Shape memory performance of PETG 4D printed parts under compression in cold, warm, and hot programming
The main novelty of this paper is the use of poly-ethylene terephthalate glycol (PETG) as a new shape memory polymer with excellent shape memory effect (SME) and printability. In addition, for the first time, the effect of programming temperature on PETG 4D printed samples has been studied. The amor...
Saved in:
Published in | Smart materials and structures Vol. 31; no. 8; pp. 85002 - 85011 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main novelty of this paper is the use of poly-ethylene terephthalate glycol (PETG) as a new shape memory polymer with excellent shape memory effect (SME) and printability. In addition, for the first time, the effect of programming temperature on PETG 4D printed samples has been studied. The amorphous nature of the PETG necessitates that molecular entanglements function as net points, which makes the role of programming temperature critical. SME comprehensively was conducted under compression loading for three programming conditions as well as various pre-strains. Significant results were obtained that summarized the gross differences exhibiting that the hot, cold, and warm programmed samples had the highest shape fixity, shape recovery, and stress recovery, respectively. The recovery and fixity ratios fell and rose, respectively, as the programming temperature increased. This effect intensified in hot programmed samples as the applied strain (loading time) expanded. So, the recovery ratio dropped from 68% to 50% by raising the pre-strain from 20% to 80%. The maximum stress recovery was 16 MPa, suggesting the fantastic benefit of warm programming conditions in PETG 4D printed parts. The locking mechanism (recovery force storage) for cold and hot programming is quite different. The dominant mechanism in cold programming is increasing internal energy by potential energy level enhancement. Contrary to this, in hot programming, the entropy reduction applies to the majority of the molecular segments, playing this role. By cooling, the state of the material changes from rubbery to glassy, and with this phase change, the oriented conformation of the deformed polymer chains is maintained under deformation. The results of this research can be used for various applications that require high shape fixity, recovery, or stress recovery. |
---|---|
AbstractList | The main novelty of this paper is the use of poly-ethylene terephthalate glycol (PETG) as a new shape memory polymer with excellent shape memory effect (SME) and printability. In addition, for the first time, the effect of programming temperature on PETG 4D printed samples has been studied. The amorphous nature of the PETG necessitates that molecular entanglements function as net points, which makes the role of programming temperature critical. SME comprehensively was conducted under compression loading for three programming conditions as well as various pre-strains. Significant results were obtained that summarized the gross differences exhibiting that the hot, cold, and warm programmed samples had the highest shape fixity, shape recovery, and stress recovery, respectively. The recovery and fixity ratios fell and rose, respectively, as the programming temperature increased. This effect intensified in hot programmed samples as the applied strain (loading time) expanded. So, the recovery ratio dropped from 68% to 50% by raising the pre-strain from 20% to 80%. The maximum stress recovery was 16 MPa, suggesting the fantastic benefit of warm programming conditions in PETG 4D printed parts. The locking mechanism (recovery force storage) for cold and hot programming is quite different. The dominant mechanism in cold programming is increasing internal energy by potential energy level enhancement. Contrary to this, in hot programming, the entropy reduction applies to the majority of the molecular segments, playing this role. By cooling, the state of the material changes from rubbery to glassy, and with this phase change, the oriented conformation of the deformed polymer chains is maintained under deformation. The results of this research can be used for various applications that require high shape fixity, recovery, or stress recovery. |
Author | Soltanmohammadi, K Soleyman, E Ghasemi, I Wang, K Abrinia, K Rahmatabadi, D Aberoumand, M Baniassadi, M Baghani, M |
Author_xml | – sequence: 1 givenname: E surname: Soleyman fullname: Soleyman, E organization: School of Mechanical Engineering, College of Engineering, University of Tehran , Tehran, Iran – sequence: 2 givenname: D surname: Rahmatabadi fullname: Rahmatabadi, D organization: School of Mechanical Engineering, College of Engineering, University of Tehran , Tehran, Iran – sequence: 3 givenname: K surname: Soltanmohammadi fullname: Soltanmohammadi, K organization: School of Mechanical Engineering, College of Engineering, University of Tehran , Tehran, Iran – sequence: 4 givenname: M surname: Aberoumand fullname: Aberoumand, M organization: School of Mechanical Engineering, College of Engineering, University of Tehran , Tehran, Iran – sequence: 5 givenname: I surname: Ghasemi fullname: Ghasemi, I organization: Iran Polymer and Petrochemical Institute Faculty of Processing, Tehran, Iran – sequence: 6 givenname: K surname: Abrinia fullname: Abrinia, K organization: School of Mechanical Engineering, College of Engineering, University of Tehran , Tehran, Iran – sequence: 7 givenname: M orcidid: 0000-0002-4434-082X surname: Baniassadi fullname: Baniassadi, M organization: School of Mechanical Engineering, College of Engineering, University of Tehran , Tehran, Iran – sequence: 8 givenname: K surname: Wang fullname: Wang, K organization: Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University , Changsha, People’s Republic of China – sequence: 9 givenname: M orcidid: 0000-0001-6695-3128 surname: Baghani fullname: Baghani, M organization: School of Mechanical Engineering, College of Engineering, University of Tehran , Tehran, Iran |
BookMark | eNp9kM1LAzEQxYNUsK3ePebmpWuTTTabPUqtVSgoWMFbyOaj3dIkS7JF-t-7peJB1NMww_s95r0RGPjgDQDXGN1ixPkUE4Yzxor3qVRlqeozMPw-DcAQVYxmuMzZBRiltEUIY07wENjXjWwNdMaFeICtiTZEJ70yMFj4Ml8tIL2HbWx8ZzRsZewS3HttIlTBtdGk1AQPG9-vOz2BHzK6CZRew03oeiyso3Su8etLcG7lLpmrrzkGbw_z1ewxWz4vnmZ3y0wRnHcZ55WqJCqM5rSSNdUlrnVpqZS84oyYgiCkKFPcMqIsrSU2LK-pzWvNtWGKjAE6-aoYUorGiv53J-NBYCSOPYljKeJYijj11CPsB6KaTnZ9ri7KZvcfeHMCm9CKbdhH3ycTySVBsOAC8QKhXLTa9srJL8o_jT8BPCKM3A |
CODEN | SMSTER |
CitedBy_id | crossref_primary_10_1002_mame_202200677 crossref_primary_10_3390_polym16111567 crossref_primary_10_1016_j_apmt_2024_102361 crossref_primary_10_3390_polym16111526 crossref_primary_10_1016_j_eurpolymj_2024_112861 crossref_primary_10_3390_polym15143029 crossref_primary_10_3390_polym15183722 crossref_primary_10_1016_j_matchemphys_2024_129737 crossref_primary_10_3390_ma16196486 crossref_primary_10_3390_pr12020334 crossref_primary_10_1007_s42114_024_00943_1 crossref_primary_10_1007_s40964_025_00989_7 crossref_primary_10_3390_polym15061371 crossref_primary_10_1016_j_compositesa_2023_107529 crossref_primary_10_1088_2631_7990_ad7e5f crossref_primary_10_3390_su15032227 crossref_primary_10_1177_09544054241245468 crossref_primary_10_1016_j_polymertesting_2025_108708 crossref_primary_10_1016_j_sna_2023_114572 crossref_primary_10_3390_polym14225029 crossref_primary_10_1016_j_matpr_2023_02_038 crossref_primary_10_1007_s10853_024_09862_4 crossref_primary_10_1007_s40964_022_00368_6 crossref_primary_10_3390_polym15051138 crossref_primary_10_1088_1361_665X_ad8aac crossref_primary_10_1088_1402_4896_ad1957 crossref_primary_10_1080_29963176_2024_2396847 crossref_primary_10_3390_polym15102378 crossref_primary_10_1007_s00161_024_01328_x crossref_primary_10_1016_j_mechmat_2024_105230 crossref_primary_10_1002_adem_202201309 crossref_primary_10_1021_acs_macromol_4c01449 crossref_primary_10_3390_polym15214204 crossref_primary_10_1002_mame_202400038 crossref_primary_10_3390_ma16134574 crossref_primary_10_3390_polym15030640 crossref_primary_10_1016_j_eurpolymj_2025_113735 crossref_primary_10_1177_07316844231215392 crossref_primary_10_3390_polym14225017 crossref_primary_10_1016_j_mtchem_2023_101790 crossref_primary_10_1016_j_compositesa_2024_108165 crossref_primary_10_1080_17452759_2024_2372620 crossref_primary_10_1016_j_mfglet_2024_11_005 crossref_primary_10_1002_mame_202400069 crossref_primary_10_3390_polym15102268 crossref_primary_10_3390_polym16172460 crossref_primary_10_1016_j_matdes_2023_112163 crossref_primary_10_3390_polym16141965 crossref_primary_10_3390_ma16145186 crossref_primary_10_1007_s00170_023_11571_2 crossref_primary_10_1080_17452759_2024_2345774 crossref_primary_10_1002_mame_202300114 crossref_primary_10_1016_j_jare_2023_11_031 crossref_primary_10_1016_j_eurpolymj_2023_112711 crossref_primary_10_1098_rsta_2023_0366 crossref_primary_10_1177_1045389X231167797 crossref_primary_10_1098_rsta_2023_0369 crossref_primary_10_1002_adem_202400301 crossref_primary_10_1016_j_ijmecsci_2022_108029 crossref_primary_10_1016_j_matdes_2023_112574 crossref_primary_10_1016_j_compositesb_2022_110382 crossref_primary_10_3390_polym15020390 crossref_primary_10_3390_ma18061203 crossref_primary_10_3390_polym15081893 |
Cites_doi | 10.1016/S0014-3057(98)00081-0 10.1007/s12221-020-9882-z 10.3390/ma12081353 10.1016/j.polymertesting.2018.04.032 10.1021/ma034660a 10.1007/s00707-010-0349-y 10.1002/polb.24041 10.1088/1361-665X/ac1b3b 10.1016/j.polymertesting.2018.03.050 10.1088/1361-665X/ab9989 10.1016/j.polymer.2020.122683 10.1088/1361-665X/ab0b6b 10.1002/app.28385 10.1016/0032-3861(94)90058-2 10.1016/j.compscitech.2008.08.016 10.1007/s10924-019-01544-6 10.1088/0964-1726/25/10/105034 10.1016/j.polymer.2009.01.032 10.1039/C5RA09252C 10.3390/polym12123045 10.1002/polb.23916 10.1080/17452759.2018.1518016 10.1088/1361-665X/aabc2a 10.1080/17452759.2015.1097054 10.1016/j.matpr.2019.06.082 10.33263/BRIAC106.65776586 10.1016/j.ijplas.2013.11.007 10.1002/pen.23873 10.3389/fmats.2020.00104 10.1002/pen.24861 10.1002/pola.20460 10.1088/2053-1591/ab44f6 10.1088/1361-665X/ab3246 10.1088/0953-8984/5/40/025 10.1016/j.eurpolymj.2021.110708 10.1002/app.42903 10.1021/acs.macromol.9b01161 10.1016/j.jmps.2011.03.001 10.1039/c0sm00236d 10.1002/adfm.201002579 10.1016/j.compositesb.2018.07.053 10.1021/bm049477j 10.1007/s10965-013-0140-6 10.1016/j.compscitech.2017.01.020 10.1088/1361-665X/aa95ec 10.1021/am505937p 10.1038/nature08863 |
ContentType | Journal Article |
Copyright | 2022 IOP Publishing Ltd |
Copyright_xml | – notice: 2022 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-665X/ac77cb |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-665X |
ExternalDocumentID | 10_1088_1361_665X_ac77cb smsac77cb |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c312t-889c9a05ed849ab4d71bd7f4aa89863e5300c46c8f63cf4ba1e62b4f2bd8de6c3 |
IEDL.DBID | IOP |
ISSN | 0964-1726 |
IngestDate | Thu Apr 24 22:52:51 EDT 2025 Tue Jul 01 03:38:48 EDT 2025 Wed Aug 21 03:35:00 EDT 2024 Wed Jun 07 11:19:06 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-889c9a05ed849ab4d71bd7f4aa89863e5300c46c8f63cf4ba1e62b4f2bd8de6c3 |
Notes | SMS-113779.R1 |
ORCID | 0000-0001-6695-3128 0000-0002-4434-082X |
PageCount | 10 |
ParticipantIDs | iop_journals_10_1088_1361_665X_ac77cb crossref_citationtrail_10_1088_1361_665X_ac77cb crossref_primary_10_1088_1361_665X_ac77cb |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Smart materials and structures |
PublicationTitleAbbrev | SMS |
PublicationTitleAlternate | Smart Mater. Struct |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Lin (smsac77cbbib21) 2014; 6 Turner (smsac77cbbib33) 2004; 42 Khoo (smsac77cbbib3) 2015; 10 Hu (smsac77cbbib11) 2017; 26 Aberoumand (smsac77cbbib6) 2021 Sun (smsac77cbbib36) 1999; 35 Zhang (smsac77cbbib25) 2009; 50 Bodaghi (smsac77cbbib44) 2018; 27 Latko-Durałek (smsac77cbbib37) 2019; 27 Li (smsac77cbbib13) 2011; 59 Jeong (smsac77cbbib48) 2020; 202 Abuzaid (smsac77cbbib30) 2018; 68 Rajkumar (smsac77cbbib23) 2017 Chen (smsac77cbbib31) 2015; 5 O’connor (smsac77cbbib47) 2019; 52 Xie (smsac77cbbib50) 2011; 21 Ansari (smsac77cbbib14) 2018; 68 Cianci (smsac77cbbib38) 2020; 7 Bodaghi (smsac77cbbib29) 2019; 28 Gardan (smsac77cbbib5) 2019; 14 Roudbarian (smsac77cbbib18) 2021; 30 Lai (smsac77cbbib24) 2013; 20 Bouvard (smsac77cbbib46) 2010; 213 Liu (smsac77cbbib12) 2009; 69 Aminzadeh (smsac77cbbib40) 2021 Alshebly (smsac77cbbib10) 2021; 159 Wang (smsac77cbbib45) 1993; 5 Yoo (smsac77cbbib35) 1994; 35 Hassan (smsac77cbbib39) 2020; 12 Collins (smsac77cbbib51) 2016; 133 Abishera (smsac77cbbib22) 2017; 141 Lee (smsac77cbbib32) 2003; 36 Xie (smsac77cbbib16) 2010; 464 Zhang (smsac77cbbib20) 2016; 54 Nguyen (smsac77cbbib4) 2020; 21 Horst (smsac77cbbib42) 2020; 10 Abedi (smsac77cbbib8) 2019; 6 Ferry (smsac77cbbib49) 1980 Ping (smsac77cbbib27) 2005; 6 Jatin (smsac77cbbib43) 2014; 56 Jing (smsac77cbbib26) 2015; 55 Bodaghi (smsac77cbbib9) 2019; 12 Li (smsac77cbbib15) 2016; 54 Melly (smsac77cbbib1) 2020; 29 Roudbarian (smsac77cbbib19) 2019; 28 Tsai (smsac77cbbib34) 2008; 109 Bodaghi (smsac77cbbib2) 2016; 25 Durgashyam (smsac77cbbib41) 2019; 18 Sun (smsac77cbbib17) 2010; 6 Liu (smsac77cbbib28) 2018; 153 Rahmatabadi (smsac77cbbib7) 2021 |
References_xml | – start-page: p 672 year: 1980 ident: smsac77cbbib49 – volume: 35 start-page: 1087 year: 1999 ident: smsac77cbbib36 article-title: Preparation and characterization of poly(ethylene-1,4-cyclohexanedimethylene arylate) publication-title: Eur. Polym. J. doi: 10.1016/S0014-3057(98)00081-0 – volume: 21 start-page: 2364 year: 2020 ident: smsac77cbbib4 article-title: 4D-printing—fused deposition modeling printing and polyjet printing with shape memory polymers composite publication-title: Fibers Polym. doi: 10.1007/s12221-020-9882-z – volume: 12 start-page: 1353 year: 2019 ident: smsac77cbbib9 article-title: 4D printing self-morphing structures publication-title: Materials doi: 10.3390/ma12081353 – volume: 68 start-page: 424 year: 2018 ident: smsac77cbbib14 article-title: Shape memory characterization of poly(ϵ-caprolactone) (PCL)/polyurethane (PU) in combined torsion-tension loading with potential applications in cardiovascular stent publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.04.032 – volume: 36 start-page: 6791 year: 2003 ident: smsac77cbbib32 article-title: Temperature-dependent transition of deformation mode in poly(1,4-cyclohexylenedimethylene terephthalate)/poly(ethylene terephthalate) copolymers publication-title: Macromolecules doi: 10.1021/ma034660a – volume: 213 start-page: 71 year: 2010 ident: smsac77cbbib46 article-title: A general inelastic internal state variable model for amorphous glassy polymers publication-title: Acta Mech. doi: 10.1007/s00707-010-0349-y – volume: 54 start-page: 1319 year: 2016 ident: smsac77cbbib15 article-title: Cold, warm, and hot programming of shape memory polymers publication-title: J. Polym. Sci. B doi: 10.1002/polb.24041 – volume: 30 year: 2021 ident: smsac77cbbib18 article-title: Enhancing shape memory properties of multi-layered and multi-material polymer composites in 4D printing publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ac1b3b – volume: 68 start-page: 100 year: 2018 ident: smsac77cbbib30 article-title: Experimental analysis of heterogeneous shape recovery in 4D printed honeycomb structures publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.03.050 – volume: 29 year: 2020 ident: smsac77cbbib1 article-title: On 4D printing as a revolutionary fabrication technique for smart structures publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab9989 – volume: 202 year: 2020 ident: smsac77cbbib48 article-title: Molecular process of stress relaxation for sheared polymer melts publication-title: Polymer doi: 10.1016/j.polymer.2020.122683 – volume: 28 year: 2019 ident: smsac77cbbib29 article-title: 4D printed tunable mechanical metamaterials with shape memory operations publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab0b6b – volume: 109 start-page: 2598 year: 2008 ident: smsac77cbbib34 article-title: Amorphous copolyesters based on 1,3/1,4-cyclohexanedimethanol: synthesis, characterization and properties publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.28385 – volume: 35 start-page: 117 year: 1994 ident: smsac77cbbib35 article-title: Co-crystallization behaviour and melting-point depression in poly(ethylene terephthalate-co-1,4-cyclohexylene dimethylene terephthalate) random copolyesters publication-title: Polymer doi: 10.1016/0032-3861(94)90058-2 – volume: 69 start-page: 2064 year: 2009 ident: smsac77cbbib12 article-title: Review of electro-active shape-memory polymer composite publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2008.08.016 – start-page: 377 year: 2021 ident: smsac77cbbib6 – volume: 27 start-page: 2600 year: 2019 ident: smsac77cbbib37 article-title: Thermal, rheological and mechanical properties of PETG/rPETG blends publication-title: J. Polym. Environ. doi: 10.1007/s10924-019-01544-6 – start-page: 131 year: 2021 ident: smsac77cbbib7 – volume: 25 year: 2016 ident: smsac77cbbib2 article-title: Self-expanding/shrinking structures by 4D printing publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/10/105034 – volume: 50 start-page: 1311 year: 2009 ident: smsac77cbbib25 article-title: Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer publication-title: Polymer doi: 10.1016/j.polymer.2009.01.032 – volume: 5 start-page: 60570 year: 2015 ident: smsac77cbbib31 article-title: Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) random copolymers: effect of copolymer composition and microstructure on the thermal properties and crystallization behavior publication-title: RSC Adv. doi: 10.1039/C5RA09252C – volume: 12 start-page: 3045 year: 2020 ident: smsac77cbbib39 article-title: The potential of polyethylene terephthalate glycol as biomaterial for bone tissue engineering publication-title: Polymers doi: 10.3390/polym12123045 – volume: 54 start-page: 1295 year: 2016 ident: smsac77cbbib20 article-title: Reversible plasticity shape memory polymers: key factors and applications publication-title: J. Polym. Sci. B doi: 10.1002/polb.23916 – volume: 14 start-page: 1 year: 2019 ident: smsac77cbbib5 article-title: Smart materials in additive manufacturing: state of the art and trends publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2018.1518016 – volume: 27 year: 2018 ident: smsac77cbbib44 article-title: Triple shape memory polymers by 4D printing publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aabc2a – volume: 10 start-page: 103 year: 2015 ident: smsac77cbbib3 article-title: 3D printing of smart materials: a review on recent progresses in 4D printing publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2015.1097054 – volume: 18 start-page: 2052 year: 2019 ident: smsac77cbbib41 article-title: Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2019.06.082 – volume: 10 start-page: 6577 year: 2020 ident: smsac77cbbib42 article-title: Fabrication of conductive filaments for 3D-printing: polymer nanocomposites publication-title: Biointerface Res. Appl. Chem. doi: 10.33263/BRIAC106.65776586 – volume: 56 start-page: 139 year: 2014 ident: smsac77cbbib43 article-title: Investigations into the origins of plastic flow and strain hardening in amorphous glassy polymers publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.11.007 – volume: 55 start-page: 70 year: 2015 ident: smsac77cbbib26 article-title: The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends publication-title: Polym. Eng. Sci. doi: 10.1002/pen.23873 – volume: 7 start-page: 104 year: 2020 ident: smsac77cbbib38 article-title: Mechanical behavior of PET-G tooth aligners under cyclic loading publication-title: Front. Mater. doi: 10.3389/fmats.2020.00104 – start-page: 387 year: 2017 ident: smsac77cbbib23 article-title: Reversible plasticity shape-memory effect in epoxy nanocomposites: experiments, modeling and predictions publication-title: Advanced Structured Materials doi: 10.1002/pen.24861 – volume: 42 start-page: 5847 year: 2004 ident: smsac77cbbib33 article-title: Development of amorphous copolyesters based on 1,4-cyclohexanedimethanol publication-title: J. Polym. Sci. A doi: 10.1002/pola.20460 – volume: 6 year: 2019 ident: smsac77cbbib8 article-title: The high temperature flow behavior of additively manufactured Inconel 625 superalloy publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab44f6 – volume: 28 year: 2019 ident: smsac77cbbib19 article-title: An experimental investigation on structural design of shape memory polymers publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab3246 – volume: 5 start-page: 7515 year: 1993 ident: smsac77cbbib45 article-title: Effects of deformation on the microstructure of PTFE polymer studied by positron annihilation publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/5/40/025 – volume: 159 year: 2021 ident: smsac77cbbib10 article-title: Review on recent advances in 4D printing of shape memory polymers publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2021.110708 – start-page: 483 year: 2021 ident: smsac77cbbib40 – volume: 133 year: 2016 ident: smsac77cbbib51 article-title: Shape-memory behavior of high-strength amorphous thermoplastic poly(para-phenylene) publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.42903 – volume: 52 start-page: 8540 year: 2019 ident: smsac77cbbib47 article-title: Stress relaxation in highly oriented melts of entangled polymers publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01161 – volume: 59 start-page: 1231 year: 2011 ident: smsac77cbbib13 article-title: Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: testing and constitutive modeling publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2011.03.001 – volume: 6 start-page: 4403 year: 2010 ident: smsac77cbbib17 article-title: Mechanisms of the multi-shape memory effect and temperature memory effect in shape memorypolymers publication-title: Soft Matter doi: 10.1039/c0sm00236d – volume: 21 start-page: 2057 year: 2011 ident: smsac77cbbib50 article-title: Strain-based temperature memory effect for nafion and its molecular origins publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002579 – volume: 153 start-page: 233 year: 2018 ident: smsac77cbbib28 article-title: Shape memory behavior and recovery force of 4D printed laminated Miura-origami structures subjected to compressive loading publication-title: Composites B doi: 10.1016/j.compositesb.2018.07.053 – volume: 6 start-page: 587 year: 2005 ident: smsac77cbbib27 article-title: Poly(ϵ-caprolactone) polyurethane and its shape-memory property publication-title: Biomacromolecules doi: 10.1021/bm049477j – volume: 20 start-page: 140 year: 2013 ident: smsac77cbbib24 article-title: Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends publication-title: J. Polym. Res. doi: 10.1007/s10965-013-0140-6 – volume: 141 start-page: 145 year: 2017 ident: smsac77cbbib22 article-title: Reversible plasticity shape memory effect in epoxy/CNT nanocomposites—a theoretical study publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.01.020 – volume: 26 year: 2017 ident: smsac77cbbib11 article-title: Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa95ec – volume: 6 start-page: 21060 year: 2014 ident: smsac77cbbib21 article-title: New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505937p – volume: 464 start-page: 267 year: 2010 ident: smsac77cbbib16 article-title: Tunable polymer multi-shape memory effect publication-title: Nature doi: 10.1038/nature08863 |
SSID | ssj0011831 |
Score | 2.5979276 |
Snippet | The main novelty of this paper is the use of poly-ethylene terephthalate glycol (PETG) as a new shape memory polymer with excellent shape memory effect (SME)... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 85002 |
SubjectTerms | 4D printing cold programming PETG programming temperature effect shape memory effect stress recovery |
Title | Shape memory performance of PETG 4D printed parts under compression in cold, warm, and hot programming |
URI | https://iopscience.iop.org/article/10.1088/1361-665X/ac77cb |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6sKwV9qHe02nIe9KFgdpPM7GRCn4qXiuAFqrAPhWFuQdHNhk1E2l_vTJJdtRSRviVwMiecmcw55HzfNwC7KbdJ5tk9xnPQqLVpIF1h4tuFLuETapJau_PsnJ1c09PhYNiBbzMuzLhot_6eu2yEgpsQtoA43o8IiwLGBsO-1Emi1RzME-4Sp2fvXVzOWghurdbH5aWMBi5LT3uU_xrhVU6ac35fpJjjJfg1fbkGWXLXe6hUT__5S7fxP99-GT62pSd-b0xXoGPzVVh8IUi4Ch9qQKgu1yD7eSMLiyMPxP2NxTO9AMcZXh5d_UB6iP6noKtYsXDuS_R0tAl6jHqDrc3xNne392YfH-VktI8yN3gzrrDFhI2cy3W4Pj66OjgJ2jMZAk2iuAo4T3Uqw4E1nKZSubmMlEkyKiVPOSN2QMJQU6Z5xojOqJKRZbGiWawMN5ZpsgHdfJzbTUAjY6VCLpkvgozWShPnwwvsJ36fTregP50VoVvBcn9uxr2oG-ecCx9L4WMpmlhuwdfZE0Uj1vGG7Z6bItF-seUbdvjKrhyVgkSCC6_1F8aiMNmndw61DQuxJ0_U8MEd6FaTB_vZlTSV-lIv3ScE6-8d |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlB7aHm0gj7oHOBQiewmseM4x6qwpTxXAqS9Gb8iKthstAmq2l9fO8lSqBCqxC2RJrYz43hGmW--AdjMuE1zX91jfA0atTYLpAtMfLrQOXxCTdpwdx4ds71zuj9KRl2f06YWZlJ2R3_PXbZEwa0KO0Ac70eERQFjyagvdZpq1S9NPgfPE-J8p6_gOxnephHcfm1a5mWMBs5Tz_KUD41yzy_NubnvuJnBa7iYLbBFl1z1bmrV07__4W58whsswasuBMUvrfgyPLPFCry8Q0y4AgsNMFRXq5CfXsrS4tgDcn9h-bfMACc5DnfPviHdQf9z0EWuWLolVOjL0qboseotxrbAH4W7vTbb-FNOx9soC4OXkxo7bNjYTfkGzge7Z1_3gq43Q6BJFNcB55nOZJhYw2kmlbNppEyaUyl5xhmxCQlDTZnmOSM6p0pGlsWK5rEy3FimyVuYLyaFXQM0MlYq5JL5YMhorTRxc3ii_dSf19k69GeWEbojLvf9M65Fk0DnXHh9Cq9P0epzHT7fPlG2pB2PyG45M4nuy60ekcN7ctW4EiQSXHjOvzAWzoTv_nOoT7A43BmIw-_HB-_hRezrKRpE4QeYr6c39qOLcmq10ezkPyUL9IE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+memory+performance+of+PETG+4D+printed+parts+under+compression+in+cold%2C+warm%2C+and+hot+programming&rft.jtitle=Smart+materials+and+structures&rft.au=Soleyman%2C+E&rft.au=Rahmatabadi%2C+D&rft.au=Soltanmohammadi%2C+K&rft.au=Aberoumand%2C+M&rft.date=2022-08-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=31&rft.issue=8&rft.spage=85002&rft_id=info:doi/10.1088%2F1361-665X%2Fac77cb&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_ac77cb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon |