermal Spray: Multi-Dimensional Design of Micro-Nano Thermal Spray Coatings – volume: 60 start-page: 331 year: Mar. 2023 end-page: 343 ident: bb0245 article-title: Effect of molten glass on degradation of stabilized zirconia thermal barrier coatings publication-title: J. Korean Ceram. Soc. – volume: 451 year: Dec. 2022 ident: bb0210 article-title: The effect of CMAS penetration on the microstructure and failure of the TBCs applied by APS/APS method publication-title: Surf Coat Technol – volume: 48 start-page: 11662 year: Apr. 2022 end-page: 11671 ident: bb0050 article-title: Sc-doped Gd2Zr2O7 coating on YSZ thermal barrier coatings to resist CMAS + molten salt attack publication-title: Ceram. Int. – volume: 43 start-page: 7321 year: Jun. 2017 end-page: 7328 ident: bb0135 article-title: Suspension characterization and electrophoretic deposition of Yttria-stabilized zirconia nanoparticles on an iron-nickel based superalloy publication-title: Ceram. Int. – volume: 52 start-page: 81 year: Mar. 2017 end-page: 89 ident: bb0130 article-title: An investigation on the properties of YSZ/Al2O3 nanocomposite coatings on Inconel by electrophoretic deposition publication-title: J. Compos. Mater. – volume: 226 year: Jan. 2024 ident: bb0060 article-title: Interaction laws of RE2O3 and CMAS and rare earth selection criterions for RE-containing thermal barrier coatings against CMAS attack publication-title: Corros. Sci. – volume: 48 start-page: 36539 year: Dec. 2022 end-page: 36555 ident: bb0165 article-title: Microstructures, thermophysical properties and thermal cyclic behaviors of Nd2O3 and Sc2O3 co-doped LaMgAl11O19 thermal barrier coating deposited by plasma spraying publication-title: Ceram. Int. – volume: 5 start-page: 1 year: May 2023 end-page: 11 ident: bb0005 article-title: CMAS deposition rate and sequence effects on cyclic life in gradient testing publication-title: SN Appl Sci – volume: 5 start-page: 138 year: 2023 ident: bb0015 article-title: CMAS deposition rate and sequence effects on cyclic life in gradient testing publication-title: SN Appl Sci – volume: 1 year: Sep. 2023 ident: bb0025 article-title: Progress on high-temperature protective coatings for aero-engines publication-title: Surface Sci. Technol. – volume: 204 start-page: 797 year: Dec. 2009 end-page: 801 ident: bb0140 article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation publication-title: Surf Coat Technol – volume: 204 start-page: 797 year: Dec. 2009 end-page: 801 ident: bb0055 article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation publication-title: Surf. Coat. Technol. – volume: 88 start-page: 87 year: 2017 end-page: 96 ident: bb0035 article-title: Vapor-phase CMAS-induced degradation of adhesion of thermal barrier coatings publication-title: Oxid. Met. – volume: 10 start-page: 551 year: 2021 end-page: 564 ident: bb0020 article-title: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion publication-title: J. Adv. Ceram. – volume: 59 start-page: 1 year: 2005 end-page: 152 ident: bb0170 article-title: Force measurements with the atomic force microscope: Technique, interpretation and applications publication-title: Surface Science Reports – volume: 40 start-page: 5692 year: Dec. 2020 end-page: 5703 ident: bb0190 article-title: Hot corrosion and thermal shock resistance of dense-CYSZ/YSZ bilayer thermal barrier coatings systems applied onto Ni-base superalloy publication-title: J. Eur. Ceram. Soc. – volume: 43 start-page: 7797 year: Jul. 2017 end-page: 7803 ident: bb0200 article-title: Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts publication-title: Ceram. Int. – volume: 49 start-page: 32282 year: Oct. 2023 end-page: 32291 ident: bb0205 article-title: Laser surface modification to improve the resistance of CMAS + molten salt coupling corrosion to thermal barrier coatings publication-title: Ceram. Int. – volume: 46 start-page: 1532 year: Feb. 2020 end-page: 1544 ident: bb0255 article-title: An innovative model coupling TGO growth and crack propagation for the failure assessment of lamellar structured thermal barrier coatings publication-title: Ceram. Int. – volume: vol. 97 year: 2023 ident: bb0085 article-title: Present status and prospects of nanostructured thermal barrier coatings and their performance improvement strategies: a review publication-title: Journal of Manufacturing Processes – year: 2023 ident: bb0095 article-title: Improvement of CMAS resistance of laser glazed and nano-modified YSZ thermal barrier coatings publication-title: Ceram. Int. – volume: 42 start-page: 2553 year: 2021 end-page: 2560 ident: bb0175 article-title: Effect of plasma spray distance on the features and hardness reliability of YSZ thermal barrier coating publication-title: Mater Today Proc – volume: 34 start-page: 485 year: Feb. 2014 end-page: 492 ident: bb0215 article-title: Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate publication-title: J. Eur. Ceram. Soc. – volume: 12 start-page: 1712 year: Sep. 2023 end-page: 1730 ident: bb0225 article-title: Design of Ti2 AlC/YSZ TBCs for more efficient in resisting CMAS attack publication-title: Journal of Advanced Ceramics – volume: 19 start-page: 1186 year: Dec. 2010 end-page: 1194 ident: bb0115 article-title: Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ publication-title: J. Therm. Spray Technol. – volume: 30 start-page: 442 year: Jan. 2021 end-page: 456 ident: bb0235 article-title: Calcium-magnesium-aluminum-silicate (CMAS) corrosion resistance of Y-Yb-Gd-stabilized zirconia thermal barrier coatings publication-title: Journal of Thermal Spray Technology – volume: 35 start-page: 833 year: May 2019 end-page: 851 ident: bb0030 article-title: Advances on strategies for searching for next generation thermal barrier coating materials publication-title: J. Mater. Sci. Technol. – volume: 46 start-page: 8497 year: May 2020 end-page: 8521 ident: bb0070 article-title: A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime publication-title: Ceram. Int. – volume: 48 start-page: 3254 year: Sep. 2013 end-page: 3261 ident: bb0145 article-title: Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates publication-title: Mater. Res. Bull. – volume: 11 year: Dec. 01, 2021 ident: bb0100 article-title: Nano-micro-structured 6%–8% ysz thermal barrier coatings: a comprehensive review of comparative performance analysis publication-title: Coatings – volume: 34 start-page: 485 issue: 2 year: 2014 ident: 10.1016/j.surfcoat.2024.130624_bb0215 article-title: Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.08.006 – volume: 50 start-page: 7218 issue: 5 year: 2024 ident: 10.1016/j.surfcoat.2024.130624_bb0080 article-title: CMAS infiltration behavior of atmospheric plasma-sprayed thermal barrier coating with tailored pore structures publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.09.172 – volume: 46 start-page: 8497 issue: 7 year: 2020 ident: 10.1016/j.surfcoat.2024.130624_bb0070 article-title: A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.12.200 – volume: 538–541 start-page: 386 year: 2012 ident: 10.1016/j.surfcoat.2024.130624_bb0120 article-title: Study of YSZ/Al2O3 composite coatings produced by electrophoretic deposition publication-title: Adv. Mat. Res. – volume: 5 start-page: 138 issue: 5 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0015 article-title: CMAS deposition rate and sequence effects on cyclic life in gradient testing publication-title: SN Appl Sci doi: 10.1007/s42452-023-05354-3 – volume: 8 start-page: 604 issue: 2 year: 2021 ident: 10.1016/j.surfcoat.2024.130624_bb0260 article-title: Kalsiyumoksit (CaO) ve Magnezyumoksit (MgO) İçeriğine Sahip Termal Bariyer Kaplamaların (TBCs) Mikroyapısal ve Mekaniksel Özelliklerinin İncelenmesi publication-title: Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi doi: 10.35193/bseufbd.909078 – volume: 204 start-page: 797 issue: 6–7 year: 2009 ident: 10.1016/j.surfcoat.2024.130624_bb0140 article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2009.09.055 – volume: 49 start-page: 32282 issue: 19 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0205 article-title: Laser surface modification to improve the resistance of CMAS + molten salt coupling corrosion to thermal barrier coatings publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.07.203 – volume: 218 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0230 article-title: CMAS + sea salt corrosion to thermal barrier coatings publication-title: Corros. Sci. doi: 10.1016/j.corsci.2023.111172 – year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0185 article-title: Hot corrosion and CMAS degradation of laser-glazed YSZ coating with optimum parameter publication-title: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications doi: 10.1177/14644207231178174 – volume: 201, no. 9-11 SPEC. ISS start-page: 5143 year: 2007 ident: 10.1016/j.surfcoat.2024.130624_bb0195 article-title: Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2006.07.018 – volume: 35 start-page: 833 issue: 5 year: 2019 ident: 10.1016/j.surfcoat.2024.130624_bb0030 article-title: Advances on strategies for searching for next generation thermal barrier coating materials publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.11.016 – volume: 88 start-page: 87 issue: 1 year: 2017 ident: 10.1016/j.surfcoat.2024.130624_bb0035 article-title: Vapor-phase CMAS-induced degradation of adhesion of thermal barrier coatings publication-title: Oxid. Met. doi: 10.1007/s11085-017-9715-7 – start-page: 221 year: 2019 ident: 10.1016/j.surfcoat.2024.130624_bb0160 article-title: Structure evolution of multiscaled thermal barrier coatings during thermal exposure publication-title: Advanced Nanomaterials and Coatings by Thermal Spray: Multi-Dimensional Design of Micro-Nano Thermal Spray Coatings doi: 10.1016/B978-0-12-813870-0.00007-3 – volume: 48 start-page: 3254 issue: 9 year: 2013 ident: 10.1016/j.surfcoat.2024.130624_bb0145 article-title: Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.05.034 – volume: 43 start-page: 7797 issue: 10 year: 2017 ident: 10.1016/j.surfcoat.2024.130624_bb0200 article-title: Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.092 – volume: 445 year: 2022 ident: 10.1016/j.surfcoat.2024.130624_bb0250 article-title: Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2022.128701 – volume: 226 year: 2024 ident: 10.1016/j.surfcoat.2024.130624_bb0060 article-title: Interaction laws of RE2O3 and CMAS and rare earth selection criterions for RE-containing thermal barrier coatings against CMAS attack publication-title: Corros. Sci. doi: 10.1016/j.corsci.2023.111689 – volume: 1 issue: 1 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0025 article-title: Progress on high-temperature protective coatings for aero-engines publication-title: Surface Sci. Technol. doi: 10.1007/s44251-023-00005-6 – volume: 111 start-page: 567 issue: 7 year: 2020 ident: 10.1016/j.surfcoat.2024.130624_bb0180 article-title: An investigation of oxidation, hot corrosion, and thermal shock behavior of atmospheric plasma-sprayed YSZ–Al2O3 composite thermal barrier coatings publication-title: Int. J. Mater. Res. doi: 10.3139/146.111920 – volume: 39 start-page: 9483 issue: 8 year: 2013 ident: 10.1016/j.surfcoat.2024.130624_bb0090 article-title: Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.05.066 – volume: 451 year: 2022 ident: 10.1016/j.surfcoat.2024.130624_bb0210 article-title: The effect of CMAS penetration on the microstructure and failure of the TBCs applied by APS/APS method publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2022.129053 – volume: 227 year: 2024 ident: 10.1016/j.surfcoat.2024.130624_bb0265 article-title: Impact of bond coat types on calcium-magnesium-alumina-silicate and hot corrosion behavior in thermal barrier coatings publication-title: Corros. Sci. doi: 10.1016/j.corsci.2023.111742 – volume: 102 start-page: 6357 issue: 10 year: 2019 ident: 10.1016/j.surfcoat.2024.130624_bb0240 article-title: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16498 – volume: 44 start-page: 3149 issue: 15 year: 2006 ident: 10.1016/j.surfcoat.2024.130624_bb0150 article-title: Electrophoretic deposition of carbon nanotubes publication-title: Carbon N Y doi: 10.1016/j.carbon.2006.06.021 – volume: 473 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0065 article-title: Effect of coating degradation on the hot corrosion behavior of yttria-stabilized zirconia (YSZ) and blast furnace slag (BFS) coatings publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2023.130000 – volume: 46 start-page: 1532 issue: 2 year: 2020 ident: 10.1016/j.surfcoat.2024.130624_bb0255 article-title: An innovative model coupling TGO growth and crack propagation for the failure assessment of lamellar structured thermal barrier coatings publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.120 – volume: 10 start-page: 551 issue: 3 year: 2021 ident: 10.1016/j.surfcoat.2024.130624_bb0010 article-title: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion publication-title: Journal of Advanced Ceramics doi: 10.1007/s40145-021-0457-2 – volume: 13 issue: 9 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0220 article-title: CMAS corrosion behavior of nanostructured YSZ and Gd-Yb-Y-stabilized zirconia coatings publication-title: Coatings doi: 10.3390/coatings13091623 – volume: 43 start-page: 7321 issue: 9 year: 2017 ident: 10.1016/j.surfcoat.2024.130624_bb0135 article-title: Suspension characterization and electrophoretic deposition of Yttria-stabilized zirconia nanoparticles on an iron-nickel based superalloy publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.035 – volume: 40 start-page: 5692 issue: 15 year: 2020 ident: 10.1016/j.surfcoat.2024.130624_bb0190 article-title: Hot corrosion and thermal shock resistance of dense-CYSZ/YSZ bilayer thermal barrier coatings systems applied onto Ni-base superalloy publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.07.004 – volume: 60 start-page: 331 issue: 2 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0245 article-title: Effect of molten glass on degradation of stabilized zirconia thermal barrier coatings publication-title: J. Korean Ceram. Soc. doi: 10.1007/s43207-022-00268-z – volume: 446 year: 2022 ident: 10.1016/j.surfcoat.2024.130624_bb0040 article-title: Improving CMAS-corrosion resistance of YSZ-based thermal barrier coatings with Al2O3 addition publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2022.128799 – volume: 19 start-page: 1186 issue: 6 year: 2010 ident: 10.1016/j.surfcoat.2024.130624_bb0115 article-title: Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-010-9535-7 – year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0095 article-title: Improvement of CMAS resistance of laser glazed and nano-modified YSZ thermal barrier coatings publication-title: Ceram. Int. – volume: 48 start-page: 36539 issue: 24 year: 2022 ident: 10.1016/j.surfcoat.2024.130624_bb0165 article-title: Microstructures, thermophysical properties and thermal cyclic behaviors of Nd2O3 and Sc2O3 co-doped LaMgAl11O19 thermal barrier coating deposited by plasma spraying publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.08.214 – volume: 48 start-page: 11662 issue: 8 year: 2022 ident: 10.1016/j.surfcoat.2024.130624_bb0050 article-title: Sc-doped Gd2Zr2O7 coating on YSZ thermal barrier coatings to resist CMAS + molten salt attack publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.01.024 – volume: 11 issue: 12 year: 2021 ident: 10.1016/j.surfcoat.2024.130624_bb0100 article-title: Nano-micro-structured 6%–8% ysz thermal barrier coatings: a comprehensive review of comparative performance analysis publication-title: Coatings doi: 10.3390/coatings11121474 – volume: 5 start-page: 1 issue: 5 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0005 article-title: CMAS deposition rate and sequence effects on cyclic life in gradient testing publication-title: SN Appl Sci doi: 10.1007/s42452-023-05354-3 – volume: 204 start-page: 797 issue: 6–7 year: 2009 ident: 10.1016/j.surfcoat.2024.130624_bb0055 article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.09.055 – volume: 30 start-page: 442 issue: 1–2 year: 2021 ident: 10.1016/j.surfcoat.2024.130624_bb0235 article-title: Calcium-magnesium-aluminum-silicate (CMAS) corrosion resistance of Y-Yb-Gd-stabilized zirconia thermal barrier coatings publication-title: Journal of Thermal Spray Technology doi: 10.1007/s11666-020-01142-2 – volume: vol. 97 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0085 article-title: Present status and prospects of nanostructured thermal barrier coatings and their performance improvement strategies: a review publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2023.04.052 – volume: 6 issue: 11 year: 2019 ident: 10.1016/j.surfcoat.2024.130624_bb0105 article-title: A comparative study on the microstructure, hot corrosion behavior and mechanical properties of duplex and functionally graded nanostructured/conventional YSZ thermal barrier coatings publication-title: Mater Res Express doi: 10.1088/2053-1591/ab4956 – volume: 5 issue: 6 year: 2018 ident: 10.1016/j.surfcoat.2024.130624_bb0155 article-title: The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings publication-title: Mater Res Express doi: 10.1088/2053-1591/aac63d – volume: 52 start-page: 1301 issue: 12 year: 2016 ident: 10.1016/j.surfcoat.2024.130624_bb0110 article-title: Preparation of YSZ/Al2O3 composite coatings via electrophoretic deposition of nanopowders publication-title: Inorg. Mater. doi: 10.1134/S0020168516110054 – volume: 10 start-page: 551 issue: 3 year: 2021 ident: 10.1016/j.surfcoat.2024.130624_bb0020 article-title: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion publication-title: J. Adv. Ceram. doi: 10.1007/s40145-021-0457-2 – volume: 52 start-page: 81 issue: 1 year: 2017 ident: 10.1016/j.surfcoat.2024.130624_bb0130 article-title: An investigation on the properties of YSZ/Al2O3 nanocomposite coatings on Inconel by electrophoretic deposition publication-title: J. Compos. Mater. doi: 10.1177/0021998317702438 – volume: 79 start-page: 1987 issue: 8 year: 1996 ident: 10.1016/j.surfcoat.2024.130624_bb0125 article-title: Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1996.tb08929.x – volume: 38 start-page: 393 issue: 4 year: 2022 ident: 10.1016/j.surfcoat.2024.130624_bb0075 article-title: Corrosion resistance of modified YSZ coatings subjected to CMAS attacks publication-title: Surf. Eng. doi: 10.1080/02670844.2022.2096183 – volume: 177 year: 2020 ident: 10.1016/j.surfcoat.2024.130624_bb0045 article-title: Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108968 – volume: 12 start-page: 1712 issue: 9 year: 2023 ident: 10.1016/j.surfcoat.2024.130624_bb0225 article-title: Design of Ti2 AlC/YSZ TBCs for more efficient in resisting CMAS attack publication-title: Journal of Advanced Ceramics doi: 10.26599/JAC.2023.9220781 – volume: 59 start-page: 1 issue: 1–6 year: 2005 ident: 10.1016/j.surfcoat.2024.130624_bb0170 article-title: Force measurements with the atomic force microscope: Technique, interpretation and applications publication-title: Surface Science Reports doi: 10.1016/j.surfrep.2005.08.003 – volume: 42 start-page: 2553 year: 2021 ident: 10.1016/j.surfcoat.2024.130624_bb0175 article-title: Effect of plasma spray distance on the features and hardness reliability of YSZ thermal barrier coating publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.12.578 |
SSID | ssj0001794 |
Score | 2.4644516 |
Snippet | Thermal barrier coatings are used to protect hot section parts of gas turbine engines. These coatings are subject to corrosion due to impurity elements in the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 130624 |
SubjectTerms | CMAS and hot corrosion Electrophoretic Nanocoatings Thermal barrier coating |
Title | Enhanced CMAS and hot corrosion degradation of YSZ thermal barrier coating with nano powders |
URI | https://dx.doi.org/10.1016/j.surfcoat.2024.130624 |
Volume | 481 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LattAcHCcQ5tDSN2EPM0eelVsaXfl1dGYBKclubiGNBTE7mqWJLSSMQ655dszY0nBhUAOPUow2mFmNI-dF8A39DpTaZDR0DgZKVPYyHiSZUOmGpX1tsi4d_j6Jp3O1fdbfduBSdsLw2WVje6vdfpaWzdvBg01B4uHh8FsyNKWjdZVkBTmmC3YTmSW6i5sj69-TG_eFDLL3PqqRRMOBLDRKPxIKmoZfGW5rDJRvBs5TdT7NmrD7lzuwW7jMIpxjdMX6GDZg0-Tdk9bD3Y2Rgp-hd8X5f06qS8m1-OZsGUh7quVoBiTjiIeiIKnQ9SLlEQVxK_ZnWAf8C-d4eyS99cJRpQ-JviOVpS2rMSieuaC532YX178nEyjZoNC5GWcrCITLI6CMcqNQoaxTz1Ff8QaN_ScvkQcZbHzFB0HH6S0vsCACUr6h41NPCp5AN2yKvEQhE6NVimhHzAoxNgVyoZUYhE7XZihOwLd0iz3zXhx3nLxJ2_ryB7zltY50zqvaX0Egze4RT1g40OIrGVJ_o-o5GQFPoA9_g_YE_jMT5xKivUpdFfLJzwjj2Tl-rB1_hL3G7l7BeGo4wg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BPUAPqOWh8mjrQ6_pbmI7cY5oBdq2LJcFiVZIke2MBahNVqtF3PjtzORRFgmJA9ckE4_G4xmP5_MMwDf0OldpkNHQOBkpU9rIeNJlQ64alfW2zPnu8OQsHV-on5f6cgVG_V0YhlV2tr-16Y217p4MOmkOZjc3g-mQtS3PGhQkhTlmFd4pLTPG9X1_eMJ5sMY1By2aOKDPl64J35KBmgdfWwZVJoo7I6eJetlDLXmdkw-w2W0XxVHL0UdYwWoL1kd9l7YteL9UUHAbro6r6yalL0aTo6mwVSmu64WgCJOGohkQJdeGaNsoiTqI39M_gneA_2gMZ-fcvU4wo_QzwSe0orJVLWb1PcOdd-Di5Ph8NI66_gmRl3GyiEywmAVjlMtCjrFPPcV-NDFu6Dl5iZjlsfMUGwcfpLS-xIAJSlrBxiYeldyFtaqu8BMInRqtUmI_YFCIsSuVDanEMna6NEO3B7qXWeG74uLc4-Jv0aPIbote1gXLumhlvQeD_3SztrzGqxR5PyXFM0UpyAe8Qrv_BtqvsD4-n5wWpz_Ofh3ABr_hpFKsD2FtMb_Dz7Q3Wbgvje49As9t49M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+CMAS+and+hot+corrosion+degradation+of+YSZ+thermal+barrier+coating+with+nano+powders&rft.jtitle=Surface+%26+coatings+technology&rft.au=%C3%96Z%C3%87EL%C4%B0K%2C+Abdulkadir&rft.au=AKDO%C4%9EAN+EKER%2C+Ay%C5%9Feg%C3%BCl&rft.au=KARABA%C5%9E%2C+Muhammet&rft.au=AVCI%2C+Ali&rft.date=2024-04-15&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.volume=481&rft_id=info:doi/10.1016%2Fj.surfcoat.2024.130624&rft.externalDocID=S0257897224002548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |