Photoelectric properties of monolayer WS2-MoS2 lateral heterojunction from first principles
•The photocurrent of monolayer WS2-MoS2 lateral heterojunction is investigated by using the first principle method.•CPGE is generally similar LPGE for monolayer WS2-MoS2 lateral heterojunction.•The peaks of photoresponse occur at photon energies of 2.0 eV and 2.3 eV for both LPGE and CPGE. The first...
Saved in:
Published in | Physics letters. A Vol. 420; p. 127771 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
30.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0375-9601 1873-2429 |
DOI | 10.1016/j.physleta.2021.127771 |
Cover
Loading…
Abstract | •The photocurrent of monolayer WS2-MoS2 lateral heterojunction is investigated by using the first principle method.•CPGE is generally similar LPGE for monolayer WS2-MoS2 lateral heterojunction.•The peaks of photoresponse occur at photon energies of 2.0 eV and 2.3 eV for both LPGE and CPGE.
The first-principles calculation is applied to investigate the photocurrents elicited by the circular photogalvanic effect (CPGE) and linear photogalvanic effect (LPGE) of monolayer WS2-MoS2 lateral heterojunction. Our results demonstrate that the band alignment of the WS2-MoS2 lateral heterojunction belongs to type-II, which can effectually isolate electron-hole pairs and augment the photocurrent conversion rate of the heterojunction. Furthermore, the photocurrent generated by LPGE and CPGE both have peaks around the photon energy of 2.0 eV and 2.3 eV, which can be subject to explain by DOS via Fermi's Golden Rule. More importantly, the monolayer WS2-MoS2 lateral heterojunction exhibits an obvious photocurrent effect, which also attest the existence of the PN junction. These results will contribute some theoretical guidance for the application of the WS2-MoS2 lateral heterojunction in the area of optoelectronics. |
---|---|
AbstractList | •The photocurrent of monolayer WS2-MoS2 lateral heterojunction is investigated by using the first principle method.•CPGE is generally similar LPGE for monolayer WS2-MoS2 lateral heterojunction.•The peaks of photoresponse occur at photon energies of 2.0 eV and 2.3 eV for both LPGE and CPGE.
The first-principles calculation is applied to investigate the photocurrents elicited by the circular photogalvanic effect (CPGE) and linear photogalvanic effect (LPGE) of monolayer WS2-MoS2 lateral heterojunction. Our results demonstrate that the band alignment of the WS2-MoS2 lateral heterojunction belongs to type-II, which can effectually isolate electron-hole pairs and augment the photocurrent conversion rate of the heterojunction. Furthermore, the photocurrent generated by LPGE and CPGE both have peaks around the photon energy of 2.0 eV and 2.3 eV, which can be subject to explain by DOS via Fermi's Golden Rule. More importantly, the monolayer WS2-MoS2 lateral heterojunction exhibits an obvious photocurrent effect, which also attest the existence of the PN junction. These results will contribute some theoretical guidance for the application of the WS2-MoS2 lateral heterojunction in the area of optoelectronics. |
ArticleNumber | 127771 |
Author | Liu, Ping-Ping Luo, Wen-Ming Shao, Zhi-Gang Yang, Mou Li, Han-Bing |
Author_xml | – sequence: 1 givenname: Ping-Ping surname: Liu fullname: Liu, Ping-Ping organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China – sequence: 2 givenname: Zhi-Gang orcidid: 0000-0002-1639-7597 surname: Shao fullname: Shao, Zhi-Gang email: zgshao@scnu.edu.cn organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China – sequence: 3 givenname: Wen-Ming surname: Luo fullname: Luo, Wen-Ming organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China – sequence: 4 givenname: Han-Bing surname: Li fullname: Li, Han-Bing organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China – sequence: 5 givenname: Mou surname: Yang fullname: Yang, Mou organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China |
BookMark | eNqFkMtKAzEYhYNUsK2-guQFZsxtMh1woRRvUFGo4sJFyGT-oRnSyZBEoW_vlOrGTVdn9R3O-WZo0vseELqkJKeEyqsuHza76CDpnBFGc8rKsqQnaEoXJc-YYNUETQkvi6yShJ6hWYwdISNJqin6fN345MGBScEaPAQ_QEgWIvYt3vreO72DgD_WLHv2a4adThC0wxsY03dfvUnW97gNfotbG2IaK2xv7OAgnqPTVrsIF785R-_3d2_Lx2z18vC0vF1lhlOWskVbSENlKxoCVcUqIUxpGCEN5wBaA6-5aIwQkhMpailly3gzfmxIYeq6kHyOrg-9JvgYA7TK2KT3u1LQ1ilK1F6U6tSfKLUXpQ6iRlz-w8cLWx12x8GbAwjjuW8LQUVjoTfQ2DD6VI23xyp-ABzzizc |
CitedBy_id | crossref_primary_10_1007_s11664_022_09980_2 crossref_primary_10_1016_j_apsusc_2023_156892 crossref_primary_10_1016_j_mtcomm_2024_110267 crossref_primary_10_1088_1361_6463_acad10 crossref_primary_10_1088_1361_648X_aca8e4 crossref_primary_10_1016_j_apsusc_2024_161843 crossref_primary_10_1039_D4NJ01047G crossref_primary_10_1016_j_nxmate_2024_100116 crossref_primary_10_1016_j_physb_2023_415191 crossref_primary_10_1007_s10825_024_02269_z crossref_primary_10_1007_s10854_024_12514_7 crossref_primary_10_1142_S0217984924503573 crossref_primary_10_1016_j_physb_2023_415651 crossref_primary_10_1016_j_mtcomm_2024_108962 crossref_primary_10_1364_OE_547099 crossref_primary_10_1063_5_0257780 crossref_primary_10_1007_s00894_024_05913_4 crossref_primary_10_1021_acsami_3c14682 |
Cites_doi | 10.1063/1.4991028 10.1063/5.0049618 10.1063/1.5123606 10.1021/acs.nanolett.5b02423 10.1016/j.spmi.2017.06.015 10.1063/1.4810913 10.1103/PhysRevB.102.081402 10.1134/S001814391304005X 10.1016/S0022-3093(99)00777-2 10.1103/PhysRevLett.77.3865 10.1002/wcms.1353 10.1039/C8NR00484F 10.1038/nmat4091 10.1103/PhysRevMaterials.4.043607 10.1063/1.1473677 10.1088/0022-3719/9/14/020 10.1126/science.aab4097 10.1021/acsnano.5b03188 10.1002/pssr.201900494 10.1038/nnano.2012.224 10.1103/PhysRevLett.105.136805 10.1002/pssr.202000395 10.1088/2053-1583/aa50cc 10.1016/j.spmi.2018.09.017 10.1039/C9TA10473A 10.1021/nl502075n 10.1039/C3TA13659K 10.1063/1.5020618 10.1016/j.spmi.2021.106852 10.1186/s11671-019-3222-5 10.1103/PhysRevMaterials.5.054004 10.1103/PhysRevB.87.075451 10.1088/2053-1583/aa5542 10.1038/nature11408 10.1016/j.apsusc.2021.149907 10.1002/adma.201502375 10.1039/C9TA01451A 10.1016/j.physe.2015.10.013 10.1021/acs.chemmater.6b03639 10.1038/ncomms8749 10.1038/nnano.2014.222 10.1103/PhysRevLett.124.077401 10.1063/1.4774090 10.1021/nl3026357 10.1088/0953-8984/14/11/301 10.1088/0957-4484/26/45/455202 10.1016/j.apsusc.2016.02.215 10.1039/D0NR01189D 10.1016/j.physe.2019.113714 10.1016/j.pmatsci.2016.04.001 10.1016/j.physe.2020.114577 10.1103/PhysRevApplied.14.064003 10.1039/C5CP04861C 10.1038/nnano.2014.35 10.1021/acs.nanolett.6b00699 10.1039/C6TC04241D 10.1016/j.spmi.2015.08.024 10.1103/PhysRevB.46.6671 10.1126/science.1246137 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physleta.2021.127771 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2429 |
ExternalDocumentID | 10_1016_j_physleta_2021_127771 S0375960121006356 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABLJU ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SPG SSQ SSZ T5K TN5 WH7 ~02 ~G- 29O 5VS 6TJ 8WZ A6W AAQFI AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMV HVGLF HZ~ K-O MVM NDZJH R2- RIG SEW SSH WUQ XJT XOL YYP ZCG |
ID | FETCH-LOGICAL-c312t-8f56c16f4d0e992944c7c200d33eeaae3b34dc4463064b666f23d277d05cbb563 |
IEDL.DBID | .~1 |
ISSN | 0375-9601 |
IngestDate | Tue Jul 01 02:52:37 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Fri Feb 23 02:43:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | First principles Photoelectric Heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-8f56c16f4d0e992944c7c200d33eeaae3b34dc4463064b666f23d277d05cbb563 |
ORCID | 0000-0002-1639-7597 |
ParticipantIDs | crossref_citationtrail_10_1016_j_physleta_2021_127771 crossref_primary_10_1016_j_physleta_2021_127771 elsevier_sciencedirect_doi_10_1016_j_physleta_2021_127771 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-30 |
PublicationDateYYYYMMDD | 2021-12-30 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Physics letters. A |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Hu, Xie, Zhang, Wang (br0230) 2020; 14 Chen, Wan, Xie, Wen, Kang, Zeng, Chen, Xu (br0350) 2015; 27 Wei, Zhang, Guo, Li, Lau, Liu (br0410) 2014; 2 Georgiou, Jalil, Belle, Britnell, Gorbachev, Morozov, Kim, Gholinia, Haigh, Makarovsky, Eaves, Ponomarenko, Geim, Novoselov, Mishchenko (br0190) 2013; 8 Duan, Wang, Shaw, Cheng, Chen, Li, Wu, Tang, Zhang, Pan, Jiang, Yu, Huang, Duan (br0150) 2014; 9 Tao, Jiang, Hao, Zheng, Zhang, Zeng (br0240) 2020; 102 Gong, Xiong, Xie, Hu, Huang, Wang (br0320) 2021; 118 Luo, Xie, Zhao, Hu, Ye, Ke (br0220) 2021; 5 Chen, Wan, Wen, Xie, Kang, Zeng, Chen, Xu (br0360) 2015; 9 Levendorf, Kim, Brown, Huang, Havener, Muller, Park (br0140) 2012; 488 Wen, Xia, Zhang (br0370) 2016; 371 Cui, Wang, Lyu, Zhang, Ding, Bai (br0020) 2021; 152 Mak, Lee, Hone, Shan, Heinz (br0090) 2010; 105 Hubmann, Budkin, Otteneder, But, Sacré, Yahniuk, Diendorfer, Bel'kov, Kozlov, Mikhailov (br0210) 2020; 4 Kang, Tongay, Zhou, Li, Wu (br0580) 2013; 102 Cheng, Li, Zhou, Wang, Yin, Jiang, Liu, Chen, Huang, Duan (br0340) 2014; 14 Segall, Lindan, Probert, Pickard, Hasnip, Clark, Payne (br0520) 2002; 14 Lee, Huang, Sumpter, Yoon (br0420) 2017; 4 Gong, Lei, Ye, Li, He, Keyshar, Zhang, Wang, Lou, Liu, Vajtai, Zhou, Ajayan (br0180) 2015; 15 Wei, Dai, Sun, Yin, Han, Huang, Jacob (br0400) 2015; 17 Henrickson (br0530) 2002; 91 Fu, Yan, Li, He, Ouyang, Zhang, Tang, Zhong (br0310) 2020 Gutiérrez, Perea-López, Elías, Berkdemir, Wang, Lv, López-Urías, Crespi, Terrones, Terrones (br0080) 2013; 13 Cho, Namgung, Kim, Kwon (br0490) 2017; 5 You, Liu, Hao, Han, Zhang, You (br0010) 2020; 32 Zhao, Cheng, Han, Zhang (br0120) 2018; 8 Luo, Hu, Xie (br0300) 2019; 7 Grishina, Krivenko, Savel'ev, Rychwalski, Vannikov (br0030) 2013; 47 Ramin Moayed, Li, Beck, Schober, Klinke (br0290) 2020; 12 Chen, Zhou, Tang, Tian, Zhao, Xu, Liu, Geng, Tan, Fu, Loh (br0390) 2016; 28 Luo, Shao, Qin, Yang (br0460) 2020; 115 Liu, Park, Siegel, McCarty, Clark, Deng, Basile, Idrobo, Li, Gu (br0170) 2014; 343 Luo, Shao, Yang (br0440) 2019; 14 Wang, Gao, Meng (br0100) 2015; 88 Gao, Zhang, Xiao (br0250) 2020; 124 Wang, Li, Liang, Wang, Nie (br0280) 2019; 7 Zhang, Cao, Hu, Wang, Xie (br0200) 2021; 560 Perdew, Burke, Ernzerhof (br0550) 1996; 77 Liang, Beal (br0560) 1976; 9 Deng, Li, He, Ouyang, Zhang, Tang, Li, Tang, Zhong (br0040) 2020; 14 Ma, Jiang, Liu, Zhu, Qin, Chen (br0260) 2013; 102 Zhao, Liu, Yu, Quhe, Zhou, Wang, Liu, Zhong, Han, Lu, Yao, Wu (br0060) 2016; 83 Gong, Lin, Wang, Shi, Lei, Lin, Zou, Ye, Vajtai, Yakobson, Terrones, Terrones, Tay, Lou, Pantelides, Liu, Zhou, Ajayan (br0510) 2014; 13 Perdew, Chevary, Vosko, Jackson, Pederson, Singh, Fiolhais (br0540) 1992; 46 Zhang, Xie, Zhao, Zhang (br0430) 2017; 4 Li, Shi, Cheng, Lu, Lin, Tang, Tsai, Chu, Wei, He, Chang, Suenaga, Li (br0470) 2015; 349 Cheng, Guo, Han, Jiang, Zhang, Ahuja, Su, Zhao (br0500) 2018; 112 Mahjouri-Samani, Lin, Wang, Lupini, Lee, Basile, Boulesbaa, Rouleau, Puretzky, Ivanov, Xiao, Yoon, Geohegan (br0160) 2015; 6 Ben Amara, Ben Salem, Jaziri (br0130) 2017; 109 Liu, Shao, Luo, Yang (br0600) 2021; 128 Li, Wang, Chen, Lu, Xie, Hu (br0270) 2018; 10 Jin, Li, Wang, Yu, Wan, Xu, Dai, Wei, Guo (br0480) 2016; 4 Cabrera, Contreras-Solorio, Hernández (br0570) 2016; 76 Fang, Tian, Sheng, Yang, Lu, Wang, Zhang, Zhang, Yan, Hua (br0110) 2018; 123 Wehrspohn, Deane, French, Powell (br0050) 2000; 266–269 Li, Yu, Ye, Ge, Ou, Wu, Feng, Chen, Zhang (br0070) 2014; 9 Hu, Xiong, Cai, Wang, Li, Xie, Wang (br0330) 2019; 115 Son, Li, Cheng, Wei, Liu, Wang, Li, Strano (br0380) 2016; 16 Xie, Zhang, Zhu, Liu, Guo (br0450) 2015; 26 Kośmider, Fernández-Rossier (br0590) 2013; 87 Gutiérrez (10.1016/j.physleta.2021.127771_br0080) 2013; 13 Son (10.1016/j.physleta.2021.127771_br0380) 2016; 16 Luo (10.1016/j.physleta.2021.127771_br0460) 2020; 115 Duan (10.1016/j.physleta.2021.127771_br0150) 2014; 9 Zhang (10.1016/j.physleta.2021.127771_br0430) 2017; 4 Ben Amara (10.1016/j.physleta.2021.127771_br0130) 2017; 109 Kośmider (10.1016/j.physleta.2021.127771_br0590) 2013; 87 Chen (10.1016/j.physleta.2021.127771_br0350) 2015; 27 Hubmann (10.1016/j.physleta.2021.127771_br0210) 2020; 4 Mak (10.1016/j.physleta.2021.127771_br0090) 2010; 105 Gong (10.1016/j.physleta.2021.127771_br0320) 2021; 118 Liu (10.1016/j.physleta.2021.127771_br0600) 2021; 128 Cho (10.1016/j.physleta.2021.127771_br0490) 2017; 5 Wei (10.1016/j.physleta.2021.127771_br0410) 2014; 2 Segall (10.1016/j.physleta.2021.127771_br0520) 2002; 14 Li (10.1016/j.physleta.2021.127771_br0270) 2018; 10 Li (10.1016/j.physleta.2021.127771_br0470) 2015; 349 Gong (10.1016/j.physleta.2021.127771_br0510) 2014; 13 Liu (10.1016/j.physleta.2021.127771_br0170) 2014; 343 Grishina (10.1016/j.physleta.2021.127771_br0030) 2013; 47 Cui (10.1016/j.physleta.2021.127771_br0020) 2021; 152 Tao (10.1016/j.physleta.2021.127771_br0240) 2020; 102 Perdew (10.1016/j.physleta.2021.127771_br0540) 1992; 46 Cheng (10.1016/j.physleta.2021.127771_br0340) 2014; 14 Zhao (10.1016/j.physleta.2021.127771_br0230) 2020; 14 Wang (10.1016/j.physleta.2021.127771_br0100) 2015; 88 Gong (10.1016/j.physleta.2021.127771_br0180) 2015; 15 Wang (10.1016/j.physleta.2021.127771_br0280) 2019; 7 Wen (10.1016/j.physleta.2021.127771_br0370) 2016; 371 Kang (10.1016/j.physleta.2021.127771_br0580) 2013; 102 Deng (10.1016/j.physleta.2021.127771_br0040) 2020; 14 Gao (10.1016/j.physleta.2021.127771_br0250) 2020; 124 Zhao (10.1016/j.physleta.2021.127771_br0060) 2016; 83 Luo (10.1016/j.physleta.2021.127771_br0300) 2019; 7 Li (10.1016/j.physleta.2021.127771_br0070) 2014; 9 Zhao (10.1016/j.physleta.2021.127771_br0120) 2018; 8 Fang (10.1016/j.physleta.2021.127771_br0110) 2018; 123 Henrickson (10.1016/j.physleta.2021.127771_br0530) 2002; 91 Liang (10.1016/j.physleta.2021.127771_br0560) 1976; 9 Perdew (10.1016/j.physleta.2021.127771_br0550) 1996; 77 Wei (10.1016/j.physleta.2021.127771_br0400) 2015; 17 Jin (10.1016/j.physleta.2021.127771_br0480) 2016; 4 Chen (10.1016/j.physleta.2021.127771_br0390) 2016; 28 Luo (10.1016/j.physleta.2021.127771_br0220) 2021; 5 Lee (10.1016/j.physleta.2021.127771_br0420) 2017; 4 Xie (10.1016/j.physleta.2021.127771_br0450) 2015; 26 Georgiou (10.1016/j.physleta.2021.127771_br0190) 2013; 8 Cabrera (10.1016/j.physleta.2021.127771_br0570) 2016; 76 Levendorf (10.1016/j.physleta.2021.127771_br0140) 2012; 488 Cheng (10.1016/j.physleta.2021.127771_br0500) 2018; 112 You (10.1016/j.physleta.2021.127771_br0010) 2020; 32 Fu (10.1016/j.physleta.2021.127771_br0310) 2020 Hu (10.1016/j.physleta.2021.127771_br0330) 2019; 115 Chen (10.1016/j.physleta.2021.127771_br0360) 2015; 9 Luo (10.1016/j.physleta.2021.127771_br0440) 2019; 14 Ma (10.1016/j.physleta.2021.127771_br0260) 2013; 102 Mahjouri-Samani (10.1016/j.physleta.2021.127771_br0160) 2015; 6 Wehrspohn (10.1016/j.physleta.2021.127771_br0050) 2000; 266–269 Zhang (10.1016/j.physleta.2021.127771_br0200) 2021; 560 Ramin Moayed (10.1016/j.physleta.2021.127771_br0290) 2020; 12 |
References_xml | – volume: 13 start-page: 3447 year: 2013 end-page: 3454 ident: br0080 article-title: Extraordinary room-temperature photoluminescence in triangular WS publication-title: Nano Lett. – volume: 91 start-page: 6273 year: 2002 end-page: 6281 ident: br0530 article-title: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors publication-title: J. Appl. Phys. – volume: 7 start-page: 10684 year: 2019 end-page: 10695 ident: br0280 article-title: BX1-BX publication-title: J. Mater. Chem. A – volume: 47 start-page: 187 year: 2013 end-page: 191 ident: br0030 article-title: Photoelectric and photorefractive properties of polyvinylcarbazole composites with graphene in the visible spectral range publication-title: High Energy Chem. – volume: 83 start-page: 24 year: 2016 end-page: 151 ident: br0060 article-title: Rise of silicene: a competitive 2D material publication-title: Prog. Mater. Sci. – volume: 10 start-page: 7694 year: 2018 end-page: 7701 ident: br0270 article-title: Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current publication-title: Nanoscale – volume: 4 start-page: 11253 year: 2016 end-page: 11260 ident: br0480 article-title: Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides publication-title: J. Mater. Chem. C – volume: 6 start-page: 7749 year: 2015 ident: br0160 article-title: Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors publication-title: Nat. Commun. – volume: 14 start-page: 5590 year: 2014 end-page: 5597 ident: br0340 article-title: Electroluminescence and photocurrent generation from atomically sharp WSe publication-title: Nano Lett. – volume: 88 start-page: 12 year: 2015 end-page: 17 ident: br0100 article-title: Tuning carrier confinement in the MoS publication-title: Superlattices Microstruct. – volume: 46 start-page: 6671 year: 1992 end-page: 6687 ident: br0540 article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B – volume: 7 start-page: 27503 year: 2019 end-page: 27513 ident: br0300 article-title: Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: a theoretical prediction publication-title: J. Mater. Chem. A – volume: 343 start-page: 163 year: 2014 end-page: 167 ident: br0170 article-title: Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges publication-title: Science – volume: 102 year: 2020 ident: br0240 article-title: Pure spin current generation via photogalvanic effect with spatial inversion symmetry publication-title: Phys. Rev. B – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: br0550 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 105 year: 2010 ident: br0090 article-title: Atomically thin MoS publication-title: Phys. Rev. Lett. – volume: 112 year: 2018 ident: br0500 article-title: 2D lateral heterostructures of group-III monochalcogenide: potential photovoltaic applications publication-title: Appl. Phys. Lett. – volume: 5 year: 2017 ident: br0490 article-title: Electric and photovoltaic characteristics of a multi-layer ReS publication-title: APL Mater. – volume: 123 start-page: 323 year: 2018 end-page: 329 ident: br0110 article-title: Chemical vapor deposition of WS publication-title: Superlattices Microstruct. – volume: 8 year: 2018 ident: br0120 article-title: Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 4 year: 2017 ident: br0420 article-title: Strain-engineered optoelectronic properties of 2d transition metal dichalcogenide lateral heterostructures publication-title: 2D Mater. – volume: 115 year: 2019 ident: br0330 article-title: Optical response of te-based monolayer materials from first principles publication-title: Appl. Phys. Lett. – volume: 14 year: 2020 ident: br0230 article-title: Largely enhanced photogalvanic effects in a phosphorene photodetector by strain-increased device asymmetry publication-title: Phys. Rev. Appl. – volume: 488 start-page: 627 year: 2012 end-page: 632 ident: br0140 article-title: Graphene and boron nitride lateral heterostructures for atomically thin circuitry publication-title: Nature – volume: 109 start-page: 897 year: 2017 end-page: 904 ident: br0130 article-title: Optoelectronic response and interlayer exciton features of MoS publication-title: Superlattices Microstruct. – volume: 115 year: 2020 ident: br0460 article-title: Photogalvanic effect in monolayer WSe publication-title: Physica E – year: 2020 ident: br0310 article-title: Photogalvanic-effect-induced spin-polarized current in defective silicane with H vacancies publication-title: Phys. Status Solidi RRL – volume: 28 start-page: 7194 year: 2016 end-page: 7197 ident: br0390 article-title: Lateral epitaxy of atomically sharp WSe publication-title: Chem. Mater. – volume: 4 year: 2020 ident: br0210 article-title: Symmetry breaking and circular photogalvanic effect in epitaxial Cd publication-title: Phys. Rev. Materials – volume: 152 year: 2021 ident: br0020 article-title: Electronic, magnetism and optical properties of transition metals adsorbed puckered arsenene publication-title: Superlattices Microstruct. – volume: 32 year: 2020 ident: br0010 article-title: Laser fabrication of graphene-based flexible electronics publication-title: Adv. Mater. – volume: 9 start-page: 2823 year: 1976 end-page: 2832 ident: br0560 article-title: A study of the optical joint density-of-states function publication-title: J. Phys. C, Solid State Phys. – volume: 15 start-page: 6135 year: 2015 end-page: 6141 ident: br0180 article-title: Two-step growth of two-dimensional WSe publication-title: Nano Lett. – volume: 118 year: 2021 ident: br0320 article-title: The large photoresponse and high polarization sensitivity of te-based optoelectronic devices with the adsorbed hydroxide ions publication-title: Appl. Phys. Lett. – volume: 8 start-page: 100 year: 2013 end-page: 103 ident: br0190 article-title: Vertical field-effect transistor based on graphene-WS publication-title: Nat. Nanotechnol. – volume: 560 year: 2021 ident: br0200 article-title: A promising polarization-sensitive ultraviolet photodetector based on the two-dimensional zrnbr-zrncl lateral heterojunction with enhanced photoresponse: a theoretical prediction publication-title: Appl. Surf. Sci. – volume: 27 start-page: 6431 year: 2015 end-page: 6437 ident: br0350 article-title: Lateral built-in potential of monolayer MoS publication-title: Adv. Mater. – volume: 12 start-page: 6256 year: 2020 end-page: 6262 ident: br0290 article-title: Anisotropic circular photogalvanic effect in colloidal tin sulfide nanosheets publication-title: Nanoscale – volume: 4 year: 2017 ident: br0430 article-title: Band alignment of two-dimensional lateral heterostructures publication-title: 2D Mater. – volume: 9 start-page: 372 year: 2014 end-page: 377 ident: br0070 article-title: Circular photogalvanic effect induced by monopolar spin orientation in P-GaAs/AlGaAs multiple-quantum wells publication-title: Nat. Nanotechnol. – volume: 26 year: 2015 ident: br0450 article-title: Photogalvanic effect in monolayer black phosphorus publication-title: Nanotechnology – volume: 371 start-page: 376 year: 2016 end-page: 382 ident: br0370 article-title: Size effect on the magnetic and electronic properties of the monolayer lateral hetero-junction WS publication-title: Appl. Surf. Sci. – volume: 17 start-page: 29380 year: 2015 end-page: 29386 ident: br0400 article-title: Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures publication-title: Phys. Chem. Chem. Phys. – volume: 102 year: 2013 ident: br0580 article-title: Band offsets and heterostructures of two-dimensional semiconductors publication-title: Appl. Phys. Lett. – volume: 76 start-page: 103 year: 2016 end-page: 108 ident: br0570 article-title: Joint density of states in low dimensional semiconductors publication-title: Physica E – volume: 16 start-page: 3571 year: 2016 end-page: 3577 ident: br0380 article-title: Observation of switchable photoresponse of a monolayer WSe publication-title: Nano Lett. – volume: 2 start-page: 2101 year: 2014 end-page: 2109 ident: br0410 article-title: Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS publication-title: J. Mater. Chem. A – volume: 349 start-page: 524 year: 2015 end-page: 528 ident: br0470 article-title: Epitaxial growth of a monolayer WSe publication-title: Science – volume: 87 year: 2013 ident: br0590 article-title: Electronic properties of the MoS publication-title: Phys. Rev. B – volume: 14 year: 2020 ident: br0040 article-title: Electronic and spin-dependent optical properties of Fe-adsorbed armchair silicene/silicane superlattices publication-title: Phys. Status Solidi RRL – volume: 14 start-page: 380 year: 2019 ident: br0440 article-title: Photogalvanic effect in nitrogen-doped monolayer MoS publication-title: Nanoscale Res. Lett. – volume: 9 start-page: 9868 year: 2015 end-page: 9876 ident: br0360 article-title: Electronic properties of MoS publication-title: ACS Nano – volume: 14 start-page: 2717 year: 2002 end-page: 2744 ident: br0520 article-title: First-principles simulation: ideas, illustrations and the CASTEP code publication-title: J. Phys. Condens. Matter – volume: 266–269 start-page: 459 year: 2000 end-page: 463 ident: br0050 article-title: Effect of amorphous silicon material properties on the stability of thin film transistors: evidence for a local defect creation model publication-title: J. Non-Cryst. Solids – volume: 128 year: 2021 ident: br0600 article-title: Photogalvanic effect in chromium-doped monolayer MoS publication-title: Physica E, Low-Dimens. Syst. Nanostruct. – volume: 9 start-page: 1024 year: 2014 end-page: 1030 ident: br0150 article-title: Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions publication-title: Nat. Nanotechnol. – volume: 102 year: 2013 ident: br0260 article-title: Identifying different mechanisms of circular photogalvanic effect in GaAs/Al publication-title: Appl. Phys. Lett. – volume: 5 year: 2021 ident: br0220 article-title: Perfect in-plane cri publication-title: Phys. Rev. Materials – volume: 13 start-page: 1135 year: 2014 end-page: 1142 ident: br0510 article-title: Vertical and in-plane heterostructures from WS publication-title: Nat. Mater. – volume: 124 year: 2020 ident: br0250 article-title: Tunable layer circular photogalvanic effect in twisted bilayers publication-title: Phys. Rev. Lett. – volume: 32 issue: 15 year: 2020 ident: 10.1016/j.physleta.2021.127771_br0010 article-title: Laser fabrication of graphene-based flexible electronics publication-title: Adv. Mater. – volume: 5 issue: 7 year: 2017 ident: 10.1016/j.physleta.2021.127771_br0490 article-title: Electric and photovoltaic characteristics of a multi-layer ReS2/ReSe2 heterostructure publication-title: APL Mater. doi: 10.1063/1.4991028 – volume: 118 issue: 22 year: 2021 ident: 10.1016/j.physleta.2021.127771_br0320 article-title: The large photoresponse and high polarization sensitivity of te-based optoelectronic devices with the adsorbed hydroxide ions publication-title: Appl. Phys. Lett. doi: 10.1063/5.0049618 – volume: 115 issue: 15 year: 2019 ident: 10.1016/j.physleta.2021.127771_br0330 article-title: Optical response of te-based monolayer materials from first principles publication-title: Appl. Phys. Lett. doi: 10.1063/1.5123606 – volume: 15 start-page: 6135 issue: 9 year: 2015 ident: 10.1016/j.physleta.2021.127771_br0180 article-title: Two-step growth of two-dimensional WSe2/MoSe2 heterostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02423 – volume: 109 start-page: 897 year: 2017 ident: 10.1016/j.physleta.2021.127771_br0130 article-title: Optoelectronic response and interlayer exciton features of MoS2/WS2 Van der Waals heterostructure within first principle calculations and Wannier Mott model publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.06.015 – volume: 102 issue: 23 year: 2013 ident: 10.1016/j.physleta.2021.127771_br0260 article-title: Identifying different mechanisms of circular photogalvanic effect in GaAs/Al0.3Ga0.7As two dimensional electron gas by photo-modulation technique publication-title: Appl. Phys. Lett. doi: 10.1063/1.4810913 – volume: 102 issue: 8 year: 2020 ident: 10.1016/j.physleta.2021.127771_br0240 article-title: Pure spin current generation via photogalvanic effect with spatial inversion symmetry publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.081402 – volume: 47 start-page: 187 issue: 4 year: 2013 ident: 10.1016/j.physleta.2021.127771_br0030 article-title: Photoelectric and photorefractive properties of polyvinylcarbazole composites with graphene in the visible spectral range publication-title: High Energy Chem. doi: 10.1134/S001814391304005X – volume: 266–269 start-page: 459 issue: 13 year: 2000 ident: 10.1016/j.physleta.2021.127771_br0050 article-title: Effect of amorphous silicon material properties on the stability of thin film transistors: evidence for a local defect creation model publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(99)00777-2 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 10.1016/j.physleta.2021.127771_br0550 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 8 issue: 2 year: 2018 ident: 10.1016/j.physleta.2021.127771_br0120 article-title: Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1353 – volume: 10 start-page: 7694 year: 2018 ident: 10.1016/j.physleta.2021.127771_br0270 article-title: Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current publication-title: Nanoscale doi: 10.1039/C8NR00484F – volume: 13 start-page: 1135 issue: 12 year: 2014 ident: 10.1016/j.physleta.2021.127771_br0510 article-title: Vertical and in-plane heterostructures from WS2/MoS2 monolayers publication-title: Nat. Mater. doi: 10.1038/nmat4091 – volume: 4 issue: 4 year: 2020 ident: 10.1016/j.physleta.2021.127771_br0210 article-title: Symmetry breaking and circular photogalvanic effect in epitaxial Cdx Hg(1−x) Te films publication-title: Phys. Rev. Materials doi: 10.1103/PhysRevMaterials.4.043607 – volume: 91 start-page: 6273 issue: 10 year: 2002 ident: 10.1016/j.physleta.2021.127771_br0530 article-title: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors publication-title: J. Appl. Phys. doi: 10.1063/1.1473677 – volume: 9 start-page: 2823 issue: 14 year: 1976 ident: 10.1016/j.physleta.2021.127771_br0560 article-title: A study of the optical joint density-of-states function publication-title: J. Phys. C, Solid State Phys. doi: 10.1088/0022-3719/9/14/020 – volume: 349 start-page: 524 issue: 6247 year: 2015 ident: 10.1016/j.physleta.2021.127771_br0470 article-title: Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface publication-title: Science doi: 10.1126/science.aab4097 – volume: 9 start-page: 9868 issue: 10 year: 2015 ident: 10.1016/j.physleta.2021.127771_br0360 article-title: Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy publication-title: ACS Nano doi: 10.1021/acsnano.5b03188 – volume: 14 issue: 1 year: 2020 ident: 10.1016/j.physleta.2021.127771_br0040 article-title: Electronic and spin-dependent optical properties of Fe-adsorbed armchair silicene/silicane superlattices publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201900494 – volume: 8 start-page: 100 issue: 2 year: 2013 ident: 10.1016/j.physleta.2021.127771_br0190 article-title: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.224 – volume: 105 issue: 13 year: 2010 ident: 10.1016/j.physleta.2021.127771_br0090 article-title: Atomically thin MoS2: a new direct-gap semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – year: 2020 ident: 10.1016/j.physleta.2021.127771_br0310 article-title: Photogalvanic-effect-induced spin-polarized current in defective silicane with H vacancies publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.202000395 – volume: 4 issue: 1 year: 2017 ident: 10.1016/j.physleta.2021.127771_br0430 article-title: Band alignment of two-dimensional lateral heterostructures publication-title: 2D Mater. doi: 10.1088/2053-1583/aa50cc – volume: 123 start-page: 323 year: 2018 ident: 10.1016/j.physleta.2021.127771_br0110 article-title: Chemical vapor deposition of WS2/Mo1−xWxS2/MoS2 lateral heterostructures publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2018.09.017 – volume: 7 start-page: 27503 year: 2019 ident: 10.1016/j.physleta.2021.127771_br0300 article-title: Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: a theoretical prediction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10473A – volume: 14 start-page: 5590 issue: 10 year: 2014 ident: 10.1016/j.physleta.2021.127771_br0340 article-title: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes publication-title: Nano Lett. doi: 10.1021/nl502075n – volume: 2 start-page: 2101 issue: 7 year: 2014 ident: 10.1016/j.physleta.2021.127771_br0410 article-title: Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS2 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13659K – volume: 112 issue: 14 year: 2018 ident: 10.1016/j.physleta.2021.127771_br0500 article-title: 2D lateral heterostructures of group-III monochalcogenide: potential photovoltaic applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.5020618 – volume: 152 year: 2021 ident: 10.1016/j.physleta.2021.127771_br0020 article-title: Electronic, magnetism and optical properties of transition metals adsorbed puckered arsenene publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2021.106852 – volume: 14 start-page: 380 issue: 1 year: 2019 ident: 10.1016/j.physleta.2021.127771_br0440 article-title: Photogalvanic effect in nitrogen-doped monolayer MoS2 from first principles publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-019-3222-5 – volume: 5 issue: 5 year: 2021 ident: 10.1016/j.physleta.2021.127771_br0220 article-title: Perfect in-plane cri3 spin-valve driven by photogalvanic effect publication-title: Phys. Rev. Materials doi: 10.1103/PhysRevMaterials.5.054004 – volume: 87 issue: 7 year: 2013 ident: 10.1016/j.physleta.2021.127771_br0590 article-title: Electronic properties of the MoS2-WS2 heterojunction publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.075451 – volume: 4 issue: 2 year: 2017 ident: 10.1016/j.physleta.2021.127771_br0420 article-title: Strain-engineered optoelectronic properties of 2d transition metal dichalcogenide lateral heterostructures publication-title: 2D Mater. doi: 10.1088/2053-1583/aa5542 – volume: 488 start-page: 627 issue: 4713 year: 2012 ident: 10.1016/j.physleta.2021.127771_br0140 article-title: Graphene and boron nitride lateral heterostructures for atomically thin circuitry publication-title: Nature doi: 10.1038/nature11408 – volume: 560 year: 2021 ident: 10.1016/j.physleta.2021.127771_br0200 article-title: A promising polarization-sensitive ultraviolet photodetector based on the two-dimensional zrnbr-zrncl lateral heterojunction with enhanced photoresponse: a theoretical prediction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149907 – volume: 27 start-page: 6431 issue: 41 year: 2015 ident: 10.1016/j.physleta.2021.127771_br0350 article-title: Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy publication-title: Adv. Mater. doi: 10.1002/adma.201502375 – volume: 7 start-page: 10684 issue: 17 year: 2019 ident: 10.1016/j.physleta.2021.127771_br0280 article-title: BX1-BX2 (X1, X2 = P, As, Sb) lateral heterostructure: novel and efficient two-dimensional photovoltaic materials with ultra-high carrier mobilities publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01451A – volume: 76 start-page: 103 year: 2016 ident: 10.1016/j.physleta.2021.127771_br0570 article-title: Joint density of states in low dimensional semiconductors publication-title: Physica E doi: 10.1016/j.physe.2015.10.013 – volume: 28 start-page: 7194 issue: 20 year: 2016 ident: 10.1016/j.physleta.2021.127771_br0390 article-title: Lateral epitaxy of atomically sharp WSe2/WS2 heterojunctions on silicon dioxide substrates publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03639 – volume: 6 start-page: 7749 issue: 1 year: 2015 ident: 10.1016/j.physleta.2021.127771_br0160 article-title: Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors publication-title: Nat. Commun. doi: 10.1038/ncomms8749 – volume: 9 start-page: 1024 issue: 12 year: 2014 ident: 10.1016/j.physleta.2021.127771_br0150 article-title: Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.222 – volume: 124 issue: 7 year: 2020 ident: 10.1016/j.physleta.2021.127771_br0250 article-title: Tunable layer circular photogalvanic effect in twisted bilayers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.077401 – volume: 102 issue: 1 year: 2013 ident: 10.1016/j.physleta.2021.127771_br0580 article-title: Band offsets and heterostructures of two-dimensional semiconductors publication-title: Appl. Phys. Lett. doi: 10.1063/1.4774090 – volume: 13 start-page: 3447 issue: 8 year: 2013 ident: 10.1016/j.physleta.2021.127771_br0080 article-title: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers publication-title: Nano Lett. doi: 10.1021/nl3026357 – volume: 14 start-page: 2717 issue: 11 year: 2002 ident: 10.1016/j.physleta.2021.127771_br0520 article-title: First-principles simulation: ideas, illustrations and the CASTEP code publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/301 – volume: 26 issue: 45 year: 2015 ident: 10.1016/j.physleta.2021.127771_br0450 article-title: Photogalvanic effect in monolayer black phosphorus publication-title: Nanotechnology doi: 10.1088/0957-4484/26/45/455202 – volume: 371 start-page: 376 year: 2016 ident: 10.1016/j.physleta.2021.127771_br0370 article-title: Size effect on the magnetic and electronic properties of the monolayer lateral hetero-junction WS2-MoS2 nanoribbon publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.02.215 – volume: 12 start-page: 6256 issue: 11 year: 2020 ident: 10.1016/j.physleta.2021.127771_br0290 article-title: Anisotropic circular photogalvanic effect in colloidal tin sulfide nanosheets publication-title: Nanoscale doi: 10.1039/D0NR01189D – volume: 115 year: 2020 ident: 10.1016/j.physleta.2021.127771_br0460 article-title: Photogalvanic effect in monolayer WSe2-MoS2 lateral heterojunction from first principles publication-title: Physica E doi: 10.1016/j.physe.2019.113714 – volume: 83 start-page: 24 year: 2016 ident: 10.1016/j.physleta.2021.127771_br0060 article-title: Rise of silicene: a competitive 2D material publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2016.04.001 – volume: 128 year: 2021 ident: 10.1016/j.physleta.2021.127771_br0600 article-title: Photogalvanic effect in chromium-doped monolayer MoS2 from first principles publication-title: Physica E, Low-Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2020.114577 – volume: 14 issue: 6 year: 2020 ident: 10.1016/j.physleta.2021.127771_br0230 article-title: Largely enhanced photogalvanic effects in a phosphorene photodetector by strain-increased device asymmetry publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.064003 – volume: 17 start-page: 29380 issue: 43 year: 2015 ident: 10.1016/j.physleta.2021.127771_br0400 article-title: Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP04861C – volume: 9 start-page: 372 issue: 5 year: 2014 ident: 10.1016/j.physleta.2021.127771_br0070 article-title: Circular photogalvanic effect induced by monopolar spin orientation in P-GaAs/AlGaAs multiple-quantum wells publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 16 start-page: 3571 issue: 6 year: 2016 ident: 10.1016/j.physleta.2021.127771_br0380 article-title: Observation of switchable photoresponse of a monolayer WSe2-MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00699 – volume: 4 start-page: 11253 issue: 47 year: 2016 ident: 10.1016/j.physleta.2021.127771_br0480 article-title: Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04241D – volume: 88 start-page: 12 year: 2015 ident: 10.1016/j.physleta.2021.127771_br0100 article-title: Tuning carrier confinement in the MoS2/WS2 heterostructure publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.08.024 – volume: 46 start-page: 6671 issue: 11 year: 1992 ident: 10.1016/j.physleta.2021.127771_br0540 article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6671 – volume: 343 start-page: 163 issue: 6167 year: 2014 ident: 10.1016/j.physleta.2021.127771_br0170 article-title: Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges publication-title: Science doi: 10.1126/science.1246137 |
SSID | ssj0001609 |
Score | 2.4639382 |
Snippet | •The photocurrent of monolayer WS2-MoS2 lateral heterojunction is investigated by using the first principle method.•CPGE is generally similar LPGE for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 127771 |
SubjectTerms | First principles Heterojunction Photoelectric |
Title | Photoelectric properties of monolayer WS2-MoS2 lateral heterojunction from first principles |
URI | https://dx.doi.org/10.1016/j.physleta.2021.127771 |
Volume | 420 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EUuil9EntQ_bQa8xjN1k9ilRsi1KwUqGHkH2hIkY0vfa3dyaP1kLBQ48JO5DMzs58s8x8Q8h9pHSok3bkKAPHDbwkc3C2lSNCa4XUnVDk7PzDUTSY8KdpOK2RXtULg2WVpe8vfHrurcs3bqlNdz2fu2Oc3gr4GxmwPGRZww52LtDKW58_ZR5-VJR5wGIHV-90CS9aeHsA6kH-ocBv-YEQwv87QO0Enf4JOS7RIu0WH3RKamZ1Rg7zqk21PSfvL7M0S4tJNnNF13ixvkGGVJpaCvYFaSsgavo2DpxhOg7oMsF-4yWdYQ1MuoCQhttCscWE2jngQLqu7t63F2TSf3jtDZxyWoKjmB9kTtuGkfIjy7VnOgB6OFdCwRnQjBmTJIZJxrWC7A9zDglZiw2Yhj_WXqikDCN2SeqrdGWuCLW-MooxkXie4oAYpOUR19znEodCWNkgYaWiWJVU4jjRYhlXNWOLuFJtjKqNC9U2iPstty7INPZKdKodiH-ZRQwef4_s9T9kb8gRPuWMjt4tqWebD3MH6COTzdy8muSg-_g8GH0B2XPbAw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB5aS2kvpU9qn3voNZpkdxM9llKxD6WgUqGHkH2hIkbU_v_OmKS0UPDQa5KBzezszDfLzDcAd5E20qSNyNMWjxt6Se7RbCsvls7FyjRlvGbn73Sj9kA8D-VwCx7KXhgqqyx8f-7T1966eFIvtFmfj8f1Hk1vRfxNDFg-saxtww6xU8kK7Nw_vbS73w45iPJKD_zeI4EfjcKTGl0goIaIgigMakEYx3Hwd4z6EXdah3BQAEZ2n6_pCLbs7Bh214WbenkCH2-jbJXlw2zGms3pbn1BJKkscwxNDDNXBNXsvRd6nawXsmlKLcdTNqIymGyCUY12hlGXCXNjhIJsXl6_L09h0HrsP7S9YmCCp3kQrryGk5EOIieMb5uIe4TQscZjYDi3Nk0tV1wYjQkgpR0KExcXcoN_bHyplZIRP4PKLJvZc2Au0FZzHqe-rwWCBuVEJIwIhKK5EE5VQZYqSnTBJk5DLaZJWTY2SUrVJqTaJFdtFerfcvOcT2OjRLPcgeSXZSTo9DfIXvxD9hb22v3Oa_L61H25hH16syZ49K-gslp82msEIyt1UxjbF2JZ3bQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoelectric+properties+of+monolayer+WS2-MoS2+lateral+heterojunction+from+first+principles&rft.jtitle=Physics+letters.+A&rft.au=Liu%2C+Ping-Ping&rft.au=Shao%2C+Zhi-Gang&rft.au=Luo%2C+Wen-Ming&rft.au=Li%2C+Han-Bing&rft.date=2021-12-30&rft.pub=Elsevier+B.V&rft.issn=0375-9601&rft.eissn=1873-2429&rft.volume=420&rft_id=info:doi/10.1016%2Fj.physleta.2021.127771&rft.externalDocID=S0375960121006356 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon |