An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures
Locally resonant electromechanical metastructures made from flexible substrates with piezoelectric layers connected to resonant shunt circuits exhibit vibration attenuation properties similar to those of purely mechanical metastructures. Thus, in analogy, these locally resonant electromechanical met...
Saved in:
Published in | Smart materials and structures Vol. 26; no. 5; pp. 55029 - 55038 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Locally resonant electromechanical metastructures made from flexible substrates with piezoelectric layers connected to resonant shunt circuits exhibit vibration attenuation properties similar to those of purely mechanical metastructures. Thus, in analogy, these locally resonant electromechanical metastructures can exhibit electroelastic bandgaps at wavelengths much larger than the lattice size. In order to effectively design such metastructures, the modal behavior of the finite structure with given boundary conditions must be reconciled with the electromechanical behavior of the piezoelectric layers and shunt circuits. To this end, we develop the theory for a piezoelectric bimorph beam with segmented electrodes under transverse vibrations, and extract analytical results for bandgap estimation using modal analysis. Under the assumption of an infinite number of segmented electrodes, the locally resonant bandgap is estimated in closed form and shown to depend only on the target frequency and the system-level electromechanical coupling. It is shown that bandgap formation in piezoelectric metastructures is associated with a frequency-dependent modal stiffness, unlike the frequency-dependent modal mass in mechanical metastructures. The relevant electromechanical coupling term and the normalized bandgap size are calculated for a representative structure and a selection of piezoelectric ceramics and single crystals, revealing that single crystals (e.g. PMN-PT) result in significantly wider bandgap than ceramics (e.g. PZT-5A). Numerical studies are performed to demonstrate that the closed-form bandgap expression derived in this work holds for a finite number of electrode segments. It is shown that the number of electrodes required to create the bandgap increases as the target frequency is increased. |
---|---|
AbstractList | Locally resonant electromechanical metastructures made from flexible substrates with piezoelectric layers connected to resonant shunt circuits exhibit vibration attenuation properties similar to those of purely mechanical metastructures. Thus, in analogy, these locally resonant electromechanical metastructures can exhibit electroelastic bandgaps at wavelengths much larger than the lattice size. In order to effectively design such metastructures, the modal behavior of the finite structure with given boundary conditions must be reconciled with the electromechanical behavior of the piezoelectric layers and shunt circuits. To this end, we develop the theory for a piezoelectric bimorph beam with segmented electrodes under transverse vibrations, and extract analytical results for bandgap estimation using modal analysis. Under the assumption of an infinite number of segmented electrodes, the locally resonant bandgap is estimated in closed form and shown to depend only on the target frequency and the system-level electromechanical coupling. It is shown that bandgap formation in piezoelectric metastructures is associated with a frequency-dependent modal stiffness, unlike the frequency-dependent modal mass in mechanical metastructures. The relevant electromechanical coupling term and the normalized bandgap size are calculated for a representative structure and a selection of piezoelectric ceramics and single crystals, revealing that single crystals (e.g. PMN-PT) result in significantly wider bandgap than ceramics (e.g. PZT-5A). Numerical studies are performed to demonstrate that the closed-form bandgap expression derived in this work holds for a finite number of electrode segments. It is shown that the number of electrodes required to create the bandgap increases as the target frequency is increased. |
Author | Ruzzene, M Sugino, C Leadenham, S Erturk, A |
Author_xml | – sequence: 1 givenname: C surname: Sugino fullname: Sugino, C organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta, GA, United States of America – sequence: 2 givenname: S surname: Leadenham fullname: Leadenham, S organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta, GA, United States of America – sequence: 3 givenname: M surname: Ruzzene fullname: Ruzzene, M organization: Georgia Institute of Technology D. Guggenheim School of Aerospace Engineering, Atlanta, GA, United States of America – sequence: 4 givenname: A surname: Erturk fullname: Erturk, A email: alper.erturk@me.gatech.edu organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta, GA, United States of America |
BookMark | eNp9kEtLAzEURoNUsK3uXWbnxrF5NJnpshRfUHCj4C7kWVKmyZCkQv31Th1xIdLVhY9zLvd-EzAKMVgArjG6w6hpZphyXHHO3mdScl7jMzD-jUZgjBZ8XuGa8AswyXmLEMYNxWNglwH68GFz8RtZfAwwOmhbq0uKtpV9rKGSwWxkB11Mu4HxAbZRy7Y9wGRzDDIU2Hn7GQezd3a29HLa67LviUtw7mSb7dXPnIK3h_vX1VO1fnl8Xi3XlaaYlKrRhsypQlKpxinNCZd4YSlhxiiNFcNMM2Zq3VAnbW0I7hnHlKkx4VZpSaeAD3t1ijkn64T25fvkkqRvBUbiWJY4NiOOzYihrF5Ef8Qu-Z1Mh1PK7aD42Ilt3KfQf3YKv_kHz7ssCBdMIMYQWYjOOPoFp4SORg |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1088_1361_665X_ab083c crossref_primary_10_3389_fmats_2020_602996 crossref_primary_10_1016_j_jsv_2024_118384 crossref_primary_10_1063_5_0057288 crossref_primary_10_1002_adfm_202316745 crossref_primary_10_1016_j_compstruct_2020_112831 crossref_primary_10_1016_j_apm_2023_10_011 crossref_primary_10_1007_s42417_022_00674_x crossref_primary_10_1088_1361_665X_aceba5 crossref_primary_10_1016_j_jsv_2020_115837 crossref_primary_10_1080_17455030_2022_2078013 crossref_primary_10_1088_1361_665X_ad8611 crossref_primary_10_1016_j_jsv_2021_116369 crossref_primary_10_3390_app8091480 crossref_primary_10_1109_TMECH_2020_2966463 crossref_primary_10_1007_s00707_020_02705_8 crossref_primary_10_1016_j_engstruct_2025_120013 crossref_primary_10_1088_1361_665X_adb81c crossref_primary_10_1103_PhysRevApplied_17_L021003 crossref_primary_10_1063_1_5110701 crossref_primary_10_3390_app11115191 crossref_primary_10_1007_s40430_023_04248_0 crossref_primary_10_1177_1045389X211072517 crossref_primary_10_1115_1_4065010 crossref_primary_10_1016_j_buildenv_2022_109531 crossref_primary_10_1016_j_jsv_2021_116139 crossref_primary_10_1038_s41598_022_15453_7 crossref_primary_10_1007_s00707_020_02728_1 crossref_primary_10_1038_s41598_024_66849_6 crossref_primary_10_1016_j_jsv_2021_116374 crossref_primary_10_1103_PhysRevApplied_13_061001 crossref_primary_10_1063_5_0053004 crossref_primary_10_1103_PhysRevApplied_9_014014 crossref_primary_10_1177_10775463221124976 crossref_primary_10_1007_s10853_018_3124_4 crossref_primary_10_3390_app15073464 crossref_primary_10_1063_5_0218118 crossref_primary_10_1063_1_5031168 crossref_primary_10_1016_j_ymssp_2021_108550 crossref_primary_10_1063_1_5005165 crossref_primary_10_1016_j_ijmecsci_2022_107068 crossref_primary_10_1016_j_matdes_2023_112168 crossref_primary_10_1088_1361_665X_ab2f5a crossref_primary_10_1103_PhysRevApplied_23_014028 crossref_primary_10_1016_j_ymssp_2025_112364 crossref_primary_10_1007_s00339_022_06032_8 crossref_primary_10_1016_j_jsv_2024_118472 crossref_primary_10_1088_1361_6463_aaeb68 crossref_primary_10_3390_s19091990 crossref_primary_10_1088_1361_6463_abb5d5 crossref_primary_10_1063_1_5050213 crossref_primary_10_1016_j_ijmecsci_2023_108448 crossref_primary_10_1103_PhysRevB_102_014304 crossref_primary_10_1063_5_0090258 crossref_primary_10_1360_TB_2021_1265 crossref_primary_10_1360_TB_2021_0573 crossref_primary_10_1016_j_jsv_2021_116113 crossref_primary_10_1016_j_jsv_2023_118221 crossref_primary_10_1088_1361_665X_ad1bac crossref_primary_10_1016_j_ijnonlinmec_2022_104035 crossref_primary_10_1016_j_ymssp_2020_106824 crossref_primary_10_1016_j_ymssp_2022_109380 crossref_primary_10_1109_TMECH_2018_2863257 crossref_primary_10_1088_1742_6596_2458_1_012018 crossref_primary_10_1016_j_apm_2024_07_029 crossref_primary_10_1016_j_compstruct_2023_117656 crossref_primary_10_1016_j_jmps_2018_04_005 crossref_primary_10_1007_s42417_023_01034_z crossref_primary_10_1016_j_jsv_2022_117017 crossref_primary_10_1088_1361_665X_ac775d crossref_primary_10_1016_j_jsv_2021_116721 crossref_primary_10_1177_1045389X18778359 crossref_primary_10_1007_s10999_021_09534_0 crossref_primary_10_1088_1361_665X_ac8ef9 crossref_primary_10_1016_j_buildenv_2024_111250 crossref_primary_10_1063_5_0122301 crossref_primary_10_1088_1361_6463_aab97e crossref_primary_10_1177_1077546320980190 crossref_primary_10_1016_j_ijsolstr_2019_08_011 crossref_primary_10_1103_PhysRevApplied_19_064031 crossref_primary_10_1063_5_0183401 crossref_primary_10_1088_1361_665X_ab6693 crossref_primary_10_1088_1361_665X_abc7fa crossref_primary_10_1063_1_5016496 crossref_primary_10_1088_1361_6463_acbd5f crossref_primary_10_1088_1361_665X_acf62f crossref_primary_10_1103_PhysRevB_106_174304 crossref_primary_10_1109_TMECH_2024_3360037 crossref_primary_10_1016_j_apm_2025_116090 crossref_primary_10_1177_1464420721995858 crossref_primary_10_1016_j_tws_2022_110521 crossref_primary_10_1063_5_0042294 crossref_primary_10_1016_j_measurement_2025_116671 crossref_primary_10_1016_j_ijmecsci_2023_108475 crossref_primary_10_1016_j_ymssp_2024_112286 crossref_primary_10_1088_1361_665X_ad9443 crossref_primary_10_1177_10775463211035890 crossref_primary_10_1007_s11012_022_01482_z crossref_primary_10_1177_1045389X19828835 crossref_primary_10_1016_j_ymssp_2018_04_041 crossref_primary_10_1016_j_mechmachtheory_2022_104997 crossref_primary_10_1016_j_ijmecsci_2022_107770 |
Cites_doi | 10.1364/AO.18.000690 10.1063/1.3243169 10.1117/12.275653 10.1177/058310240103300102 10.1177/107754605040949 10.1106/18CE-77K4-DYMG-RKBB 10.1088/0964-1726/10/4/325 10.1063/1.4934202 10.1177/1045389X9400500106 10.1016/0022-460X(91)90762-9 10.1117/12.310680 10.1088/0964-1726/18/2/025009 10.1088/1367-2630/13/11/113010 10.1088/0964-1726/17/3/035015 10.1088/0964-1726/11/3/307 10.1016/S0167-577X(02)00976-X 10.1177/058310249803000301 10.1049/el:20001083 10.1063/1.4963648 10.1126/science.289.5485.1734 10.1063/1.1712020 10.1177/1045389X06055810 10.1088/0964-1726/12/1/303 10.1063/1.3676173 10.1088/0964-1726/19/1/015002 |
ContentType | Journal Article |
Copyright | 2017 IOP Publishing Ltd |
Copyright_xml | – notice: 2017 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/aa6671 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_aa6671 smsaa6671 |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-15-1-0397 funderid: https://doi.org/10.13039/100000181 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c312t-8cd243b0abb8fbc626a19e325ddbc1b515c55d7c83fae7d21bc6f5bd7126ebca3 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Tue Jul 01 03:31:26 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Wed Aug 21 03:40:36 EDT 2024 Thu Jan 07 13:52:43 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-8cd243b0abb8fbc626a19e325ddbc1b515c55d7c83fae7d21bc6f5bd7126ebca3 |
Notes | SMS-104523.R1 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_665X_aa6671 crossref_primary_10_1088_1361_665X_aa6671 iop_journals_10_1088_1361_665X_aa6671 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2017 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Behrens S (10) 2003; 12 23 Jin Y (22) 2014; 47 25 26 27 28 Erturk A (24) 2009; 18 29 Nashif A D (1) 1985 Jones D I (2) 2001 Airoldi L (20) 2011; 13 Den Hartog J P (7) 1956 Ogata K (30) 2009 Casadei F (19) 2010; 19 Tang J (13) 2001; 10 11 14 16 17 18 Corr L R (15) 2002; 11 3 4 5 de Marneffe B (12) 2008; 17 6 8 9 21 |
References_xml | – ident: 5 doi: 10.1364/AO.18.000690 – ident: 28 doi: 10.1063/1.3243169 – ident: 29 doi: 10.1117/12.275653 – ident: 4 doi: 10.1177/058310240103300102 – ident: 11 doi: 10.1177/107754605040949 – ident: 14 doi: 10.1106/18CE-77K4-DYMG-RKBB – volume: 10 start-page: 794 issn: 0964-1726 year: 2001 ident: 13 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/10/4/325 – ident: 23 doi: 10.1063/1.4934202 – ident: 8 doi: 10.1177/1045389X9400500106 – year: 2001 ident: 2 publication-title: Handbook of Viscoelastic Vibration Damping – ident: 6 doi: 10.1016/0022-460X(91)90762-9 – ident: 9 doi: 10.1117/12.310680 – volume: 18 issn: 0964-1726 year: 2009 ident: 24 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/2/025009 – volume: 13 issn: 1367-2630 year: 2011 ident: 20 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/11/113010 – year: 1956 ident: 7 publication-title: Mechanical Vibrations – volume: 17 issn: 0964-1726 year: 2008 ident: 12 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/3/035015 – volume: 11 start-page: 370 issn: 0964-1726 year: 2002 ident: 15 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/11/3/307 – ident: 27 doi: 10.1016/S0167-577X(02)00976-X – ident: 3 doi: 10.1177/058310249803000301 – ident: 25 doi: 10.1049/el:20001083 – volume: 47 issn: 0022-3727 year: 2014 ident: 22 publication-title: J. Phys. D: Appl. Phys. – ident: 18 doi: 10.1063/1.4963648 – ident: 17 doi: 10.1126/science.289.5485.1734 – ident: 26 doi: 10.1063/1.1712020 – ident: 16 doi: 10.1177/1045389X06055810 – volume: 12 start-page: 18 issn: 0964-1726 year: 2003 ident: 10 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/12/1/303 – ident: 21 doi: 10.1063/1.3676173 – year: 1985 ident: 1 publication-title: Vibration Damping – year: 2009 ident: 30 publication-title: Modern Control Engineering – volume: 19 issn: 0964-1726 year: 2010 ident: 19 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/1/015002 |
SSID | ssj0011831 |
Score | 2.5399408 |
Snippet | Locally resonant electromechanical metastructures made from flexible substrates with piezoelectric layers connected to resonant shunt circuits exhibit... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 55029 |
SubjectTerms | bandgap damping electromechanical metamaterials metastructures piezoelectricity vibration |
Title | An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/aa6671 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7SlEJzSBq3Ic-yh_TQw9rSvrwmJ1MS3EIfhxp8KCz7DCGJJLBySH59ZiXZjUsxITcdZkbL7ErzDTvzDUKn1HIag_LEAZ4nPHJKrLGcxMij4QaCvkoNzt9_yMmUf5uJ2QY6W_bClFX36-_DY0sU3LqwK4hTg5zJnEgpZgNjpEz946-ZkjKNL_j689fyCgHOajMubyQ5gSi9uKP8n4WVmPQK3vskxFzsoD-LxbWVJdf9u9r23cM_vI0vXP07tN1BTzxuRXfRRih6aOsJIWEPvWkKQt38PQrjAl_95eAoC1xG3M3MCYC4wQa2pvCXpsLLBkjQwE1wvLnHkMaXqcgGV1fhoWw1Qec21KblrL0DiQ9oenH--8uEdCMZiGM5rYlynnJmM2OtitZBNmTyUWBUeG9dbgEcOSH80CkWTRh6moNMFNYPcypT2RXbQ5tFWYR9hH1iJRBe5spASpY5oziTwkI-FrOYMXeABotN0a7jK09jM250c2-ulE6u1MmVunXlAfq81Kharo41sp9gh3T3wc7XyOEVufntXFOphc4gtaMjXfl4-ExTR-gtTZigqZY8Rpvg63ACiKa2H5uT-wiii_DZ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLZoEagceBRQy3MOcOAwu5nnzh4rYNXyKD1QaW_DPFFFm0Ta7YH-ejxJdmkRqpC45WA7iT2Jbdn-DPCKe8lzMpEGjOepzJJT77ykOcvspEOnb8qA8-dDvX8sP8zVfNhz2s3CNO3w6x_hZQ8U3KtwaIgzYyY0o1qr-dg5rSds3Ma8ATeV0KKA5x98OVqXEfC8divzplpS9NSrOuXfpFzxSxt470tuZnYPvq0esO8u-TE6X_pRuPgDu_E_3uA-3B1CULLXkz-AG6nehjuXgAm34VbXGBoWDyHt1eTkNxZHU5Mmk2F3TsLIG2UQ7-r43bVkPQiJHKRzkqc_CabzTWm2Ie1Jumh6TuQ5S0vXY9eeI8UjOJ69__p2nw6rGWgQjC-pCZFL4Svnvck-YFbk2DQJrmL0gXkMkoJScRKMyC5NImdIk5WPE8Z1ab8Sj2Gzbuq0AyQWdAIVNTMOU7MqOCOFVh7zslzlSoRdGK8MY8OAW17WZ5zarn5ujC3qtEWdtlfnLrxZc7Q9Zsc1tK_RSnb4cBfX0JErdIuzheXaKlthisenFi345B9FvYTbR-9m9tPB4censMVLmNA1UD6DTVR7eo5BztK_6A7yL9bS9j0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+electroelastic+bandgap+formation+in+locally+resonant+piezoelectric+metastructures&rft.jtitle=Smart+materials+and+structures&rft.au=Sugino%2C+C&rft.au=Leadenham%2C+S&rft.au=Ruzzene%2C+M&rft.au=Erturk%2C+A&rft.date=2017-05-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=26&rft.issue=5&rft.spage=55029&rft_id=info:doi/10.1088%2F1361-665X%2Faa6671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_aa6671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |