Enhanced CMAS and hot corrosion degradation of YSZ thermal barrier coating with nano powders

Thermal barrier coatings are used to protect hot section parts of gas turbine engines. These coatings are subject to corrosion due to impurity elements in the fuel and dust absorbed from the atmosphere into the engine. The rough and porous surface nature of plasma-sprayed coatings facilitates the pe...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 481; p. 130624
Main Authors ÖZÇELİK, Abdulkadir, AKDOĞAN EKER, Ayşegül, KARABAŞ, Muhammet, AVCI, Ali, KÜÇÜKYILDIRIM, Bedri Onur
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2024
Subjects
Online AccessGet full text
ISSN0257-8972
DOI10.1016/j.surfcoat.2024.130624

Cover

Abstract Thermal barrier coatings are used to protect hot section parts of gas turbine engines. These coatings are subject to corrosion due to impurity elements in the fuel and dust absorbed from the atmosphere into the engine. The rough and porous surface nature of plasma-sprayed coatings facilitates the penetration of these factors into the coating. Coatings are damaged prematurely as a result of corrosion. In this study, nano-structure YSZ, YSZ + Al2O3, YSZ + TiO2, and YSZ + Al2O3 + TiO2 coatings were deposited on plasma sprayed YSZ coating by electrophoretic deposition method. Hot corrosion and CMAS resistance were investigated. The coatings were characterized by SEM, XRD, AFM, and microhardness before corrosion tests. The changes in the coatings after corrosion tests were characterized by SEM and XRD. The penetration behavior of corrosive factors was examined by elemental mapping with EDS. Nanostructure coatings deposited on APS YSZ made the surfaces of as-sprayed coatings more stable. The ability of these nanolayers to prevent pure penetration into coatings during hot corrosion and CMAS is limited. However, the Al2O3 + TiO2-doped nanostructure YSZ reduced the bond-layer oxidation. In addition, the addition of Al2O3 + TiO2 to the EPD deposited layer also reduced the tetragonal-monoclinic phase transformation that occurred in YSZ as a result of corrosion. Al2O3 and TiO2 additives alone are not effective in improving the corrosion behavior of coatings. Nanostructured coatings deposited with the EPD technique can help protect plasma-sprayed thermal barrier coatings against corrosion. •Approximately 20 μm thick nanostructured coatings were successfully deposited on plasma-sprayed YSZ using the EPD method•Surface porosities in plasma sprayed coating are eliminated. Surface roughness has been reduced.•In hot corrosion and CMAS corrosion tests, the least pure penetration was obtained in Al2O3+TiO2 doped nano YSZ.•Nanostructured coatings deposited with the EPD technique have great potential in protecting APS TBC against corrosion
AbstractList Thermal barrier coatings are used to protect hot section parts of gas turbine engines. These coatings are subject to corrosion due to impurity elements in the fuel and dust absorbed from the atmosphere into the engine. The rough and porous surface nature of plasma-sprayed coatings facilitates the penetration of these factors into the coating. Coatings are damaged prematurely as a result of corrosion. In this study, nano-structure YSZ, YSZ + Al2O3, YSZ + TiO2, and YSZ + Al2O3 + TiO2 coatings were deposited on plasma sprayed YSZ coating by electrophoretic deposition method. Hot corrosion and CMAS resistance were investigated. The coatings were characterized by SEM, XRD, AFM, and microhardness before corrosion tests. The changes in the coatings after corrosion tests were characterized by SEM and XRD. The penetration behavior of corrosive factors was examined by elemental mapping with EDS. Nanostructure coatings deposited on APS YSZ made the surfaces of as-sprayed coatings more stable. The ability of these nanolayers to prevent pure penetration into coatings during hot corrosion and CMAS is limited. However, the Al2O3 + TiO2-doped nanostructure YSZ reduced the bond-layer oxidation. In addition, the addition of Al2O3 + TiO2 to the EPD deposited layer also reduced the tetragonal-monoclinic phase transformation that occurred in YSZ as a result of corrosion. Al2O3 and TiO2 additives alone are not effective in improving the corrosion behavior of coatings. Nanostructured coatings deposited with the EPD technique can help protect plasma-sprayed thermal barrier coatings against corrosion. •Approximately 20 μm thick nanostructured coatings were successfully deposited on plasma-sprayed YSZ using the EPD method•Surface porosities in plasma sprayed coating are eliminated. Surface roughness has been reduced.•In hot corrosion and CMAS corrosion tests, the least pure penetration was obtained in Al2O3+TiO2 doped nano YSZ.•Nanostructured coatings deposited with the EPD technique have great potential in protecting APS TBC against corrosion
ArticleNumber 130624
Author KARABAŞ, Muhammet
AKDOĞAN EKER, Ayşegül
AVCI, Ali
KÜÇÜKYILDIRIM, Bedri Onur
ÖZÇELİK, Abdulkadir
Author_xml – sequence: 1
  givenname: Abdulkadir
  surname: ÖZÇELİK
  fullname: ÖZÇELİK, Abdulkadir
  organization: Department of Mechanical Engineering, Yildiz Technical University, Istanbul, Türkiye
– sequence: 2
  givenname: Ayşegül
  surname: AKDOĞAN EKER
  fullname: AKDOĞAN EKER, Ayşegül
  organization: Department of Mechanical Engineering, Yildiz Technical University, Istanbul, Türkiye
– sequence: 3
  givenname: Muhammet
  surname: KARABAŞ
  fullname: KARABAŞ, Muhammet
  organization: Faculty of Aeronautics and Astronautics, Kırklareli University, Kırklareli, Türkiye
– sequence: 4
  givenname: Ali
  surname: AVCI
  fullname: AVCI, Ali
  email: aliavci@hakkari.edu.tr
  organization: Yildiz Technical University Advanced Materials Research Group, Istanbul, Türkiye
– sequence: 5
  givenname: Bedri Onur
  surname: KÜÇÜKYILDIRIM
  fullname: KÜÇÜKYILDIRIM, Bedri Onur
  organization: Department of Mechanical Engineering, Yildiz Technical University, Istanbul, Türkiye
BookMark eNqFkMtOwzAQRb0oEi3wC8g_kOJX40RiQVWVh1TEorAAIVmOM25ctXblGCr-noTChk1XM5tz584ZoYEPHhC6pGRMCc2v1uP2I1oTdBozwsSYcpIzMUBDwiYyK0rJTtGobdeEECpLMUTvc99ob6DGs8fpEmtf4yYkbEKMoXXB4xpWUdc69Xuw-HX5hlMDcas3uNIxOoi4P-f8Cu9darDXPuBd2NcQ23N0YvWmhYvfeYZebufPs_ts8XT3MJsuMsMpS1lhNUhbFKKStgRqciNELnJbETMhnAPIklZGCmaN5VybGiww4IUkhWYGBD9D14dc05VuI1hlXPqpnKJ2G0WJ6u2otfqzo3o76mCnw_N_-C66rY5fx8GbAwjdc5-dCtUaB71NF8EkVQd3LOIbeqSJkg
CitedBy_id crossref_primary_10_55546_jmm_1468390
crossref_primary_10_1016_j_mtcomm_2025_112289
crossref_primary_10_1016_j_surfcoat_2025_131850
crossref_primary_10_46519_ij3dptdi_1546843
crossref_primary_10_1021_acsanm_4c01347
Cites_doi 10.1016/j.jeurceramsoc.2013.08.006
10.1016/j.ceramint.2023.09.172
10.1016/j.ceramint.2019.12.200
10.1007/s42452-023-05354-3
10.35193/bseufbd.909078
10.1016/j.surfcoat.2009.09.055
10.1016/j.ceramint.2023.07.203
10.1016/j.corsci.2023.111172
10.1177/14644207231178174
10.1016/j.surfcoat.2006.07.018
10.1016/j.jmst.2018.11.016
10.1007/s11085-017-9715-7
10.1016/B978-0-12-813870-0.00007-3
10.1016/j.materresbull.2013.05.034
10.1016/j.ceramint.2017.03.092
10.1016/j.surfcoat.2022.128701
10.1016/j.corsci.2023.111689
10.1007/s44251-023-00005-6
10.3139/146.111920
10.1016/j.ceramint.2013.05.066
10.1016/j.surfcoat.2022.129053
10.1016/j.corsci.2023.111742
10.1111/jace.16498
10.1016/j.carbon.2006.06.021
10.1016/j.surfcoat.2023.130000
10.1016/j.ceramint.2019.09.120
10.1007/s40145-021-0457-2
10.3390/coatings13091623
10.1016/j.ceramint.2017.03.035
10.1016/j.jeurceramsoc.2020.07.004
10.1007/s43207-022-00268-z
10.1016/j.surfcoat.2022.128799
10.1007/s11666-010-9535-7
10.1016/j.ceramint.2022.08.214
10.1016/j.ceramint.2022.01.024
10.3390/coatings11121474
10.1007/s11666-020-01142-2
10.1016/j.jmapro.2023.04.052
10.1088/2053-1591/ab4956
10.1088/2053-1591/aac63d
10.1134/S0020168516110054
10.1177/0021998317702438
10.1111/j.1151-2916.1996.tb08929.x
10.1080/02670844.2022.2096183
10.1016/j.corsci.2020.108968
10.26599/JAC.2023.9220781
10.1016/j.surfrep.2005.08.003
10.1016/j.matpr.2020.12.578
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.surfcoat.2024.130624
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_surfcoat_2024_130624
S0257897224002548
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SMS
SPG
SSH
WUQ
ID FETCH-LOGICAL-c312t-8fae7f884b7f9e1c6c44646fb0c5033ee791bc742fcf33acdefe2e38708a2ce43
IEDL.DBID AIKHN
ISSN 0257-8972
IngestDate Thu Apr 24 23:10:24 EDT 2025
Tue Jul 01 03:08:17 EDT 2025
Sat Oct 19 15:54:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanocoatings
Electrophoretic
Thermal barrier coating
CMAS and hot corrosion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-8fae7f884b7f9e1c6c44646fb0c5033ee791bc742fcf33acdefe2e38708a2ce43
ParticipantIDs crossref_citationtrail_10_1016_j_surfcoat_2024_130624
crossref_primary_10_1016_j_surfcoat_2024_130624
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2024_130624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-15
PublicationDateYYYYMMDD 2024-04-15
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Surface & coatings technology
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Zhang, Han, Liu (bb0075) 2022; 38
Guo, Zhang, Liu, Yang, Dai (bb0230) Jul. 2023; 218
Lu (bb0165) Dec. 2022; 48
de la Roche, Gómez, Alvarado-Orozco, Toro (bb0190) Dec. 2020; 40
Guo (bb0025) Sep. 2023; 1
Sarkar, Nicholson (bb0125) Aug. 1996; 79
Li, Jiang, Gao, Sun, Jin, Fan (bb0020) 2021; 10
Poursaeidi, Jamalabad, Rahimi, Sigaroodi (bb0210) Dec. 2022; 451
Wei, Cai, Meng, Tahir, Zhang (bb0255) Feb. 2020; 46
Zhou (bb0240) 2019; 102
Avci, Eker, Karabas (bb0180) Jul. 2020; 111
Khanali, Ariaee, Rajabi, Baghshahi (bb0130) Mar. 2017; 52
Li, Yang (bb0160) Jan. 2019
Kumar, Moledina, Liu, Chen, Patnaik (bb0100) Dec. 01, 2021; 11
Tsai, Lee, Hsu (bb0195) 2007; 201, no. 9-11 SPEC. ISS
Avci, Karabaş, Akdoğan Eker, Akman, Aslan (bb0095) 2023
Liu (bb0030) May 2019; 35
Wu, Guo, Zhou, Wang, Gong (bb0115) Dec. 2010; 19
Jamali, Mozafarinia, Shoja-Razavi, Ahmadi-Pidani (bb0215) Feb. 2014; 34
Li, Yu, Guo, Ye, Zan (bb0250) Sep. 2022; 445
Jun, Jonsson, Jordan, Cooper (bb0015) 2023; 5
Mohan, Yao, Patterson, Sohn (bb0140) Dec. 2009; 204
Avcı, Karabaş, Akdoğan Eker, Akman, Aslan (bb0185) May 2023
Ahmadi, Aghajani (bb0135) Jun. 2017; 43
Han, Zou, Wu, Chen, Zhang (bb0040) Sep. 2022; 446
Das, Basu (bb0145) Sep. 2013; 48
Li, Wu, He, Wang, Guo (bb0050) Apr. 2022; 48
Abbas, Ajeel, Ali Bash, Kadhim (bb0175) 2021; 42
Jun, Jonsson, Jordan, Cooper (bb0005) May 2023; 5
Wang (bb0235) Jan. 2021; 30
Ghasemi, Shoja-Razavi, Mozafarinia, Jamali (bb0090) Dec. 2013; 39
Liu (bb0085) 2023; vol. 97
Butt, Cappella, Kappl (bb0170) 2005; 59
Mohan, Yao, Patterson, Sohn (bb0055) Dec. 2009; 204
Mehboob, Liu, Xu, Hussain, Mehboob, Tahir (bb0070) May 2020; 46
Bal, Karabaş, Yılmaz Taptık (bb0155) 2018; 5
Samani, Kermani, Razavi, Farvizi, Mobasherpour (bb0105) Oct. 2019; 6
Yang (bb0080) Mar. 2024; 50
Li, Jiang, Gao, Sun, Jin, Fan (bb0010) Jun. 2021; 10
Karaoglanli, Ozgurluk, Gulec, Ozkan, Binal (bb0065) Nov. 2023; 473
Ozgurluk (bb0260) Dec. 2021; 8
Boccaccini, Cho, Roether, Thomas, Jane Minay, Shaffer (bb0150) Dec. 2006; 44
Guo, Li, Li (bb0225) Sep. 2023; 12
Guo, Zhang, Gao, Yan (bb0060) Jan. 2024; 226
Guo, Xin, Hu (bb0045) Dec. 2020; 177
Wu, Gao, Guo, Guo (bb0205) Oct. 2023; 49
Zou, Gao, Xu, Zhang, Chang (bb0220) Sep. 2023; 13
Tolpygo (bb0035) 2017; 88
Bal, Karabaş (bb0245) Mar. 2023; 60
Li (bb0200) Jul. 2017; 43
Lu (bb0120) 2012; 538–541
Javadi Sigaroodi, Rahimi, Poursaeidi, Montakhabi (bb0265) Feb. 2024; 227
Kalinina, Efimov, Safronov (bb0110) Dec. 2016; 52
Liu (10.1016/j.surfcoat.2024.130624_bb0030) 2019; 35
Wu (10.1016/j.surfcoat.2024.130624_bb0115) 2010; 19
Jamali (10.1016/j.surfcoat.2024.130624_bb0215) 2014; 34
Li (10.1016/j.surfcoat.2024.130624_bb0160) 2019
Bal (10.1016/j.surfcoat.2024.130624_bb0245) 2023; 60
Wei (10.1016/j.surfcoat.2024.130624_bb0255) 2020; 46
Khanali (10.1016/j.surfcoat.2024.130624_bb0130) 2017; 52
Mehboob (10.1016/j.surfcoat.2024.130624_bb0070) 2020; 46
Liu (10.1016/j.surfcoat.2024.130624_bb0085) 2023; vol. 97
Avci (10.1016/j.surfcoat.2024.130624_bb0180) 2020; 111
Wu (10.1016/j.surfcoat.2024.130624_bb0205) 2023; 49
Karaoglanli (10.1016/j.surfcoat.2024.130624_bb0065) 2023; 473
Tsai (10.1016/j.surfcoat.2024.130624_bb0195) 2007; 201, no. 9-11 SPEC. ISS
Mohan (10.1016/j.surfcoat.2024.130624_bb0140) 2009; 204
Li (10.1016/j.surfcoat.2024.130624_bb0200) 2017; 43
Wang (10.1016/j.surfcoat.2024.130624_bb0075) 2022; 38
de la Roche (10.1016/j.surfcoat.2024.130624_bb0190) 2020; 40
Boccaccini (10.1016/j.surfcoat.2024.130624_bb0150) 2006; 44
Li (10.1016/j.surfcoat.2024.130624_bb0250) 2022; 445
Kumar (10.1016/j.surfcoat.2024.130624_bb0100) 2021; 11
Tolpygo (10.1016/j.surfcoat.2024.130624_bb0035) 2017; 88
Guo (10.1016/j.surfcoat.2024.130624_bb0225) 2023; 12
Guo (10.1016/j.surfcoat.2024.130624_bb0025) 2023; 1
Guo (10.1016/j.surfcoat.2024.130624_bb0045) 2020; 177
Li (10.1016/j.surfcoat.2024.130624_bb0050) 2022; 48
Butt (10.1016/j.surfcoat.2024.130624_bb0170) 2005; 59
Bal (10.1016/j.surfcoat.2024.130624_bb0155) 2018; 5
Lu (10.1016/j.surfcoat.2024.130624_bb0120) 2012; 538–541
Zhou (10.1016/j.surfcoat.2024.130624_bb0240) 2019; 102
Jun (10.1016/j.surfcoat.2024.130624_bb0005) 2023; 5
Guo (10.1016/j.surfcoat.2024.130624_bb0230) 2023; 218
Guo (10.1016/j.surfcoat.2024.130624_bb0060) 2024; 226
Ghasemi (10.1016/j.surfcoat.2024.130624_bb0090) 2013; 39
Javadi Sigaroodi (10.1016/j.surfcoat.2024.130624_bb0265) 2024; 227
Lu (10.1016/j.surfcoat.2024.130624_bb0165) 2022; 48
Avcı (10.1016/j.surfcoat.2024.130624_bb0185) 2023
Ozgurluk (10.1016/j.surfcoat.2024.130624_bb0260) 2021; 8
Mohan (10.1016/j.surfcoat.2024.130624_bb0055) 2009; 204
Yang (10.1016/j.surfcoat.2024.130624_bb0080) 2024; 50
Wang (10.1016/j.surfcoat.2024.130624_bb0235) 2021; 30
Li (10.1016/j.surfcoat.2024.130624_bb0020) 2021; 10
Zou (10.1016/j.surfcoat.2024.130624_bb0220) 2023; 13
Avci (10.1016/j.surfcoat.2024.130624_bb0095) 2023
Sarkar (10.1016/j.surfcoat.2024.130624_bb0125) 1996; 79
Han (10.1016/j.surfcoat.2024.130624_bb0040) 2022; 446
Das (10.1016/j.surfcoat.2024.130624_bb0145) 2013; 48
Samani (10.1016/j.surfcoat.2024.130624_bb0105) 2019; 6
Li (10.1016/j.surfcoat.2024.130624_bb0010) 2021; 10
Kalinina (10.1016/j.surfcoat.2024.130624_bb0110) 2016; 52
Ahmadi (10.1016/j.surfcoat.2024.130624_bb0135) 2017; 43
Jun (10.1016/j.surfcoat.2024.130624_bb0015) 2023; 5
Abbas (10.1016/j.surfcoat.2024.130624_bb0175) 2021; 42
Poursaeidi (10.1016/j.surfcoat.2024.130624_bb0210) 2022; 451
References_xml – volume: 177
  year: Dec. 2020
  ident: bb0045
  article-title: Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings
  publication-title: Corros. Sci.
– volume: 50
  start-page: 7218
  year: Mar. 2024
  end-page: 7229
  ident: bb0080
  article-title: CMAS infiltration behavior of atmospheric plasma-sprayed thermal barrier coating with tailored pore structures
  publication-title: Ceram. Int.
– volume: 218
  year: Jul. 2023
  ident: bb0230
  article-title: CMAS + sea salt corrosion to thermal barrier coatings
  publication-title: Corros. Sci.
– volume: 79
  start-page: 1987
  year: Aug. 1996
  end-page: 2002
  ident: bb0125
  article-title: Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 5
  year: 2018
  ident: bb0155
  article-title: The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings
  publication-title: Mater Res Express
– volume: 6
  year: Oct. 2019
  ident: bb0105
  article-title: A comparative study on the microstructure, hot corrosion behavior and mechanical properties of duplex and functionally graded nanostructured/conventional YSZ thermal barrier coatings
  publication-title: Mater Res Express
– volume: 39
  start-page: 9483
  year: Dec. 2013
  end-page: 9490
  ident: bb0090
  article-title: Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings
  publication-title: Ceram. Int.
– volume: 111
  start-page: 567
  year: Jul. 2020
  end-page: 580
  ident: bb0180
  article-title: An investigation of oxidation, hot corrosion, and thermal shock behavior of atmospheric plasma-sprayed YSZ–Al2O3 composite thermal barrier coatings
  publication-title: Int. J. Mater. Res.
– volume: 8
  start-page: 604
  year: Dec. 2021
  end-page: 613
  ident: bb0260
  article-title: Kalsiyumoksit (CaO) ve Magnezyumoksit (MgO) İçeriğine Sahip Termal Bariyer Kaplamaların (TBCs) Mikroyapısal ve Mekaniksel Özelliklerinin İncelenmesi
  publication-title: Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi
– volume: 13
  year: Sep. 2023
  ident: bb0220
  article-title: CMAS corrosion behavior of nanostructured YSZ and Gd-Yb-Y-stabilized zirconia coatings
  publication-title: Coatings
– year: May 2023
  ident: bb0185
  article-title: Hot corrosion and CMAS degradation of laser-glazed YSZ coating with optimum parameter
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
– volume: 102
  start-page: 6357
  year: 2019
  end-page: 6371
  ident: bb0240
  article-title: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits
  publication-title: J. Am. Ceram. Soc.
– volume: 473
  year: Nov. 2023
  ident: bb0065
  article-title: Effect of coating degradation on the hot corrosion behavior of yttria-stabilized zirconia (YSZ) and blast furnace slag (BFS) coatings
  publication-title: Surf Coat Technol
– volume: 44
  start-page: 3149
  year: Dec. 2006
  end-page: 3160
  ident: bb0150
  article-title: Electrophoretic deposition of carbon nanotubes
  publication-title: Carbon N Y
– volume: 38
  start-page: 393
  year: 2022
  end-page: 401
  ident: bb0075
  article-title: Corrosion resistance of modified YSZ coatings subjected to CMAS attacks
  publication-title: Surf. Eng.
– volume: 446
  year: Sep. 2022
  ident: bb0040
  article-title: Improving CMAS-corrosion resistance of YSZ-based thermal barrier coatings with Al2O3 addition
  publication-title: Surf Coat Technol
– volume: 538–541
  start-page: 386
  year: 2012
  end-page: 390
  ident: bb0120
  article-title: Study of YSZ/Al2O3 composite coatings produced by electrophoretic deposition
  publication-title: Adv. Mat. Res.
– volume: 201, no. 9-11 SPEC. ISS
  start-page: 5143
  year: 2007
  end-page: 5147
  ident: bb0195
  article-title: Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5
  publication-title: Surf Coat Technol
– volume: 227
  year: Feb. 2024
  ident: bb0265
  article-title: Impact of bond coat types on calcium-magnesium-alumina-silicate and hot corrosion behavior in thermal barrier coatings
  publication-title: Corros. Sci.
– volume: 52
  start-page: 1301
  year: Dec. 2016
  end-page: 1306
  ident: bb0110
  article-title: Preparation of YSZ/Al2O3 composite coatings via electrophoretic deposition of nanopowders
  publication-title: Inorg. Mater.
– volume: 445
  year: Sep. 2022
  ident: bb0250
  article-title: Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis
  publication-title: Surf Coat Technol
– volume: 10
  start-page: 551
  year: Jun. 2021
  end-page: 564
  ident: bb0010
  article-title: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion
  publication-title: Journal of Advanced Ceramics
– start-page: 221
  year: Jan. 2019
  end-page: 255
  ident: bb0160
  article-title: Structure evolution of multiscaled thermal barrier coatings during thermal exposure
  publication-title: Advanced Nanomaterials and Coatings by Thermal Spray: Multi-Dimensional Design of Micro-Nano Thermal Spray Coatings
– volume: 60
  start-page: 331
  year: Mar. 2023
  end-page: 343
  ident: bb0245
  article-title: Effect of molten glass on degradation of stabilized zirconia thermal barrier coatings
  publication-title: J. Korean Ceram. Soc.
– volume: 451
  year: Dec. 2022
  ident: bb0210
  article-title: The effect of CMAS penetration on the microstructure and failure of the TBCs applied by APS/APS method
  publication-title: Surf Coat Technol
– volume: 48
  start-page: 11662
  year: Apr. 2022
  end-page: 11671
  ident: bb0050
  article-title: Sc-doped Gd2Zr2O7 coating on YSZ thermal barrier coatings to resist CMAS + molten salt attack
  publication-title: Ceram. Int.
– volume: 43
  start-page: 7321
  year: Jun. 2017
  end-page: 7328
  ident: bb0135
  article-title: Suspension characterization and electrophoretic deposition of Yttria-stabilized zirconia nanoparticles on an iron-nickel based superalloy
  publication-title: Ceram. Int.
– volume: 52
  start-page: 81
  year: Mar. 2017
  end-page: 89
  ident: bb0130
  article-title: An investigation on the properties of YSZ/Al2O3 nanocomposite coatings on Inconel by electrophoretic deposition
  publication-title: J. Compos. Mater.
– volume: 226
  year: Jan. 2024
  ident: bb0060
  article-title: Interaction laws of RE2O3 and CMAS and rare earth selection criterions for RE-containing thermal barrier coatings against CMAS attack
  publication-title: Corros. Sci.
– volume: 48
  start-page: 36539
  year: Dec. 2022
  end-page: 36555
  ident: bb0165
  article-title: Microstructures, thermophysical properties and thermal cyclic behaviors of Nd2O3 and Sc2O3 co-doped LaMgAl11O19 thermal barrier coating deposited by plasma spraying
  publication-title: Ceram. Int.
– volume: 5
  start-page: 1
  year: May 2023
  end-page: 11
  ident: bb0005
  article-title: CMAS deposition rate and sequence effects on cyclic life in gradient testing
  publication-title: SN Appl Sci
– volume: 5
  start-page: 138
  year: 2023
  ident: bb0015
  article-title: CMAS deposition rate and sequence effects on cyclic life in gradient testing
  publication-title: SN Appl Sci
– volume: 1
  year: Sep. 2023
  ident: bb0025
  article-title: Progress on high-temperature protective coatings for aero-engines
  publication-title: Surface Sci. Technol.
– volume: 204
  start-page: 797
  year: Dec. 2009
  end-page: 801
  ident: bb0140
  article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation
  publication-title: Surf Coat Technol
– volume: 204
  start-page: 797
  year: Dec. 2009
  end-page: 801
  ident: bb0055
  article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation
  publication-title: Surf. Coat. Technol.
– volume: 88
  start-page: 87
  year: 2017
  end-page: 96
  ident: bb0035
  article-title: Vapor-phase CMAS-induced degradation of adhesion of thermal barrier coatings
  publication-title: Oxid. Met.
– volume: 10
  start-page: 551
  year: 2021
  end-page: 564
  ident: bb0020
  article-title: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion
  publication-title: J. Adv. Ceram.
– volume: 59
  start-page: 1
  year: 2005
  end-page: 152
  ident: bb0170
  article-title: Force measurements with the atomic force microscope: Technique, interpretation and applications
  publication-title: Surface Science Reports
– volume: 40
  start-page: 5692
  year: Dec. 2020
  end-page: 5703
  ident: bb0190
  article-title: Hot corrosion and thermal shock resistance of dense-CYSZ/YSZ bilayer thermal barrier coatings systems applied onto Ni-base superalloy
  publication-title: J. Eur. Ceram. Soc.
– volume: 43
  start-page: 7797
  year: Jul. 2017
  end-page: 7803
  ident: bb0200
  article-title: Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts
  publication-title: Ceram. Int.
– volume: 49
  start-page: 32282
  year: Oct. 2023
  end-page: 32291
  ident: bb0205
  article-title: Laser surface modification to improve the resistance of CMAS + molten salt coupling corrosion to thermal barrier coatings
  publication-title: Ceram. Int.
– volume: 46
  start-page: 1532
  year: Feb. 2020
  end-page: 1544
  ident: bb0255
  article-title: An innovative model coupling TGO growth and crack propagation for the failure assessment of lamellar structured thermal barrier coatings
  publication-title: Ceram. Int.
– volume: vol. 97
  year: 2023
  ident: bb0085
  article-title: Present status and prospects of nanostructured thermal barrier coatings and their performance improvement strategies: a review
  publication-title: Journal of Manufacturing Processes
– year: 2023
  ident: bb0095
  article-title: Improvement of CMAS resistance of laser glazed and nano-modified YSZ thermal barrier coatings
  publication-title: Ceram. Int.
– volume: 42
  start-page: 2553
  year: 2021
  end-page: 2560
  ident: bb0175
  article-title: Effect of plasma spray distance on the features and hardness reliability of YSZ thermal barrier coating
  publication-title: Mater Today Proc
– volume: 34
  start-page: 485
  year: Feb. 2014
  end-page: 492
  ident: bb0215
  article-title: Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate
  publication-title: J. Eur. Ceram. Soc.
– volume: 12
  start-page: 1712
  year: Sep. 2023
  end-page: 1730
  ident: bb0225
  article-title: Design of Ti2 AlC/YSZ TBCs for more efficient in resisting CMAS attack
  publication-title: Journal of Advanced Ceramics
– volume: 19
  start-page: 1186
  year: Dec. 2010
  end-page: 1194
  ident: bb0115
  article-title: Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ
  publication-title: J. Therm. Spray Technol.
– volume: 30
  start-page: 442
  year: Jan. 2021
  end-page: 456
  ident: bb0235
  article-title: Calcium-magnesium-aluminum-silicate (CMAS) corrosion resistance of Y-Yb-Gd-stabilized zirconia thermal barrier coatings
  publication-title: Journal of Thermal Spray Technology
– volume: 35
  start-page: 833
  year: May 2019
  end-page: 851
  ident: bb0030
  article-title: Advances on strategies for searching for next generation thermal barrier coating materials
  publication-title: J. Mater. Sci. Technol.
– volume: 46
  start-page: 8497
  year: May 2020
  end-page: 8521
  ident: bb0070
  article-title: A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime
  publication-title: Ceram. Int.
– volume: 48
  start-page: 3254
  year: Sep. 2013
  end-page: 3261
  ident: bb0145
  article-title: Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates
  publication-title: Mater. Res. Bull.
– volume: 11
  year: Dec. 01, 2021
  ident: bb0100
  article-title: Nano-micro-structured 6%–8% ysz thermal barrier coatings: a comprehensive review of comparative performance analysis
  publication-title: Coatings
– volume: 34
  start-page: 485
  issue: 2
  year: 2014
  ident: 10.1016/j.surfcoat.2024.130624_bb0215
  article-title: Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2013.08.006
– volume: 50
  start-page: 7218
  issue: 5
  year: 2024
  ident: 10.1016/j.surfcoat.2024.130624_bb0080
  article-title: CMAS infiltration behavior of atmospheric plasma-sprayed thermal barrier coating with tailored pore structures
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2023.09.172
– volume: 46
  start-page: 8497
  issue: 7
  year: 2020
  ident: 10.1016/j.surfcoat.2024.130624_bb0070
  article-title: A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.12.200
– volume: 538–541
  start-page: 386
  year: 2012
  ident: 10.1016/j.surfcoat.2024.130624_bb0120
  article-title: Study of YSZ/Al2O3 composite coatings produced by electrophoretic deposition
  publication-title: Adv. Mat. Res.
– volume: 5
  start-page: 138
  issue: 5
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0015
  article-title: CMAS deposition rate and sequence effects on cyclic life in gradient testing
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-023-05354-3
– volume: 8
  start-page: 604
  issue: 2
  year: 2021
  ident: 10.1016/j.surfcoat.2024.130624_bb0260
  article-title: Kalsiyumoksit (CaO) ve Magnezyumoksit (MgO) İçeriğine Sahip Termal Bariyer Kaplamaların (TBCs) Mikroyapısal ve Mekaniksel Özelliklerinin İncelenmesi
  publication-title: Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi
  doi: 10.35193/bseufbd.909078
– volume: 204
  start-page: 797
  issue: 6–7
  year: 2009
  ident: 10.1016/j.surfcoat.2024.130624_bb0140
  article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2009.09.055
– volume: 49
  start-page: 32282
  issue: 19
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0205
  article-title: Laser surface modification to improve the resistance of CMAS + molten salt coupling corrosion to thermal barrier coatings
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2023.07.203
– volume: 218
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0230
  article-title: CMAS + sea salt corrosion to thermal barrier coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2023.111172
– year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0185
  article-title: Hot corrosion and CMAS degradation of laser-glazed YSZ coating with optimum parameter
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
  doi: 10.1177/14644207231178174
– volume: 201, no. 9-11 SPEC. ISS
  start-page: 5143
  year: 2007
  ident: 10.1016/j.surfcoat.2024.130624_bb0195
  article-title: Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2006.07.018
– volume: 35
  start-page: 833
  issue: 5
  year: 2019
  ident: 10.1016/j.surfcoat.2024.130624_bb0030
  article-title: Advances on strategies for searching for next generation thermal barrier coating materials
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.11.016
– volume: 88
  start-page: 87
  issue: 1
  year: 2017
  ident: 10.1016/j.surfcoat.2024.130624_bb0035
  article-title: Vapor-phase CMAS-induced degradation of adhesion of thermal barrier coatings
  publication-title: Oxid. Met.
  doi: 10.1007/s11085-017-9715-7
– start-page: 221
  year: 2019
  ident: 10.1016/j.surfcoat.2024.130624_bb0160
  article-title: Structure evolution of multiscaled thermal barrier coatings during thermal exposure
  publication-title: Advanced Nanomaterials and Coatings by Thermal Spray: Multi-Dimensional Design of Micro-Nano Thermal Spray Coatings
  doi: 10.1016/B978-0-12-813870-0.00007-3
– volume: 48
  start-page: 3254
  issue: 9
  year: 2013
  ident: 10.1016/j.surfcoat.2024.130624_bb0145
  article-title: Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.05.034
– volume: 43
  start-page: 7797
  issue: 10
  year: 2017
  ident: 10.1016/j.surfcoat.2024.130624_bb0200
  article-title: Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.03.092
– volume: 445
  year: 2022
  ident: 10.1016/j.surfcoat.2024.130624_bb0250
  article-title: Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2022.128701
– volume: 226
  year: 2024
  ident: 10.1016/j.surfcoat.2024.130624_bb0060
  article-title: Interaction laws of RE2O3 and CMAS and rare earth selection criterions for RE-containing thermal barrier coatings against CMAS attack
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2023.111689
– volume: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0025
  article-title: Progress on high-temperature protective coatings for aero-engines
  publication-title: Surface Sci. Technol.
  doi: 10.1007/s44251-023-00005-6
– volume: 111
  start-page: 567
  issue: 7
  year: 2020
  ident: 10.1016/j.surfcoat.2024.130624_bb0180
  article-title: An investigation of oxidation, hot corrosion, and thermal shock behavior of atmospheric plasma-sprayed YSZ–Al2O3 composite thermal barrier coatings
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.111920
– volume: 39
  start-page: 9483
  issue: 8
  year: 2013
  ident: 10.1016/j.surfcoat.2024.130624_bb0090
  article-title: Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.05.066
– volume: 451
  year: 2022
  ident: 10.1016/j.surfcoat.2024.130624_bb0210
  article-title: The effect of CMAS penetration on the microstructure and failure of the TBCs applied by APS/APS method
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2022.129053
– volume: 227
  year: 2024
  ident: 10.1016/j.surfcoat.2024.130624_bb0265
  article-title: Impact of bond coat types on calcium-magnesium-alumina-silicate and hot corrosion behavior in thermal barrier coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2023.111742
– volume: 102
  start-page: 6357
  issue: 10
  year: 2019
  ident: 10.1016/j.surfcoat.2024.130624_bb0240
  article-title: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16498
– volume: 44
  start-page: 3149
  issue: 15
  year: 2006
  ident: 10.1016/j.surfcoat.2024.130624_bb0150
  article-title: Electrophoretic deposition of carbon nanotubes
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2006.06.021
– volume: 473
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0065
  article-title: Effect of coating degradation on the hot corrosion behavior of yttria-stabilized zirconia (YSZ) and blast furnace slag (BFS) coatings
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2023.130000
– volume: 46
  start-page: 1532
  issue: 2
  year: 2020
  ident: 10.1016/j.surfcoat.2024.130624_bb0255
  article-title: An innovative model coupling TGO growth and crack propagation for the failure assessment of lamellar structured thermal barrier coatings
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.120
– volume: 10
  start-page: 551
  issue: 3
  year: 2021
  ident: 10.1016/j.surfcoat.2024.130624_bb0010
  article-title: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion
  publication-title: Journal of Advanced Ceramics
  doi: 10.1007/s40145-021-0457-2
– volume: 13
  issue: 9
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0220
  article-title: CMAS corrosion behavior of nanostructured YSZ and Gd-Yb-Y-stabilized zirconia coatings
  publication-title: Coatings
  doi: 10.3390/coatings13091623
– volume: 43
  start-page: 7321
  issue: 9
  year: 2017
  ident: 10.1016/j.surfcoat.2024.130624_bb0135
  article-title: Suspension characterization and electrophoretic deposition of Yttria-stabilized zirconia nanoparticles on an iron-nickel based superalloy
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.03.035
– volume: 40
  start-page: 5692
  issue: 15
  year: 2020
  ident: 10.1016/j.surfcoat.2024.130624_bb0190
  article-title: Hot corrosion and thermal shock resistance of dense-CYSZ/YSZ bilayer thermal barrier coatings systems applied onto Ni-base superalloy
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.07.004
– volume: 60
  start-page: 331
  issue: 2
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0245
  article-title: Effect of molten glass on degradation of stabilized zirconia thermal barrier coatings
  publication-title: J. Korean Ceram. Soc.
  doi: 10.1007/s43207-022-00268-z
– volume: 446
  year: 2022
  ident: 10.1016/j.surfcoat.2024.130624_bb0040
  article-title: Improving CMAS-corrosion resistance of YSZ-based thermal barrier coatings with Al2O3 addition
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2022.128799
– volume: 19
  start-page: 1186
  issue: 6
  year: 2010
  ident: 10.1016/j.surfcoat.2024.130624_bb0115
  article-title: Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-010-9535-7
– year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0095
  article-title: Improvement of CMAS resistance of laser glazed and nano-modified YSZ thermal barrier coatings
  publication-title: Ceram. Int.
– volume: 48
  start-page: 36539
  issue: 24
  year: 2022
  ident: 10.1016/j.surfcoat.2024.130624_bb0165
  article-title: Microstructures, thermophysical properties and thermal cyclic behaviors of Nd2O3 and Sc2O3 co-doped LaMgAl11O19 thermal barrier coating deposited by plasma spraying
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.08.214
– volume: 48
  start-page: 11662
  issue: 8
  year: 2022
  ident: 10.1016/j.surfcoat.2024.130624_bb0050
  article-title: Sc-doped Gd2Zr2O7 coating on YSZ thermal barrier coatings to resist CMAS + molten salt attack
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.01.024
– volume: 11
  issue: 12
  year: 2021
  ident: 10.1016/j.surfcoat.2024.130624_bb0100
  article-title: Nano-micro-structured 6%–8% ysz thermal barrier coatings: a comprehensive review of comparative performance analysis
  publication-title: Coatings
  doi: 10.3390/coatings11121474
– volume: 5
  start-page: 1
  issue: 5
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0005
  article-title: CMAS deposition rate and sequence effects on cyclic life in gradient testing
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-023-05354-3
– volume: 204
  start-page: 797
  issue: 6–7
  year: 2009
  ident: 10.1016/j.surfcoat.2024.130624_bb0055
  article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.09.055
– volume: 30
  start-page: 442
  issue: 1–2
  year: 2021
  ident: 10.1016/j.surfcoat.2024.130624_bb0235
  article-title: Calcium-magnesium-aluminum-silicate (CMAS) corrosion resistance of Y-Yb-Gd-stabilized zirconia thermal barrier coatings
  publication-title: Journal of Thermal Spray Technology
  doi: 10.1007/s11666-020-01142-2
– volume: vol. 97
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0085
  article-title: Present status and prospects of nanostructured thermal barrier coatings and their performance improvement strategies: a review
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2023.04.052
– volume: 6
  issue: 11
  year: 2019
  ident: 10.1016/j.surfcoat.2024.130624_bb0105
  article-title: A comparative study on the microstructure, hot corrosion behavior and mechanical properties of duplex and functionally graded nanostructured/conventional YSZ thermal barrier coatings
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ab4956
– volume: 5
  issue: 6
  year: 2018
  ident: 10.1016/j.surfcoat.2024.130624_bb0155
  article-title: The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/aac63d
– volume: 52
  start-page: 1301
  issue: 12
  year: 2016
  ident: 10.1016/j.surfcoat.2024.130624_bb0110
  article-title: Preparation of YSZ/Al2O3 composite coatings via electrophoretic deposition of nanopowders
  publication-title: Inorg. Mater.
  doi: 10.1134/S0020168516110054
– volume: 10
  start-page: 551
  issue: 3
  year: 2021
  ident: 10.1016/j.surfcoat.2024.130624_bb0020
  article-title: Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-021-0457-2
– volume: 52
  start-page: 81
  issue: 1
  year: 2017
  ident: 10.1016/j.surfcoat.2024.130624_bb0130
  article-title: An investigation on the properties of YSZ/Al2O3 nanocomposite coatings on Inconel by electrophoretic deposition
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998317702438
– volume: 79
  start-page: 1987
  issue: 8
  year: 1996
  ident: 10.1016/j.surfcoat.2024.130624_bb0125
  article-title: Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1996.tb08929.x
– volume: 38
  start-page: 393
  issue: 4
  year: 2022
  ident: 10.1016/j.surfcoat.2024.130624_bb0075
  article-title: Corrosion resistance of modified YSZ coatings subjected to CMAS attacks
  publication-title: Surf. Eng.
  doi: 10.1080/02670844.2022.2096183
– volume: 177
  year: 2020
  ident: 10.1016/j.surfcoat.2024.130624_bb0045
  article-title: Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.108968
– volume: 12
  start-page: 1712
  issue: 9
  year: 2023
  ident: 10.1016/j.surfcoat.2024.130624_bb0225
  article-title: Design of Ti2 AlC/YSZ TBCs for more efficient in resisting CMAS attack
  publication-title: Journal of Advanced Ceramics
  doi: 10.26599/JAC.2023.9220781
– volume: 59
  start-page: 1
  issue: 1–6
  year: 2005
  ident: 10.1016/j.surfcoat.2024.130624_bb0170
  article-title: Force measurements with the atomic force microscope: Technique, interpretation and applications
  publication-title: Surface Science Reports
  doi: 10.1016/j.surfrep.2005.08.003
– volume: 42
  start-page: 2553
  year: 2021
  ident: 10.1016/j.surfcoat.2024.130624_bb0175
  article-title: Effect of plasma spray distance on the features and hardness reliability of YSZ thermal barrier coating
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.12.578
SSID ssj0001794
Score 2.4644516
Snippet Thermal barrier coatings are used to protect hot section parts of gas turbine engines. These coatings are subject to corrosion due to impurity elements in the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130624
SubjectTerms CMAS and hot corrosion
Electrophoretic
Nanocoatings
Thermal barrier coating
Title Enhanced CMAS and hot corrosion degradation of YSZ thermal barrier coating with nano powders
URI https://dx.doi.org/10.1016/j.surfcoat.2024.130624
Volume 481
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LattAcHCcQ5tDSN2EPM0eelVsaXfl1dGYBKclubiGNBTE7mqWJLSSMQ655dszY0nBhUAOPUow2mFmNI-dF8A39DpTaZDR0DgZKVPYyHiSZUOmGpX1tsi4d_j6Jp3O1fdbfduBSdsLw2WVje6vdfpaWzdvBg01B4uHh8FsyNKWjdZVkBTmmC3YTmSW6i5sj69-TG_eFDLL3PqqRRMOBLDRKPxIKmoZfGW5rDJRvBs5TdT7NmrD7lzuwW7jMIpxjdMX6GDZg0-Tdk9bD3Y2Rgp-hd8X5f06qS8m1-OZsGUh7quVoBiTjiIeiIKnQ9SLlEQVxK_ZnWAf8C-d4eyS99cJRpQ-JviOVpS2rMSieuaC532YX178nEyjZoNC5GWcrCITLI6CMcqNQoaxTz1Ff8QaN_ScvkQcZbHzFB0HH6S0vsCACUr6h41NPCp5AN2yKvEQhE6NVimhHzAoxNgVyoZUYhE7XZihOwLd0iz3zXhx3nLxJ2_ryB7zltY50zqvaX0Egze4RT1g40OIrGVJ_o-o5GQFPoA9_g_YE_jMT5xKivUpdFfLJzwjj2Tl-rB1_hL3G7l7BeGo4wg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BPUAPqOWh8mjrQ6_pbmI7cY5oBdq2LJcFiVZIke2MBahNVqtF3PjtzORRFgmJA9ckE4_G4xmP5_MMwDf0OldpkNHQOBkpU9rIeNJlQ64alfW2zPnu8OQsHV-on5f6cgVG_V0YhlV2tr-16Y217p4MOmkOZjc3g-mQtS3PGhQkhTlmFd4pLTPG9X1_eMJ5sMY1By2aOKDPl64J35KBmgdfWwZVJoo7I6eJetlDLXmdkw-w2W0XxVHL0UdYwWoL1kd9l7YteL9UUHAbro6r6yalL0aTo6mwVSmu64WgCJOGohkQJdeGaNsoiTqI39M_gneA_2gMZ-fcvU4wo_QzwSe0orJVLWb1PcOdd-Di5Ph8NI66_gmRl3GyiEywmAVjlMtCjrFPPcV-NDFu6Dl5iZjlsfMUGwcfpLS-xIAJSlrBxiYeldyFtaqu8BMInRqtUmI_YFCIsSuVDanEMna6NEO3B7qXWeG74uLc4-Jv0aPIbote1gXLumhlvQeD_3SztrzGqxR5PyXFM0UpyAe8Qrv_BtqvsD4-n5wWpz_Ofh3ABr_hpFKsD2FtMb_Dz7Q3Wbgvje49As9t49M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+CMAS+and+hot+corrosion+degradation+of+YSZ+thermal+barrier+coating+with+nano+powders&rft.jtitle=Surface+%26+coatings+technology&rft.au=%C3%96Z%C3%87EL%C4%B0K%2C+Abdulkadir&rft.au=AKDO%C4%9EAN+EKER%2C+Ay%C5%9Feg%C3%BCl&rft.au=KARABA%C5%9E%2C+Muhammet&rft.au=AVCI%2C+Ali&rft.date=2024-04-15&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.volume=481&rft_id=info:doi/10.1016%2Fj.surfcoat.2024.130624&rft.externalDocID=S0257897224002548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon