Analytical solutions for the dynamic analysis of a modular floating structure for urban expansion
Modular floating structures (MFS) offer a sustainable alternative over traditional land reclamation for the expansion of coastal megalopolises in the context of climate change adaptation. Yet, there are currently no guidelines for structural engineers pertaining to their analysis and design. This wo...
Saved in:
Published in | Ocean engineering Vol. 266; p. 112878 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modular floating structures (MFS) offer a sustainable alternative over traditional land reclamation for the expansion of coastal megalopolises in the context of climate change adaptation. Yet, there are currently no guidelines for structural engineers pertaining to their analysis and design. This work presents analytical solutions readily accessible for the dynamic analysis of MFS utilizing conventional rectangular pontoons subject to regular or irregular waves. Closed-form formulations utilizing linear wave theory proved capable in capturing the response amplitude operators (RAO) for sway, heave, and roll when compared against smoothed particle hydrodynamics (SPH) simulations for a typical MFS to which appropriate damping ratios were obtained. A parametric study was subsequently implemented to examine the contribution of building slenderness and superstructure-to-pontoon mass ratios on critical accelerations induced by different sea states. It was revealed that structural configurations beneficial to static stability may result in larger dynamic effects under wave excitation thus compromising occupant comfort delineated via various international standards. Ultimately, this paper represents a significant step towards the realization of MFS for urban expansion by providing structural engineers with an accessible methodology for the dynamic analysis of floating structures as a precursor to detailed computational modeling.
•Performance of closed-form RAO solutions for MFS benchmarked against SPH.•Heave and roll damping ratio of 0.1 recommended for conservative assessment of MFS.•Building slenderness and building/pontoon mass ratio on human comfort explored.•Analytical procedure enables the preliminary design of MFS prior to CFD modeling. |
---|---|
AbstractList | Modular floating structures (MFS) offer a sustainable alternative over traditional land reclamation for the expansion of coastal megalopolises in the context of climate change adaptation. Yet, there are currently no guidelines for structural engineers pertaining to their analysis and design. This work presents analytical solutions readily accessible for the dynamic analysis of MFS utilizing conventional rectangular pontoons subject to regular or irregular waves. Closed-form formulations utilizing linear wave theory proved capable in capturing the response amplitude operators (RAO) for sway, heave, and roll when compared against smoothed particle hydrodynamics (SPH) simulations for a typical MFS to which appropriate damping ratios were obtained. A parametric study was subsequently implemented to examine the contribution of building slenderness and superstructure-to-pontoon mass ratios on critical accelerations induced by different sea states. It was revealed that structural configurations beneficial to static stability may result in larger dynamic effects under wave excitation thus compromising occupant comfort delineated via various international standards. Ultimately, this paper represents a significant step towards the realization of MFS for urban expansion by providing structural engineers with an accessible methodology for the dynamic analysis of floating structures as a precursor to detailed computational modeling.
•Performance of closed-form RAO solutions for MFS benchmarked against SPH.•Heave and roll damping ratio of 0.1 recommended for conservative assessment of MFS.•Building slenderness and building/pontoon mass ratio on human comfort explored.•Analytical procedure enables the preliminary design of MFS prior to CFD modeling. |
ArticleNumber | 112878 |
Author | Wang, Shengzhe |
Author_xml | – sequence: 1 givenname: Shengzhe orcidid: 0000-0001-9704-4752 surname: Wang fullname: Wang, Shengzhe email: shengzhe.2.wang@ucdenver.edu organization: Department of Civil Engineering, University of Colorado Denver, Denver, CO, 80217, United States |
BookMark | eNqFkMtOwzAQRS0EEm3hF5B_IGUct6kjsaCqeEmV2MDamjiT4iq1K9tB9O9JKGzYdDV3MedK94zZufOOGLsRMBUgitvt1BtCR24zzSHPp0LkaqHO2Eiohczm-VydsxFAXmYKhLpk4xi3AFAUIEcMlw7bQ7IGWx592yXrXeSNDzx9EK8PDnfWcByeoo3cNxz5ztddi4E3rcdk3YbHFDqTukA_YBcqdJy-9uhi33bFLhpsI13_3gl7f3x4Wz1n69enl9VynRkp8pSpmtSsAilBKkELU0IhENS8EgUSzuqmIVkiQQ1FhULOhZwpJDJ5n2SpSjlhd8deE3yMgRptbMJhTwpoWy1AD7r0Vv_p0oMufdTV48U_fB_sDsPhNHh_BKkf92kp6GgsOUO1DWSSrr09VfENphmM-A |
CitedBy_id | crossref_primary_10_3390_smartcities7010023 |
Cites_doi | 10.1371/journal.pone.0118571 10.1016/j.jweia.2009.05.006 10.1061/(ASCE)0733-950X(2007)133:6(463) 10.1515/ijnaoe-2015-0009 10.1016/j.apor.2017.07.015 10.1016/j.coastaleng.2017.06.004 10.1103/PhysRev.159.98 10.1007/BF02123482 10.1016/j.engstruct.2022.114738 10.1016/j.coastaleng.2019.103560 10.1016/S0029-8018(00)00036-6 10.1016/j.oceaneng.2019.02.052 10.1016/j.oceaneng.2015.09.012 10.1016/j.oceaneng.2018.03.090 10.1016/j.coastaleng.2017.05.001 10.1146/annurev.aa.30.090192.002551 10.1038/s41558-021-00993-z 10.1073/pnas.1817205116 10.1016/j.proeng.2011.07.007 10.1073/pnas.1904242116 10.1016/j.oceaneng.2020.107996 10.1006/jcph.1994.1034 10.1073/pnas.1812883116 10.1088/0034-4885/68/8/R01 10.1016/j.engstruct.2022.114851 10.1016/j.cpc.2014.10.004 10.1016/j.proeng.2012.04.241 10.1016/j.jclepro.2019.03.007 10.1016/j.cpc.2019.02.003 10.1016/j.coastaleng.2014.11.001 10.1061/(ASCE)ST.1943-541X.0002619 10.1016/j.scitotenv.2020.144439 10.1061/(ASCE)ST.1943-541X.0003295 10.1179/str.2010.57.2.004 10.1016/j.apm.2005.02.014 10.1029/JC076i036p08672 10.1007/s40571-021-00404-2 10.1061/(ASCE)0733-950X(1999)125:3(145) 10.1016/j.compstruc.2013.02.010 10.1016/j.jclepro.2021.129917 10.1016/j.apor.2014.12.003 10.1146/annurev-fluid-120710-101220 10.1080/17445302.2020.1718267 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2022.112878 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2022_112878 S0029801822021618 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c312t-8de84b0330381e7c9061a085b16aea4dffe39ae0d06ba1351348aeec251339893 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 02:15:02 EDT 2025 Thu Apr 24 22:54:46 EDT 2025 Fri Feb 23 02:40:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Floating structure Analytical modeling Dynamic behavior Coastal expansion MFS Regular waves |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-8de84b0330381e7c9061a085b16aea4dffe39ae0d06ba1351348aeec251339893 |
ORCID | 0000-0001-9704-4752 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2022_112878 crossref_primary_10_1016_j_oceaneng_2022_112878 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_112878 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Wang (bib61) 2021 Mohammed (bib38) 2019 Monaghan, Kos (bib43) 1999; 125 Crespo, Altomare, Dominguez, Gonzalez-Cao, Gomez-Gesteira (bib11) 2017; 126 Yang, Wang, Wu (bib72) 2012; 37 Nguyen (bib46) 2022 (bib26) 2007 Crespo, Gomez-Gesteira, Dalrymple (bib13) 2007; 5 Monaghan (bib40) 2005; 68 Wang, Watanabe, Utsumomiya (bib64) 2008 Bamber, Oppenheimer, Kopp, Aspinall, Cooke (bib4) 2019; 116 Manenti, Ruol (bib35) 2008 Ning, Wang, Chen, Li, Zang, Cheng (bib48) 2017; 67 Chakrabarti (bib10) 2001; 28 Goda (bib21) 2000 (bib19) 2003 Trimble (bib57) 2020 Madsen (bib34) 1971; 76 Dang, Nguyen-Xuan, Wahab (bib14) 2020; 226 Ren, Ma, Fan, Zhai, Ou (bib53) 2018; 159 Monaghan (bib42) 1992; 30 Wang, Rosenfeld, Drimer, Goldfeld (bib67) 2021; 16 Takeuchi, Yoshida (bib56) 2022 Wang, Drimer, Goldfeld (bib65) 2020; 216 Fourtakas, Vacondio, Dominguez, Rogers (bib20) 2020 Brennen (bib9) 1982 NordForsk (bib49) 1987 Verlet (bib60) 1967; 159 Kraskowski (bib29) 2010; 57 Laurente Blanco, Machaca Hancco (bib32) 2020; 14 Kwok, Hitchcock, Burton (bib30) 2009; 97 Barltrop (bib5) 1998 Wang, Wang (bib63) 2015 Wendland (bib70) 1995; 4 Robertson, Riggs, Yim, Young (bib55) 2007; 133 Nicholls, Lincke, Hinkel, Brown, Vafeidis, Meyssignac, Hanson, Merkens, Fang (bib47) 2021; 11 Wang, Tay (bib62) 2011; 14 Miller, Slager, Webster (bib37) 1974 Ren, Zhang, Magee, Hellan, Dai, Ang (bib52) 2019; 176 Batchelor (bib7) 2000 Hsiao, Chiang, Jang, Wu, Lu, Chen, Wu (bib25) 2021; 764 Wang, Garlock, Deike, Glisic (bib68) 2022; 148 Rignot, Mouginot, Scheuchl, van den Broeke, van Wessem, Morlighem (bib54) 2019; 116 Barreiro, Crespo, Dominguez, Gomez-Gesteira (bib6) 2013; 120 Mihailova, Schubert, Burger, Fritz (bib36) 2022; 330 Wang, Goldfeld, Drimer (bib66) 2019; 222 Dominguez, Fourtakas, Altomare, Canelas, Tafuni, Garcia-Feal, Martinez-Estevez, Mokos, Vacondio, Crespo, Rogers, Stansby, Gomez-Gesteira (bib17) 2022; 9 Ren, He, Dong, Wen (bib51) 2015; 50 Lin, Spijkers, van der Plank (bib33) 2022 Neumann, Vafeidis, Zimmermann, Nicholls (bib45) 2015; 10 Blake, Kimberlain, Berg, Cangialosi, Beven (bib8) 2013 Faltinsen (bib18) 1990 Monaghan (bib41) 1994; 110 Altomare, Crespo, Dominguez, Gomez-Gesteira, Suzuki, Verwaest (bib1) 2015; 96 Gong, Shao, Liu, Wang, Tan (bib22) 2016; 65 Lamas-Pardo, Iglesias, Carral (bib31) 2015; 109 Mouginot, Rignot, Bjork, van den Broeke, Millan, Morlighem, Noel, Scheuchl, Wood (bib44) 2019; 116 Hadary, Martinez, Sella, Perkol-Finkel (bib23) 2022 Verbrugghe, Dominguez, Altomare, Tafuni, Vacondio, Troch, Kortenhaus (bib59) 2019; 240 (bib15) 2007 Reis, Barbosa, Figueiredo, Clain, Lopes, Baptista (bib50) 2022; 270 Koo, Kim (bib28) 2015; 7 Altomare, Dominguez, Crespo, Gonzalez-Cao, Suzuki, Gomez-Gesteira, Troch (bib2) 2017; 127 van Koten (bib58) 1967 Monaghan (bib39) 2012; 44 Wang, Garlock, Glisic (bib69) 2020; 146 (bib3) 2019 (bib27) 1984 Crespo, Dominguez, Rogers, Gomez-Gesteira, Longshaw, Canelas, Vacondio, Barreiro, Garcia-Feal (bib12) 2015; 187 Dominguez, Crespo, Hall, Altomare, Wu, Stratigaki, Troch, Cappietti, Gomez-Gesteira (bib16) 2019; 153 Hadzic, Hennig, Peric, Xing-Kaeding (bib24) 2005; 29 Wu, Garlock, Wang (bib71) 2022; 268 Wang (10.1016/j.oceaneng.2022.112878_bib63) 2015 Batchelor (10.1016/j.oceaneng.2022.112878_bib7) 2000 Verlet (10.1016/j.oceaneng.2022.112878_bib60) 1967; 159 Manenti (10.1016/j.oceaneng.2022.112878_bib35) 2008 Wang (10.1016/j.oceaneng.2022.112878_bib65) 2020; 216 Bamber (10.1016/j.oceaneng.2022.112878_bib4) 2019; 116 Wang (10.1016/j.oceaneng.2022.112878_bib62) 2011; 14 Wu (10.1016/j.oceaneng.2022.112878_bib71) 2022; 268 Blake (10.1016/j.oceaneng.2022.112878_bib8) 2013 Goda (10.1016/j.oceaneng.2022.112878_bib21) 2000 Ren (10.1016/j.oceaneng.2022.112878_bib51) 2015; 50 Barltrop (10.1016/j.oceaneng.2022.112878_bib5) 1998 (10.1016/j.oceaneng.2022.112878_bib27) 1984 Madsen (10.1016/j.oceaneng.2022.112878_bib34) 1971; 76 Wang (10.1016/j.oceaneng.2022.112878_bib68) 2022; 148 Yang (10.1016/j.oceaneng.2022.112878_bib72) 2012; 37 Dominguez (10.1016/j.oceaneng.2022.112878_bib17) 2022; 9 Monaghan (10.1016/j.oceaneng.2022.112878_bib43) 1999; 125 Koo (10.1016/j.oceaneng.2022.112878_bib28) 2015; 7 Monaghan (10.1016/j.oceaneng.2022.112878_bib39) 2012; 44 Brennen (10.1016/j.oceaneng.2022.112878_bib9) 1982 Fourtakas (10.1016/j.oceaneng.2022.112878_bib20) 2020 Hadzic (10.1016/j.oceaneng.2022.112878_bib24) 2005; 29 Crespo (10.1016/j.oceaneng.2022.112878_bib11) 2017; 126 Mouginot (10.1016/j.oceaneng.2022.112878_bib44) 2019; 116 Takeuchi (10.1016/j.oceaneng.2022.112878_bib56) 2022 Ren (10.1016/j.oceaneng.2022.112878_bib53) 2018; 159 Hsiao (10.1016/j.oceaneng.2022.112878_bib25) 2021; 764 Monaghan (10.1016/j.oceaneng.2022.112878_bib40) 2005; 68 Mihailova (10.1016/j.oceaneng.2022.112878_bib36) 2022; 330 Ren (10.1016/j.oceaneng.2022.112878_bib52) 2019; 176 Crespo (10.1016/j.oceaneng.2022.112878_bib13) 2007; 5 Ning (10.1016/j.oceaneng.2022.112878_bib48) 2017; 67 Wendland (10.1016/j.oceaneng.2022.112878_bib70) 1995; 4 Laurente Blanco (10.1016/j.oceaneng.2022.112878_bib32) 2020; 14 Kraskowski (10.1016/j.oceaneng.2022.112878_bib29) 2010; 57 Hadary (10.1016/j.oceaneng.2022.112878_bib23) 2022 Wang (10.1016/j.oceaneng.2022.112878_bib69) 2020; 146 Barreiro (10.1016/j.oceaneng.2022.112878_bib6) 2013; 120 Rignot (10.1016/j.oceaneng.2022.112878_bib54) 2019; 116 Altomare (10.1016/j.oceaneng.2022.112878_bib1) 2015; 96 NordForsk (10.1016/j.oceaneng.2022.112878_bib49) 1987 van Koten (10.1016/j.oceaneng.2022.112878_bib58) 1967 Mohammed (10.1016/j.oceaneng.2022.112878_bib38) 2019 Dang (10.1016/j.oceaneng.2022.112878_bib14) 2020; 226 (10.1016/j.oceaneng.2022.112878_bib3) 2019 Nguyen (10.1016/j.oceaneng.2022.112878_bib46) 2022 Wang (10.1016/j.oceaneng.2022.112878_bib67) 2021; 16 Lin (10.1016/j.oceaneng.2022.112878_bib33) 2022 Robertson (10.1016/j.oceaneng.2022.112878_bib55) 2007; 133 Faltinsen (10.1016/j.oceaneng.2022.112878_bib18) 1990 Wang (10.1016/j.oceaneng.2022.112878_bib64) 2008 (10.1016/j.oceaneng.2022.112878_bib19) 2003 Miller (10.1016/j.oceaneng.2022.112878_bib37) 1974 Verbrugghe (10.1016/j.oceaneng.2022.112878_bib59) 2019; 240 (10.1016/j.oceaneng.2022.112878_bib26) 2007 Chakrabarti (10.1016/j.oceaneng.2022.112878_bib10) 2001; 28 Lamas-Pardo (10.1016/j.oceaneng.2022.112878_bib31) 2015; 109 Altomare (10.1016/j.oceaneng.2022.112878_bib2) 2017; 127 Wang (10.1016/j.oceaneng.2022.112878_bib66) 2019; 222 Trimble (10.1016/j.oceaneng.2022.112878_bib57) Crespo (10.1016/j.oceaneng.2022.112878_bib12) 2015; 187 Gong (10.1016/j.oceaneng.2022.112878_bib22) 2016; 65 (10.1016/j.oceaneng.2022.112878_bib15) 2007 Wang (10.1016/j.oceaneng.2022.112878_bib61) 2021 Kwok (10.1016/j.oceaneng.2022.112878_bib30) 2009; 97 Reis (10.1016/j.oceaneng.2022.112878_bib50) 2022; 270 Monaghan (10.1016/j.oceaneng.2022.112878_bib42) 1992; 30 Monaghan (10.1016/j.oceaneng.2022.112878_bib41) 1994; 110 Dominguez (10.1016/j.oceaneng.2022.112878_bib16) 2019; 153 Nicholls (10.1016/j.oceaneng.2022.112878_bib47) 2021; 11 Neumann (10.1016/j.oceaneng.2022.112878_bib45) 2015; 10 |
References_xml | – volume: 28 start-page: 915 year: 2001 end-page: 932 ident: bib10 article-title: Empirical calculation of roll damping for ships and barges publication-title: Ocean Eng. – year: 1987 ident: bib49 article-title: Assessment of Ship Performance in a Seaway: the Nordic Co-operative Project: “Seakeeping Performance of Ships – volume: 226 year: 2020 ident: bib14 article-title: Numerical study on wave forces and overtopping over various seawall structures using advanced SPH-based method publication-title: Eng. Struct. – year: 2008 ident: bib35 article-title: Fluid-structure interaction in design of offshore wind turbines: SPH modeling of basic aspects publication-title: Proceedings of the International Workshop in Handling Exceptions in Structural Engineering – volume: 176 start-page: 158 year: 2019 end-page: 168 ident: bib52 article-title: Hydrodynamic analysis of a modular multi-purpose floating structure system with different outermost connector types publication-title: Ocean Eng. – volume: 125 start-page: 145 year: 1999 end-page: 155 ident: bib43 article-title: Solitary waves on a Cretan beach publication-title: J. Waterw. Port, Coast. Ocean Eng. – volume: 216 year: 2020 ident: bib65 article-title: Modular floating structures (MFS) for offshore dwelling a hydrodynamic analysis in the frequency domain publication-title: Ocean Eng. – volume: 240 start-page: 46 year: 2019 end-page: 59 ident: bib59 article-title: Non-linear wave generation and absorption using open boundaries within DualSPHysics publication-title: Comput. Phys. Commun. – volume: 270 year: 2022 ident: bib50 article-title: Smoothed particle hydrodynamics modeling of elevated structures impacted by tsunami-like waves publication-title: Eng. Struct. – volume: 159 start-page: 1 year: 2018 end-page: 8 ident: bib53 article-title: Experimental and numerical study of hydrodynamic responses of a new combined monopile wind turbine and a heave-type wave energy converter under typical operational conditions publication-title: Ocean Eng. – start-page: 67 year: 1967 end-page: 107 ident: bib58 article-title: Grenzen voor dynamische beweging (boundaries for dynamic movement) publication-title: TNO-IBBC rapport BI – year: 2022 ident: bib46 article-title: Architectural design guideline for sustainable floating houses and floating settlements in Vietnam publication-title: Proceedings of the Second World Conference on Floating Solutions – volume: 67 start-page: 188 year: 2017 end-page: 200 ident: bib48 article-title: Extreme wave run-up and pressure on a vertical seawall publication-title: Appl. Ocean Res. – year: 1998 ident: bib5 article-title: Floating Structures: a Guide for Design and Analysis – volume: 187 start-page: 204 year: 2015 end-page: 216 ident: bib12 article-title: DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH) publication-title: Comput. Phys. Commun. – volume: 68 start-page: 1703 year: 2005 end-page: 1759 ident: bib40 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. – year: 2013 ident: bib8 article-title: Tropical Cyclone Report: Hurricane Sandy – year: 2019 ident: bib38 article-title: Sustainable Floating Cities Can Offer Solutions to Climate Change Threats Facing Urban Areas – volume: 116 start-page: 9239 year: 2019 end-page: 9244 ident: bib44 article-title: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 126 start-page: 11 year: 2017 end-page: 26 ident: bib11 article-title: Towards simulating floating offshore oscillating water column converters with Smoothed Particle Hydrodynamics publication-title: Coast. Eng. – year: 2021 ident: bib61 article-title: Automating Cities: Design, Construction, Operation and Future Impact – volume: 764 year: 2021 ident: bib25 article-title: Flood risk influenced by the compound effect of storm surge and rainfall under climate change for low-lying coastal areas publication-title: Sci. Total Environ. – volume: 76 start-page: 8672 year: 1971 end-page: 8683 ident: bib34 article-title: On the generation of long waves publication-title: J. Geophys. Res. – volume: 148 year: 2022 ident: bib68 article-title: Feasibility of Kinetic Umbrellas as deployable flood barriers during landfalling hurricanes publication-title: J. Struct. Eng. – volume: 29 start-page: 1196 year: 2005 end-page: 1210 ident: bib24 article-title: Computation of flow-induced motion of floating bodies publication-title: Appl. Math. Model. – volume: 37 start-page: 14 year: 2012 end-page: 18 ident: bib72 article-title: Numerical simulation of a naval ship's roll damping based on CFD publication-title: Procedia Eng. – year: 2022 ident: bib23 article-title: Eco-engineering for climate change - floating to the future publication-title: Proceedings of the Second World Conference on Floating Solutions – year: 1982 ident: bib9 article-title: A Review of Added Mass and Fluid Inertial Forces – volume: 16 start-page: 184 year: 2021 end-page: 199 ident: bib67 article-title: Occupant comfort analysis for rigid floating structures - methodology and design assessment for offshore dwelling module publication-title: Ships Offshore Struct. – year: 2020 ident: bib20 article-title: Improved density diffusion term for long duration wave propagation publication-title: Proceedings of the International SPHERIC Workshop – year: 2007 ident: bib26 article-title: ISO 10137:2007 Bases for Design of Structures - Serviceability of Buildings and Walkways against Vibrations – year: 2019 ident: bib3 article-title: Future World Vision: Infrastructure Reimagined – volume: 65 start-page: 155 year: 2016 end-page: 179 ident: bib22 article-title: Two-phase SPH simulation of fluid-structure interactions publication-title: J. Fluids Solid. – volume: 97 start-page: 368 year: 2009 end-page: 380 ident: bib30 article-title: Perception of vibration and occupant comfort in wind-excited tall buildings publication-title: J. Wind Eng. Ind. Aerod. – volume: 153 year: 2019 ident: bib16 article-title: SPH simulation of floating structures with moorings publication-title: Coast. Eng. – volume: 7 start-page: 115 year: 2015 end-page: 127 ident: bib28 article-title: Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth publication-title: Int. J. Nav. Archit. Ocean Eng. – year: 2000 ident: bib7 article-title: An Introduction to Fluid Dynamics – year: 2022 ident: bib33 article-title: Legal framework for sustainable floating city development: a case study of The Netherlands publication-title: Proceedings of the Second World Conference on Floating Solutions – volume: 268 year: 2022 ident: bib71 article-title: A decoupled SPH-FEM analysis of hydrodynamic wave pressure on hyperbolic-paraboloid thin-shell coastal armor and corresponding structural response publication-title: Eng. Struct. – year: 2000 ident: bib21 article-title: Random Seas and Design of Maritime Structures – volume: 120 start-page: 96 year: 2013 end-page: 106 ident: bib6 article-title: Smoothed particle hydrodynamics for coastal engineering problems publication-title: Comput. Struct. – volume: 30 start-page: 543 year: 1992 end-page: 574 ident: bib42 article-title: Smoothed particle hydrodynamics publication-title: Annu. Rev. Astron. Astrophys. – volume: 127 start-page: 37 year: 2017 end-page: 54 ident: bib2 article-title: Long-crested wave generation and absorption for SPH-based DualSPHysics model publication-title: Coast. Eng. – volume: 110 start-page: 399 year: 1994 end-page: 406 ident: bib41 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. – volume: 5 start-page: 173 year: 2007 end-page: 184 ident: bib13 article-title: Boundary conditions generated by dynamic particles in SPH methods publication-title: CMC - Tech. Sci. Press – year: 1974 ident: bib37 article-title: Development of a Technical Practice for Roll Stabilization System Selections (No. NAVSEC Report 6136-74-280 – year: 2008 ident: bib64 article-title: Very Large Floating Structures – volume: 330 year: 2022 ident: bib36 article-title: Exploring modes of sustainable value co-creation in renewable energy communities publication-title: J. Clean. Prod. – year: 2007 ident: bib15 article-title: Technical Regulation on the Stability and Buoyancy Etc – year: 1990 ident: bib18 article-title: Sea Loads on Ships and Offshore Structures – year: 1984 ident: bib27 article-title: ISO 6897:1984 Guidelines for the Evaluation of the Response of Occupants of Fixed Structures, Especially Buildings and Off-Shore Structures, to Low-Frequency Horizontal Motion (0.063 to 1 Hz) – volume: 96 start-page: 1 year: 2015 end-page: 12 ident: bib1 article-title: Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures publication-title: Coast. Eng. – volume: 159 start-page: 98 year: 1967 end-page: 103 ident: bib60 article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones Molecules publication-title: Phys. Rev. – volume: 50 start-page: 1 year: 2015 end-page: 12 ident: bib51 article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method publication-title: Appl. Ocean Res. – volume: 222 start-page: 520 year: 2019 end-page: 538 ident: bib66 article-title: Expanding coastal cities - proof of feasibility for modular floating structures (MFS) publication-title: J. Clean. Prod. – volume: 116 start-page: 11195 year: 2019 end-page: 11200 ident: bib4 article-title: Ice sheet contributions to future sea-level rise from structured expert judgment publication-title: Proc. Natl. Acad. Sci. USA – year: 2003 ident: bib19 article-title: British Columbia Float Home Standard – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: bib70 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. – volume: 109 start-page: 677 year: 2015 end-page: 690 ident: bib31 article-title: A review of Very Large Floating Structures (VLFS) for coastal and offshore uses publication-title: Ocean Eng. – volume: 116 start-page: 1095 year: 2019 end-page: 1103 ident: bib54 article-title: Four decades of antarctic ice sheet mass balance from 1979-2017 publication-title: Proc. Natl. Acad. Sci. USA – year: 2020 ident: bib57 – year: 2022 ident: bib56 article-title: Mega floating city “Green Float”: concept and technology innovations publication-title: Proceedings of the Second World Conference on Floating Solutions – year: 2015 ident: bib63 article-title: Large Floating Structures: Technological Advances – volume: 44 start-page: 323 year: 2012 end-page: 346 ident: bib39 article-title: Smoothed particle hydrodynamics and its diverse applications publication-title: Annu. Rev. Fluid Mech. – volume: 57 start-page: 120 year: 2010 end-page: 127 ident: bib29 article-title: Simulating hull dynamics in waves using a RANSE code publication-title: Ship Technol. Res. – volume: 10 year: 2015 ident: bib45 article-title: Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment publication-title: PLoS One – volume: 9 start-page: 867 year: 2022 end-page: 895 ident: bib17 article-title: DualSPHysics: from fluid dynamics to multiphysics problems publication-title: Comput. Part. Mech. – volume: 14 start-page: 29 year: 2020 end-page: 50 ident: bib32 article-title: Modeling and forecasting international tourism demand in Puno-Peru publication-title: Brazil. J. Tourism Res. – volume: 14 start-page: 62 year: 2011 end-page: 72 ident: bib62 article-title: Very large floating structures: applications, research and development publication-title: Procedia Eng. – volume: 11 start-page: 338 year: 2021 end-page: 342 ident: bib47 article-title: A global analysis of subsidence, relative sea-level change and coastal flood exposure publication-title: Nat. Clim. Change – volume: 133 start-page: 463 year: 2007 end-page: 483 ident: bib55 article-title: Lessons from Hurricane Katrina storm surge on bridges and buildings publication-title: J. Waterw. Port, Coast. Ocean Eng. – volume: 146 year: 2020 ident: bib69 article-title: Hydrostatic response of deployable four-sided hyperbolic paraboloid shells as coastal armor publication-title: J. Struct. Eng. – year: 2003 ident: 10.1016/j.oceaneng.2022.112878_bib19 – volume: 10 year: 2015 ident: 10.1016/j.oceaneng.2022.112878_bib45 article-title: Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment publication-title: PLoS One doi: 10.1371/journal.pone.0118571 – year: 1998 ident: 10.1016/j.oceaneng.2022.112878_bib5 – volume: 97 start-page: 368 year: 2009 ident: 10.1016/j.oceaneng.2022.112878_bib30 article-title: Perception of vibration and occupant comfort in wind-excited tall buildings publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2009.05.006 – volume: 133 start-page: 463 year: 2007 ident: 10.1016/j.oceaneng.2022.112878_bib55 article-title: Lessons from Hurricane Katrina storm surge on bridges and buildings publication-title: J. Waterw. Port, Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(2007)133:6(463) – volume: 7 start-page: 115 year: 2015 ident: 10.1016/j.oceaneng.2022.112878_bib28 article-title: Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth publication-title: Int. J. Nav. Archit. Ocean Eng. doi: 10.1515/ijnaoe-2015-0009 – volume: 67 start-page: 188 year: 2017 ident: 10.1016/j.oceaneng.2022.112878_bib48 article-title: Extreme wave run-up and pressure on a vertical seawall publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2017.07.015 – year: 1982 ident: 10.1016/j.oceaneng.2022.112878_bib9 – volume: 127 start-page: 37 year: 2017 ident: 10.1016/j.oceaneng.2022.112878_bib2 article-title: Long-crested wave generation and absorption for SPH-based DualSPHysics model publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2017.06.004 – year: 1984 ident: 10.1016/j.oceaneng.2022.112878_bib27 – volume: 159 start-page: 98 year: 1967 ident: 10.1016/j.oceaneng.2022.112878_bib60 article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones Molecules publication-title: Phys. Rev. doi: 10.1103/PhysRev.159.98 – volume: 4 start-page: 389 year: 1995 ident: 10.1016/j.oceaneng.2022.112878_bib70 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 – volume: 268 year: 2022 ident: 10.1016/j.oceaneng.2022.112878_bib71 article-title: A decoupled SPH-FEM analysis of hydrodynamic wave pressure on hyperbolic-paraboloid thin-shell coastal armor and corresponding structural response publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114738 – year: 2022 ident: 10.1016/j.oceaneng.2022.112878_bib56 article-title: Mega floating city “Green Float”: concept and technology innovations – year: 2008 ident: 10.1016/j.oceaneng.2022.112878_bib64 – volume: 153 year: 2019 ident: 10.1016/j.oceaneng.2022.112878_bib16 article-title: SPH simulation of floating structures with moorings publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2019.103560 – year: 2021 ident: 10.1016/j.oceaneng.2022.112878_bib61 – year: 2022 ident: 10.1016/j.oceaneng.2022.112878_bib46 article-title: Architectural design guideline for sustainable floating houses and floating settlements in Vietnam – volume: 28 start-page: 915 year: 2001 ident: 10.1016/j.oceaneng.2022.112878_bib10 article-title: Empirical calculation of roll damping for ships and barges publication-title: Ocean Eng. doi: 10.1016/S0029-8018(00)00036-6 – volume: 176 start-page: 158 year: 2019 ident: 10.1016/j.oceaneng.2022.112878_bib52 article-title: Hydrodynamic analysis of a modular multi-purpose floating structure system with different outermost connector types publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.02.052 – year: 2019 ident: 10.1016/j.oceaneng.2022.112878_bib3 – year: 2015 ident: 10.1016/j.oceaneng.2022.112878_bib63 – volume: 109 start-page: 677 year: 2015 ident: 10.1016/j.oceaneng.2022.112878_bib31 article-title: A review of Very Large Floating Structures (VLFS) for coastal and offshore uses publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.09.012 – year: 2022 ident: 10.1016/j.oceaneng.2022.112878_bib33 article-title: Legal framework for sustainable floating city development: a case study of The Netherlands – ident: 10.1016/j.oceaneng.2022.112878_bib57 – volume: 159 start-page: 1 year: 2018 ident: 10.1016/j.oceaneng.2022.112878_bib53 article-title: Experimental and numerical study of hydrodynamic responses of a new combined monopile wind turbine and a heave-type wave energy converter under typical operational conditions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.03.090 – year: 2007 ident: 10.1016/j.oceaneng.2022.112878_bib26 – volume: 126 start-page: 11 year: 2017 ident: 10.1016/j.oceaneng.2022.112878_bib11 article-title: Towards simulating floating offshore oscillating water column converters with Smoothed Particle Hydrodynamics publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2017.05.001 – year: 1990 ident: 10.1016/j.oceaneng.2022.112878_bib18 – year: 2013 ident: 10.1016/j.oceaneng.2022.112878_bib8 – volume: 5 start-page: 173 year: 2007 ident: 10.1016/j.oceaneng.2022.112878_bib13 article-title: Boundary conditions generated by dynamic particles in SPH methods publication-title: CMC - Tech. Sci. Press – volume: 30 start-page: 543 year: 1992 ident: 10.1016/j.oceaneng.2022.112878_bib42 article-title: Smoothed particle hydrodynamics publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev.aa.30.090192.002551 – volume: 11 start-page: 338 year: 2021 ident: 10.1016/j.oceaneng.2022.112878_bib47 article-title: A global analysis of subsidence, relative sea-level change and coastal flood exposure publication-title: Nat. Clim. Change doi: 10.1038/s41558-021-00993-z – volume: 116 start-page: 11195 year: 2019 ident: 10.1016/j.oceaneng.2022.112878_bib4 article-title: Ice sheet contributions to future sea-level rise from structured expert judgment publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1817205116 – volume: 226 year: 2020 ident: 10.1016/j.oceaneng.2022.112878_bib14 article-title: Numerical study on wave forces and overtopping over various seawall structures using advanced SPH-based method publication-title: Eng. Struct. – volume: 14 start-page: 62 year: 2011 ident: 10.1016/j.oceaneng.2022.112878_bib62 article-title: Very large floating structures: applications, research and development publication-title: Procedia Eng. doi: 10.1016/j.proeng.2011.07.007 – volume: 116 start-page: 9239 year: 2019 ident: 10.1016/j.oceaneng.2022.112878_bib44 article-title: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1904242116 – volume: 216 year: 2020 ident: 10.1016/j.oceaneng.2022.112878_bib65 article-title: Modular floating structures (MFS) for offshore dwelling a hydrodynamic analysis in the frequency domain publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107996 – volume: 110 start-page: 399 year: 1994 ident: 10.1016/j.oceaneng.2022.112878_bib41 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1034 – year: 2008 ident: 10.1016/j.oceaneng.2022.112878_bib35 article-title: Fluid-structure interaction in design of offshore wind turbines: SPH modeling of basic aspects – volume: 116 start-page: 1095 year: 2019 ident: 10.1016/j.oceaneng.2022.112878_bib54 article-title: Four decades of antarctic ice sheet mass balance from 1979-2017 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1812883116 – volume: 68 start-page: 1703 year: 2005 ident: 10.1016/j.oceaneng.2022.112878_bib40 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/8/R01 – volume: 270 year: 2022 ident: 10.1016/j.oceaneng.2022.112878_bib50 article-title: Smoothed particle hydrodynamics modeling of elevated structures impacted by tsunami-like waves publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114851 – year: 2007 ident: 10.1016/j.oceaneng.2022.112878_bib15 – volume: 65 start-page: 155 year: 2016 ident: 10.1016/j.oceaneng.2022.112878_bib22 article-title: Two-phase SPH simulation of fluid-structure interactions publication-title: J. Fluids Solid. – volume: 187 start-page: 204 year: 2015 ident: 10.1016/j.oceaneng.2022.112878_bib12 article-title: DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH) publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.10.004 – volume: 37 start-page: 14 year: 2012 ident: 10.1016/j.oceaneng.2022.112878_bib72 article-title: Numerical simulation of a naval ship's roll damping based on CFD publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.04.241 – volume: 14 start-page: 29 year: 2020 ident: 10.1016/j.oceaneng.2022.112878_bib32 article-title: Modeling and forecasting international tourism demand in Puno-Peru publication-title: Brazil. J. Tourism Res. – year: 1974 ident: 10.1016/j.oceaneng.2022.112878_bib37 – start-page: 67 year: 1967 ident: 10.1016/j.oceaneng.2022.112878_bib58 article-title: Grenzen voor dynamische beweging (boundaries for dynamic movement) publication-title: TNO-IBBC rapport BI – year: 2000 ident: 10.1016/j.oceaneng.2022.112878_bib7 – volume: 222 start-page: 520 year: 2019 ident: 10.1016/j.oceaneng.2022.112878_bib66 article-title: Expanding coastal cities - proof of feasibility for modular floating structures (MFS) publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.007 – volume: 240 start-page: 46 year: 2019 ident: 10.1016/j.oceaneng.2022.112878_bib59 article-title: Non-linear wave generation and absorption using open boundaries within DualSPHysics publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.02.003 – volume: 96 start-page: 1 year: 2015 ident: 10.1016/j.oceaneng.2022.112878_bib1 article-title: Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2014.11.001 – year: 2020 ident: 10.1016/j.oceaneng.2022.112878_bib20 article-title: Improved density diffusion term for long duration wave propagation – year: 2000 ident: 10.1016/j.oceaneng.2022.112878_bib21 – volume: 146 year: 2020 ident: 10.1016/j.oceaneng.2022.112878_bib69 article-title: Hydrostatic response of deployable four-sided hyperbolic paraboloid shells as coastal armor publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0002619 – volume: 764 year: 2021 ident: 10.1016/j.oceaneng.2022.112878_bib25 article-title: Flood risk influenced by the compound effect of storm surge and rainfall under climate change for low-lying coastal areas publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144439 – year: 2022 ident: 10.1016/j.oceaneng.2022.112878_bib23 article-title: Eco-engineering for climate change - floating to the future – volume: 148 year: 2022 ident: 10.1016/j.oceaneng.2022.112878_bib68 article-title: Feasibility of Kinetic Umbrellas as deployable flood barriers during landfalling hurricanes publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0003295 – volume: 57 start-page: 120 year: 2010 ident: 10.1016/j.oceaneng.2022.112878_bib29 article-title: Simulating hull dynamics in waves using a RANSE code publication-title: Ship Technol. Res. doi: 10.1179/str.2010.57.2.004 – volume: 29 start-page: 1196 year: 2005 ident: 10.1016/j.oceaneng.2022.112878_bib24 article-title: Computation of flow-induced motion of floating bodies publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2005.02.014 – volume: 76 start-page: 8672 year: 1971 ident: 10.1016/j.oceaneng.2022.112878_bib34 article-title: On the generation of long waves publication-title: J. Geophys. Res. doi: 10.1029/JC076i036p08672 – volume: 9 start-page: 867 year: 2022 ident: 10.1016/j.oceaneng.2022.112878_bib17 article-title: DualSPHysics: from fluid dynamics to multiphysics problems publication-title: Comput. Part. Mech. doi: 10.1007/s40571-021-00404-2 – volume: 125 start-page: 145 year: 1999 ident: 10.1016/j.oceaneng.2022.112878_bib43 article-title: Solitary waves on a Cretan beach publication-title: J. Waterw. Port, Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1999)125:3(145) – year: 1987 ident: 10.1016/j.oceaneng.2022.112878_bib49 – year: 2019 ident: 10.1016/j.oceaneng.2022.112878_bib38 – volume: 120 start-page: 96 year: 2013 ident: 10.1016/j.oceaneng.2022.112878_bib6 article-title: Smoothed particle hydrodynamics for coastal engineering problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.02.010 – volume: 330 year: 2022 ident: 10.1016/j.oceaneng.2022.112878_bib36 article-title: Exploring modes of sustainable value co-creation in renewable energy communities publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129917 – volume: 50 start-page: 1 year: 2015 ident: 10.1016/j.oceaneng.2022.112878_bib51 article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2014.12.003 – volume: 44 start-page: 323 year: 2012 ident: 10.1016/j.oceaneng.2022.112878_bib39 article-title: Smoothed particle hydrodynamics and its diverse applications publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101220 – volume: 16 start-page: 184 year: 2021 ident: 10.1016/j.oceaneng.2022.112878_bib67 article-title: Occupant comfort analysis for rigid floating structures - methodology and design assessment for offshore dwelling module publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2020.1718267 |
SSID | ssj0006603 |
Score | 2.3698645 |
Snippet | Modular floating structures (MFS) offer a sustainable alternative over traditional land reclamation for the expansion of coastal megalopolises in the context... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112878 |
SubjectTerms | Analytical modeling Coastal expansion Dynamic behavior Floating structure MFS Regular waves |
Title | Analytical solutions for the dynamic analysis of a modular floating structure for urban expansion |
URI | https://dx.doi.org/10.1016/j.oceaneng.2022.112878 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2KXlQQrYr1o-zBa2w22Ww3x1KUqlgvCt7C7mZWWjSVYsGTv92ZfNQKQg9CLgk7IcwO8ybJmzeMXaTgkiixeeCEdoHUPgy0MjbwIABTstegqcH5fqxGT_L2OXlusWHTC0O0yjr3Vzm9zNb1lV7tzd77ZEI9vlGK-RURDnFKCWr4lbJPUX759UPzUCqMG5oHrV7pEp5eIkSYAooXfE-MIuqm0TRu7S-AWgGd6z22W1eLfFA90D5rQdFm2ysagm2280B3r4WnD5gpVUbKD9R8GVYcK1OOlR7Pq_nz3NRSJHzmueFvs5zIqNy_zgyxoHklKruYQ2m4mFtTcPjEvEGf1g7Z0_XV43AU1GMUAheL6CPQOWhpwzimn4LQdylCuMFKywplwMjce4hTA2EeKmtoYF8stQFwEY1-SbGeOWIbxayAY8ZxnbeRAiW9lUmirRd57GwuhHJ4RB2WNL7LXK0xTqMuXrOGTDbNGp9n5POs8nmH9ZZ275XKxlqLtNma7Fe8ZAgFa2xP_mF7yrbojAgtIjljG7gfcI5lyYftlnHXZZuDm7vR-Bv3NeUh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PfgA8YnrMwevdZs-YnoUUdbXelHwVpJ0Ii7aFXHBn-_MNl1WEDwIPbWdUibD903TmW8Ajgt0eZLbKnJSuyjTPo60MjbyKJEg2WvU3OB8N1D9x-z6KX-ag_O2F4bLKgP2N5g-Qetwphe82Xt_eeEe36QgfCWGI55SUs_DAqtT5R1YOLu66Q-mgKxUnLaVHmww0yg8PCGWMDXWz_SpmCTcUKN54tpvHDXDO5drsBoSRnHWvNM6zGG9AcszMoIbsHLPTw_a05tgJkIjkz1qMY0sQcmpoGRPVM0IemGCGokYeWHE26jielThX0eGC6FFoys7_sCJ4fjDmlrgF0EH765twePlxcN5PwqTFCKXyuQz0hXqzMZpyv8F8dQVxOKGki0rlUGTVd5jWhiMq1hZwzP70kwbRJfw9JeCUppt6NSjGndA0H3eJgpV5m2W59p6WaXOVlIqR0fShbz1XemCzDhPu3gt23qyYdn6vGSfl43Pu9Cb2r03Qht_WhTt0pQ_QqYkNvjDdvcftkew2H-4uy1vrwY3e7DEV7i-Reb70KG1wQPKUj7tYYjCb9Rf59I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+solutions+for+the+dynamic+analysis+of+a+modular+floating+structure+for+urban+expansion&rft.jtitle=Ocean+engineering&rft.au=Wang%2C+Shengzhe&rft.date=2022-12-15&rft.issn=0029-8018&rft.volume=266&rft.spage=112878&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.112878&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2022_112878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |