An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures

Locally resonant electromechanical metastructures made from flexible substrates with piezoelectric layers connected to resonant shunt circuits exhibit vibration attenuation properties similar to those of purely mechanical metastructures. Thus, in analogy, these locally resonant electromechanical met...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 26; no. 5; pp. 55029 - 55038
Main Authors Sugino, C, Leadenham, S, Ruzzene, M, Erturk, A
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Locally resonant electromechanical metastructures made from flexible substrates with piezoelectric layers connected to resonant shunt circuits exhibit vibration attenuation properties similar to those of purely mechanical metastructures. Thus, in analogy, these locally resonant electromechanical metastructures can exhibit electroelastic bandgaps at wavelengths much larger than the lattice size. In order to effectively design such metastructures, the modal behavior of the finite structure with given boundary conditions must be reconciled with the electromechanical behavior of the piezoelectric layers and shunt circuits. To this end, we develop the theory for a piezoelectric bimorph beam with segmented electrodes under transverse vibrations, and extract analytical results for bandgap estimation using modal analysis. Under the assumption of an infinite number of segmented electrodes, the locally resonant bandgap is estimated in closed form and shown to depend only on the target frequency and the system-level electromechanical coupling. It is shown that bandgap formation in piezoelectric metastructures is associated with a frequency-dependent modal stiffness, unlike the frequency-dependent modal mass in mechanical metastructures. The relevant electromechanical coupling term and the normalized bandgap size are calculated for a representative structure and a selection of piezoelectric ceramics and single crystals, revealing that single crystals (e.g. PMN-PT) result in significantly wider bandgap than ceramics (e.g. PZT-5A). Numerical studies are performed to demonstrate that the closed-form bandgap expression derived in this work holds for a finite number of electrode segments. It is shown that the number of electrodes required to create the bandgap increases as the target frequency is increased.
AbstractList Locally resonant electromechanical metastructures made from flexible substrates with piezoelectric layers connected to resonant shunt circuits exhibit vibration attenuation properties similar to those of purely mechanical metastructures. Thus, in analogy, these locally resonant electromechanical metastructures can exhibit electroelastic bandgaps at wavelengths much larger than the lattice size. In order to effectively design such metastructures, the modal behavior of the finite structure with given boundary conditions must be reconciled with the electromechanical behavior of the piezoelectric layers and shunt circuits. To this end, we develop the theory for a piezoelectric bimorph beam with segmented electrodes under transverse vibrations, and extract analytical results for bandgap estimation using modal analysis. Under the assumption of an infinite number of segmented electrodes, the locally resonant bandgap is estimated in closed form and shown to depend only on the target frequency and the system-level electromechanical coupling. It is shown that bandgap formation in piezoelectric metastructures is associated with a frequency-dependent modal stiffness, unlike the frequency-dependent modal mass in mechanical metastructures. The relevant electromechanical coupling term and the normalized bandgap size are calculated for a representative structure and a selection of piezoelectric ceramics and single crystals, revealing that single crystals (e.g. PMN-PT) result in significantly wider bandgap than ceramics (e.g. PZT-5A). Numerical studies are performed to demonstrate that the closed-form bandgap expression derived in this work holds for a finite number of electrode segments. It is shown that the number of electrodes required to create the bandgap increases as the target frequency is increased.
Author Ruzzene, M
Sugino, C
Leadenham, S
Erturk, A
Author_xml – sequence: 1
  givenname: C
  surname: Sugino
  fullname: Sugino, C
  organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta, GA, United States of America
– sequence: 2
  givenname: S
  surname: Leadenham
  fullname: Leadenham, S
  organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta, GA, United States of America
– sequence: 3
  givenname: M
  surname: Ruzzene
  fullname: Ruzzene, M
  organization: Georgia Institute of Technology D. Guggenheim School of Aerospace Engineering, Atlanta, GA, United States of America
– sequence: 4
  givenname: A
  surname: Erturk
  fullname: Erturk, A
  email: alper.erturk@me.gatech.edu
  organization: Georgia Institute of Technology G.W. Woodruff School of Mechanical Engineering, Atlanta, GA, United States of America
BookMark eNp9kEtLAzEURoNUsK3uXWbnxrF5NJnpshRfUHCj4C7kWVKmyZCkQv31Th1xIdLVhY9zLvd-EzAKMVgArjG6w6hpZphyXHHO3mdScl7jMzD-jUZgjBZ8XuGa8AswyXmLEMYNxWNglwH68GFz8RtZfAwwOmhbq0uKtpV9rKGSwWxkB11Mu4HxAbZRy7Y9wGRzDDIU2Hn7GQezd3a29HLa67LviUtw7mSb7dXPnIK3h_vX1VO1fnl8Xi3XlaaYlKrRhsypQlKpxinNCZd4YSlhxiiNFcNMM2Zq3VAnbW0I7hnHlKkx4VZpSaeAD3t1ijkn64T25fvkkqRvBUbiWJY4NiOOzYihrF5Ef8Qu-Z1Mh1PK7aD42Ilt3KfQf3YKv_kHz7ssCBdMIMYQWYjOOPoFp4SORg
CODEN SMSTER
CitedBy_id crossref_primary_10_1088_1361_665X_ab083c
crossref_primary_10_3389_fmats_2020_602996
crossref_primary_10_1016_j_jsv_2024_118384
crossref_primary_10_1063_5_0057288
crossref_primary_10_1002_adfm_202316745
crossref_primary_10_1016_j_compstruct_2020_112831
crossref_primary_10_1016_j_apm_2023_10_011
crossref_primary_10_1007_s42417_022_00674_x
crossref_primary_10_1088_1361_665X_aceba5
crossref_primary_10_1016_j_jsv_2020_115837
crossref_primary_10_1080_17455030_2022_2078013
crossref_primary_10_1088_1361_665X_ad8611
crossref_primary_10_1016_j_jsv_2021_116369
crossref_primary_10_3390_app8091480
crossref_primary_10_1109_TMECH_2020_2966463
crossref_primary_10_1007_s00707_020_02705_8
crossref_primary_10_1016_j_engstruct_2025_120013
crossref_primary_10_1088_1361_665X_adb81c
crossref_primary_10_1103_PhysRevApplied_17_L021003
crossref_primary_10_1063_1_5110701
crossref_primary_10_3390_app11115191
crossref_primary_10_1007_s40430_023_04248_0
crossref_primary_10_1177_1045389X211072517
crossref_primary_10_1115_1_4065010
crossref_primary_10_1016_j_buildenv_2022_109531
crossref_primary_10_1016_j_jsv_2021_116139
crossref_primary_10_1038_s41598_022_15453_7
crossref_primary_10_1007_s00707_020_02728_1
crossref_primary_10_1038_s41598_024_66849_6
crossref_primary_10_1016_j_jsv_2021_116374
crossref_primary_10_1103_PhysRevApplied_13_061001
crossref_primary_10_1063_5_0053004
crossref_primary_10_1103_PhysRevApplied_9_014014
crossref_primary_10_1177_10775463221124976
crossref_primary_10_1007_s10853_018_3124_4
crossref_primary_10_3390_app15073464
crossref_primary_10_1063_5_0218118
crossref_primary_10_1063_1_5031168
crossref_primary_10_1016_j_ymssp_2021_108550
crossref_primary_10_1063_1_5005165
crossref_primary_10_1016_j_ijmecsci_2022_107068
crossref_primary_10_1016_j_matdes_2023_112168
crossref_primary_10_1088_1361_665X_ab2f5a
crossref_primary_10_1103_PhysRevApplied_23_014028
crossref_primary_10_1016_j_ymssp_2025_112364
crossref_primary_10_1007_s00339_022_06032_8
crossref_primary_10_1016_j_jsv_2024_118472
crossref_primary_10_1088_1361_6463_aaeb68
crossref_primary_10_3390_s19091990
crossref_primary_10_1088_1361_6463_abb5d5
crossref_primary_10_1063_1_5050213
crossref_primary_10_1016_j_ijmecsci_2023_108448
crossref_primary_10_1103_PhysRevB_102_014304
crossref_primary_10_1063_5_0090258
crossref_primary_10_1360_TB_2021_1265
crossref_primary_10_1360_TB_2021_0573
crossref_primary_10_1016_j_jsv_2021_116113
crossref_primary_10_1016_j_jsv_2023_118221
crossref_primary_10_1088_1361_665X_ad1bac
crossref_primary_10_1016_j_ijnonlinmec_2022_104035
crossref_primary_10_1016_j_ymssp_2020_106824
crossref_primary_10_1016_j_ymssp_2022_109380
crossref_primary_10_1109_TMECH_2018_2863257
crossref_primary_10_1088_1742_6596_2458_1_012018
crossref_primary_10_1016_j_apm_2024_07_029
crossref_primary_10_1016_j_compstruct_2023_117656
crossref_primary_10_1016_j_jmps_2018_04_005
crossref_primary_10_1007_s42417_023_01034_z
crossref_primary_10_1016_j_jsv_2022_117017
crossref_primary_10_1088_1361_665X_ac775d
crossref_primary_10_1016_j_jsv_2021_116721
crossref_primary_10_1177_1045389X18778359
crossref_primary_10_1007_s10999_021_09534_0
crossref_primary_10_1088_1361_665X_ac8ef9
crossref_primary_10_1016_j_buildenv_2024_111250
crossref_primary_10_1063_5_0122301
crossref_primary_10_1088_1361_6463_aab97e
crossref_primary_10_1177_1077546320980190
crossref_primary_10_1016_j_ijsolstr_2019_08_011
crossref_primary_10_1103_PhysRevApplied_19_064031
crossref_primary_10_1063_5_0183401
crossref_primary_10_1088_1361_665X_ab6693
crossref_primary_10_1088_1361_665X_abc7fa
crossref_primary_10_1063_1_5016496
crossref_primary_10_1088_1361_6463_acbd5f
crossref_primary_10_1088_1361_665X_acf62f
crossref_primary_10_1103_PhysRevB_106_174304
crossref_primary_10_1109_TMECH_2024_3360037
crossref_primary_10_1016_j_apm_2025_116090
crossref_primary_10_1177_1464420721995858
crossref_primary_10_1016_j_tws_2022_110521
crossref_primary_10_1063_5_0042294
crossref_primary_10_1016_j_measurement_2025_116671
crossref_primary_10_1016_j_ijmecsci_2023_108475
crossref_primary_10_1016_j_ymssp_2024_112286
crossref_primary_10_1088_1361_665X_ad9443
crossref_primary_10_1177_10775463211035890
crossref_primary_10_1007_s11012_022_01482_z
crossref_primary_10_1177_1045389X19828835
crossref_primary_10_1016_j_ymssp_2018_04_041
crossref_primary_10_1016_j_mechmachtheory_2022_104997
crossref_primary_10_1016_j_ijmecsci_2022_107770
Cites_doi 10.1364/AO.18.000690
10.1063/1.3243169
10.1117/12.275653
10.1177/058310240103300102
10.1177/107754605040949
10.1106/18CE-77K4-DYMG-RKBB
10.1088/0964-1726/10/4/325
10.1063/1.4934202
10.1177/1045389X9400500106
10.1016/0022-460X(91)90762-9
10.1117/12.310680
10.1088/0964-1726/18/2/025009
10.1088/1367-2630/13/11/113010
10.1088/0964-1726/17/3/035015
10.1088/0964-1726/11/3/307
10.1016/S0167-577X(02)00976-X
10.1177/058310249803000301
10.1049/el:20001083
10.1063/1.4963648
10.1126/science.289.5485.1734
10.1063/1.1712020
10.1177/1045389X06055810
10.1088/0964-1726/12/1/303
10.1063/1.3676173
10.1088/0964-1726/19/1/015002
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/aa6671
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_aa6671
smsaa6671
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA9550-15-1-0397
  funderid: https://doi.org/10.13039/100000181
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c312t-8cd243b0abb8fbc626a19e325ddbc1b515c55d7c83fae7d21bc6f5bd7126ebca3
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Tue Jul 01 03:31:26 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Wed Aug 21 03:40:36 EDT 2024
Thu Jan 07 13:52:43 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-8cd243b0abb8fbc626a19e325ddbc1b515c55d7c83fae7d21bc6f5bd7126ebca3
Notes SMS-104523.R1
PageCount 10
ParticipantIDs crossref_citationtrail_10_1088_1361_665X_aa6671
crossref_primary_10_1088_1361_665X_aa6671
iop_journals_10_1088_1361_665X_aa6671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Behrens S (10) 2003; 12
23
Jin Y (22) 2014; 47
25
26
27
28
Erturk A (24) 2009; 18
29
Nashif A D (1) 1985
Jones D I (2) 2001
Airoldi L (20) 2011; 13
Den Hartog J P (7) 1956
Ogata K (30) 2009
Casadei F (19) 2010; 19
Tang J (13) 2001; 10
11
14
16
17
18
Corr L R (15) 2002; 11
3
4
5
de Marneffe B (12) 2008; 17
6
8
9
21
References_xml – ident: 5
  doi: 10.1364/AO.18.000690
– ident: 28
  doi: 10.1063/1.3243169
– ident: 29
  doi: 10.1117/12.275653
– ident: 4
  doi: 10.1177/058310240103300102
– ident: 11
  doi: 10.1177/107754605040949
– ident: 14
  doi: 10.1106/18CE-77K4-DYMG-RKBB
– volume: 10
  start-page: 794
  issn: 0964-1726
  year: 2001
  ident: 13
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/4/325
– ident: 23
  doi: 10.1063/1.4934202
– ident: 8
  doi: 10.1177/1045389X9400500106
– year: 2001
  ident: 2
  publication-title: Handbook of Viscoelastic Vibration Damping
– ident: 6
  doi: 10.1016/0022-460X(91)90762-9
– ident: 9
  doi: 10.1117/12.310680
– volume: 18
  issn: 0964-1726
  year: 2009
  ident: 24
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/2/025009
– volume: 13
  issn: 1367-2630
  year: 2011
  ident: 20
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/11/113010
– year: 1956
  ident: 7
  publication-title: Mechanical Vibrations
– volume: 17
  issn: 0964-1726
  year: 2008
  ident: 12
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/3/035015
– volume: 11
  start-page: 370
  issn: 0964-1726
  year: 2002
  ident: 15
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/11/3/307
– ident: 27
  doi: 10.1016/S0167-577X(02)00976-X
– ident: 3
  doi: 10.1177/058310249803000301
– ident: 25
  doi: 10.1049/el:20001083
– volume: 47
  issn: 0022-3727
  year: 2014
  ident: 22
  publication-title: J. Phys. D: Appl. Phys.
– ident: 18
  doi: 10.1063/1.4963648
– ident: 17
  doi: 10.1126/science.289.5485.1734
– ident: 26
  doi: 10.1063/1.1712020
– ident: 16
  doi: 10.1177/1045389X06055810
– volume: 12
  start-page: 18
  issn: 0964-1726
  year: 2003
  ident: 10
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/12/1/303
– ident: 21
  doi: 10.1063/1.3676173
– year: 1985
  ident: 1
  publication-title: Vibration Damping
– year: 2009
  ident: 30
  publication-title: Modern Control Engineering
– volume: 19
  issn: 0964-1726
  year: 2010
  ident: 19
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/1/015002
SSID ssj0011831
Score 2.5399408
Snippet Locally resonant electromechanical metastructures made from flexible substrates with piezoelectric layers connected to resonant shunt circuits exhibit...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 55029
SubjectTerms bandgap
damping
electromechanical
metamaterials
metastructures
piezoelectricity
vibration
Title An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures
URI https://iopscience.iop.org/article/10.1088/1361-665X/aa6671
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7SlEJzSBq3Ic-yh_TQw9rSvrwmJ1MS3EIfhxp8KCz7DCGJJLBySH59ZiXZjUsxITcdZkbL7ErzDTvzDUKn1HIag_LEAZ4nPHJKrLGcxMij4QaCvkoNzt9_yMmUf5uJ2QY6W_bClFX36-_DY0sU3LqwK4hTg5zJnEgpZgNjpEz946-ZkjKNL_j689fyCgHOajMubyQ5gSi9uKP8n4WVmPQK3vskxFzsoD-LxbWVJdf9u9r23cM_vI0vXP07tN1BTzxuRXfRRih6aOsJIWEPvWkKQt38PQrjAl_95eAoC1xG3M3MCYC4wQa2pvCXpsLLBkjQwE1wvLnHkMaXqcgGV1fhoWw1Qec21KblrL0DiQ9oenH--8uEdCMZiGM5rYlynnJmM2OtitZBNmTyUWBUeG9dbgEcOSH80CkWTRh6moNMFNYPcypT2RXbQ5tFWYR9hH1iJRBe5spASpY5oziTwkI-FrOYMXeABotN0a7jK09jM250c2-ulE6u1MmVunXlAfq81Kharo41sp9gh3T3wc7XyOEVufntXFOphc4gtaMjXfl4-ExTR-gtTZigqZY8Rpvg63ACiKa2H5uT-wiii_DZ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLZoEagceBRQy3MOcOAwu5nnzh4rYNXyKD1QaW_DPFFFm0Ta7YH-ejxJdmkRqpC45WA7iT2Jbdn-DPCKe8lzMpEGjOepzJJT77ykOcvspEOnb8qA8-dDvX8sP8zVfNhz2s3CNO3w6x_hZQ8U3KtwaIgzYyY0o1qr-dg5rSds3Ma8ATeV0KKA5x98OVqXEfC8divzplpS9NSrOuXfpFzxSxt470tuZnYPvq0esO8u-TE6X_pRuPgDu_E_3uA-3B1CULLXkz-AG6nehjuXgAm34VbXGBoWDyHt1eTkNxZHU5Mmk2F3TsLIG2UQ7-r43bVkPQiJHKRzkqc_CabzTWm2Ie1Jumh6TuQ5S0vXY9eeI8UjOJ69__p2nw6rGWgQjC-pCZFL4Svnvck-YFbk2DQJrmL0gXkMkoJScRKMyC5NImdIk5WPE8Z1ab8Sj2Gzbuq0AyQWdAIVNTMOU7MqOCOFVh7zslzlSoRdGK8MY8OAW17WZ5zarn5ujC3qtEWdtlfnLrxZc7Q9Zsc1tK_RSnb4cBfX0JErdIuzheXaKlthisenFi345B9FvYTbR-9m9tPB4censMVLmNA1UD6DTVR7eo5BztK_6A7yL9bS9j0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+electroelastic+bandgap+formation+in+locally+resonant+piezoelectric+metastructures&rft.jtitle=Smart+materials+and+structures&rft.au=Sugino%2C+C&rft.au=Leadenham%2C+S&rft.au=Ruzzene%2C+M&rft.au=Erturk%2C+A&rft.date=2017-05-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=26&rft.issue=5&rft.spage=55029&rft_id=info:doi/10.1088%2F1361-665X%2Faa6671&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_aa6671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon