Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells
•The effects of relative density and loading rate on the compressive responses of 3D printed Kelvin foams are studied.•We establish the Gibson–Ashby equations of 3D printed Kelvin foams.•The deformation mechanisms of Kelvin foams are dominated by the relative density.•The loading rate significantly...
Saved in:
Published in | International journal of impact engineering Vol. 132; p. 103303 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The effects of relative density and loading rate on the compressive responses of 3D printed Kelvin foams are studied.•We establish the Gibson–Ashby equations of 3D printed Kelvin foams.•The deformation mechanisms of Kelvin foams are dominated by the relative density.•The loading rate significantly influences the position of the intensive deformation zone.•A classification map of deformation modes is proposed illustrating the critical relative density and impact velocity.
The effects of the relative density and loading rate on the compressive response, deformation pattern and energy absorption of 3D printed polymeric Kelvin foams are investigated experimentally and computationally. A high-speed camera is used to record the loading processes of different cubic specimens, and the deformation distribution is calculated using the digital imaging correlation (DIC) method. Experimental results show that the elastic modulus and plateau stress increase with increasing relative density, which obeys the Gibson-Ashby polynomial scaling law. Four different deformation modes are observed in experiments for the specimens with different relative densities and at different loading rates. Further numerical results indicate the presence of a critical relative density, below which the Kelvin foams deform primarily by cell edges bending, and beyond which the cell membranes stretching dominates. It is also found that the position of the deformation bands is dominated by the loading rate. These findings can be used to explain the existing of four deformation modes observed in experiments. In conclusion, a mode classification map is proposed to clarify the effects of the relative density and loading rate on the deformation modes of Kelvin foams based on the experimental and numerical results. |
---|---|
AbstractList | •The effects of relative density and loading rate on the compressive responses of 3D printed Kelvin foams are studied.•We establish the Gibson–Ashby equations of 3D printed Kelvin foams.•The deformation mechanisms of Kelvin foams are dominated by the relative density.•The loading rate significantly influences the position of the intensive deformation zone.•A classification map of deformation modes is proposed illustrating the critical relative density and impact velocity.
The effects of the relative density and loading rate on the compressive response, deformation pattern and energy absorption of 3D printed polymeric Kelvin foams are investigated experimentally and computationally. A high-speed camera is used to record the loading processes of different cubic specimens, and the deformation distribution is calculated using the digital imaging correlation (DIC) method. Experimental results show that the elastic modulus and plateau stress increase with increasing relative density, which obeys the Gibson-Ashby polynomial scaling law. Four different deformation modes are observed in experiments for the specimens with different relative densities and at different loading rates. Further numerical results indicate the presence of a critical relative density, below which the Kelvin foams deform primarily by cell edges bending, and beyond which the cell membranes stretching dominates. It is also found that the position of the deformation bands is dominated by the loading rate. These findings can be used to explain the existing of four deformation modes observed in experiments. In conclusion, a mode classification map is proposed to clarify the effects of the relative density and loading rate on the deformation modes of Kelvin foams based on the experimental and numerical results. |
ArticleNumber | 103303 |
Author | Hou, Bing Shi, Xiaopeng Li, Yulong Du, Bing Duan, Yu |
Author_xml | – sequence: 1 givenname: Yu surname: Duan fullname: Duan, Yu organization: School of Aeronautics, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China – sequence: 2 givenname: Bing surname: Du fullname: Du, Bing organization: School of Aeronautics, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China – sequence: 3 givenname: Xiaopeng orcidid: 0000-0002-7432-4054 surname: Shi fullname: Shi, Xiaopeng organization: SMRT-NTU Smart Urban Rail Corporate Laboratory, 50 Nanyang Ave, S2.1-B3-01, 639798, Singapore – sequence: 4 givenname: Bing surname: Hou fullname: Hou, Bing organization: School of Aeronautics, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China – sequence: 5 givenname: Yulong surname: Li fullname: Li, Yulong email: liyulong@nwpu.edu.cn organization: School of Aeronautics, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China |
BookMark | eNqFkMtKAzEUhoNUsFZfQfICMybNZC7gQqlXLIig4C6kmTM2ZSYZkkylb-Bjm7a6cdPVCZz_-zn5TtHIWAMIXVCSUkLzy1WqV7rrwXymU0KrlPCU0OIIjWlZVAnjpBqhMSlYlhQZ-zhBp96vSEwQTsbo-3WQXic-yKAVlqbG9cbILr6V7XoH3us14N7ZHlzQ4PcRaKzrImEN7kAtpdG-89g2mN3GrDYBatzbdtOB2zZB2w6tdNgHN6gwxFb8pcMSP0O71ma392fouJGth_PfOUHv93dvs8dk_vLwNLuZJ4rRaUhK1tBScpZVRQFyKomsKPDFoizjniqWZyxv-IKpumHFIst5Q6RkeV0p4DDNKzZB-b5XOeu9g0bEgzvpNoISsfUpVuLPp9j6FISLaCuCV_9ApcPOQXBSt4fx6z0O8XNrDU54pcEoqLUDFURt9aGKH5JGnQQ |
CitedBy_id | crossref_primary_10_1016_j_addma_2021_102368 crossref_primary_10_1016_j_ijimpeng_2022_104320 crossref_primary_10_1016_j_compositesb_2019_107630 crossref_primary_10_1002_adem_202000669 crossref_primary_10_1016_j_engstruct_2023_115954 crossref_primary_10_1016_j_ijsolstr_2023_112555 crossref_primary_10_2139_ssrn_4162447 crossref_primary_10_1016_j_tws_2023_111115 crossref_primary_10_1016_j_addma_2021_102054 crossref_primary_10_1016_j_mechmat_2022_104216 crossref_primary_10_1039_D4RA02843K crossref_primary_10_1016_j_conbuildmat_2021_125616 crossref_primary_10_1080_15376494_2023_2222125 crossref_primary_10_1088_1361_665X_ad1266 crossref_primary_10_1016_j_addma_2020_101222 crossref_primary_10_1016_j_ijmecsci_2020_106191 crossref_primary_10_1080_17452759_2022_2048340 crossref_primary_10_1007_s12666_022_02780_6 crossref_primary_10_1080_15376494_2023_2167246 crossref_primary_10_1177_1687814020926788 crossref_primary_10_1016_j_apm_2024_115786 crossref_primary_10_1016_j_compositesb_2019_107565 crossref_primary_10_1016_j_matdes_2021_109863 crossref_primary_10_1002_adem_202401892 crossref_primary_10_1016_j_cirpj_2024_06_009 crossref_primary_10_1016_j_compscitech_2020_108339 crossref_primary_10_1016_j_tws_2023_111487 crossref_primary_10_1016_j_tws_2024_111986 crossref_primary_10_1088_2631_6331_acc0d0 crossref_primary_10_1016_j_compstruct_2022_116177 crossref_primary_10_1016_j_jmrt_2023_10_247 crossref_primary_10_1016_j_jmbbm_2020_104137 crossref_primary_10_3390_ma16093530 crossref_primary_10_3390_polym17030347 crossref_primary_10_1016_j_tws_2024_112155 crossref_primary_10_1016_j_ijmecsci_2020_106101 crossref_primary_10_1016_j_addma_2021_102220 crossref_primary_10_1080_13588265_2023_2258638 crossref_primary_10_1016_j_engstruct_2024_118440 crossref_primary_10_1016_j_mtcomm_2025_111654 crossref_primary_10_1016_j_cej_2023_142378 crossref_primary_10_1016_j_ijimpeng_2020_103696 crossref_primary_10_1016_j_ijmecsci_2019_105151 crossref_primary_10_1016_j_ijimpeng_2023_104782 crossref_primary_10_1016_j_mtcomm_2020_101563 crossref_primary_10_1016_j_tws_2022_109405 crossref_primary_10_1016_j_engfracmech_2023_109192 crossref_primary_10_1007_s12206_024_0231_9 crossref_primary_10_1016_j_compstruct_2020_112897 crossref_primary_10_1016_j_compstruct_2023_117833 crossref_primary_10_1016_j_matdes_2020_108946 crossref_primary_10_1016_j_ijmecsci_2020_105603 crossref_primary_10_1016_j_tws_2024_111697 crossref_primary_10_1007_s00170_020_06034_x crossref_primary_10_1016_j_matdes_2025_113777 crossref_primary_10_1016_j_jallcom_2021_161703 crossref_primary_10_1016_j_ijsolstr_2021_111082 crossref_primary_10_1108_RPJ_05_2023_0161 crossref_primary_10_1016_j_ijmecsci_2024_109588 crossref_primary_10_1016_j_compositesb_2022_110179 crossref_primary_10_1016_j_compscitech_2023_110248 crossref_primary_10_1016_j_compstruct_2021_114866 crossref_primary_10_1177_20414196231187004 crossref_primary_10_1080_17452759_2023_2283027 crossref_primary_10_1007_s11837_023_06193_8 crossref_primary_10_1016_j_compstruct_2022_116505 crossref_primary_10_1016_j_engstruct_2022_114327 crossref_primary_10_1016_j_measurement_2022_112339 crossref_primary_10_1080_15376494_2022_2133197 crossref_primary_10_3390_mi14101924 crossref_primary_10_1080_17452759_2023_2224300 crossref_primary_10_1088_1361_665X_ac68b4 crossref_primary_10_1051_epjconf_202125001022 crossref_primary_10_1016_j_jmrt_2023_06_268 crossref_primary_10_1016_j_ijimpeng_2020_103767 crossref_primary_10_3390_buildings13112835 |
Cites_doi | 10.1016/S1359-6454(01)00402-5 10.1016/j.ijplas.2017.02.003 10.1115/1.2788983 10.1016/S0734-743X(99)00153-0 10.1016/j.jmps.2005.05.007 10.1016/j.mechmat.2013.08.009 10.1016/S0734-743X(97)00016-X 10.1016/j.actamat.2016.05.054 10.1002/adma.201401804 10.1098/rsta.1914.0010 10.1016/S0734-743X(00)00060-9 10.1016/0734-743X(94)00062-2 10.1016/j.actamat.2005.04.010 10.1002/pen.760150810 10.1016/j.ijsolstr.2017.01.005 10.1016/j.matdes.2016.03.154 10.1016/j.matdes.2010.04.007 10.1016/S0022-5096(96)00090-7 10.1016/0734-743X(94)00061-Z 10.1016/j.actamat.2014.10.058 10.1016/j.actamat.2018.10.034 10.1126/science.aad2688 10.1002/pen.760300210 10.1016/j.jallcom.2016.09.168 10.1016/j.matdes.2017.11.037 10.1016/j.jmps.2018.08.022 10.1016/j.msea.2016.06.013 10.1016/j.polymertesting.2006.05.005 10.1016/j.ijimpeng.2005.05.007 10.1016/j.actamat.2014.06.051 10.1177/0021955X16670583 10.1016/j.msea.2013.07.070 10.1126/science.1211649 10.1016/j.compstruct.2017.05.001 10.1016/S0022-5096(99)00035-6 10.1177/0021955X06063519 10.1016/j.ijimpeng.2007.10.005 10.1016/j.ijsolstr.2010.06.014 10.1016/S0921-5093(99)00750-9 10.1016/j.ijimpeng.2017.11.017 10.1088/0370-1301/62/11/302 10.1177/0021955X16639035 10.1016/S0020-7403(00)00043-6 10.1016/j.ijsolstr.2015.05.005 10.1080/14786448708628135 10.1146/annurev.matsci.30.1.191 10.1016/S0020-7403(00)00042-4 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijimpeng.2019.05.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
ExternalDocumentID | 10_1016_j_ijimpeng_2019_05_017 S0734743X18312612 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-83f18a534977ea2a0a91e5bb88c311c36436f5b3cdf37b465f0aa36d9ce5e2693 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Thu Apr 24 23:04:23 EDT 2025 Tue Jul 01 03:54:27 EDT 2025 Fri Feb 23 02:28:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Relative density Kelvin foams Deformation mechanisms Loading rate 3D printed |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-83f18a534977ea2a0a91e5bb88c311c36436f5b3cdf37b465f0aa36d9ce5e2693 |
ORCID | 0000-0002-7432-4054 |
ParticipantIDs | crossref_primary_10_1016_j_ijimpeng_2019_05_017 crossref_citationtrail_10_1016_j_ijimpeng_2019_05_017 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2019_05_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Paul, Ramamurty (bib0005) 2000; 281 Gibson, Ashby (bib0001) 1999 Deshpande, Fleck (bib0006) 2000; 24 Gümrük, Mines, Karadeniz (bib0047) 2013; 586 Li, Zhang, Fan (bib0010) 2014; 68 Bonatti, Mohr (bib0031) 2019; 164 Kolsky (bib0039) 1949; 62 Li, Harrysson, West (bib0023) 2015; 69-70 Cao, Hou, Li (bib0037) 2017; 109 McKown, Shen, Brookes (bib0048) 2008; 35 Gibson (bib0002) 2000; 30 Sotomayor, Tippur (bib0008) 2014; 78 Bonatti, Mohr (bib0026) 2019; 122 Maskery, Aboulkhair, Aremu (bib0029) 2016; 670 Ouellet, Cronin, Worswick (bib0004) 2006; 25 Thomson (bib0015) 1971; 24 Tancogne-Dejean, Spierings, Mohr (bib0025) 2016; 116 Reid, Peng (bib0049) 1997; 19 Mohsenizadeh, Gasbarri, Munther (bib0046) 2018; 139 Hernández-Nava, Smith, Derguti (bib0027) 2015; 85 Su, Yu, Reid (bib0011) 1995; 16 Eckel, Zhou, Martin (bib0024) 2016; 351 Taherishargh, Belova, Murch (bib0013) 2017; 693 Jang, Kyriakides, Kraynik (bib0019) 2010; 47 Li, Wang (bib0035) 2017; 175 Song, Wang, Zhao (bib0009) 2010; 31 Tan, Harrigan, Reid (bib0041) 2002; 18 Miltz, Ramon (bib0045) 1990; 30 Warren, Kraynik (bib0018) 1997; 64 Zheng, Yu, Li (bib0050) 2005; 32 Schaedler, Jacobsen, Torrents (bib0021) 2011; 334 Bastawros, Bart-Smith, Evans (bib0003) 2000; 48 Hopkinson (bib0038) 1914; 213 Li, Magkiriadis, Harrigan (bib0043) 2006; 42 Cao, Hou, Zhao (bib0036) 2018; 113 Su, Yu, Reid (bib0012) 1995; 16 Chen, Song (bib0040) 2010 Tsouknidas, Pantazopoulos, Katsoulis (bib0034) 2016; 102 Andrews, Gioux, Onck (bib0033) 2001; 43 Bonatti, Mohr (bib0030) 2017; 92 Onck, Andrews, Gibson (bib0032) 2001; 43 Avalle, Belingardi, Montanini (bib0044) 2001; 25 Jeon, Asahina (bib0014) 2005; 53 Zhu, Knott, Mills (bib0017) 1997; 45 Tan, Reid, Harrigan (bib0042) 2005; 53 Menges, Knipschild (bib0016) 1975; 15 Gao, Qi, Li (bib0020) 2016; 54 Maskery, Hussey, Panesar (bib0028) 2016; 53 Compton, Lewis (bib0022) 2014; 26 Zhu, Windle (bib0007) 2002; 50 Li (10.1016/j.ijimpeng.2019.05.017_bib0023) 2015; 69-70 Compton (10.1016/j.ijimpeng.2019.05.017_bib0022) 2014; 26 Taherishargh (10.1016/j.ijimpeng.2019.05.017_bib0013) 2017; 693 Gibson (10.1016/j.ijimpeng.2019.05.017_bib0002) 2000; 30 Tancogne-Dejean (10.1016/j.ijimpeng.2019.05.017_bib0025) 2016; 116 Zheng (10.1016/j.ijimpeng.2019.05.017_bib0050) 2005; 32 Bastawros (10.1016/j.ijimpeng.2019.05.017_bib0003) 2000; 48 Hernández-Nava (10.1016/j.ijimpeng.2019.05.017_bib0027) 2015; 85 Sotomayor (10.1016/j.ijimpeng.2019.05.017_bib0008) 2014; 78 Gibson (10.1016/j.ijimpeng.2019.05.017_bib0001) 1999 Gümrük (10.1016/j.ijimpeng.2019.05.017_bib0047) 2013; 586 Thomson (10.1016/j.ijimpeng.2019.05.017_bib0015) 1971; 24 Warren (10.1016/j.ijimpeng.2019.05.017_bib0018) 1997; 64 Hopkinson (10.1016/j.ijimpeng.2019.05.017_bib0038) 1914; 213 Kolsky (10.1016/j.ijimpeng.2019.05.017_bib0039) 1949; 62 Reid (10.1016/j.ijimpeng.2019.05.017_bib0049) 1997; 19 Menges (10.1016/j.ijimpeng.2019.05.017_bib0016) 1975; 15 Zhu (10.1016/j.ijimpeng.2019.05.017_bib0017) 1997; 45 Li (10.1016/j.ijimpeng.2019.05.017_bib0035) 2017; 175 Onck (10.1016/j.ijimpeng.2019.05.017_bib0032) 2001; 43 Gao (10.1016/j.ijimpeng.2019.05.017_bib0020) 2016; 54 Bonatti (10.1016/j.ijimpeng.2019.05.017_bib0026) 2019; 122 Paul (10.1016/j.ijimpeng.2019.05.017_bib0005) 2000; 281 Tan (10.1016/j.ijimpeng.2019.05.017_bib0041) 2002; 18 Chen (10.1016/j.ijimpeng.2019.05.017_bib0040) 2010 McKown (10.1016/j.ijimpeng.2019.05.017_bib0048) 2008; 35 Deshpande (10.1016/j.ijimpeng.2019.05.017_bib0006) 2000; 24 Bonatti (10.1016/j.ijimpeng.2019.05.017_bib0030) 2017; 92 Miltz (10.1016/j.ijimpeng.2019.05.017_bib0045) 1990; 30 Su (10.1016/j.ijimpeng.2019.05.017_bib0011) 1995; 16 Ouellet (10.1016/j.ijimpeng.2019.05.017_bib0004) 2006; 25 Tsouknidas (10.1016/j.ijimpeng.2019.05.017_bib0034) 2016; 102 Schaedler (10.1016/j.ijimpeng.2019.05.017_bib0021) 2011; 334 Maskery (10.1016/j.ijimpeng.2019.05.017_bib0028) 2016; 53 Andrews (10.1016/j.ijimpeng.2019.05.017_bib0033) 2001; 43 Bonatti (10.1016/j.ijimpeng.2019.05.017_bib0031) 2019; 164 Zhu (10.1016/j.ijimpeng.2019.05.017_bib0007) 2002; 50 Li (10.1016/j.ijimpeng.2019.05.017_bib0010) 2014; 68 Song (10.1016/j.ijimpeng.2019.05.017_bib0009) 2010; 31 Cao (10.1016/j.ijimpeng.2019.05.017_bib0037) 2017; 109 Jang (10.1016/j.ijimpeng.2019.05.017_bib0019) 2010; 47 Tan (10.1016/j.ijimpeng.2019.05.017_bib0042) 2005; 53 Mohsenizadeh (10.1016/j.ijimpeng.2019.05.017_bib0046) 2018; 139 Jeon (10.1016/j.ijimpeng.2019.05.017_bib0014) 2005; 53 Eckel (10.1016/j.ijimpeng.2019.05.017_bib0024) 2016; 351 Su (10.1016/j.ijimpeng.2019.05.017_bib0012) 1995; 16 Li (10.1016/j.ijimpeng.2019.05.017_bib0043) 2006; 42 Cao (10.1016/j.ijimpeng.2019.05.017_bib0036) 2018; 113 Maskery (10.1016/j.ijimpeng.2019.05.017_bib0029) 2016; 670 Avalle (10.1016/j.ijimpeng.2019.05.017_bib0044) 2001; 25 |
References_xml | – volume: 85 start-page: 387 year: 2015 end-page: 395 ident: bib0027 article-title: The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing publication-title: Acta Mater – volume: 24 start-page: 503 year: 1971 end-page: 514 ident: bib0015 article-title: On the division of space with minimum partitional area publication-title: Philos Mag – volume: 334 start-page: 962 year: 2011 ident: bib0021 article-title: Ultralight metallic microlattices publication-title: Science – volume: 281 start-page: 1 year: 2000 end-page: 7 ident: bib0005 article-title: Strain rate sensitivity of a closed-cell aluminum foam publication-title: Mater Sci Eng A – volume: 32 start-page: 650 year: 2005 end-page: 664 ident: bib0050 article-title: Dynamic crushing of 2D cellular structures: a finite element study publication-title: Int J Impact Eng – year: 2010 ident: bib0040 article-title: Split hopkinson (Kolsky) bar: design, testing and applications – volume: 62 start-page: 676 year: 1949 ident: bib0039 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc Phys Soc Lond Sect B – volume: 78 start-page: 301 year: 2014 end-page: 313 ident: bib0008 article-title: Role of cell regularity and relative density on elastoplastic compression response of 3-D open-cell foam core sandwich structure generated using Voronoi diagrams publication-title: Acta Mater – year: 1999 ident: bib0001 article-title: Cellular solids: structure and properties – volume: 693 start-page: 55 year: 2017 end-page: 60 ident: bib0013 article-title: The effect of particle shape on mechanical properties of perlite/metal syntactic foam publication-title: J Alloys Compd – volume: 64 start-page: 787 year: 1997 ident: bib0018 article-title: Linear elastic behavior of a low-density kelvin foam with open cells publication-title: J Appl Mech – volume: 47 start-page: 2872 year: 2010 end-page: 2883 ident: bib0019 article-title: On the compressive strength of open-cell metal foams with Kelvin and random cell structures publication-title: Int J Solids Struct – volume: 31 start-page: 4281 year: 2010 end-page: 4289 ident: bib0009 article-title: Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model publication-title: Mater Des – volume: 54 start-page: 53 year: 2016 end-page: 72 ident: bib0020 article-title: Random equilateral Kelvin open-cell foam microstructures: cross-section shapes, compressive behavior, and isotropic characteristics publication-title: J Cell Plast – volume: 102 start-page: 41 year: 2016 end-page: 44 ident: bib0034 article-title: Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling publication-title: Mater Des – volume: 42 start-page: 371 year: 2006 end-page: 392 ident: bib0043 article-title: Compressive strain at the onset of densification of cellular solids publication-title: J Cell Plast – volume: 43 start-page: 701 year: 2001 end-page: 713 ident: bib0033 article-title: Size effects in ductile cellular solids. Part II: experimental results publication-title: Int J Mech Sci – volume: 50 start-page: 1041 year: 2002 end-page: 1052 ident: bib0007 article-title: Effects of cell irregularity on the high strain compression of open-cell foams publication-title: Acta Mater – volume: 43 start-page: 681 year: 2001 end-page: 699 ident: bib0032 article-title: Size effects in ductile cellular solids. Part I: modeling publication-title: Int J Mech Sci – volume: 25 start-page: 731 year: 2006 end-page: 743 ident: bib0004 article-title: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions publication-title: Polym Test – volume: 69-70 start-page: 475 year: 2015 end-page: 490 ident: bib0023 article-title: Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing publication-title: Int J Solids Struct – volume: 139 start-page: 521 year: 2018 end-page: 530 ident: bib0046 article-title: Additively-manufactured lightweight Metamaterials for energy absorption – volume: 16 start-page: 651 year: 1995 end-page: 672 ident: bib0012 article-title: Inertia-sensitive impact energy-absorbing structures part I: effects of inertia and elasticity publication-title: Int J Impact Eng – volume: 26 start-page: 5930 year: 2014 end-page: 5935 ident: bib0022 article-title: 3D‐printing of lightweight cellular composites publication-title: Adv Mater – volume: 35 start-page: 795 year: 2008 end-page: 810 ident: bib0048 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int J Impact Eng – volume: 175 start-page: 46 year: 2017 end-page: 57 ident: bib0035 article-title: Bending behavior of sandwich composite structures with tunable 3D-printed core materials publication-title: Compos Struct – volume: 68 start-page: 85 year: 2014 end-page: 94 ident: bib0010 article-title: On crushing response of the three-dimensional closed-cell foam based on Voronoi model publication-title: Mech Mater – volume: 116 start-page: 14 year: 2016 end-page: 28 ident: bib0025 article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading publication-title: Acta Mater – volume: 53 year: 2016 ident: bib0028 article-title: An investigation into reinforced and functionally graded lattice structures publication-title: J Cell Plast – volume: 53 start-page: 2174 year: 2005 end-page: 2205 ident: bib0042 article-title: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations publication-title: J Mech Phys Solids – volume: 30 start-page: 129 year: 1990 end-page: 133 ident: bib0045 article-title: Energy absorption characteristics of polymeric foams used as cushioning materials publication-title: Polym Eng Sci – volume: 586 start-page: 392 year: 2013 end-page: 406 ident: bib0047 article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions publication-title: Mater Sci Eng A – volume: 122 start-page: 1 year: 2019 end-page: 26 ident: bib0026 article-title: Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments publication-title: J Mech Phys Solids – volume: 109 start-page: 33 year: 2017 end-page: 45 ident: bib0037 article-title: An experimental study on the impact behavior of multilayer sandwich with corrugated cores publication-title: Int J Solids Struct – volume: 213 start-page: 437 year: 1914 end-page: 456 ident: bib0038 article-title: A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets publication-title: Philosoph Trans R Soc Lond Ser A – volume: 19 start-page: 531 year: 1997 end-page: 570 ident: bib0049 article-title: Dynamic uniaxial crushing of wood publication-title: Int J Impact Eng – volume: 18 start-page: 480 year: 2002 end-page: 488 ident: bib0041 article-title: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam publication-title: Metal Sci J – volume: 92 start-page: 122 year: 2017 end-page: 147 ident: bib0030 article-title: Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures – volume: 25 start-page: 455 year: 2001 end-page: 472 ident: bib0044 article-title: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram publication-title: Int J Impact Eng – volume: 30 start-page: 191 year: 2000 end-page: 227 ident: bib0002 article-title: Mechanical behavior of metallic foams publication-title: Annu Rev Mater Sci – volume: 351 start-page: 58 year: 2016 ident: bib0024 article-title: Additive manufacturing of polymer-derived ceramics publication-title: Science – volume: 48 start-page: 301 year: 2000 end-page: 322 ident: bib0003 article-title: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam publication-title: J Mech Phys Solids – volume: 113 start-page: 98 year: 2018 end-page: 105 ident: bib0036 article-title: On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores publication-title: Int J Impact Eng – volume: 164 start-page: 301 year: 2019 end-page: 321 ident: bib0031 article-title: Smooth-shell metamaterials of cubic symmetry: anisotropic elasticity, yield strength and specific energy absorption publication-title: Acta Mater – volume: 24 start-page: 277 year: 2000 end-page: 298 ident: bib0006 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Int J Impact Eng – volume: 45 start-page: 319 year: 1997 end-page: 343 ident: bib0017 article-title: Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells publication-title: J Mech Phys Solids – volume: 670 start-page: 264 year: 2016 end-page: 274 ident: bib0029 article-title: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting publication-title: Mater Sci Eng A – volume: 16 start-page: 673 year: 1995 end-page: 689 ident: bib0011 article-title: Inertia-sensitive impact energy-absorbing structures part II: effect of strain rate publication-title: Int J Impact Eng – volume: 15 start-page: 623 year: 1975 end-page: 627 ident: bib0016 article-title: Estimation of mechanical properties for rigid polyurethane foams publication-title: Polym Eng Sci – volume: 53 start-page: 3415 year: 2005 end-page: 3423 ident: bib0014 article-title: The effect of structural defects on the compressive behavior of closed-cell Al foam publication-title: Acta Mater – volume: 50 start-page: 1041 issue: 5 year: 2002 ident: 10.1016/j.ijimpeng.2019.05.017_bib0007 article-title: Effects of cell irregularity on the high strain compression of open-cell foams publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00402-5 – volume: 92 start-page: 122 year: 2017 ident: 10.1016/j.ijimpeng.2019.05.017_bib0030 article-title: Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures publication-title: Int J Plast doi: 10.1016/j.ijplas.2017.02.003 – volume: 64 start-page: 787 issue: 4 year: 1997 ident: 10.1016/j.ijimpeng.2019.05.017_bib0018 article-title: Linear elastic behavior of a low-density kelvin foam with open cells publication-title: J Appl Mech doi: 10.1115/1.2788983 – volume: 24 start-page: 277 issue: 3 year: 2000 ident: 10.1016/j.ijimpeng.2019.05.017_bib0006 article-title: High strain rate compressive behaviour of aluminium alloy foams publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(99)00153-0 – volume: 53 start-page: 2174 issue: 10 year: 2005 ident: 10.1016/j.ijimpeng.2019.05.017_bib0042 article-title: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2005.05.007 – volume: 68 start-page: 85 issue: 1 year: 2014 ident: 10.1016/j.ijimpeng.2019.05.017_bib0010 article-title: On crushing response of the three-dimensional closed-cell foam based on Voronoi model publication-title: Mech Mater doi: 10.1016/j.mechmat.2013.08.009 – volume: 19 start-page: 531 issue: 5-6 year: 1997 ident: 10.1016/j.ijimpeng.2019.05.017_bib0049 article-title: Dynamic uniaxial crushing of wood publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(97)00016-X – volume: 116 start-page: 14 year: 2016 ident: 10.1016/j.ijimpeng.2019.05.017_bib0025 article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading publication-title: Acta Mater doi: 10.1016/j.actamat.2016.05.054 – volume: 26 start-page: 5930 issue: 34 year: 2014 ident: 10.1016/j.ijimpeng.2019.05.017_bib0022 article-title: 3D‐printing of lightweight cellular composites publication-title: Adv Mater doi: 10.1002/adma.201401804 – volume: 213 start-page: 437 issue: 497–508 year: 1914 ident: 10.1016/j.ijimpeng.2019.05.017_bib0038 article-title: A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets publication-title: Philosoph Trans R Soc Lond Ser A doi: 10.1098/rsta.1914.0010 – volume: 25 start-page: 455 issue: 5 year: 2001 ident: 10.1016/j.ijimpeng.2019.05.017_bib0044 article-title: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(00)00060-9 – volume: 16 start-page: 673 issue: 4 year: 1995 ident: 10.1016/j.ijimpeng.2019.05.017_bib0011 article-title: Inertia-sensitive impact energy-absorbing structures part II: effect of strain rate publication-title: Int J Impact Eng doi: 10.1016/0734-743X(94)00062-2 – volume: 53 start-page: 3415 issue: 12 year: 2005 ident: 10.1016/j.ijimpeng.2019.05.017_bib0014 article-title: The effect of structural defects on the compressive behavior of closed-cell Al foam publication-title: Acta Mater doi: 10.1016/j.actamat.2005.04.010 – volume: 15 start-page: 623 issue: 8 year: 1975 ident: 10.1016/j.ijimpeng.2019.05.017_bib0016 article-title: Estimation of mechanical properties for rigid polyurethane foams publication-title: Polym Eng Sci doi: 10.1002/pen.760150810 – volume: 109 start-page: 33 year: 2017 ident: 10.1016/j.ijimpeng.2019.05.017_bib0037 article-title: An experimental study on the impact behavior of multilayer sandwich with corrugated cores publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2017.01.005 – volume: 102 start-page: 41 year: 2016 ident: 10.1016/j.ijimpeng.2019.05.017_bib0034 article-title: Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling publication-title: Mater Des doi: 10.1016/j.matdes.2016.03.154 – volume: 31 start-page: 4281 issue: 9 year: 2010 ident: 10.1016/j.ijimpeng.2019.05.017_bib0009 article-title: Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model publication-title: Mater Des doi: 10.1016/j.matdes.2010.04.007 – volume: 45 start-page: 319 issue: 45 year: 1997 ident: 10.1016/j.ijimpeng.2019.05.017_bib0017 article-title: Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(96)00090-7 – volume: 16 start-page: 651 issue: 4 year: 1995 ident: 10.1016/j.ijimpeng.2019.05.017_bib0012 article-title: Inertia-sensitive impact energy-absorbing structures part I: effects of inertia and elasticity publication-title: Int J Impact Eng doi: 10.1016/0734-743X(94)00061-Z – volume: 85 start-page: 387 year: 2015 ident: 10.1016/j.ijimpeng.2019.05.017_bib0027 article-title: The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing publication-title: Acta Mater doi: 10.1016/j.actamat.2014.10.058 – volume: 164 start-page: 301 year: 2019 ident: 10.1016/j.ijimpeng.2019.05.017_bib0031 article-title: Smooth-shell metamaterials of cubic symmetry: anisotropic elasticity, yield strength and specific energy absorption publication-title: Acta Mater doi: 10.1016/j.actamat.2018.10.034 – volume: 351 start-page: 58 issue: 6268 year: 2016 ident: 10.1016/j.ijimpeng.2019.05.017_bib0024 article-title: Additive manufacturing of polymer-derived ceramics publication-title: Science doi: 10.1126/science.aad2688 – volume: 30 start-page: 129 issue: 2 year: 1990 ident: 10.1016/j.ijimpeng.2019.05.017_bib0045 article-title: Energy absorption characteristics of polymeric foams used as cushioning materials publication-title: Polym Eng Sci doi: 10.1002/pen.760300210 – volume: 693 start-page: 55 year: 2017 ident: 10.1016/j.ijimpeng.2019.05.017_bib0013 article-title: The effect of particle shape on mechanical properties of perlite/metal syntactic foam publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.09.168 – volume: 139 start-page: 521 year: 2018 ident: 10.1016/j.ijimpeng.2019.05.017_bib0046 article-title: Additively-manufactured lightweight Metamaterials for energy absorption publication-title: Mater Des doi: 10.1016/j.matdes.2017.11.037 – volume: 122 start-page: 1 year: 2019 ident: 10.1016/j.ijimpeng.2019.05.017_bib0026 article-title: Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2018.08.022 – volume: 670 start-page: 264 year: 2016 ident: 10.1016/j.ijimpeng.2019.05.017_bib0029 article-title: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2016.06.013 – volume: 25 start-page: 731 issue: 6 year: 2006 ident: 10.1016/j.ijimpeng.2019.05.017_bib0004 article-title: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions publication-title: Polym Test doi: 10.1016/j.polymertesting.2006.05.005 – volume: 32 start-page: 650 issue: 1 year: 2005 ident: 10.1016/j.ijimpeng.2019.05.017_bib0050 article-title: Dynamic crushing of 2D cellular structures: a finite element study publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2005.05.007 – volume: 78 start-page: 301 year: 2014 ident: 10.1016/j.ijimpeng.2019.05.017_bib0008 article-title: Role of cell regularity and relative density on elastoplastic compression response of 3-D open-cell foam core sandwich structure generated using Voronoi diagrams publication-title: Acta Mater doi: 10.1016/j.actamat.2014.06.051 – volume: 54 start-page: 53 issue: 1 year: 2016 ident: 10.1016/j.ijimpeng.2019.05.017_bib0020 article-title: Random equilateral Kelvin open-cell foam microstructures: cross-section shapes, compressive behavior, and isotropic characteristics publication-title: J Cell Plast doi: 10.1177/0021955X16670583 – volume: 586 start-page: 392 year: 2013 ident: 10.1016/j.ijimpeng.2019.05.017_bib0047 article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.07.070 – volume: 334 start-page: 962 issue: 6058 year: 2011 ident: 10.1016/j.ijimpeng.2019.05.017_bib0021 article-title: Ultralight metallic microlattices publication-title: Science doi: 10.1126/science.1211649 – volume: 175 start-page: 46 year: 2017 ident: 10.1016/j.ijimpeng.2019.05.017_bib0035 article-title: Bending behavior of sandwich composite structures with tunable 3D-printed core materials publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.05.001 – volume: 18 start-page: 480 issue: 5 year: 2002 ident: 10.1016/j.ijimpeng.2019.05.017_bib0041 article-title: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam publication-title: Metal Sci J – volume: 48 start-page: 301 issue: 2 year: 2000 ident: 10.1016/j.ijimpeng.2019.05.017_bib0003 article-title: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(99)00035-6 – year: 1999 ident: 10.1016/j.ijimpeng.2019.05.017_bib0001 – volume: 42 start-page: 371 issue: 5 year: 2006 ident: 10.1016/j.ijimpeng.2019.05.017_bib0043 article-title: Compressive strain at the onset of densification of cellular solids publication-title: J Cell Plast doi: 10.1177/0021955X06063519 – volume: 35 start-page: 795 issue: 8 year: 2008 ident: 10.1016/j.ijimpeng.2019.05.017_bib0048 article-title: The quasi-static and blast loading response of lattice structures publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2007.10.005 – volume: 47 start-page: 2872 issue: 21 year: 2010 ident: 10.1016/j.ijimpeng.2019.05.017_bib0019 article-title: On the compressive strength of open-cell metal foams with Kelvin and random cell structures publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2010.06.014 – volume: 281 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.ijimpeng.2019.05.017_bib0005 article-title: Strain rate sensitivity of a closed-cell aluminum foam publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(99)00750-9 – volume: 113 start-page: 98 year: 2018 ident: 10.1016/j.ijimpeng.2019.05.017_bib0036 article-title: On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2017.11.017 – volume: 62 start-page: 676 issue: 11 year: 1949 ident: 10.1016/j.ijimpeng.2019.05.017_bib0039 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc Phys Soc Lond Sect B doi: 10.1088/0370-1301/62/11/302 – volume: 53 issue: 2 year: 2016 ident: 10.1016/j.ijimpeng.2019.05.017_bib0028 article-title: An investigation into reinforced and functionally graded lattice structures publication-title: J Cell Plast doi: 10.1177/0021955X16639035 – volume: 43 start-page: 701 issue: 3 year: 2001 ident: 10.1016/j.ijimpeng.2019.05.017_bib0033 article-title: Size effects in ductile cellular solids. Part II: experimental results publication-title: Int J Mech Sci doi: 10.1016/S0020-7403(00)00043-6 – volume: 69-70 start-page: 475 year: 2015 ident: 10.1016/j.ijimpeng.2019.05.017_bib0023 article-title: Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2015.05.005 – year: 2010 ident: 10.1016/j.ijimpeng.2019.05.017_bib0040 – volume: 24 start-page: 503 issue: 151 year: 1971 ident: 10.1016/j.ijimpeng.2019.05.017_bib0015 article-title: On the division of space with minimum partitional area publication-title: Philos Mag doi: 10.1080/14786448708628135 – volume: 30 start-page: 191 issue: 30 year: 2000 ident: 10.1016/j.ijimpeng.2019.05.017_bib0002 article-title: Mechanical behavior of metallic foams publication-title: Annu Rev Mater Sci doi: 10.1146/annurev.matsci.30.1.191 – volume: 43 start-page: 681 issue: 3 year: 2001 ident: 10.1016/j.ijimpeng.2019.05.017_bib0032 article-title: Size effects in ductile cellular solids. Part I: modeling publication-title: Int J Mech Sci doi: 10.1016/S0020-7403(00)00042-4 |
SSID | ssj0017050 |
Score | 2.5435812 |
Snippet | •The effects of relative density and loading rate on the compressive responses of 3D printed Kelvin foams are studied.•We establish the Gibson–Ashby equations... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103303 |
SubjectTerms | 3D printed Deformation mechanisms Kelvin foams Loading rate Relative density |
Title | Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2019.05.017 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EmfQUNXx3ZkydYY0oa0oYHSBrIZyZaKQ-KYOgl06dyfXZ0fIYVCho62dMLoDt1x_r5PCN1J4gq3U9B-ZWx5kepYQnJt-dLhDhdM-RL4zs8jNhh7TxM6aaBezYUBWGV19pdnenFaV2_sajftLEnsVxOcnsl_ExOULghhAYPd8yHK218bmAeoxRR9FjPZgtlbLOFpO5kmpjhN3wHixUsFT__vBLWVdPpH6LCqFnG3_KBj1FDpCTrY0hA8Rd8vK5EnFhCDkgiLNMZxeck8BrR4gXJdK5xBz_0DxFPLKWpDWsRzBeTfJJ_neKExucfQ6jN1KM4Ws8_ifw6G7j7AVXGpNrsyq2Jo4OKhmq2TtBjPz9C4__DWG1jV9QpWZDZsaQVEu4GgxDMloBId4QjuKiplEJhxNyKmVmGaShLFmvjSY1Q7QhAW80hR1WGcnKNmukjVBcJCu2YFEiufSo-6fsB9HTEtPcUcyR12iWi9p2FUaY_DFRizsAaZTcPaFyH4InRoaHxxieyNXVaqb-y04LXLwl9xFJoUscP26h-212gfnkqY3w1qGneoW1OuLGWriMcW2us-DgejH4i474k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60HtSD-MS3OXhdu9tsspuj-KBaLYgKvYVkN5Et7bZYW_Af-LPN7KNUEDx43WTCkhlmhsl83wCcaxqooFXAfnXqhYlpeUoL60XaF75Q3EQa8c6PXd5-De97rLcEVzUWBtsqK99f-vTCW1dfmtVtNsdZ1nx2xhm6-NdzRhkgEdYyrCA7FWvAyuVdp92dPyZEfjGoFfd7KLAAFO5fZP3M5af5G3Z5iZLEM_o9Ri3EndtN2KgSRnJZ_tMWLJl8G9YXaAR34OtpqiaZh9igLCEqT0lazpkn2DBeNLrODBlj2f0d-VPLLWaOWyRDg_jfbDKckJEl9Jpgtc-lomQ8GnwWTzoEC_zYsUpKwtmpO5VgDZd0zGCW5cX6ZBdeb29ertpeNWHBS9ydfXgxtUGsGA1dFmhUS_lKBIZpHcduPUioS1e4ZZomqaWRDjmzvlKUpyIxzLS4oHvQyEe52QeibOBOoKmJmA5ZEMUisgm3OjTc18LnB8DqO5VJRT-OUzAGsu4z68taFxJ1IX0mnS4OoDmXG5cEHH9KiFpl8ocpSRcl_pA9_IfsGay2Xx4f5MNdt3MEa7hSdv0dQ8Opxpy47OVDn1bW-Q20pfI6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-static+and+dynamic+compressive+properties+and+deformation+mechanisms+of+3D+printed+polymeric+cellular+structures+with+Kelvin+cells&rft.jtitle=International+journal+of+impact+engineering&rft.au=Duan%2C+Yu&rft.au=Du%2C+Bing&rft.au=Shi%2C+Xiaopeng&rft.au=Hou%2C+Bing&rft.date=2019-10-01&rft.issn=0734-743X&rft.volume=132&rft.spage=103303&rft_id=info:doi/10.1016%2Fj.ijimpeng.2019.05.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2019_05_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |