Photoelectric properties of monolayer WS2-MoS2 lateral heterojunction from first principles

•The photocurrent of monolayer WS2-MoS2 lateral heterojunction is investigated by using the first principle method.•CPGE is generally similar LPGE for monolayer WS2-MoS2 lateral heterojunction.•The peaks of photoresponse occur at photon energies of 2.0 eV and 2.3 eV for both LPGE and CPGE. The first...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. A Vol. 420; p. 127771
Main Authors Liu, Ping-Ping, Shao, Zhi-Gang, Luo, Wen-Ming, Li, Han-Bing, Yang, Mou
Format Journal Article
LanguageEnglish
Published Elsevier B.V 30.12.2021
Subjects
Online AccessGet full text
ISSN0375-9601
1873-2429
DOI10.1016/j.physleta.2021.127771

Cover

Loading…
Abstract •The photocurrent of monolayer WS2-MoS2 lateral heterojunction is investigated by using the first principle method.•CPGE is generally similar LPGE for monolayer WS2-MoS2 lateral heterojunction.•The peaks of photoresponse occur at photon energies of 2.0 eV and 2.3 eV for both LPGE and CPGE. The first-principles calculation is applied to investigate the photocurrents elicited by the circular photogalvanic effect (CPGE) and linear photogalvanic effect (LPGE) of monolayer WS2-MoS2 lateral heterojunction. Our results demonstrate that the band alignment of the WS2-MoS2 lateral heterojunction belongs to type-II, which can effectually isolate electron-hole pairs and augment the photocurrent conversion rate of the heterojunction. Furthermore, the photocurrent generated by LPGE and CPGE both have peaks around the photon energy of 2.0 eV and 2.3 eV, which can be subject to explain by DOS via Fermi's Golden Rule. More importantly, the monolayer WS2-MoS2 lateral heterojunction exhibits an obvious photocurrent effect, which also attest the existence of the PN junction. These results will contribute some theoretical guidance for the application of the WS2-MoS2 lateral heterojunction in the area of optoelectronics.
AbstractList •The photocurrent of monolayer WS2-MoS2 lateral heterojunction is investigated by using the first principle method.•CPGE is generally similar LPGE for monolayer WS2-MoS2 lateral heterojunction.•The peaks of photoresponse occur at photon energies of 2.0 eV and 2.3 eV for both LPGE and CPGE. The first-principles calculation is applied to investigate the photocurrents elicited by the circular photogalvanic effect (CPGE) and linear photogalvanic effect (LPGE) of monolayer WS2-MoS2 lateral heterojunction. Our results demonstrate that the band alignment of the WS2-MoS2 lateral heterojunction belongs to type-II, which can effectually isolate electron-hole pairs and augment the photocurrent conversion rate of the heterojunction. Furthermore, the photocurrent generated by LPGE and CPGE both have peaks around the photon energy of 2.0 eV and 2.3 eV, which can be subject to explain by DOS via Fermi's Golden Rule. More importantly, the monolayer WS2-MoS2 lateral heterojunction exhibits an obvious photocurrent effect, which also attest the existence of the PN junction. These results will contribute some theoretical guidance for the application of the WS2-MoS2 lateral heterojunction in the area of optoelectronics.
ArticleNumber 127771
Author Liu, Ping-Ping
Luo, Wen-Ming
Shao, Zhi-Gang
Yang, Mou
Li, Han-Bing
Author_xml – sequence: 1
  givenname: Ping-Ping
  surname: Liu
  fullname: Liu, Ping-Ping
  organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China
– sequence: 2
  givenname: Zhi-Gang
  orcidid: 0000-0002-1639-7597
  surname: Shao
  fullname: Shao, Zhi-Gang
  email: zgshao@scnu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China
– sequence: 3
  givenname: Wen-Ming
  surname: Luo
  fullname: Luo, Wen-Ming
  organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China
– sequence: 4
  givenname: Han-Bing
  surname: Li
  fullname: Li, Han-Bing
  organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China
– sequence: 5
  givenname: Mou
  surname: Yang
  fullname: Yang, Mou
  organization: Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, SPTE, South China Normal University, Guangzhou 510006, China
BookMark eNqFkMtKAzEYhYNUsK2-guQFZsxtMh1woRRvUFGo4sJFyGT-oRnSyZBEoW_vlOrGTVdn9R3O-WZo0vseELqkJKeEyqsuHza76CDpnBFGc8rKsqQnaEoXJc-YYNUETQkvi6yShJ6hWYwdISNJqin6fN345MGBScEaPAQ_QEgWIvYt3vreO72DgD_WLHv2a4adThC0wxsY03dfvUnW97gNfotbG2IaK2xv7OAgnqPTVrsIF785R-_3d2_Lx2z18vC0vF1lhlOWskVbSENlKxoCVcUqIUxpGCEN5wBaA6-5aIwQkhMpailly3gzfmxIYeq6kHyOrg-9JvgYA7TK2KT3u1LQ1ilK1F6U6tSfKLUXpQ6iRlz-w8cLWx12x8GbAwjjuW8LQUVjoTfQ2DD6VI23xyp-ABzzizc
CitedBy_id crossref_primary_10_1007_s11664_022_09980_2
crossref_primary_10_1016_j_apsusc_2023_156892
crossref_primary_10_1016_j_mtcomm_2024_110267
crossref_primary_10_1088_1361_6463_acad10
crossref_primary_10_1088_1361_648X_aca8e4
crossref_primary_10_1016_j_apsusc_2024_161843
crossref_primary_10_1039_D4NJ01047G
crossref_primary_10_1016_j_nxmate_2024_100116
crossref_primary_10_1016_j_physb_2023_415191
crossref_primary_10_1007_s10825_024_02269_z
crossref_primary_10_1007_s10854_024_12514_7
crossref_primary_10_1142_S0217984924503573
crossref_primary_10_1016_j_physb_2023_415651
crossref_primary_10_1016_j_mtcomm_2024_108962
crossref_primary_10_1364_OE_547099
crossref_primary_10_1063_5_0257780
crossref_primary_10_1007_s00894_024_05913_4
crossref_primary_10_1021_acsami_3c14682
Cites_doi 10.1063/1.4991028
10.1063/5.0049618
10.1063/1.5123606
10.1021/acs.nanolett.5b02423
10.1016/j.spmi.2017.06.015
10.1063/1.4810913
10.1103/PhysRevB.102.081402
10.1134/S001814391304005X
10.1016/S0022-3093(99)00777-2
10.1103/PhysRevLett.77.3865
10.1002/wcms.1353
10.1039/C8NR00484F
10.1038/nmat4091
10.1103/PhysRevMaterials.4.043607
10.1063/1.1473677
10.1088/0022-3719/9/14/020
10.1126/science.aab4097
10.1021/acsnano.5b03188
10.1002/pssr.201900494
10.1038/nnano.2012.224
10.1103/PhysRevLett.105.136805
10.1002/pssr.202000395
10.1088/2053-1583/aa50cc
10.1016/j.spmi.2018.09.017
10.1039/C9TA10473A
10.1021/nl502075n
10.1039/C3TA13659K
10.1063/1.5020618
10.1016/j.spmi.2021.106852
10.1186/s11671-019-3222-5
10.1103/PhysRevMaterials.5.054004
10.1103/PhysRevB.87.075451
10.1088/2053-1583/aa5542
10.1038/nature11408
10.1016/j.apsusc.2021.149907
10.1002/adma.201502375
10.1039/C9TA01451A
10.1016/j.physe.2015.10.013
10.1021/acs.chemmater.6b03639
10.1038/ncomms8749
10.1038/nnano.2014.222
10.1103/PhysRevLett.124.077401
10.1063/1.4774090
10.1021/nl3026357
10.1088/0953-8984/14/11/301
10.1088/0957-4484/26/45/455202
10.1016/j.apsusc.2016.02.215
10.1039/D0NR01189D
10.1016/j.physe.2019.113714
10.1016/j.pmatsci.2016.04.001
10.1016/j.physe.2020.114577
10.1103/PhysRevApplied.14.064003
10.1039/C5CP04861C
10.1038/nnano.2014.35
10.1021/acs.nanolett.6b00699
10.1039/C6TC04241D
10.1016/j.spmi.2015.08.024
10.1103/PhysRevB.46.6671
10.1126/science.1246137
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physleta.2021.127771
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
ExternalDocumentID 10_1016_j_physleta_2021_127771
S0375960121006356
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABLJU
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
~02
~G-
29O
5VS
6TJ
8WZ
A6W
AAQFI
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
K-O
MVM
NDZJH
R2-
RIG
SEW
SSH
WUQ
XJT
XOL
YYP
ZCG
ID FETCH-LOGICAL-c312t-8f56c16f4d0e992944c7c200d33eeaae3b34dc4463064b666f23d277d05cbb563
IEDL.DBID .~1
ISSN 0375-9601
IngestDate Tue Jul 01 02:52:37 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Fri Feb 23 02:43:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords First principles
Photoelectric
Heterojunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-8f56c16f4d0e992944c7c200d33eeaae3b34dc4463064b666f23d277d05cbb563
ORCID 0000-0002-1639-7597
ParticipantIDs crossref_citationtrail_10_1016_j_physleta_2021_127771
crossref_primary_10_1016_j_physleta_2021_127771
elsevier_sciencedirect_doi_10_1016_j_physleta_2021_127771
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-30
PublicationDateYYYYMMDD 2021-12-30
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-30
  day: 30
PublicationDecade 2020
PublicationTitle Physics letters. A
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Hu, Xie, Zhang, Wang (br0230) 2020; 14
Chen, Wan, Xie, Wen, Kang, Zeng, Chen, Xu (br0350) 2015; 27
Wei, Zhang, Guo, Li, Lau, Liu (br0410) 2014; 2
Georgiou, Jalil, Belle, Britnell, Gorbachev, Morozov, Kim, Gholinia, Haigh, Makarovsky, Eaves, Ponomarenko, Geim, Novoselov, Mishchenko (br0190) 2013; 8
Duan, Wang, Shaw, Cheng, Chen, Li, Wu, Tang, Zhang, Pan, Jiang, Yu, Huang, Duan (br0150) 2014; 9
Tao, Jiang, Hao, Zheng, Zhang, Zeng (br0240) 2020; 102
Gong, Xiong, Xie, Hu, Huang, Wang (br0320) 2021; 118
Luo, Xie, Zhao, Hu, Ye, Ke (br0220) 2021; 5
Chen, Wan, Wen, Xie, Kang, Zeng, Chen, Xu (br0360) 2015; 9
Levendorf, Kim, Brown, Huang, Havener, Muller, Park (br0140) 2012; 488
Wen, Xia, Zhang (br0370) 2016; 371
Cui, Wang, Lyu, Zhang, Ding, Bai (br0020) 2021; 152
Mak, Lee, Hone, Shan, Heinz (br0090) 2010; 105
Hubmann, Budkin, Otteneder, But, Sacré, Yahniuk, Diendorfer, Bel'kov, Kozlov, Mikhailov (br0210) 2020; 4
Kang, Tongay, Zhou, Li, Wu (br0580) 2013; 102
Cheng, Li, Zhou, Wang, Yin, Jiang, Liu, Chen, Huang, Duan (br0340) 2014; 14
Segall, Lindan, Probert, Pickard, Hasnip, Clark, Payne (br0520) 2002; 14
Lee, Huang, Sumpter, Yoon (br0420) 2017; 4
Gong, Lei, Ye, Li, He, Keyshar, Zhang, Wang, Lou, Liu, Vajtai, Zhou, Ajayan (br0180) 2015; 15
Wei, Dai, Sun, Yin, Han, Huang, Jacob (br0400) 2015; 17
Henrickson (br0530) 2002; 91
Fu, Yan, Li, He, Ouyang, Zhang, Tang, Zhong (br0310) 2020
Gutiérrez, Perea-López, Elías, Berkdemir, Wang, Lv, López-Urías, Crespi, Terrones, Terrones (br0080) 2013; 13
Cho, Namgung, Kim, Kwon (br0490) 2017; 5
You, Liu, Hao, Han, Zhang, You (br0010) 2020; 32
Zhao, Cheng, Han, Zhang (br0120) 2018; 8
Luo, Hu, Xie (br0300) 2019; 7
Grishina, Krivenko, Savel'ev, Rychwalski, Vannikov (br0030) 2013; 47
Ramin Moayed, Li, Beck, Schober, Klinke (br0290) 2020; 12
Chen, Zhou, Tang, Tian, Zhao, Xu, Liu, Geng, Tan, Fu, Loh (br0390) 2016; 28
Luo, Shao, Qin, Yang (br0460) 2020; 115
Liu, Park, Siegel, McCarty, Clark, Deng, Basile, Idrobo, Li, Gu (br0170) 2014; 343
Luo, Shao, Yang (br0440) 2019; 14
Wang, Gao, Meng (br0100) 2015; 88
Gao, Zhang, Xiao (br0250) 2020; 124
Wang, Li, Liang, Wang, Nie (br0280) 2019; 7
Zhang, Cao, Hu, Wang, Xie (br0200) 2021; 560
Perdew, Burke, Ernzerhof (br0550) 1996; 77
Liang, Beal (br0560) 1976; 9
Deng, Li, He, Ouyang, Zhang, Tang, Li, Tang, Zhong (br0040) 2020; 14
Ma, Jiang, Liu, Zhu, Qin, Chen (br0260) 2013; 102
Zhao, Liu, Yu, Quhe, Zhou, Wang, Liu, Zhong, Han, Lu, Yao, Wu (br0060) 2016; 83
Gong, Lin, Wang, Shi, Lei, Lin, Zou, Ye, Vajtai, Yakobson, Terrones, Terrones, Tay, Lou, Pantelides, Liu, Zhou, Ajayan (br0510) 2014; 13
Perdew, Chevary, Vosko, Jackson, Pederson, Singh, Fiolhais (br0540) 1992; 46
Zhang, Xie, Zhao, Zhang (br0430) 2017; 4
Li, Shi, Cheng, Lu, Lin, Tang, Tsai, Chu, Wei, He, Chang, Suenaga, Li (br0470) 2015; 349
Cheng, Guo, Han, Jiang, Zhang, Ahuja, Su, Zhao (br0500) 2018; 112
Mahjouri-Samani, Lin, Wang, Lupini, Lee, Basile, Boulesbaa, Rouleau, Puretzky, Ivanov, Xiao, Yoon, Geohegan (br0160) 2015; 6
Ben Amara, Ben Salem, Jaziri (br0130) 2017; 109
Liu, Shao, Luo, Yang (br0600) 2021; 128
Li, Wang, Chen, Lu, Xie, Hu (br0270) 2018; 10
Jin, Li, Wang, Yu, Wan, Xu, Dai, Wei, Guo (br0480) 2016; 4
Cabrera, Contreras-Solorio, Hernández (br0570) 2016; 76
Fang, Tian, Sheng, Yang, Lu, Wang, Zhang, Zhang, Yan, Hua (br0110) 2018; 123
Wehrspohn, Deane, French, Powell (br0050) 2000; 266–269
Li, Yu, Ye, Ge, Ou, Wu, Feng, Chen, Zhang (br0070) 2014; 9
Hu, Xiong, Cai, Wang, Li, Xie, Wang (br0330) 2019; 115
Son, Li, Cheng, Wei, Liu, Wang, Li, Strano (br0380) 2016; 16
Xie, Zhang, Zhu, Liu, Guo (br0450) 2015; 26
Kośmider, Fernández-Rossier (br0590) 2013; 87
Gutiérrez (10.1016/j.physleta.2021.127771_br0080) 2013; 13
Son (10.1016/j.physleta.2021.127771_br0380) 2016; 16
Luo (10.1016/j.physleta.2021.127771_br0460) 2020; 115
Duan (10.1016/j.physleta.2021.127771_br0150) 2014; 9
Zhang (10.1016/j.physleta.2021.127771_br0430) 2017; 4
Ben Amara (10.1016/j.physleta.2021.127771_br0130) 2017; 109
Kośmider (10.1016/j.physleta.2021.127771_br0590) 2013; 87
Chen (10.1016/j.physleta.2021.127771_br0350) 2015; 27
Hubmann (10.1016/j.physleta.2021.127771_br0210) 2020; 4
Mak (10.1016/j.physleta.2021.127771_br0090) 2010; 105
Gong (10.1016/j.physleta.2021.127771_br0320) 2021; 118
Liu (10.1016/j.physleta.2021.127771_br0600) 2021; 128
Cho (10.1016/j.physleta.2021.127771_br0490) 2017; 5
Wei (10.1016/j.physleta.2021.127771_br0410) 2014; 2
Segall (10.1016/j.physleta.2021.127771_br0520) 2002; 14
Li (10.1016/j.physleta.2021.127771_br0270) 2018; 10
Li (10.1016/j.physleta.2021.127771_br0470) 2015; 349
Gong (10.1016/j.physleta.2021.127771_br0510) 2014; 13
Liu (10.1016/j.physleta.2021.127771_br0170) 2014; 343
Grishina (10.1016/j.physleta.2021.127771_br0030) 2013; 47
Cui (10.1016/j.physleta.2021.127771_br0020) 2021; 152
Tao (10.1016/j.physleta.2021.127771_br0240) 2020; 102
Perdew (10.1016/j.physleta.2021.127771_br0540) 1992; 46
Cheng (10.1016/j.physleta.2021.127771_br0340) 2014; 14
Zhao (10.1016/j.physleta.2021.127771_br0230) 2020; 14
Wang (10.1016/j.physleta.2021.127771_br0100) 2015; 88
Gong (10.1016/j.physleta.2021.127771_br0180) 2015; 15
Wang (10.1016/j.physleta.2021.127771_br0280) 2019; 7
Wen (10.1016/j.physleta.2021.127771_br0370) 2016; 371
Kang (10.1016/j.physleta.2021.127771_br0580) 2013; 102
Deng (10.1016/j.physleta.2021.127771_br0040) 2020; 14
Gao (10.1016/j.physleta.2021.127771_br0250) 2020; 124
Zhao (10.1016/j.physleta.2021.127771_br0060) 2016; 83
Luo (10.1016/j.physleta.2021.127771_br0300) 2019; 7
Li (10.1016/j.physleta.2021.127771_br0070) 2014; 9
Zhao (10.1016/j.physleta.2021.127771_br0120) 2018; 8
Fang (10.1016/j.physleta.2021.127771_br0110) 2018; 123
Henrickson (10.1016/j.physleta.2021.127771_br0530) 2002; 91
Liang (10.1016/j.physleta.2021.127771_br0560) 1976; 9
Perdew (10.1016/j.physleta.2021.127771_br0550) 1996; 77
Wei (10.1016/j.physleta.2021.127771_br0400) 2015; 17
Jin (10.1016/j.physleta.2021.127771_br0480) 2016; 4
Chen (10.1016/j.physleta.2021.127771_br0390) 2016; 28
Luo (10.1016/j.physleta.2021.127771_br0220) 2021; 5
Lee (10.1016/j.physleta.2021.127771_br0420) 2017; 4
Xie (10.1016/j.physleta.2021.127771_br0450) 2015; 26
Georgiou (10.1016/j.physleta.2021.127771_br0190) 2013; 8
Cabrera (10.1016/j.physleta.2021.127771_br0570) 2016; 76
Levendorf (10.1016/j.physleta.2021.127771_br0140) 2012; 488
Cheng (10.1016/j.physleta.2021.127771_br0500) 2018; 112
You (10.1016/j.physleta.2021.127771_br0010) 2020; 32
Fu (10.1016/j.physleta.2021.127771_br0310) 2020
Hu (10.1016/j.physleta.2021.127771_br0330) 2019; 115
Chen (10.1016/j.physleta.2021.127771_br0360) 2015; 9
Luo (10.1016/j.physleta.2021.127771_br0440) 2019; 14
Ma (10.1016/j.physleta.2021.127771_br0260) 2013; 102
Mahjouri-Samani (10.1016/j.physleta.2021.127771_br0160) 2015; 6
Wehrspohn (10.1016/j.physleta.2021.127771_br0050) 2000; 266–269
Zhang (10.1016/j.physleta.2021.127771_br0200) 2021; 560
Ramin Moayed (10.1016/j.physleta.2021.127771_br0290) 2020; 12
References_xml – volume: 13
  start-page: 3447
  year: 2013
  end-page: 3454
  ident: br0080
  article-title: Extraordinary room-temperature photoluminescence in triangular WS
  publication-title: Nano Lett.
– volume: 91
  start-page: 6273
  year: 2002
  end-page: 6281
  ident: br0530
  article-title: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 10684
  year: 2019
  end-page: 10695
  ident: br0280
  article-title: BX1-BX
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 187
  year: 2013
  end-page: 191
  ident: br0030
  article-title: Photoelectric and photorefractive properties of polyvinylcarbazole composites with graphene in the visible spectral range
  publication-title: High Energy Chem.
– volume: 83
  start-page: 24
  year: 2016
  end-page: 151
  ident: br0060
  article-title: Rise of silicene: a competitive 2D material
  publication-title: Prog. Mater. Sci.
– volume: 10
  start-page: 7694
  year: 2018
  end-page: 7701
  ident: br0270
  article-title: Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current
  publication-title: Nanoscale
– volume: 4
  start-page: 11253
  year: 2016
  end-page: 11260
  ident: br0480
  article-title: Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 7749
  year: 2015
  ident: br0160
  article-title: Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
  publication-title: Nat. Commun.
– volume: 14
  start-page: 5590
  year: 2014
  end-page: 5597
  ident: br0340
  article-title: Electroluminescence and photocurrent generation from atomically sharp WSe
  publication-title: Nano Lett.
– volume: 88
  start-page: 12
  year: 2015
  end-page: 17
  ident: br0100
  article-title: Tuning carrier confinement in the MoS
  publication-title: Superlattices Microstruct.
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  ident: br0540
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 27503
  year: 2019
  end-page: 27513
  ident: br0300
  article-title: Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: a theoretical prediction
  publication-title: J. Mater. Chem. A
– volume: 343
  start-page: 163
  year: 2014
  end-page: 167
  ident: br0170
  article-title: Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges
  publication-title: Science
– volume: 102
  year: 2020
  ident: br0240
  article-title: Pure spin current generation via photogalvanic effect with spatial inversion symmetry
  publication-title: Phys. Rev. B
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: br0550
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 105
  year: 2010
  ident: br0090
  article-title: Atomically thin MoS
  publication-title: Phys. Rev. Lett.
– volume: 112
  year: 2018
  ident: br0500
  article-title: 2D lateral heterostructures of group-III monochalcogenide: potential photovoltaic applications
  publication-title: Appl. Phys. Lett.
– volume: 5
  year: 2017
  ident: br0490
  article-title: Electric and photovoltaic characteristics of a multi-layer ReS
  publication-title: APL Mater.
– volume: 123
  start-page: 323
  year: 2018
  end-page: 329
  ident: br0110
  article-title: Chemical vapor deposition of WS
  publication-title: Superlattices Microstruct.
– volume: 8
  year: 2018
  ident: br0120
  article-title: Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 4
  year: 2017
  ident: br0420
  article-title: Strain-engineered optoelectronic properties of 2d transition metal dichalcogenide lateral heterostructures
  publication-title: 2D Mater.
– volume: 115
  year: 2019
  ident: br0330
  article-title: Optical response of te-based monolayer materials from first principles
  publication-title: Appl. Phys. Lett.
– volume: 14
  year: 2020
  ident: br0230
  article-title: Largely enhanced photogalvanic effects in a phosphorene photodetector by strain-increased device asymmetry
  publication-title: Phys. Rev. Appl.
– volume: 488
  start-page: 627
  year: 2012
  end-page: 632
  ident: br0140
  article-title: Graphene and boron nitride lateral heterostructures for atomically thin circuitry
  publication-title: Nature
– volume: 109
  start-page: 897
  year: 2017
  end-page: 904
  ident: br0130
  article-title: Optoelectronic response and interlayer exciton features of MoS
  publication-title: Superlattices Microstruct.
– volume: 115
  year: 2020
  ident: br0460
  article-title: Photogalvanic effect in monolayer WSe
  publication-title: Physica E
– year: 2020
  ident: br0310
  article-title: Photogalvanic-effect-induced spin-polarized current in defective silicane with H vacancies
  publication-title: Phys. Status Solidi RRL
– volume: 28
  start-page: 7194
  year: 2016
  end-page: 7197
  ident: br0390
  article-title: Lateral epitaxy of atomically sharp WSe
  publication-title: Chem. Mater.
– volume: 4
  year: 2020
  ident: br0210
  article-title: Symmetry breaking and circular photogalvanic effect in epitaxial Cd
  publication-title: Phys. Rev. Materials
– volume: 152
  year: 2021
  ident: br0020
  article-title: Electronic, magnetism and optical properties of transition metals adsorbed puckered arsenene
  publication-title: Superlattices Microstruct.
– volume: 32
  year: 2020
  ident: br0010
  article-title: Laser fabrication of graphene-based flexible electronics
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2823
  year: 1976
  end-page: 2832
  ident: br0560
  article-title: A study of the optical joint density-of-states function
  publication-title: J. Phys. C, Solid State Phys.
– volume: 15
  start-page: 6135
  year: 2015
  end-page: 6141
  ident: br0180
  article-title: Two-step growth of two-dimensional WSe
  publication-title: Nano Lett.
– volume: 118
  year: 2021
  ident: br0320
  article-title: The large photoresponse and high polarization sensitivity of te-based optoelectronic devices with the adsorbed hydroxide ions
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 100
  year: 2013
  end-page: 103
  ident: br0190
  article-title: Vertical field-effect transistor based on graphene-WS
  publication-title: Nat. Nanotechnol.
– volume: 560
  year: 2021
  ident: br0200
  article-title: A promising polarization-sensitive ultraviolet photodetector based on the two-dimensional zrnbr-zrncl lateral heterojunction with enhanced photoresponse: a theoretical prediction
  publication-title: Appl. Surf. Sci.
– volume: 27
  start-page: 6431
  year: 2015
  end-page: 6437
  ident: br0350
  article-title: Lateral built-in potential of monolayer MoS
  publication-title: Adv. Mater.
– volume: 12
  start-page: 6256
  year: 2020
  end-page: 6262
  ident: br0290
  article-title: Anisotropic circular photogalvanic effect in colloidal tin sulfide nanosheets
  publication-title: Nanoscale
– volume: 4
  year: 2017
  ident: br0430
  article-title: Band alignment of two-dimensional lateral heterostructures
  publication-title: 2D Mater.
– volume: 9
  start-page: 372
  year: 2014
  end-page: 377
  ident: br0070
  article-title: Circular photogalvanic effect induced by monopolar spin orientation in P-GaAs/AlGaAs multiple-quantum wells
  publication-title: Nat. Nanotechnol.
– volume: 26
  year: 2015
  ident: br0450
  article-title: Photogalvanic effect in monolayer black phosphorus
  publication-title: Nanotechnology
– volume: 371
  start-page: 376
  year: 2016
  end-page: 382
  ident: br0370
  article-title: Size effect on the magnetic and electronic properties of the monolayer lateral hetero-junction WS
  publication-title: Appl. Surf. Sci.
– volume: 17
  start-page: 29380
  year: 2015
  end-page: 29386
  ident: br0400
  article-title: Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures
  publication-title: Phys. Chem. Chem. Phys.
– volume: 102
  year: 2013
  ident: br0580
  article-title: Band offsets and heterostructures of two-dimensional semiconductors
  publication-title: Appl. Phys. Lett.
– volume: 76
  start-page: 103
  year: 2016
  end-page: 108
  ident: br0570
  article-title: Joint density of states in low dimensional semiconductors
  publication-title: Physica E
– volume: 16
  start-page: 3571
  year: 2016
  end-page: 3577
  ident: br0380
  article-title: Observation of switchable photoresponse of a monolayer WSe
  publication-title: Nano Lett.
– volume: 2
  start-page: 2101
  year: 2014
  end-page: 2109
  ident: br0410
  article-title: Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS
  publication-title: J. Mater. Chem. A
– volume: 349
  start-page: 524
  year: 2015
  end-page: 528
  ident: br0470
  article-title: Epitaxial growth of a monolayer WSe
  publication-title: Science
– volume: 87
  year: 2013
  ident: br0590
  article-title: Electronic properties of the MoS
  publication-title: Phys. Rev. B
– volume: 14
  year: 2020
  ident: br0040
  article-title: Electronic and spin-dependent optical properties of Fe-adsorbed armchair silicene/silicane superlattices
  publication-title: Phys. Status Solidi RRL
– volume: 14
  start-page: 380
  year: 2019
  ident: br0440
  article-title: Photogalvanic effect in nitrogen-doped monolayer MoS
  publication-title: Nanoscale Res. Lett.
– volume: 9
  start-page: 9868
  year: 2015
  end-page: 9876
  ident: br0360
  article-title: Electronic properties of MoS
  publication-title: ACS Nano
– volume: 14
  start-page: 2717
  year: 2002
  end-page: 2744
  ident: br0520
  article-title: First-principles simulation: ideas, illustrations and the CASTEP code
  publication-title: J. Phys. Condens. Matter
– volume: 266–269
  start-page: 459
  year: 2000
  end-page: 463
  ident: br0050
  article-title: Effect of amorphous silicon material properties on the stability of thin film transistors: evidence for a local defect creation model
  publication-title: J. Non-Cryst. Solids
– volume: 128
  year: 2021
  ident: br0600
  article-title: Photogalvanic effect in chromium-doped monolayer MoS
  publication-title: Physica E, Low-Dimens. Syst. Nanostruct.
– volume: 9
  start-page: 1024
  year: 2014
  end-page: 1030
  ident: br0150
  article-title: Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions
  publication-title: Nat. Nanotechnol.
– volume: 102
  year: 2013
  ident: br0260
  article-title: Identifying different mechanisms of circular photogalvanic effect in GaAs/Al
  publication-title: Appl. Phys. Lett.
– volume: 5
  year: 2021
  ident: br0220
  article-title: Perfect in-plane cri
  publication-title: Phys. Rev. Materials
– volume: 13
  start-page: 1135
  year: 2014
  end-page: 1142
  ident: br0510
  article-title: Vertical and in-plane heterostructures from WS
  publication-title: Nat. Mater.
– volume: 124
  year: 2020
  ident: br0250
  article-title: Tunable layer circular photogalvanic effect in twisted bilayers
  publication-title: Phys. Rev. Lett.
– volume: 32
  issue: 15
  year: 2020
  ident: 10.1016/j.physleta.2021.127771_br0010
  article-title: Laser fabrication of graphene-based flexible electronics
  publication-title: Adv. Mater.
– volume: 5
  issue: 7
  year: 2017
  ident: 10.1016/j.physleta.2021.127771_br0490
  article-title: Electric and photovoltaic characteristics of a multi-layer ReS2/ReSe2 heterostructure
  publication-title: APL Mater.
  doi: 10.1063/1.4991028
– volume: 118
  issue: 22
  year: 2021
  ident: 10.1016/j.physleta.2021.127771_br0320
  article-title: The large photoresponse and high polarization sensitivity of te-based optoelectronic devices with the adsorbed hydroxide ions
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0049618
– volume: 115
  issue: 15
  year: 2019
  ident: 10.1016/j.physleta.2021.127771_br0330
  article-title: Optical response of te-based monolayer materials from first principles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5123606
– volume: 15
  start-page: 6135
  issue: 9
  year: 2015
  ident: 10.1016/j.physleta.2021.127771_br0180
  article-title: Two-step growth of two-dimensional WSe2/MoSe2 heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02423
– volume: 109
  start-page: 897
  year: 2017
  ident: 10.1016/j.physleta.2021.127771_br0130
  article-title: Optoelectronic response and interlayer exciton features of MoS2/WS2 Van der Waals heterostructure within first principle calculations and Wannier Mott model
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2017.06.015
– volume: 102
  issue: 23
  year: 2013
  ident: 10.1016/j.physleta.2021.127771_br0260
  article-title: Identifying different mechanisms of circular photogalvanic effect in GaAs/Al0.3Ga0.7As two dimensional electron gas by photo-modulation technique
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4810913
– volume: 102
  issue: 8
  year: 2020
  ident: 10.1016/j.physleta.2021.127771_br0240
  article-title: Pure spin current generation via photogalvanic effect with spatial inversion symmetry
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.081402
– volume: 47
  start-page: 187
  issue: 4
  year: 2013
  ident: 10.1016/j.physleta.2021.127771_br0030
  article-title: Photoelectric and photorefractive properties of polyvinylcarbazole composites with graphene in the visible spectral range
  publication-title: High Energy Chem.
  doi: 10.1134/S001814391304005X
– volume: 266–269
  start-page: 459
  issue: 13
  year: 2000
  ident: 10.1016/j.physleta.2021.127771_br0050
  article-title: Effect of amorphous silicon material properties on the stability of thin film transistors: evidence for a local defect creation model
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(99)00777-2
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 10.1016/j.physleta.2021.127771_br0550
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 8
  issue: 2
  year: 2018
  ident: 10.1016/j.physleta.2021.127771_br0120
  article-title: Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1353
– volume: 10
  start-page: 7694
  year: 2018
  ident: 10.1016/j.physleta.2021.127771_br0270
  article-title: Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current
  publication-title: Nanoscale
  doi: 10.1039/C8NR00484F
– volume: 13
  start-page: 1135
  issue: 12
  year: 2014
  ident: 10.1016/j.physleta.2021.127771_br0510
  article-title: Vertical and in-plane heterostructures from WS2/MoS2 monolayers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4091
– volume: 4
  issue: 4
  year: 2020
  ident: 10.1016/j.physleta.2021.127771_br0210
  article-title: Symmetry breaking and circular photogalvanic effect in epitaxial Cdx Hg(1−x) Te films
  publication-title: Phys. Rev. Materials
  doi: 10.1103/PhysRevMaterials.4.043607
– volume: 91
  start-page: 6273
  issue: 10
  year: 2002
  ident: 10.1016/j.physleta.2021.127771_br0530
  article-title: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1473677
– volume: 9
  start-page: 2823
  issue: 14
  year: 1976
  ident: 10.1016/j.physleta.2021.127771_br0560
  article-title: A study of the optical joint density-of-states function
  publication-title: J. Phys. C, Solid State Phys.
  doi: 10.1088/0022-3719/9/14/020
– volume: 349
  start-page: 524
  issue: 6247
  year: 2015
  ident: 10.1016/j.physleta.2021.127771_br0470
  article-title: Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface
  publication-title: Science
  doi: 10.1126/science.aab4097
– volume: 9
  start-page: 9868
  issue: 10
  year: 2015
  ident: 10.1016/j.physleta.2021.127771_br0360
  article-title: Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03188
– volume: 14
  issue: 1
  year: 2020
  ident: 10.1016/j.physleta.2021.127771_br0040
  article-title: Electronic and spin-dependent optical properties of Fe-adsorbed armchair silicene/silicane superlattices
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201900494
– volume: 8
  start-page: 100
  issue: 2
  year: 2013
  ident: 10.1016/j.physleta.2021.127771_br0190
  article-title: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.224
– volume: 105
  issue: 13
  year: 2010
  ident: 10.1016/j.physleta.2021.127771_br0090
  article-title: Atomically thin MoS2: a new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– year: 2020
  ident: 10.1016/j.physleta.2021.127771_br0310
  article-title: Photogalvanic-effect-induced spin-polarized current in defective silicane with H vacancies
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.202000395
– volume: 4
  issue: 1
  year: 2017
  ident: 10.1016/j.physleta.2021.127771_br0430
  article-title: Band alignment of two-dimensional lateral heterostructures
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa50cc
– volume: 123
  start-page: 323
  year: 2018
  ident: 10.1016/j.physleta.2021.127771_br0110
  article-title: Chemical vapor deposition of WS2/Mo1−xWxS2/MoS2 lateral heterostructures
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2018.09.017
– volume: 7
  start-page: 27503
  year: 2019
  ident: 10.1016/j.physleta.2021.127771_br0300
  article-title: Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: a theoretical prediction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10473A
– volume: 14
  start-page: 5590
  issue: 10
  year: 2014
  ident: 10.1016/j.physleta.2021.127771_br0340
  article-title: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes
  publication-title: Nano Lett.
  doi: 10.1021/nl502075n
– volume: 2
  start-page: 2101
  issue: 7
  year: 2014
  ident: 10.1016/j.physleta.2021.127771_br0410
  article-title: Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS2
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13659K
– volume: 112
  issue: 14
  year: 2018
  ident: 10.1016/j.physleta.2021.127771_br0500
  article-title: 2D lateral heterostructures of group-III monochalcogenide: potential photovoltaic applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5020618
– volume: 152
  year: 2021
  ident: 10.1016/j.physleta.2021.127771_br0020
  article-title: Electronic, magnetism and optical properties of transition metals adsorbed puckered arsenene
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2021.106852
– volume: 14
  start-page: 380
  issue: 1
  year: 2019
  ident: 10.1016/j.physleta.2021.127771_br0440
  article-title: Photogalvanic effect in nitrogen-doped monolayer MoS2 from first principles
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-019-3222-5
– volume: 5
  issue: 5
  year: 2021
  ident: 10.1016/j.physleta.2021.127771_br0220
  article-title: Perfect in-plane cri3 spin-valve driven by photogalvanic effect
  publication-title: Phys. Rev. Materials
  doi: 10.1103/PhysRevMaterials.5.054004
– volume: 87
  issue: 7
  year: 2013
  ident: 10.1016/j.physleta.2021.127771_br0590
  article-title: Electronic properties of the MoS2-WS2 heterojunction
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.075451
– volume: 4
  issue: 2
  year: 2017
  ident: 10.1016/j.physleta.2021.127771_br0420
  article-title: Strain-engineered optoelectronic properties of 2d transition metal dichalcogenide lateral heterostructures
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa5542
– volume: 488
  start-page: 627
  issue: 4713
  year: 2012
  ident: 10.1016/j.physleta.2021.127771_br0140
  article-title: Graphene and boron nitride lateral heterostructures for atomically thin circuitry
  publication-title: Nature
  doi: 10.1038/nature11408
– volume: 560
  year: 2021
  ident: 10.1016/j.physleta.2021.127771_br0200
  article-title: A promising polarization-sensitive ultraviolet photodetector based on the two-dimensional zrnbr-zrncl lateral heterojunction with enhanced photoresponse: a theoretical prediction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149907
– volume: 27
  start-page: 6431
  issue: 41
  year: 2015
  ident: 10.1016/j.physleta.2021.127771_br0350
  article-title: Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502375
– volume: 7
  start-page: 10684
  issue: 17
  year: 2019
  ident: 10.1016/j.physleta.2021.127771_br0280
  article-title: BX1-BX2 (X1, X2 = P, As, Sb) lateral heterostructure: novel and efficient two-dimensional photovoltaic materials with ultra-high carrier mobilities
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01451A
– volume: 76
  start-page: 103
  year: 2016
  ident: 10.1016/j.physleta.2021.127771_br0570
  article-title: Joint density of states in low dimensional semiconductors
  publication-title: Physica E
  doi: 10.1016/j.physe.2015.10.013
– volume: 28
  start-page: 7194
  issue: 20
  year: 2016
  ident: 10.1016/j.physleta.2021.127771_br0390
  article-title: Lateral epitaxy of atomically sharp WSe2/WS2 heterojunctions on silicon dioxide substrates
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03639
– volume: 6
  start-page: 7749
  issue: 1
  year: 2015
  ident: 10.1016/j.physleta.2021.127771_br0160
  article-title: Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8749
– volume: 9
  start-page: 1024
  issue: 12
  year: 2014
  ident: 10.1016/j.physleta.2021.127771_br0150
  article-title: Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.222
– volume: 124
  issue: 7
  year: 2020
  ident: 10.1016/j.physleta.2021.127771_br0250
  article-title: Tunable layer circular photogalvanic effect in twisted bilayers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.077401
– volume: 102
  issue: 1
  year: 2013
  ident: 10.1016/j.physleta.2021.127771_br0580
  article-title: Band offsets and heterostructures of two-dimensional semiconductors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4774090
– volume: 13
  start-page: 3447
  issue: 8
  year: 2013
  ident: 10.1016/j.physleta.2021.127771_br0080
  article-title: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers
  publication-title: Nano Lett.
  doi: 10.1021/nl3026357
– volume: 14
  start-page: 2717
  issue: 11
  year: 2002
  ident: 10.1016/j.physleta.2021.127771_br0520
  article-title: First-principles simulation: ideas, illustrations and the CASTEP code
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/301
– volume: 26
  issue: 45
  year: 2015
  ident: 10.1016/j.physleta.2021.127771_br0450
  article-title: Photogalvanic effect in monolayer black phosphorus
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/45/455202
– volume: 371
  start-page: 376
  year: 2016
  ident: 10.1016/j.physleta.2021.127771_br0370
  article-title: Size effect on the magnetic and electronic properties of the monolayer lateral hetero-junction WS2-MoS2 nanoribbon
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.02.215
– volume: 12
  start-page: 6256
  issue: 11
  year: 2020
  ident: 10.1016/j.physleta.2021.127771_br0290
  article-title: Anisotropic circular photogalvanic effect in colloidal tin sulfide nanosheets
  publication-title: Nanoscale
  doi: 10.1039/D0NR01189D
– volume: 115
  year: 2020
  ident: 10.1016/j.physleta.2021.127771_br0460
  article-title: Photogalvanic effect in monolayer WSe2-MoS2 lateral heterojunction from first principles
  publication-title: Physica E
  doi: 10.1016/j.physe.2019.113714
– volume: 83
  start-page: 24
  year: 2016
  ident: 10.1016/j.physleta.2021.127771_br0060
  article-title: Rise of silicene: a competitive 2D material
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2016.04.001
– volume: 128
  year: 2021
  ident: 10.1016/j.physleta.2021.127771_br0600
  article-title: Photogalvanic effect in chromium-doped monolayer MoS2 from first principles
  publication-title: Physica E, Low-Dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2020.114577
– volume: 14
  issue: 6
  year: 2020
  ident: 10.1016/j.physleta.2021.127771_br0230
  article-title: Largely enhanced photogalvanic effects in a phosphorene photodetector by strain-increased device asymmetry
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.064003
– volume: 17
  start-page: 29380
  issue: 43
  year: 2015
  ident: 10.1016/j.physleta.2021.127771_br0400
  article-title: Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP04861C
– volume: 9
  start-page: 372
  issue: 5
  year: 2014
  ident: 10.1016/j.physleta.2021.127771_br0070
  article-title: Circular photogalvanic effect induced by monopolar spin orientation in P-GaAs/AlGaAs multiple-quantum wells
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.35
– volume: 16
  start-page: 3571
  issue: 6
  year: 2016
  ident: 10.1016/j.physleta.2021.127771_br0380
  article-title: Observation of switchable photoresponse of a monolayer WSe2-MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00699
– volume: 4
  start-page: 11253
  issue: 47
  year: 2016
  ident: 10.1016/j.physleta.2021.127771_br0480
  article-title: Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04241D
– volume: 88
  start-page: 12
  year: 2015
  ident: 10.1016/j.physleta.2021.127771_br0100
  article-title: Tuning carrier confinement in the MoS2/WS2 heterostructure
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.08.024
– volume: 46
  start-page: 6671
  issue: 11
  year: 1992
  ident: 10.1016/j.physleta.2021.127771_br0540
  article-title: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6671
– volume: 343
  start-page: 163
  issue: 6167
  year: 2014
  ident: 10.1016/j.physleta.2021.127771_br0170
  article-title: Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges
  publication-title: Science
  doi: 10.1126/science.1246137
SSID ssj0001609
Score 2.4639382
Snippet •The photocurrent of monolayer WS2-MoS2 lateral heterojunction is investigated by using the first principle method.•CPGE is generally similar LPGE for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127771
SubjectTerms First principles
Heterojunction
Photoelectric
Title Photoelectric properties of monolayer WS2-MoS2 lateral heterojunction from first principles
URI https://dx.doi.org/10.1016/j.physleta.2021.127771
Volume 420
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EUuil9EntQ_bQa8xjN1k9ilRsi1KwUqGHkH2hIkY0vfa3dyaP1kLBQ48JO5DMzs58s8x8Q8h9pHSok3bkKAPHDbwkc3C2lSNCa4XUnVDk7PzDUTSY8KdpOK2RXtULg2WVpe8vfHrurcs3bqlNdz2fu2Oc3gr4GxmwPGRZww52LtDKW58_ZR5-VJR5wGIHV-90CS9aeHsA6kH-ocBv-YEQwv87QO0Enf4JOS7RIu0WH3RKamZ1Rg7zqk21PSfvL7M0S4tJNnNF13ixvkGGVJpaCvYFaSsgavo2DpxhOg7oMsF-4yWdYQ1MuoCQhttCscWE2jngQLqu7t63F2TSf3jtDZxyWoKjmB9kTtuGkfIjy7VnOgB6OFdCwRnQjBmTJIZJxrWC7A9zDglZiw2Yhj_WXqikDCN2SeqrdGWuCLW-MooxkXie4oAYpOUR19znEodCWNkgYaWiWJVU4jjRYhlXNWOLuFJtjKqNC9U2iPstty7INPZKdKodiH-ZRQwef4_s9T9kb8gRPuWMjt4tqWebD3MH6COTzdy8muSg-_g8GH0B2XPbAw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB5aS2kvpU9qn3voNZpkdxM9llKxD6WgUqGHkH2hIkbU_v_OmKS0UPDQa5KBzezszDfLzDcAd5E20qSNyNMWjxt6Se7RbCsvls7FyjRlvGbn73Sj9kA8D-VwCx7KXhgqqyx8f-7T1966eFIvtFmfj8f1Hk1vRfxNDFg-saxtww6xU8kK7Nw_vbS73w45iPJKD_zeI4EfjcKTGl0goIaIgigMakEYx3Hwd4z6EXdah3BQAEZ2n6_pCLbs7Bh214WbenkCH2-jbJXlw2zGms3pbn1BJKkscwxNDDNXBNXsvRd6nawXsmlKLcdTNqIymGyCUY12hlGXCXNjhIJsXl6_L09h0HrsP7S9YmCCp3kQrryGk5EOIieMb5uIe4TQscZjYDi3Nk0tV1wYjQkgpR0KExcXcoN_bHyplZIRP4PKLJvZc2Au0FZzHqe-rwWCBuVEJIwIhKK5EE5VQZYqSnTBJk5DLaZJWTY2SUrVJqTaJFdtFerfcvOcT2OjRLPcgeSXZSTo9DfIXvxD9hb22v3Oa_L61H25hH16syZ49K-gslp82msEIyt1UxjbF2JZ3bQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoelectric+properties+of+monolayer+WS2-MoS2+lateral+heterojunction+from+first+principles&rft.jtitle=Physics+letters.+A&rft.au=Liu%2C+Ping-Ping&rft.au=Shao%2C+Zhi-Gang&rft.au=Luo%2C+Wen-Ming&rft.au=Li%2C+Han-Bing&rft.date=2021-12-30&rft.pub=Elsevier+B.V&rft.issn=0375-9601&rft.eissn=1873-2429&rft.volume=420&rft_id=info:doi/10.1016%2Fj.physleta.2021.127771&rft.externalDocID=S0375960121006356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon