Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells

•The effects of relative density and loading rate on the compressive responses of 3D printed Kelvin foams are studied.•We establish the Gibson–Ashby equations of 3D printed Kelvin foams.•The deformation mechanisms of Kelvin foams are dominated by the relative density.•The loading rate significantly...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 132; p. 103303
Main Authors Duan, Yu, Du, Bing, Shi, Xiaopeng, Hou, Bing, Li, Yulong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The effects of relative density and loading rate on the compressive responses of 3D printed Kelvin foams are studied.•We establish the Gibson–Ashby equations of 3D printed Kelvin foams.•The deformation mechanisms of Kelvin foams are dominated by the relative density.•The loading rate significantly influences the position of the intensive deformation zone.•A classification map of deformation modes is proposed illustrating the critical relative density and impact velocity. The effects of the relative density and loading rate on the compressive response, deformation pattern and energy absorption of 3D printed polymeric Kelvin foams are investigated experimentally and computationally. A high-speed camera is used to record the loading processes of different cubic specimens, and the deformation distribution is calculated using the digital imaging correlation (DIC) method. Experimental results show that the elastic modulus and plateau stress increase with increasing relative density, which obeys the Gibson-Ashby polynomial scaling law. Four different deformation modes are observed in experiments for the specimens with different relative densities and at different loading rates. Further numerical results indicate the presence of a critical relative density, below which the Kelvin foams deform primarily by cell edges bending, and beyond which the cell membranes stretching dominates. It is also found that the position of the deformation bands is dominated by the loading rate. These findings can be used to explain the existing of four deformation modes observed in experiments. In conclusion, a mode classification map is proposed to clarify the effects of the relative density and loading rate on the deformation modes of Kelvin foams based on the experimental and numerical results.
AbstractList •The effects of relative density and loading rate on the compressive responses of 3D printed Kelvin foams are studied.•We establish the Gibson–Ashby equations of 3D printed Kelvin foams.•The deformation mechanisms of Kelvin foams are dominated by the relative density.•The loading rate significantly influences the position of the intensive deformation zone.•A classification map of deformation modes is proposed illustrating the critical relative density and impact velocity. The effects of the relative density and loading rate on the compressive response, deformation pattern and energy absorption of 3D printed polymeric Kelvin foams are investigated experimentally and computationally. A high-speed camera is used to record the loading processes of different cubic specimens, and the deformation distribution is calculated using the digital imaging correlation (DIC) method. Experimental results show that the elastic modulus and plateau stress increase with increasing relative density, which obeys the Gibson-Ashby polynomial scaling law. Four different deformation modes are observed in experiments for the specimens with different relative densities and at different loading rates. Further numerical results indicate the presence of a critical relative density, below which the Kelvin foams deform primarily by cell edges bending, and beyond which the cell membranes stretching dominates. It is also found that the position of the deformation bands is dominated by the loading rate. These findings can be used to explain the existing of four deformation modes observed in experiments. In conclusion, a mode classification map is proposed to clarify the effects of the relative density and loading rate on the deformation modes of Kelvin foams based on the experimental and numerical results.
ArticleNumber 103303
Author Hou, Bing
Shi, Xiaopeng
Li, Yulong
Du, Bing
Duan, Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Duan
  fullname: Duan, Yu
  organization: School of Aeronautics, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China
– sequence: 2
  givenname: Bing
  surname: Du
  fullname: Du, Bing
  organization: School of Aeronautics, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China
– sequence: 3
  givenname: Xiaopeng
  orcidid: 0000-0002-7432-4054
  surname: Shi
  fullname: Shi, Xiaopeng
  organization: SMRT-NTU Smart Urban Rail Corporate Laboratory, 50 Nanyang Ave, S2.1-B3-01, 639798, Singapore
– sequence: 4
  givenname: Bing
  surname: Hou
  fullname: Hou, Bing
  organization: School of Aeronautics, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China
– sequence: 5
  givenname: Yulong
  surname: Li
  fullname: Li, Yulong
  email: liyulong@nwpu.edu.cn
  organization: School of Aeronautics, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, China
BookMark eNqFkMtKAzEUhoNUsFZfQfICMybNZC7gQqlXLIig4C6kmTM2ZSYZkkylb-Bjm7a6cdPVCZz_-zn5TtHIWAMIXVCSUkLzy1WqV7rrwXymU0KrlPCU0OIIjWlZVAnjpBqhMSlYlhQZ-zhBp96vSEwQTsbo-3WQXic-yKAVlqbG9cbILr6V7XoH3us14N7ZHlzQ4PcRaKzrImEN7kAtpdG-89g2mN3GrDYBatzbdtOB2zZB2w6tdNgHN6gwxFb8pcMSP0O71ma392fouJGth_PfOUHv93dvs8dk_vLwNLuZJ4rRaUhK1tBScpZVRQFyKomsKPDFoizjniqWZyxv-IKpumHFIst5Q6RkeV0p4DDNKzZB-b5XOeu9g0bEgzvpNoISsfUpVuLPp9j6FISLaCuCV_9ApcPOQXBSt4fx6z0O8XNrDU54pcEoqLUDFURt9aGKH5JGnQQ
CitedBy_id crossref_primary_10_1016_j_addma_2021_102368
crossref_primary_10_1016_j_ijimpeng_2022_104320
crossref_primary_10_1016_j_compositesb_2019_107630
crossref_primary_10_1002_adem_202000669
crossref_primary_10_1016_j_engstruct_2023_115954
crossref_primary_10_1016_j_ijsolstr_2023_112555
crossref_primary_10_2139_ssrn_4162447
crossref_primary_10_1016_j_tws_2023_111115
crossref_primary_10_1016_j_addma_2021_102054
crossref_primary_10_1016_j_mechmat_2022_104216
crossref_primary_10_1039_D4RA02843K
crossref_primary_10_1016_j_conbuildmat_2021_125616
crossref_primary_10_1080_15376494_2023_2222125
crossref_primary_10_1088_1361_665X_ad1266
crossref_primary_10_1016_j_addma_2020_101222
crossref_primary_10_1016_j_ijmecsci_2020_106191
crossref_primary_10_1080_17452759_2022_2048340
crossref_primary_10_1007_s12666_022_02780_6
crossref_primary_10_1080_15376494_2023_2167246
crossref_primary_10_1177_1687814020926788
crossref_primary_10_1016_j_apm_2024_115786
crossref_primary_10_1016_j_compositesb_2019_107565
crossref_primary_10_1016_j_matdes_2021_109863
crossref_primary_10_1002_adem_202401892
crossref_primary_10_1016_j_cirpj_2024_06_009
crossref_primary_10_1016_j_compscitech_2020_108339
crossref_primary_10_1016_j_tws_2023_111487
crossref_primary_10_1016_j_tws_2024_111986
crossref_primary_10_1088_2631_6331_acc0d0
crossref_primary_10_1016_j_compstruct_2022_116177
crossref_primary_10_1016_j_jmrt_2023_10_247
crossref_primary_10_1016_j_jmbbm_2020_104137
crossref_primary_10_3390_ma16093530
crossref_primary_10_3390_polym17030347
crossref_primary_10_1016_j_tws_2024_112155
crossref_primary_10_1016_j_ijmecsci_2020_106101
crossref_primary_10_1016_j_addma_2021_102220
crossref_primary_10_1080_13588265_2023_2258638
crossref_primary_10_1016_j_engstruct_2024_118440
crossref_primary_10_1016_j_mtcomm_2025_111654
crossref_primary_10_1016_j_cej_2023_142378
crossref_primary_10_1016_j_ijimpeng_2020_103696
crossref_primary_10_1016_j_ijmecsci_2019_105151
crossref_primary_10_1016_j_ijimpeng_2023_104782
crossref_primary_10_1016_j_mtcomm_2020_101563
crossref_primary_10_1016_j_tws_2022_109405
crossref_primary_10_1016_j_engfracmech_2023_109192
crossref_primary_10_1007_s12206_024_0231_9
crossref_primary_10_1016_j_compstruct_2020_112897
crossref_primary_10_1016_j_compstruct_2023_117833
crossref_primary_10_1016_j_matdes_2020_108946
crossref_primary_10_1016_j_ijmecsci_2020_105603
crossref_primary_10_1016_j_tws_2024_111697
crossref_primary_10_1007_s00170_020_06034_x
crossref_primary_10_1016_j_matdes_2025_113777
crossref_primary_10_1016_j_jallcom_2021_161703
crossref_primary_10_1016_j_ijsolstr_2021_111082
crossref_primary_10_1108_RPJ_05_2023_0161
crossref_primary_10_1016_j_ijmecsci_2024_109588
crossref_primary_10_1016_j_compositesb_2022_110179
crossref_primary_10_1016_j_compscitech_2023_110248
crossref_primary_10_1016_j_compstruct_2021_114866
crossref_primary_10_1177_20414196231187004
crossref_primary_10_1080_17452759_2023_2283027
crossref_primary_10_1007_s11837_023_06193_8
crossref_primary_10_1016_j_compstruct_2022_116505
crossref_primary_10_1016_j_engstruct_2022_114327
crossref_primary_10_1016_j_measurement_2022_112339
crossref_primary_10_1080_15376494_2022_2133197
crossref_primary_10_3390_mi14101924
crossref_primary_10_1080_17452759_2023_2224300
crossref_primary_10_1088_1361_665X_ac68b4
crossref_primary_10_1051_epjconf_202125001022
crossref_primary_10_1016_j_jmrt_2023_06_268
crossref_primary_10_1016_j_ijimpeng_2020_103767
crossref_primary_10_3390_buildings13112835
Cites_doi 10.1016/S1359-6454(01)00402-5
10.1016/j.ijplas.2017.02.003
10.1115/1.2788983
10.1016/S0734-743X(99)00153-0
10.1016/j.jmps.2005.05.007
10.1016/j.mechmat.2013.08.009
10.1016/S0734-743X(97)00016-X
10.1016/j.actamat.2016.05.054
10.1002/adma.201401804
10.1098/rsta.1914.0010
10.1016/S0734-743X(00)00060-9
10.1016/0734-743X(94)00062-2
10.1016/j.actamat.2005.04.010
10.1002/pen.760150810
10.1016/j.ijsolstr.2017.01.005
10.1016/j.matdes.2016.03.154
10.1016/j.matdes.2010.04.007
10.1016/S0022-5096(96)00090-7
10.1016/0734-743X(94)00061-Z
10.1016/j.actamat.2014.10.058
10.1016/j.actamat.2018.10.034
10.1126/science.aad2688
10.1002/pen.760300210
10.1016/j.jallcom.2016.09.168
10.1016/j.matdes.2017.11.037
10.1016/j.jmps.2018.08.022
10.1016/j.msea.2016.06.013
10.1016/j.polymertesting.2006.05.005
10.1016/j.ijimpeng.2005.05.007
10.1016/j.actamat.2014.06.051
10.1177/0021955X16670583
10.1016/j.msea.2013.07.070
10.1126/science.1211649
10.1016/j.compstruct.2017.05.001
10.1016/S0022-5096(99)00035-6
10.1177/0021955X06063519
10.1016/j.ijimpeng.2007.10.005
10.1016/j.ijsolstr.2010.06.014
10.1016/S0921-5093(99)00750-9
10.1016/j.ijimpeng.2017.11.017
10.1088/0370-1301/62/11/302
10.1177/0021955X16639035
10.1016/S0020-7403(00)00043-6
10.1016/j.ijsolstr.2015.05.005
10.1080/14786448708628135
10.1146/annurev.matsci.30.1.191
10.1016/S0020-7403(00)00042-4
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijimpeng.2019.05.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
ExternalDocumentID 10_1016_j_ijimpeng_2019_05_017
S0734743X18312612
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c312t-83f18a534977ea2a0a91e5bb88c311c36436f5b3cdf37b465f0aa36d9ce5e2693
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Thu Apr 24 23:04:23 EDT 2025
Tue Jul 01 03:54:27 EDT 2025
Fri Feb 23 02:28:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Relative density
Kelvin foams
Deformation mechanisms
Loading rate
3D printed
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-83f18a534977ea2a0a91e5bb88c311c36436f5b3cdf37b465f0aa36d9ce5e2693
ORCID 0000-0002-7432-4054
ParticipantIDs crossref_primary_10_1016_j_ijimpeng_2019_05_017
crossref_citationtrail_10_1016_j_ijimpeng_2019_05_017
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2019_05_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationTitle International journal of impact engineering
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Paul, Ramamurty (bib0005) 2000; 281
Gibson, Ashby (bib0001) 1999
Deshpande, Fleck (bib0006) 2000; 24
Gümrük, Mines, Karadeniz (bib0047) 2013; 586
Li, Zhang, Fan (bib0010) 2014; 68
Bonatti, Mohr (bib0031) 2019; 164
Kolsky (bib0039) 1949; 62
Li, Harrysson, West (bib0023) 2015; 69-70
Cao, Hou, Li (bib0037) 2017; 109
McKown, Shen, Brookes (bib0048) 2008; 35
Gibson (bib0002) 2000; 30
Sotomayor, Tippur (bib0008) 2014; 78
Bonatti, Mohr (bib0026) 2019; 122
Maskery, Aboulkhair, Aremu (bib0029) 2016; 670
Ouellet, Cronin, Worswick (bib0004) 2006; 25
Thomson (bib0015) 1971; 24
Tancogne-Dejean, Spierings, Mohr (bib0025) 2016; 116
Reid, Peng (bib0049) 1997; 19
Mohsenizadeh, Gasbarri, Munther (bib0046) 2018; 139
Hernández-Nava, Smith, Derguti (bib0027) 2015; 85
Su, Yu, Reid (bib0011) 1995; 16
Eckel, Zhou, Martin (bib0024) 2016; 351
Taherishargh, Belova, Murch (bib0013) 2017; 693
Jang, Kyriakides, Kraynik (bib0019) 2010; 47
Li, Wang (bib0035) 2017; 175
Song, Wang, Zhao (bib0009) 2010; 31
Tan, Harrigan, Reid (bib0041) 2002; 18
Miltz, Ramon (bib0045) 1990; 30
Warren, Kraynik (bib0018) 1997; 64
Zheng, Yu, Li (bib0050) 2005; 32
Schaedler, Jacobsen, Torrents (bib0021) 2011; 334
Bastawros, Bart-Smith, Evans (bib0003) 2000; 48
Hopkinson (bib0038) 1914; 213
Li, Magkiriadis, Harrigan (bib0043) 2006; 42
Cao, Hou, Zhao (bib0036) 2018; 113
Su, Yu, Reid (bib0012) 1995; 16
Chen, Song (bib0040) 2010
Tsouknidas, Pantazopoulos, Katsoulis (bib0034) 2016; 102
Andrews, Gioux, Onck (bib0033) 2001; 43
Bonatti, Mohr (bib0030) 2017; 92
Onck, Andrews, Gibson (bib0032) 2001; 43
Avalle, Belingardi, Montanini (bib0044) 2001; 25
Jeon, Asahina (bib0014) 2005; 53
Zhu, Knott, Mills (bib0017) 1997; 45
Tan, Reid, Harrigan (bib0042) 2005; 53
Menges, Knipschild (bib0016) 1975; 15
Gao, Qi, Li (bib0020) 2016; 54
Maskery, Hussey, Panesar (bib0028) 2016; 53
Compton, Lewis (bib0022) 2014; 26
Zhu, Windle (bib0007) 2002; 50
Li (10.1016/j.ijimpeng.2019.05.017_bib0023) 2015; 69-70
Compton (10.1016/j.ijimpeng.2019.05.017_bib0022) 2014; 26
Taherishargh (10.1016/j.ijimpeng.2019.05.017_bib0013) 2017; 693
Gibson (10.1016/j.ijimpeng.2019.05.017_bib0002) 2000; 30
Tancogne-Dejean (10.1016/j.ijimpeng.2019.05.017_bib0025) 2016; 116
Zheng (10.1016/j.ijimpeng.2019.05.017_bib0050) 2005; 32
Bastawros (10.1016/j.ijimpeng.2019.05.017_bib0003) 2000; 48
Hernández-Nava (10.1016/j.ijimpeng.2019.05.017_bib0027) 2015; 85
Sotomayor (10.1016/j.ijimpeng.2019.05.017_bib0008) 2014; 78
Gibson (10.1016/j.ijimpeng.2019.05.017_bib0001) 1999
Gümrük (10.1016/j.ijimpeng.2019.05.017_bib0047) 2013; 586
Thomson (10.1016/j.ijimpeng.2019.05.017_bib0015) 1971; 24
Warren (10.1016/j.ijimpeng.2019.05.017_bib0018) 1997; 64
Hopkinson (10.1016/j.ijimpeng.2019.05.017_bib0038) 1914; 213
Kolsky (10.1016/j.ijimpeng.2019.05.017_bib0039) 1949; 62
Reid (10.1016/j.ijimpeng.2019.05.017_bib0049) 1997; 19
Menges (10.1016/j.ijimpeng.2019.05.017_bib0016) 1975; 15
Zhu (10.1016/j.ijimpeng.2019.05.017_bib0017) 1997; 45
Li (10.1016/j.ijimpeng.2019.05.017_bib0035) 2017; 175
Onck (10.1016/j.ijimpeng.2019.05.017_bib0032) 2001; 43
Gao (10.1016/j.ijimpeng.2019.05.017_bib0020) 2016; 54
Bonatti (10.1016/j.ijimpeng.2019.05.017_bib0026) 2019; 122
Paul (10.1016/j.ijimpeng.2019.05.017_bib0005) 2000; 281
Tan (10.1016/j.ijimpeng.2019.05.017_bib0041) 2002; 18
Chen (10.1016/j.ijimpeng.2019.05.017_bib0040) 2010
McKown (10.1016/j.ijimpeng.2019.05.017_bib0048) 2008; 35
Deshpande (10.1016/j.ijimpeng.2019.05.017_bib0006) 2000; 24
Bonatti (10.1016/j.ijimpeng.2019.05.017_bib0030) 2017; 92
Miltz (10.1016/j.ijimpeng.2019.05.017_bib0045) 1990; 30
Su (10.1016/j.ijimpeng.2019.05.017_bib0011) 1995; 16
Ouellet (10.1016/j.ijimpeng.2019.05.017_bib0004) 2006; 25
Tsouknidas (10.1016/j.ijimpeng.2019.05.017_bib0034) 2016; 102
Schaedler (10.1016/j.ijimpeng.2019.05.017_bib0021) 2011; 334
Maskery (10.1016/j.ijimpeng.2019.05.017_bib0028) 2016; 53
Andrews (10.1016/j.ijimpeng.2019.05.017_bib0033) 2001; 43
Bonatti (10.1016/j.ijimpeng.2019.05.017_bib0031) 2019; 164
Zhu (10.1016/j.ijimpeng.2019.05.017_bib0007) 2002; 50
Li (10.1016/j.ijimpeng.2019.05.017_bib0010) 2014; 68
Song (10.1016/j.ijimpeng.2019.05.017_bib0009) 2010; 31
Cao (10.1016/j.ijimpeng.2019.05.017_bib0037) 2017; 109
Jang (10.1016/j.ijimpeng.2019.05.017_bib0019) 2010; 47
Tan (10.1016/j.ijimpeng.2019.05.017_bib0042) 2005; 53
Mohsenizadeh (10.1016/j.ijimpeng.2019.05.017_bib0046) 2018; 139
Jeon (10.1016/j.ijimpeng.2019.05.017_bib0014) 2005; 53
Eckel (10.1016/j.ijimpeng.2019.05.017_bib0024) 2016; 351
Su (10.1016/j.ijimpeng.2019.05.017_bib0012) 1995; 16
Li (10.1016/j.ijimpeng.2019.05.017_bib0043) 2006; 42
Cao (10.1016/j.ijimpeng.2019.05.017_bib0036) 2018; 113
Maskery (10.1016/j.ijimpeng.2019.05.017_bib0029) 2016; 670
Avalle (10.1016/j.ijimpeng.2019.05.017_bib0044) 2001; 25
References_xml – volume: 85
  start-page: 387
  year: 2015
  end-page: 395
  ident: bib0027
  article-title: The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing
  publication-title: Acta Mater
– volume: 24
  start-page: 503
  year: 1971
  end-page: 514
  ident: bib0015
  article-title: On the division of space with minimum partitional area
  publication-title: Philos Mag
– volume: 334
  start-page: 962
  year: 2011
  ident: bib0021
  article-title: Ultralight metallic microlattices
  publication-title: Science
– volume: 281
  start-page: 1
  year: 2000
  end-page: 7
  ident: bib0005
  article-title: Strain rate sensitivity of a closed-cell aluminum foam
  publication-title: Mater Sci Eng A
– volume: 32
  start-page: 650
  year: 2005
  end-page: 664
  ident: bib0050
  article-title: Dynamic crushing of 2D cellular structures: a finite element study
  publication-title: Int J Impact Eng
– year: 2010
  ident: bib0040
  article-title: Split hopkinson (Kolsky) bar: design, testing and applications
– volume: 62
  start-page: 676
  year: 1949
  ident: bib0039
  article-title: An investigation of the mechanical properties of materials at very high rates of loading
  publication-title: Proc Phys Soc Lond Sect B
– volume: 78
  start-page: 301
  year: 2014
  end-page: 313
  ident: bib0008
  article-title: Role of cell regularity and relative density on elastoplastic compression response of 3-D open-cell foam core sandwich structure generated using Voronoi diagrams
  publication-title: Acta Mater
– year: 1999
  ident: bib0001
  article-title: Cellular solids: structure and properties
– volume: 693
  start-page: 55
  year: 2017
  end-page: 60
  ident: bib0013
  article-title: The effect of particle shape on mechanical properties of perlite/metal syntactic foam
  publication-title: J Alloys Compd
– volume: 64
  start-page: 787
  year: 1997
  ident: bib0018
  article-title: Linear elastic behavior of a low-density kelvin foam with open cells
  publication-title: J Appl Mech
– volume: 47
  start-page: 2872
  year: 2010
  end-page: 2883
  ident: bib0019
  article-title: On the compressive strength of open-cell metal foams with Kelvin and random cell structures
  publication-title: Int J Solids Struct
– volume: 31
  start-page: 4281
  year: 2010
  end-page: 4289
  ident: bib0009
  article-title: Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model
  publication-title: Mater Des
– volume: 54
  start-page: 53
  year: 2016
  end-page: 72
  ident: bib0020
  article-title: Random equilateral Kelvin open-cell foam microstructures: cross-section shapes, compressive behavior, and isotropic characteristics
  publication-title: J Cell Plast
– volume: 102
  start-page: 41
  year: 2016
  end-page: 44
  ident: bib0034
  article-title: Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling
  publication-title: Mater Des
– volume: 42
  start-page: 371
  year: 2006
  end-page: 392
  ident: bib0043
  article-title: Compressive strain at the onset of densification of cellular solids
  publication-title: J Cell Plast
– volume: 43
  start-page: 701
  year: 2001
  end-page: 713
  ident: bib0033
  article-title: Size effects in ductile cellular solids. Part II: experimental results
  publication-title: Int J Mech Sci
– volume: 50
  start-page: 1041
  year: 2002
  end-page: 1052
  ident: bib0007
  article-title: Effects of cell irregularity on the high strain compression of open-cell foams
  publication-title: Acta Mater
– volume: 43
  start-page: 681
  year: 2001
  end-page: 699
  ident: bib0032
  article-title: Size effects in ductile cellular solids. Part I: modeling
  publication-title: Int J Mech Sci
– volume: 25
  start-page: 731
  year: 2006
  end-page: 743
  ident: bib0004
  article-title: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions
  publication-title: Polym Test
– volume: 69-70
  start-page: 475
  year: 2015
  end-page: 490
  ident: bib0023
  article-title: Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing
  publication-title: Int J Solids Struct
– volume: 139
  start-page: 521
  year: 2018
  end-page: 530
  ident: bib0046
  article-title: Additively-manufactured lightweight Metamaterials for energy absorption
– volume: 16
  start-page: 651
  year: 1995
  end-page: 672
  ident: bib0012
  article-title: Inertia-sensitive impact energy-absorbing structures part I: effects of inertia and elasticity
  publication-title: Int J Impact Eng
– volume: 26
  start-page: 5930
  year: 2014
  end-page: 5935
  ident: bib0022
  article-title: 3D‐printing of lightweight cellular composites
  publication-title: Adv Mater
– volume: 35
  start-page: 795
  year: 2008
  end-page: 810
  ident: bib0048
  article-title: The quasi-static and blast loading response of lattice structures
  publication-title: Int J Impact Eng
– volume: 175
  start-page: 46
  year: 2017
  end-page: 57
  ident: bib0035
  article-title: Bending behavior of sandwich composite structures with tunable 3D-printed core materials
  publication-title: Compos Struct
– volume: 68
  start-page: 85
  year: 2014
  end-page: 94
  ident: bib0010
  article-title: On crushing response of the three-dimensional closed-cell foam based on Voronoi model
  publication-title: Mech Mater
– volume: 116
  start-page: 14
  year: 2016
  end-page: 28
  ident: bib0025
  article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading
  publication-title: Acta Mater
– volume: 53
  year: 2016
  ident: bib0028
  article-title: An investigation into reinforced and functionally graded lattice structures
  publication-title: J Cell Plast
– volume: 53
  start-page: 2174
  year: 2005
  end-page: 2205
  ident: bib0042
  article-title: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations
  publication-title: J Mech Phys Solids
– volume: 30
  start-page: 129
  year: 1990
  end-page: 133
  ident: bib0045
  article-title: Energy absorption characteristics of polymeric foams used as cushioning materials
  publication-title: Polym Eng Sci
– volume: 586
  start-page: 392
  year: 2013
  end-page: 406
  ident: bib0047
  article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions
  publication-title: Mater Sci Eng A
– volume: 122
  start-page: 1
  year: 2019
  end-page: 26
  ident: bib0026
  article-title: Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments
  publication-title: J Mech Phys Solids
– volume: 109
  start-page: 33
  year: 2017
  end-page: 45
  ident: bib0037
  article-title: An experimental study on the impact behavior of multilayer sandwich with corrugated cores
  publication-title: Int J Solids Struct
– volume: 213
  start-page: 437
  year: 1914
  end-page: 456
  ident: bib0038
  article-title: A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets
  publication-title: Philosoph Trans R Soc Lond Ser A
– volume: 19
  start-page: 531
  year: 1997
  end-page: 570
  ident: bib0049
  article-title: Dynamic uniaxial crushing of wood
  publication-title: Int J Impact Eng
– volume: 18
  start-page: 480
  year: 2002
  end-page: 488
  ident: bib0041
  article-title: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam
  publication-title: Metal Sci J
– volume: 92
  start-page: 122
  year: 2017
  end-page: 147
  ident: bib0030
  article-title: Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures
– volume: 25
  start-page: 455
  year: 2001
  end-page: 472
  ident: bib0044
  article-title: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram
  publication-title: Int J Impact Eng
– volume: 30
  start-page: 191
  year: 2000
  end-page: 227
  ident: bib0002
  article-title: Mechanical behavior of metallic foams
  publication-title: Annu Rev Mater Sci
– volume: 351
  start-page: 58
  year: 2016
  ident: bib0024
  article-title: Additive manufacturing of polymer-derived ceramics
  publication-title: Science
– volume: 48
  start-page: 301
  year: 2000
  end-page: 322
  ident: bib0003
  article-title: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam
  publication-title: J Mech Phys Solids
– volume: 113
  start-page: 98
  year: 2018
  end-page: 105
  ident: bib0036
  article-title: On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores
  publication-title: Int J Impact Eng
– volume: 164
  start-page: 301
  year: 2019
  end-page: 321
  ident: bib0031
  article-title: Smooth-shell metamaterials of cubic symmetry: anisotropic elasticity, yield strength and specific energy absorption
  publication-title: Acta Mater
– volume: 24
  start-page: 277
  year: 2000
  end-page: 298
  ident: bib0006
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: Int J Impact Eng
– volume: 45
  start-page: 319
  year: 1997
  end-page: 343
  ident: bib0017
  article-title: Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells
  publication-title: J Mech Phys Solids
– volume: 670
  start-page: 264
  year: 2016
  end-page: 274
  ident: bib0029
  article-title: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting
  publication-title: Mater Sci Eng A
– volume: 16
  start-page: 673
  year: 1995
  end-page: 689
  ident: bib0011
  article-title: Inertia-sensitive impact energy-absorbing structures part II: effect of strain rate
  publication-title: Int J Impact Eng
– volume: 15
  start-page: 623
  year: 1975
  end-page: 627
  ident: bib0016
  article-title: Estimation of mechanical properties for rigid polyurethane foams
  publication-title: Polym Eng Sci
– volume: 53
  start-page: 3415
  year: 2005
  end-page: 3423
  ident: bib0014
  article-title: The effect of structural defects on the compressive behavior of closed-cell Al foam
  publication-title: Acta Mater
– volume: 50
  start-page: 1041
  issue: 5
  year: 2002
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0007
  article-title: Effects of cell irregularity on the high strain compression of open-cell foams
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00402-5
– volume: 92
  start-page: 122
  year: 2017
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0030
  article-title: Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2017.02.003
– volume: 64
  start-page: 787
  issue: 4
  year: 1997
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0018
  article-title: Linear elastic behavior of a low-density kelvin foam with open cells
  publication-title: J Appl Mech
  doi: 10.1115/1.2788983
– volume: 24
  start-page: 277
  issue: 3
  year: 2000
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0006
  article-title: High strain rate compressive behaviour of aluminium alloy foams
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(99)00153-0
– volume: 53
  start-page: 2174
  issue: 10
  year: 2005
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0042
  article-title: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2005.05.007
– volume: 68
  start-page: 85
  issue: 1
  year: 2014
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0010
  article-title: On crushing response of the three-dimensional closed-cell foam based on Voronoi model
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2013.08.009
– volume: 19
  start-page: 531
  issue: 5-6
  year: 1997
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0049
  article-title: Dynamic uniaxial crushing of wood
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(97)00016-X
– volume: 116
  start-page: 14
  year: 2016
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0025
  article-title: Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.05.054
– volume: 26
  start-page: 5930
  issue: 34
  year: 2014
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0022
  article-title: 3D‐printing of lightweight cellular composites
  publication-title: Adv Mater
  doi: 10.1002/adma.201401804
– volume: 213
  start-page: 437
  issue: 497–508
  year: 1914
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0038
  article-title: A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets
  publication-title: Philosoph Trans R Soc Lond Ser A
  doi: 10.1098/rsta.1914.0010
– volume: 25
  start-page: 455
  issue: 5
  year: 2001
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0044
  article-title: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(00)00060-9
– volume: 16
  start-page: 673
  issue: 4
  year: 1995
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0011
  article-title: Inertia-sensitive impact energy-absorbing structures part II: effect of strain rate
  publication-title: Int J Impact Eng
  doi: 10.1016/0734-743X(94)00062-2
– volume: 53
  start-page: 3415
  issue: 12
  year: 2005
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0014
  article-title: The effect of structural defects on the compressive behavior of closed-cell Al foam
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2005.04.010
– volume: 15
  start-page: 623
  issue: 8
  year: 1975
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0016
  article-title: Estimation of mechanical properties for rigid polyurethane foams
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.760150810
– volume: 109
  start-page: 33
  year: 2017
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0037
  article-title: An experimental study on the impact behavior of multilayer sandwich with corrugated cores
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2017.01.005
– volume: 102
  start-page: 41
  year: 2016
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0034
  article-title: Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.03.154
– volume: 31
  start-page: 4281
  issue: 9
  year: 2010
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0009
  article-title: Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.04.007
– volume: 45
  start-page: 319
  issue: 45
  year: 1997
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0017
  article-title: Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(96)00090-7
– volume: 16
  start-page: 651
  issue: 4
  year: 1995
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0012
  article-title: Inertia-sensitive impact energy-absorbing structures part I: effects of inertia and elasticity
  publication-title: Int J Impact Eng
  doi: 10.1016/0734-743X(94)00061-Z
– volume: 85
  start-page: 387
  year: 2015
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0027
  article-title: The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.10.058
– volume: 164
  start-page: 301
  year: 2019
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0031
  article-title: Smooth-shell metamaterials of cubic symmetry: anisotropic elasticity, yield strength and specific energy absorption
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2018.10.034
– volume: 351
  start-page: 58
  issue: 6268
  year: 2016
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0024
  article-title: Additive manufacturing of polymer-derived ceramics
  publication-title: Science
  doi: 10.1126/science.aad2688
– volume: 30
  start-page: 129
  issue: 2
  year: 1990
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0045
  article-title: Energy absorption characteristics of polymeric foams used as cushioning materials
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.760300210
– volume: 693
  start-page: 55
  year: 2017
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0013
  article-title: The effect of particle shape on mechanical properties of perlite/metal syntactic foam
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.09.168
– volume: 139
  start-page: 521
  year: 2018
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0046
  article-title: Additively-manufactured lightweight Metamaterials for energy absorption
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.11.037
– volume: 122
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0026
  article-title: Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2018.08.022
– volume: 670
  start-page: 264
  year: 2016
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0029
  article-title: A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2016.06.013
– volume: 25
  start-page: 731
  issue: 6
  year: 2006
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0004
  article-title: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2006.05.005
– volume: 32
  start-page: 650
  issue: 1
  year: 2005
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0050
  article-title: Dynamic crushing of 2D cellular structures: a finite element study
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2005.05.007
– volume: 78
  start-page: 301
  year: 2014
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0008
  article-title: Role of cell regularity and relative density on elastoplastic compression response of 3-D open-cell foam core sandwich structure generated using Voronoi diagrams
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.06.051
– volume: 54
  start-page: 53
  issue: 1
  year: 2016
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0020
  article-title: Random equilateral Kelvin open-cell foam microstructures: cross-section shapes, compressive behavior, and isotropic characteristics
  publication-title: J Cell Plast
  doi: 10.1177/0021955X16670583
– volume: 586
  start-page: 392
  year: 2013
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0047
  article-title: Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2013.07.070
– volume: 334
  start-page: 962
  issue: 6058
  year: 2011
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0021
  article-title: Ultralight metallic microlattices
  publication-title: Science
  doi: 10.1126/science.1211649
– volume: 175
  start-page: 46
  year: 2017
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0035
  article-title: Bending behavior of sandwich composite structures with tunable 3D-printed core materials
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.05.001
– volume: 18
  start-page: 480
  issue: 5
  year: 2002
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0041
  article-title: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam
  publication-title: Metal Sci J
– volume: 48
  start-page: 301
  issue: 2
  year: 2000
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0003
  article-title: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(99)00035-6
– year: 1999
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0001
– volume: 42
  start-page: 371
  issue: 5
  year: 2006
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0043
  article-title: Compressive strain at the onset of densification of cellular solids
  publication-title: J Cell Plast
  doi: 10.1177/0021955X06063519
– volume: 35
  start-page: 795
  issue: 8
  year: 2008
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0048
  article-title: The quasi-static and blast loading response of lattice structures
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2007.10.005
– volume: 47
  start-page: 2872
  issue: 21
  year: 2010
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0019
  article-title: On the compressive strength of open-cell metal foams with Kelvin and random cell structures
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2010.06.014
– volume: 281
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0005
  article-title: Strain rate sensitivity of a closed-cell aluminum foam
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(99)00750-9
– volume: 113
  start-page: 98
  year: 2018
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0036
  article-title: On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2017.11.017
– volume: 62
  start-page: 676
  issue: 11
  year: 1949
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0039
  article-title: An investigation of the mechanical properties of materials at very high rates of loading
  publication-title: Proc Phys Soc Lond Sect B
  doi: 10.1088/0370-1301/62/11/302
– volume: 53
  issue: 2
  year: 2016
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0028
  article-title: An investigation into reinforced and functionally graded lattice structures
  publication-title: J Cell Plast
  doi: 10.1177/0021955X16639035
– volume: 43
  start-page: 701
  issue: 3
  year: 2001
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0033
  article-title: Size effects in ductile cellular solids. Part II: experimental results
  publication-title: Int J Mech Sci
  doi: 10.1016/S0020-7403(00)00043-6
– volume: 69-70
  start-page: 475
  year: 2015
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0023
  article-title: Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2015.05.005
– year: 2010
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0040
– volume: 24
  start-page: 503
  issue: 151
  year: 1971
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0015
  article-title: On the division of space with minimum partitional area
  publication-title: Philos Mag
  doi: 10.1080/14786448708628135
– volume: 30
  start-page: 191
  issue: 30
  year: 2000
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0002
  article-title: Mechanical behavior of metallic foams
  publication-title: Annu Rev Mater Sci
  doi: 10.1146/annurev.matsci.30.1.191
– volume: 43
  start-page: 681
  issue: 3
  year: 2001
  ident: 10.1016/j.ijimpeng.2019.05.017_bib0032
  article-title: Size effects in ductile cellular solids. Part I: modeling
  publication-title: Int J Mech Sci
  doi: 10.1016/S0020-7403(00)00042-4
SSID ssj0017050
Score 2.5435812
Snippet •The effects of relative density and loading rate on the compressive responses of 3D printed Kelvin foams are studied.•We establish the Gibson–Ashby equations...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103303
SubjectTerms 3D printed
Deformation mechanisms
Kelvin foams
Loading rate
Relative density
Title Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells
URI https://dx.doi.org/10.1016/j.ijimpeng.2019.05.017
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhXdqh9EmfQUNXx3ZkydYY0oa0oYHSBrIZyZaKQ-KYOgl06dyfXZ0fIYVCho62dMLoDt1x_r5PCN1J4gq3U9B-ZWx5kepYQnJt-dLhDhdM-RL4zs8jNhh7TxM6aaBezYUBWGV19pdnenFaV2_sajftLEnsVxOcnsl_ExOULghhAYPd8yHK218bmAeoxRR9FjPZgtlbLOFpO5kmpjhN3wHixUsFT__vBLWVdPpH6LCqFnG3_KBj1FDpCTrY0hA8Rd8vK5EnFhCDkgiLNMZxeck8BrR4gXJdK5xBz_0DxFPLKWpDWsRzBeTfJJ_neKExucfQ6jN1KM4Ws8_ifw6G7j7AVXGpNrsyq2Jo4OKhmq2TtBjPz9C4__DWG1jV9QpWZDZsaQVEu4GgxDMloBId4QjuKiplEJhxNyKmVmGaShLFmvjSY1Q7QhAW80hR1WGcnKNmukjVBcJCu2YFEiufSo-6fsB9HTEtPcUcyR12iWi9p2FUaY_DFRizsAaZTcPaFyH4InRoaHxxieyNXVaqb-y04LXLwl9xFJoUscP26h-212gfnkqY3w1qGneoW1OuLGWriMcW2us-DgejH4i474k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60HtSD-MS3OXhdu9tsspuj-KBaLYgKvYVkN5Et7bZYW_Af-LPN7KNUEDx43WTCkhlmhsl83wCcaxqooFXAfnXqhYlpeUoL60XaF75Q3EQa8c6PXd5-De97rLcEVzUWBtsqK99f-vTCW1dfmtVtNsdZ1nx2xhm6-NdzRhkgEdYyrCA7FWvAyuVdp92dPyZEfjGoFfd7KLAAFO5fZP3M5af5G3Z5iZLEM_o9Ri3EndtN2KgSRnJZ_tMWLJl8G9YXaAR34OtpqiaZh9igLCEqT0lazpkn2DBeNLrODBlj2f0d-VPLLWaOWyRDg_jfbDKckJEl9Jpgtc-lomQ8GnwWTzoEC_zYsUpKwtmpO5VgDZd0zGCW5cX6ZBdeb29ertpeNWHBS9ydfXgxtUGsGA1dFmhUS_lKBIZpHcduPUioS1e4ZZomqaWRDjmzvlKUpyIxzLS4oHvQyEe52QeibOBOoKmJmA5ZEMUisgm3OjTc18LnB8DqO5VJRT-OUzAGsu4z68taFxJ1IX0mnS4OoDmXG5cEHH9KiFpl8ocpSRcl_pA9_IfsGay2Xx4f5MNdt3MEa7hSdv0dQ8Opxpy47OVDn1bW-Q20pfI6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-static+and+dynamic+compressive+properties+and+deformation+mechanisms+of+3D+printed+polymeric+cellular+structures+with+Kelvin+cells&rft.jtitle=International+journal+of+impact+engineering&rft.au=Duan%2C+Yu&rft.au=Du%2C+Bing&rft.au=Shi%2C+Xiaopeng&rft.au=Hou%2C+Bing&rft.date=2019-10-01&rft.issn=0734-743X&rft.volume=132&rft.spage=103303&rft_id=info:doi/10.1016%2Fj.ijimpeng.2019.05.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2019_05_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon