Thermal performance of heat sink using nano-enhanced phase change material (NePCM) for cooling of electronic components
Present experimental study reports the thermal performance of nano-enhanced phase change material (NePCM) based thermal energy storage system for cooling of electronic components. The NePCM based heat sink (HS) cooling is a passive cooling technique that can eliminate the fan-based conventional cool...
Saved in:
Published in | Microelectronics and reliability Vol. 121; p. 114144 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Present experimental study reports the thermal performance of nano-enhanced phase change material (NePCM) based thermal energy storage system for cooling of electronic components. The NePCM based heat sink (HS) cooling is a passive cooling technique that can eliminate the fan-based conventional cooling technique. A plate heater was used to impersonate the heat generated by microelectronics. Here, copper oxide (CuO), paraffin wax, and aluminum are considered as nanoparticle, phase change material (PCM), and HS material, respectively. Different HS configurations such as HS with no fin (HSNF), HS with rectangular plate fins (HSRPF), HS with square pin fins (HSSPF), and HS with circular pin fins (HSCPF) are studied for a fixed volume fraction of fin material. The performance of various HS configurations are analyzed for different nanoparticle concentration (∅=0.5–3.0), and heat flux values (q′′=1.5–3.0 kW/m2). For ∅= 3.0, thermal conductivity and viscosity of NePCM are found to increase by 150% and 100%, respectively. The HSSPF involving PCM/NePCM exhibits better thermal performance compared to other HS configurations. The maximum reduction in temperature is found to be 13 °C and 15 °C for HSSPF involving PCM and NePCM (∅= 0.5), respectively. The highest enhancement ratio of 5.0 is obtained for HSSPF at q″= 2.0 kW/m2 for SPT of 65 °C. The addition of CuO nanoparticle beyond ∅=0.5 decreases the HS performance considerably.
[Display omitted]
•Copper oxide based NePCM is studied experimentally.•Thermal conductivity and latent heat are measured for thermal analysis.•Thermal conductivity and viscosity are increased by 150% and 100%, respectively.•Maximum 15 °C temperature reduction is observed for HSSPF with ∅= 0.5 NePCM.•An enhancement ratio of 5.0 is obtained for HSSPF at q″= 2.0 kW/m−2 |
---|---|
AbstractList | Present experimental study reports the thermal performance of nano-enhanced phase change material (NePCM) based thermal energy storage system for cooling of electronic components. The NePCM based heat sink (HS) cooling is a passive cooling technique that can eliminate the fan-based conventional cooling technique. A plate heater was used to impersonate the heat generated by microelectronics. Here, copper oxide (CuO), paraffin wax, and aluminum are considered as nanoparticle, phase change material (PCM), and HS material, respectively. Different HS configurations such as HS with no fin (HSNF), HS with rectangular plate fins (HSRPF), HS with square pin fins (HSSPF), and HS with circular pin fins (HSCPF) are studied for a fixed volume fraction of fin material. The performance of various HS configurations are analyzed for different nanoparticle concentration (∅=0.5–3.0), and heat flux values (q′′=1.5–3.0 kW/m2). For ∅= 3.0, thermal conductivity and viscosity of NePCM are found to increase by 150% and 100%, respectively. The HSSPF involving PCM/NePCM exhibits better thermal performance compared to other HS configurations. The maximum reduction in temperature is found to be 13 °C and 15 °C for HSSPF involving PCM and NePCM (∅= 0.5), respectively. The highest enhancement ratio of 5.0 is obtained for HSSPF at q″= 2.0 kW/m2 for SPT of 65 °C. The addition of CuO nanoparticle beyond ∅=0.5 decreases the HS performance considerably.
[Display omitted]
•Copper oxide based NePCM is studied experimentally.•Thermal conductivity and latent heat are measured for thermal analysis.•Thermal conductivity and viscosity are increased by 150% and 100%, respectively.•Maximum 15 °C temperature reduction is observed for HSSPF with ∅= 0.5 NePCM.•An enhancement ratio of 5.0 is obtained for HSSPF at q″= 2.0 kW/m−2 |
ArticleNumber | 114144 |
Author | Sahu, Santosh Kumar Kothari, Rohit Kundalwal, Shailesh Ishwarlal Kumar, Anuj |
Author_xml | – sequence: 1 givenname: Anuj surname: Kumar fullname: Kumar, Anuj email: phd1801103004@iiti.ac.in – sequence: 2 givenname: Rohit surname: Kothari fullname: Kothari, Rohit – sequence: 3 givenname: Santosh Kumar surname: Sahu fullname: Sahu, Santosh Kumar – sequence: 4 givenname: Shailesh Ishwarlal surname: Kundalwal fullname: Kundalwal, Shailesh Ishwarlal |
BookMark | eNqFkDlPwzAYQD0UibbwF5BHGBLsxLkkBlDFJZVjKLPlOF8al8SObAPi3-OosLB08an3ZL8FmmmjAaEzSmJKaH65iwclrbHQxwlJaEwpo4zN0JyQJI-SgrJjtHBuRwgpCKVz9LXpwA6ixyPY1oSVloBNizsQHjul3_FHGLdYC20i0N103-CxEw6wDLst4EF4sCoozp_hdfV0gYMHS2P6iQsq6EF6a7SS4XQYw4O1dyfoqBW9g9PfeYne7m43q4do_XL_uLpZRzKliY9KUrKMSApNk5VFAlWRVXmTNnmdAtQphbwqac1EVlZpTduqkFCLFBiQNs9Z2aRLdLX3hirOWWi5VF54ZbS3QvWcEj6F4zv-F45P4fg-XMDzf_ho1SDs92Hweg9C-NynAsudVDDFUzbk4I1RhxQ_slKSeg |
CitedBy_id | crossref_primary_10_1016_j_est_2022_105027 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122272 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123204 crossref_primary_10_2298_TSCI220523134R crossref_primary_10_1016_j_csite_2025_106010 crossref_primary_10_1016_j_csite_2023_103262 crossref_primary_10_1007_s10973_022_11223_9 crossref_primary_10_2298_TSCI230908073K crossref_primary_10_1007_s11356_023_27468_2 crossref_primary_10_1016_j_est_2023_108450 crossref_primary_10_1016_j_est_2023_108057 crossref_primary_10_1002_htj_23224 crossref_primary_10_1016_j_est_2024_113241 crossref_primary_10_1063_5_0239679 crossref_primary_10_1002_htj_23185 crossref_primary_10_1016_j_est_2021_103328 crossref_primary_10_1016_j_est_2024_114051 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123927 crossref_primary_10_1016_j_enbuild_2024_114164 crossref_primary_10_1016_j_tsep_2024_102525 crossref_primary_10_1016_j_est_2021_103596 crossref_primary_10_32604_jrm_2022_022232 crossref_primary_10_1016_j_icheatmasstransfer_2025_108748 crossref_primary_10_1016_j_microrel_2021_114417 crossref_primary_10_1016_j_renene_2024_121024 crossref_primary_10_1016_j_enconman_2022_115902 crossref_primary_10_3390_math9243235 crossref_primary_10_1080_00986445_2021_1974418 crossref_primary_10_1615_ComputThermalScien_2024056420 crossref_primary_10_1016_j_applthermaleng_2025_125651 crossref_primary_10_1016_j_nanoen_2024_110212 crossref_primary_10_1016_j_csite_2024_104410 crossref_primary_10_1016_j_pecs_2024_101162 crossref_primary_10_3390_en16031066 crossref_primary_10_3390_en15228416 crossref_primary_10_1016_j_energy_2024_133420 crossref_primary_10_1016_j_est_2022_105240 crossref_primary_10_1016_j_est_2024_112935 crossref_primary_10_1016_j_rineng_2024_103579 crossref_primary_10_3390_ma15228244 crossref_primary_10_1016_j_egyr_2023_07_052 crossref_primary_10_1063_5_0127543 crossref_primary_10_1016_j_csite_2022_101826 crossref_primary_10_1016_j_est_2024_110470 crossref_primary_10_1016_j_icheatmasstransfer_2024_107773 crossref_primary_10_1016_j_csite_2022_102553 crossref_primary_10_1016_j_csite_2024_105628 crossref_primary_10_1016_j_est_2021_103224 crossref_primary_10_1002_ente_202301398 crossref_primary_10_1016_j_est_2023_106849 crossref_primary_10_3390_en15228746 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125730 crossref_primary_10_1016_j_applthermaleng_2024_125219 crossref_primary_10_1016_j_csite_2022_101855 crossref_primary_10_1016_j_icheatmasstransfer_2024_108194 crossref_primary_10_1016_j_applthermaleng_2024_125254 crossref_primary_10_1016_j_applthermaleng_2024_122420 crossref_primary_10_1016_j_applthermaleng_2024_122423 crossref_primary_10_1016_j_matpr_2023_02_187 crossref_primary_10_1016_j_inoche_2024_113258 crossref_primary_10_1016_j_jclepro_2023_136101 crossref_primary_10_1016_j_csite_2024_104247 crossref_primary_10_1016_j_est_2022_105659 crossref_primary_10_1016_j_est_2023_109118 crossref_primary_10_1088_1402_4896_ac3118 |
Cites_doi | 10.1016/j.applthermaleng.2017.12.066 10.1039/D0TA05247G 10.1016/j.applthermaleng.2020.115747 10.1016/j.ijheatmasstransfer.2013.08.010 10.1016/j.applthermaleng.2010.06.021 10.1016/j.ijheatmasstransfer.2013.02.065 10.1016/j.applthermaleng.2019.114342 10.1016/j.applthermaleng.2011.02.029 10.1115/1.4006305 10.1134/S1810232817020114 10.1016/j.ijheatmasstransfer.2017.10.008 10.1016/j.tsep.2017.10.021 10.1016/j.powtec.2014.08.009 10.1016/j.tca.2019.05.002 10.1016/j.ijheatmasstransfer.2011.11.020 10.1016/j.est.2020.101497 10.1016/j.enconman.2018.10.037 10.1016/j.tca.2018.11.014 10.1016/j.applthermaleng.2016.09.028 10.1016/j.ijheatfluidflow.2010.02.016 10.1631/jzus.A1200208 10.1016/j.ijthermalsci.2013.12.018 10.1016/j.ijheatmasstransfer.2019.118852 10.1115/1.2804948 10.1016/j.tca.2012.07.017 10.1016/j.jpowsour.2020.228398 10.1016/j.ijheatmasstransfer.2017.07.114 10.1016/j.applthermaleng.2018.09.002 10.1007/s00231-018-2453-9 10.1016/j.applthermaleng.2011.07.031 10.1016/j.applthermaleng.2012.07.002 10.1115/MNHMT2016-6499 10.1016/j.tca.2009.03.016 10.1016/j.molliq.2017.09.017 10.1016/j.ijheatmasstransfer.2018.02.044 10.1016/j.renene.2019.07.115 10.1016/j.applthermaleng.2016.10.090 10.1016/j.ijheatmasstransfer.2017.05.004 10.1016/j.applthermaleng.2010.06.002 10.1016/j.molliq.2020.113544 10.1016/j.enconman.2015.10.015 10.1016/j.apenergy.2017.09.076 10.1016/j.ijthermalsci.2011.04.005 10.1016/j.apenergy.2013.04.059 10.1115/POWER2019-1883 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.microrel.2021.114144 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_microrel_2021_114144 S0026271421001104 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-808450c1edd5872e97596d3d6b3eeb31e6981b4a5893b1f97ceba3e4e0f6648d3 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Tue Jul 01 01:27:35 EDT 2025 Thu Apr 24 22:58:27 EDT 2025 Tue Mar 11 03:40:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal management Thermal conductivity enhancers Nanoenhanced Phase change material Heat sink |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-808450c1edd5872e97596d3d6b3eeb31e6981b4a5893b1f97ceba3e4e0f6648d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_microrel_2021_114144 crossref_primary_10_1016_j_microrel_2021_114144 elsevier_sciencedirect_doi_10_1016_j_microrel_2021_114144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mahmoud, Tang, Toh, Al-Dadah, Soo (bb0270) 2013; 112 R. Kothari, D.V. Vaidya, V. Shelke, S.K. Sahu, S.I. Kundalwal, Experimental investigation of thermal performance of nano-enhanced phase change materials for thermal management of electronic components, ASME 2019 Power Conference, POWER2019-1883, July 15–18, 2019, Salt Lake City, UT, USA. Peyghambarzadeh, Hashemabadi, Jamnani, Hoseini (bb0240) 2011; 31 Chintakrinda, Weinstein, Fleischer (bb0155) 2011; 50 Bayat, Faridzadeh, Toghraie (bb0180) 2018; 5 Kothari, Sahu, Kundalwal, Mahalkar (bb0275) 2020 Ali, Arshad (bb0065) 2017; 112 Ho, Gao (bb0160) 2013; 62 Ashraf, Ali, Usman, Arshad (bb0080) 2017; 115 Saha, Dutta (bb0045) 2010; 30 Kothari, Das, Sahu, Kundalwal (bb0100) 2019; 55 S.P. Venkateshan, Mechanical measurements, Ane books India, first ed., New Delhi, (2008). Sharma, Ganesan, Sahu, Metselaar, Mahila (bb0135) 2014; 268 Babazadeh, Sheremet, Mohammed, Hajizadeh, Li (bb0190) 2020; 313 S.K. Sahoo, M.K. Das, P. Rath, Numerical study of cyclic melting and solidification of nano enhanced phase change material based heat sink in thermal management of electronic components, ASME 2016 5th Int. Conf. Micro/Nanoscale Heat Mass Transf. MNHMT2016, Biopolis, Singapore, January 4–6, 2016. Fan, Khodadadi (bb0145) 2012; 134 Saha, Srinivasan, Dutta (bb0105) 2008; 130 Tariq, Ali, Akram, Janjua (bb0170) 2020; 30 Viswanath, Wakharkar, Watwe, Lebonheur (bb0005) 2000; Q3 Lu, Hua, Liu, Cheng (bb0020) 2009; 493 Xiao, Zhang, Li, Yang (bb0125) 2020; 8 Alimohammadi, Aghli, Alavi, Sardarabadi, Passandideh-Fard (bb0200) 2017; 111 Burns, Scroger, Strouse, Croarkin, Guthrie (bb0255) 1993 Kumaresan, Velraj (bb0235) 2012; 545 bb0220 Ali, Ashraf, Giovanneilli, Irfan, Irshad, Hamid, Hassan, Arshad (bb0085) 2018; 123 Reddy, Venkatachalapathy (bb0250) 2019; 672 Ouyang, Weng, Hu, Chen, Huang, Wang (bb0025) 2019; 676 Kumar, Kothari, Sahu, Kundalwal, Paulraj (bb0050) 2021 Sharma, Micheli, Chang, Tahir, Reddy, Mallick (bb0195) 2017; 208 Karus, Bar-Cohen (bb0010) 1983; vol. 1 Bondareva, Buonomo, Manca, Sheremet (bb0185) 2018; 144 Nabil, Khodadadi (bb0150) 2013; 67 Zhao, Xing, Liu (bb0285) 2020; 146 Baby, Balaji (bb0260) 2014; 79 Akilu, Baheta, Sharma (bb0230) 2017; 246 Rehman, Ali (bb0030) 2020; 146 Minea, Moldoveanu (bb0225) 2017; 26 Kothari, Das, Sahu, Kundalwal (bb0095) 2019 Farzahenia, Khatibi, Sardarabadi, Passandiedeh (bb0165) 2019; 179 Grimes, Wlash, Walsh (bb0015) 2010; 30 Teng, Cheng, Cheng (bb0290) 2013; 50 Joseph, Sajith (bb0205) 2019; 163 Hosseinizadeh, Tan, Moosania (bb0055) 2011; 31 Ali, Arshad (bb0090) 2015; 106 Baby, Balaji (bb0110) 2013; 54 Arshad, Ali, Ali, Manzoor (bb0070) 2017; 112 Lv, Yang, Zhang (bb0120) 2020; 179 Baby, Balaji (bb0215) 2012 Arshad, Ali, Yan, Hussein, Ahmadlouydarab (bb0115) 2018; 132 Vajjha, Das, Namburu (bb0245) 2010; 31 Huang, Sun, Yao, Zhang (bb0280) 2020 Motahar, Khodabandeh (bb0175) 2018; 6 Kothari, Mahalkar, Sahu, Kundalwal (bb0035) 2018 Baby, Balaji (bb0040) 2012; 55 Sebti, Mastiani, Mirzaei, Dadvand, Kashani, Hosseini (bb0140) 2013; 14 Lv, Liu, Zhang, Yang (bb0060) 2020; 468 Arshad, Ali, Khushnood, Jabbal (bb0075) 2018; 117 Grimes (10.1016/j.microrel.2021.114144_bb0015) 2010; 30 Farzahenia (10.1016/j.microrel.2021.114144_bb0165) 2019; 179 Sebti (10.1016/j.microrel.2021.114144_bb0140) 2013; 14 Saha (10.1016/j.microrel.2021.114144_bb0105) 2008; 130 Kothari (10.1016/j.microrel.2021.114144_bb0095) 2019 Ashraf (10.1016/j.microrel.2021.114144_bb0080) 2017; 115 Lv (10.1016/j.microrel.2021.114144_bb0120) 2020; 179 Tariq (10.1016/j.microrel.2021.114144_bb0170) 2020; 30 Rehman (10.1016/j.microrel.2021.114144_bb0030) 2020; 146 10.1016/j.microrel.2021.114144_bb0265 Kumar (10.1016/j.microrel.2021.114144_bb0050) 2021 Teng (10.1016/j.microrel.2021.114144_bb0290) 2013; 50 Xiao (10.1016/j.microrel.2021.114144_bb0125) 2020; 8 Burns (10.1016/j.microrel.2021.114144_bb0255) 1993 Lu (10.1016/j.microrel.2021.114144_bb0020) 2009; 493 Joseph (10.1016/j.microrel.2021.114144_bb0205) 2019; 163 Baby (10.1016/j.microrel.2021.114144_bb0215) 2012 Zhao (10.1016/j.microrel.2021.114144_bb0285) 2020; 146 Babazadeh (10.1016/j.microrel.2021.114144_bb0190) 2020; 313 Saha (10.1016/j.microrel.2021.114144_bb0045) 2010; 30 Sharma (10.1016/j.microrel.2021.114144_bb0195) 2017; 208 Arshad (10.1016/j.microrel.2021.114144_bb0075) 2018; 117 Arshad (10.1016/j.microrel.2021.114144_bb0070) 2017; 112 Huang (10.1016/j.microrel.2021.114144_bb0280) 2020 Kothari (10.1016/j.microrel.2021.114144_bb0100) 2019; 55 Bayat (10.1016/j.microrel.2021.114144_bb0180) 2018; 5 Lv (10.1016/j.microrel.2021.114144_bb0060) 2020; 468 Ho (10.1016/j.microrel.2021.114144_bb0160) 2013; 62 Bondareva (10.1016/j.microrel.2021.114144_bb0185) 2018; 144 Vajjha (10.1016/j.microrel.2021.114144_bb0245) 2010; 31 Reddy (10.1016/j.microrel.2021.114144_bb0250) 2019; 672 Ali (10.1016/j.microrel.2021.114144_bb0065) 2017; 112 Hosseinizadeh (10.1016/j.microrel.2021.114144_bb0055) 2011; 31 Nabil (10.1016/j.microrel.2021.114144_bb0150) 2013; 67 Motahar (10.1016/j.microrel.2021.114144_bb0175) 2018; 6 Baby (10.1016/j.microrel.2021.114144_bb0110) 2013; 54 Minea (10.1016/j.microrel.2021.114144_bb0225) 2017; 26 Karus (10.1016/j.microrel.2021.114144_bb0010) 1983; vol. 1 Viswanath (10.1016/j.microrel.2021.114144_bb0005) 2000; Q3 Alimohammadi (10.1016/j.microrel.2021.114144_bb0200) 2017; 111 Mahmoud (10.1016/j.microrel.2021.114144_bb0270) 2013; 112 Fan (10.1016/j.microrel.2021.114144_bb0145) 2012; 134 Peyghambarzadeh (10.1016/j.microrel.2021.114144_bb0240) 2011; 31 Chintakrinda (10.1016/j.microrel.2021.114144_bb0155) 2011; 50 Kothari (10.1016/j.microrel.2021.114144_bb0035) 2018 10.1016/j.microrel.2021.114144_bb0130 Akilu (10.1016/j.microrel.2021.114144_bb0230) 2017; 246 Sharma (10.1016/j.microrel.2021.114144_bb0135) 2014; 268 Kothari (10.1016/j.microrel.2021.114144_bb0275) 2020 Ali (10.1016/j.microrel.2021.114144_bb0085) 2018; 123 10.1016/j.microrel.2021.114144_bb0210 Ouyang (10.1016/j.microrel.2021.114144_bb0025) 2019; 676 Ali (10.1016/j.microrel.2021.114144_bb0090) 2015; 106 Kumaresan (10.1016/j.microrel.2021.114144_bb0235) 2012; 545 Baby (10.1016/j.microrel.2021.114144_bb0040) 2012; 55 Arshad (10.1016/j.microrel.2021.114144_bb0115) 2018; 132 Baby (10.1016/j.microrel.2021.114144_bb0260) 2014; 79 |
References_xml | – volume: 123 start-page: 272 year: 2018 end-page: 284 ident: bb0085 article-title: Thermal management of electronics: an experimental analysis of triangular rectangular, and circular pin-fin heat sinks for various PCMs publication-title: Int. J. Heat Mass Transf. – volume: 31 start-page: 1833 year: 2011 end-page: 1838 ident: bb0240 article-title: Improving the cooling performance of automobile radiator with Al publication-title: Appl. Therm. Eng. – volume: 179 start-page: 314 year: 2019 end-page: 325 ident: bb0165 article-title: Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management publication-title: Energy Convers. Manag. – volume: 79 start-page: 240 year: 2014 end-page: 249 ident: bb0260 article-title: Thermal performance of PCM based heat sink under different loads: an experimental study publication-title: Int. J. Therm. Sci. – volume: 50 start-page: 1639 year: 2011 end-page: 1647 ident: bb0155 article-title: A direct comparison of three different material enhancement methods on transient thermal response of paraffin phase change material exposed to high heat fluxes publication-title: Int. J. Therm. Sci. – volume: 26 start-page: 291 year: 2017 end-page: 301 ident: bb0225 article-title: Studies on Al publication-title: J. Eng. Thermophys. – volume: 31 start-page: 613 year: 2010 end-page: 621 ident: bb0245 article-title: Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator publication-title: Int. J. Heat Fluid Flow – volume: 55 start-page: 769 year: 2019 end-page: 790 ident: bb0100 article-title: Comprehensive analysis of melting and solidification of phase change material in an annulus publication-title: Heat Mass Transf. – volume: 112 start-page: 143 year: 2017 end-page: 155 ident: bb0070 article-title: Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction publication-title: Appl. Therm. Eng. – volume: 179 start-page: 115747 year: 2020 ident: bb0120 article-title: Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles publication-title: Appl. Therm. Eng. – reference: S.K. Sahoo, M.K. Das, P. Rath, Numerical study of cyclic melting and solidification of nano enhanced phase change material based heat sink in thermal management of electronic components, ASME 2016 5th Int. Conf. Micro/Nanoscale Heat Mass Transf. MNHMT2016, Biopolis, Singapore, January 4–6, 2016. – volume: 130 year: 2008 ident: bb0105 article-title: Studies on optimum distribution of fins in heat sinks filled with phase change materials publication-title: J. Heat Transf. – volume: 54 start-page: 65 year: 2013 end-page: 77 ident: bb0110 article-title: A neural network-based optimization of thermal performance of phase change material-based finned heat sinks- an experimental study publication-title: Exp. Heat Transf. – volume: 8 start-page: 14624 year: 2020 end-page: 14633 ident: bb0125 article-title: Custom design of solid–solid phase change material with ultra-high thermal stability for battery thermal management publication-title: J. Mate. Chem. A. – volume: 134 start-page: 1 year: 2012 end-page: 9 ident: bb0145 article-title: A theoretical and experimental investigation of unidirectional freezing of nanoparticle-enhanced phase change materials publication-title: J. Heat Transf. – year: 2012 ident: bb0215 article-title: Thermal Management of Electronics Using Phase Change Material Based Pin Fin Heat Sink, 6th European Thermal Science Conference publication-title: Journal of Physics – volume: 62 start-page: 2 year: 2013 end-page: 8 ident: bb0160 article-title: An experimental study on melting heat transfer of paraffin dispersed with Al publication-title: Int. J. Heat Mass Transf. – volume: 117 start-page: 861 year: 2018 end-page: 872 ident: bb0075 article-title: Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter publication-title: Int. J. Heat Mass Transf. – volume: 6 start-page: 96 year: 2018 end-page: 103 ident: bb0175 article-title: An experimental assessment of nanostructured material embedded in a PCM based heat sink for transient thermal management of electronics publication-title: Trans. Phenom. Nano Micro Scales – volume: 31 start-page: 3827 year: 2011 end-page: 3838 ident: bb0055 article-title: Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins publication-title: Appl. Therm. Energ. – reference: R. Kothari, D.V. Vaidya, V. Shelke, S.K. Sahu, S.I. Kundalwal, Experimental investigation of thermal performance of nano-enhanced phase change materials for thermal management of electronic components, ASME 2019 Power Conference, POWER2019-1883, July 15–18, 2019, Salt Lake City, UT, USA. – start-page: 1 year: 2019 end-page: 23 ident: bb0095 article-title: Analysis of solidification in a finite PCM storage with internal fins by employing heat balance integral method publication-title: Int. J. Energy Res. – volume: 115 start-page: 251 year: 2017 end-page: 263 ident: bb0080 article-title: Experimental passive electronic cooling: parametric investigation of pin-fin geometries and efficient phase change material publication-title: Int. J. Heat Mass Transf. – volume: 50 start-page: 637 year: 2013 end-page: 644 ident: bb0290 article-title: Performance assessment of heat storage by phase change materials containing MWCNTS and graphite publication-title: Appl. Therm. Eng. – year: 2018 ident: bb0035 article-title: Experimental investigation on thermal performance of PCM based heat sink for passive cooling of electronic components publication-title: ASME 16th International Conference on Nanochannels, Microchannels, and Minichannels, Dubrovnik, Croatia, June 10-13 – volume: 676 start-page: 205 year: 2019 end-page: 213 ident: bb0025 article-title: Experimental investigation of thermal failure propagation in typical lithium-ion battery modules publication-title: Thermochem. Acta – volume: 545 start-page: 180 year: 2012 end-page: 186 ident: bb0235 article-title: Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids publication-title: Thermochem. Acta – volume: 268 start-page: 38 year: 2014 end-page: 47 ident: bb0135 article-title: Numerical study for enhancement of solidification of phase change materials using trapezoidal cavity publication-title: Powder Technol. – volume: 313 start-page: 113544 year: 2020 ident: bb0190 article-title: Inclusion of nanoparticles in PCM for heat release unit publication-title: J. Mol. Liq. – volume: 146 start-page: 1578 year: 2020 end-page: 1587 ident: bb0285 article-title: Experimental investigation on thermal management performance of heat sink using low melting point alloy as phase change material publication-title: Renew. Energy – volume: 144 start-page: 972 year: 2018 end-page: 981 ident: bb0185 article-title: Heat transfer inside cooling system based on phase change material with alumina nanoparticles publication-title: Appl. Therm. Eng. – volume: 111 start-page: 271 year: 2017 end-page: 279 ident: bb0200 article-title: Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection publication-title: Appl. Therm. Eng. – volume: 55 start-page: 1644 year: 2012 end-page: 1649 ident: bb0040 article-title: Experimental investigation on phase change material based finned heat sink for electronic equipment cooling publication-title: Int. J. Heat Mass Transf. – volume: 67 start-page: 301 year: 2013 end-page: 310 ident: bb0150 article-title: Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials publication-title: Int. J. Heat Mass Transf. – volume: 468 start-page: 228398 year: 2020 ident: bb0060 article-title: A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules publication-title: J. Power Sources – ident: bb0220 article-title: Sigma Aldrich phase change material datasheet – volume: 208 start-page: 719 year: 2017 end-page: 733 ident: bb0195 article-title: Nano-enhanced phase change material for thermal management of BICPV publication-title: Appl. Energy – volume: 146 start-page: 118852 year: 2020 ident: bb0030 article-title: Experimental study on thermal behavior of RT-35HC paraffin within copper and iron-nickel open cell foams: energy storage for thermal management of electronics publication-title: Int. J. Heat Mass Transf. – volume: 672 start-page: 93 year: 2019 end-page: 100 ident: bb0250 article-title: Heat transfer enhancement studies in pool boiling using hybrid nanofluids publication-title: Thermochem. Acta – volume: 163 start-page: 114342 year: 2019 ident: bb0205 article-title: Graphene enhanced paraffin nanocomposite based hybrid cooling system for thermal management of electronics publication-title: Appl. Therm. Eng. – volume: 30 start-page: 2363 year: 2010 end-page: 2369 ident: bb0015 article-title: Active cooling of a mobile phone handset publication-title: Appl. Therm. Eng. – volume: 106 start-page: 793 year: 2015 end-page: 803 ident: bb0090 article-title: Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO publication-title: Ener. Conv. Manage. – year: 2020 ident: bb0280 article-title: Experimental investigation on thermal performance of a finned metal foam heat sink with phase change material publication-title: Heat Transf. Eng. – volume: 30 start-page: 2485 year: 2010 end-page: 2491 ident: bb0045 article-title: Heat transfer correlations for PCM-based heat sinks with plate fins publication-title: Appl. Therm. Eng. – volume: 132 start-page: 52 year: 2018 end-page: 66 ident: bb0115 article-title: An experimental study of enhanced heat sink for thermal management using n-eicosane as phase change material publication-title: App. Therm. Eng. – volume: vol. 1 year: 1983 ident: bb0010 article-title: Thermal Analysis and Control of Electronic Equipment – volume: 493 start-page: 25 year: 2009 end-page: 29 ident: bb0020 article-title: Thermal analysis of loop heat pipe used for high power LED publication-title: Thermochem. Acta – volume: Q3 year: 2000 ident: bb0005 article-title: Thermal performance challenges from silicon to systems publication-title: Intel Tech. J. – volume: 14 start-page: 307 year: 2013 end-page: 316 ident: bb0140 article-title: Numerical study of the melting of nano-enhanced phase change material in a square cavity publication-title: J. Zhejiang University-Sci. A (Appl. Phys. Eng.) – reference: S.P. Venkateshan, Mechanical measurements, Ane books India, first ed., New Delhi, (2008). – start-page: 1 year: 2021 end-page: 18 ident: bb0050 article-title: Numerical investigation of cross plate fin heat sink integrated with phase change material for cooling application of portable electronic devices publication-title: Int. J. Energy Res. – volume: 30 start-page: 101497 year: 2020 ident: bb0170 article-title: Experimental investigation on graphene based nanoparticles enhanced phase change materials (GbNePCM) for thermal management of electronic equipment publication-title: J. Energy Stor. – start-page: 1 year: 2020 end-page: 25 ident: bb0275 article-title: Thermal performance of phase change material-based heat sink for passive cooling of electronic components: an experimental study publication-title: Int. J. Energy Res. – volume: 5 start-page: 50 year: 2018 end-page: 59 ident: bb0180 article-title: Investigation of finned heat sink performance with nano enhanced phase change material (NePCM) publication-title: Therm. Sci. Eng. Prog. – volume: 112 start-page: 649 year: 2017 end-page: 661 ident: bb0065 article-title: Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices publication-title: Int. J. Heat Mass Transf. – volume: 246 start-page: 396 year: 2017 end-page: 405 ident: bb0230 article-title: Experimental measurement of thermal conductivity and viscosity of ethylene-glycol based hybrid nanofluid TiO publication-title: J. Mol. Liq. – volume: 112 start-page: 1349 year: 2013 end-page: 1356 ident: bb0270 article-title: Experimental investigation of inserts configurations and PCM type on thermal performance of PCM based heat sinks publication-title: Appl. Energy – year: 1993 ident: bb0255 article-title: Temperature electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90 publication-title: NASA STI/Recon Technical Report N – volume: 132 start-page: 52 year: 2018 ident: 10.1016/j.microrel.2021.114144_bb0115 article-title: An experimental study of enhanced heat sink for thermal management using n-eicosane as phase change material publication-title: App. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.12.066 – volume: 8 start-page: 14624 year: 2020 ident: 10.1016/j.microrel.2021.114144_bb0125 article-title: Custom design of solid–solid phase change material with ultra-high thermal stability for battery thermal management publication-title: J. Mate. Chem. A. doi: 10.1039/D0TA05247G – volume: vol. 1 year: 1983 ident: 10.1016/j.microrel.2021.114144_bb0010 – year: 2018 ident: 10.1016/j.microrel.2021.114144_bb0035 article-title: Experimental investigation on thermal performance of PCM based heat sink for passive cooling of electronic components – volume: 179 start-page: 115747 year: 2020 ident: 10.1016/j.microrel.2021.114144_bb0120 article-title: Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115747 – volume: 67 start-page: 301 year: 2013 ident: 10.1016/j.microrel.2021.114144_bb0150 article-title: Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.08.010 – year: 2012 ident: 10.1016/j.microrel.2021.114144_bb0215 article-title: Thermal Management of Electronics Using Phase Change Material Based Pin Fin Heat Sink, 6th European Thermal Science Conference – volume: 30 start-page: 2485 issue: 16 year: 2010 ident: 10.1016/j.microrel.2021.114144_bb0045 article-title: Heat transfer correlations for PCM-based heat sinks with plate fins publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.06.021 – volume: 62 start-page: 2 year: 2013 ident: 10.1016/j.microrel.2021.114144_bb0160 article-title: An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticle in a vertical enclosure publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.02.065 – volume: 163 start-page: 114342 year: 2019 ident: 10.1016/j.microrel.2021.114144_bb0205 article-title: Graphene enhanced paraffin nanocomposite based hybrid cooling system for thermal management of electronics publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114342 – start-page: 1 year: 2019 ident: 10.1016/j.microrel.2021.114144_bb0095 article-title: Analysis of solidification in a finite PCM storage with internal fins by employing heat balance integral method publication-title: Int. J. Energy Res. – volume: 31 start-page: 1833 year: 2011 ident: 10.1016/j.microrel.2021.114144_bb0240 article-title: Improving the cooling performance of automobile radiator with Al2O3 nanofluid publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.02.029 – volume: 134 start-page: 1 year: 2012 ident: 10.1016/j.microrel.2021.114144_bb0145 article-title: A theoretical and experimental investigation of unidirectional freezing of nanoparticle-enhanced phase change materials publication-title: J. Heat Transf. doi: 10.1115/1.4006305 – volume: 26 start-page: 291 issue: 2 year: 2017 ident: 10.1016/j.microrel.2021.114144_bb0225 article-title: Studies on Al2O3, CuO, and TiO2 water based nanofluids: a comparative approach in laminar and turbulent flow publication-title: J. Eng. Thermophys. doi: 10.1134/S1810232817020114 – volume: 117 start-page: 861 year: 2018 ident: 10.1016/j.microrel.2021.114144_bb0075 article-title: Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.10.008 – volume: 5 start-page: 50 year: 2018 ident: 10.1016/j.microrel.2021.114144_bb0180 article-title: Investigation of finned heat sink performance with nano enhanced phase change material (NePCM) publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2017.10.021 – volume: 268 start-page: 38 year: 2014 ident: 10.1016/j.microrel.2021.114144_bb0135 article-title: Numerical study for enhancement of solidification of phase change materials using trapezoidal cavity publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.08.009 – volume: 676 start-page: 205 year: 2019 ident: 10.1016/j.microrel.2021.114144_bb0025 article-title: Experimental investigation of thermal failure propagation in typical lithium-ion battery modules publication-title: Thermochem. Acta doi: 10.1016/j.tca.2019.05.002 – volume: 55 start-page: 1644 year: 2012 ident: 10.1016/j.microrel.2021.114144_bb0040 article-title: Experimental investigation on phase change material based finned heat sink for electronic equipment cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.11.020 – volume: Q3 year: 2000 ident: 10.1016/j.microrel.2021.114144_bb0005 article-title: Thermal performance challenges from silicon to systems publication-title: Intel Tech. J. – volume: 30 start-page: 101497 year: 2020 ident: 10.1016/j.microrel.2021.114144_bb0170 article-title: Experimental investigation on graphene based nanoparticles enhanced phase change materials (GbNePCM) for thermal management of electronic equipment publication-title: J. Energy Stor. doi: 10.1016/j.est.2020.101497 – volume: 179 start-page: 314 year: 2019 ident: 10.1016/j.microrel.2021.114144_bb0165 article-title: Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.10.037 – volume: 672 start-page: 93 year: 2019 ident: 10.1016/j.microrel.2021.114144_bb0250 article-title: Heat transfer enhancement studies in pool boiling using hybrid nanofluids publication-title: Thermochem. Acta doi: 10.1016/j.tca.2018.11.014 – start-page: 1 year: 2020 ident: 10.1016/j.microrel.2021.114144_bb0275 article-title: Thermal performance of phase change material-based heat sink for passive cooling of electronic components: an experimental study publication-title: Int. J. Energy Res. – volume: 111 start-page: 271 year: 2017 ident: 10.1016/j.microrel.2021.114144_bb0200 article-title: Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.09.028 – volume: 31 start-page: 613 year: 2010 ident: 10.1016/j.microrel.2021.114144_bb0245 article-title: Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2010.02.016 – volume: 14 start-page: 307 issue: 5 year: 2013 ident: 10.1016/j.microrel.2021.114144_bb0140 article-title: Numerical study of the melting of nano-enhanced phase change material in a square cavity publication-title: J. Zhejiang University-Sci. A (Appl. Phys. Eng.) doi: 10.1631/jzus.A1200208 – volume: 79 start-page: 240 year: 2014 ident: 10.1016/j.microrel.2021.114144_bb0260 article-title: Thermal performance of PCM based heat sink under different loads: an experimental study publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2013.12.018 – volume: 146 start-page: 118852 year: 2020 ident: 10.1016/j.microrel.2021.114144_bb0030 article-title: Experimental study on thermal behavior of RT-35HC paraffin within copper and iron-nickel open cell foams: energy storage for thermal management of electronics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118852 – start-page: 1 year: 2021 ident: 10.1016/j.microrel.2021.114144_bb0050 article-title: Numerical investigation of cross plate fin heat sink integrated with phase change material for cooling application of portable electronic devices publication-title: Int. J. Energy Res. – volume: 130 issue: 3 year: 2008 ident: 10.1016/j.microrel.2021.114144_bb0105 article-title: Studies on optimum distribution of fins in heat sinks filled with phase change materials publication-title: J. Heat Transf. doi: 10.1115/1.2804948 – volume: 54 start-page: 65 year: 2013 ident: 10.1016/j.microrel.2021.114144_bb0110 article-title: A neural network-based optimization of thermal performance of phase change material-based finned heat sinks- an experimental study publication-title: Exp. Heat Transf. – year: 2020 ident: 10.1016/j.microrel.2021.114144_bb0280 article-title: Experimental investigation on thermal performance of a finned metal foam heat sink with phase change material publication-title: Heat Transf. Eng. – volume: 545 start-page: 180 year: 2012 ident: 10.1016/j.microrel.2021.114144_bb0235 article-title: Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids publication-title: Thermochem. Acta doi: 10.1016/j.tca.2012.07.017 – volume: 468 start-page: 228398 year: 2020 ident: 10.1016/j.microrel.2021.114144_bb0060 article-title: A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228398 – year: 1993 ident: 10.1016/j.microrel.2021.114144_bb0255 article-title: Temperature electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90 – volume: 115 start-page: 251 year: 2017 ident: 10.1016/j.microrel.2021.114144_bb0080 article-title: Experimental passive electronic cooling: parametric investigation of pin-fin geometries and efficient phase change material publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.07.114 – volume: 144 start-page: 972 year: 2018 ident: 10.1016/j.microrel.2021.114144_bb0185 article-title: Heat transfer inside cooling system based on phase change material with alumina nanoparticles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.09.002 – volume: 55 start-page: 769 issue: 3 year: 2019 ident: 10.1016/j.microrel.2021.114144_bb0100 article-title: Comprehensive analysis of melting and solidification of phase change material in an annulus publication-title: Heat Mass Transf. doi: 10.1007/s00231-018-2453-9 – volume: 31 start-page: 3827 year: 2011 ident: 10.1016/j.microrel.2021.114144_bb0055 article-title: Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins publication-title: Appl. Therm. Energ. doi: 10.1016/j.applthermaleng.2011.07.031 – volume: 50 start-page: 637 issue: 1 year: 2013 ident: 10.1016/j.microrel.2021.114144_bb0290 article-title: Performance assessment of heat storage by phase change materials containing MWCNTS and graphite publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.07.002 – ident: 10.1016/j.microrel.2021.114144_bb0130 doi: 10.1115/MNHMT2016-6499 – volume: 493 start-page: 25 year: 2009 ident: 10.1016/j.microrel.2021.114144_bb0020 article-title: Thermal analysis of loop heat pipe used for high power LED publication-title: Thermochem. Acta doi: 10.1016/j.tca.2009.03.016 – volume: 246 start-page: 396 year: 2017 ident: 10.1016/j.microrel.2021.114144_bb0230 article-title: Experimental measurement of thermal conductivity and viscosity of ethylene-glycol based hybrid nanofluid TiO2-CuO/C inclusions publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.09.017 – ident: 10.1016/j.microrel.2021.114144_bb0265 – volume: 123 start-page: 272 year: 2018 ident: 10.1016/j.microrel.2021.114144_bb0085 article-title: Thermal management of electronics: an experimental analysis of triangular rectangular, and circular pin-fin heat sinks for various PCMs publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.02.044 – volume: 146 start-page: 1578 year: 2020 ident: 10.1016/j.microrel.2021.114144_bb0285 article-title: Experimental investigation on thermal management performance of heat sink using low melting point alloy as phase change material publication-title: Renew. Energy doi: 10.1016/j.renene.2019.07.115 – volume: 112 start-page: 143 year: 2017 ident: 10.1016/j.microrel.2021.114144_bb0070 article-title: Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.10.090 – volume: 6 start-page: 96 issue: 2 year: 2018 ident: 10.1016/j.microrel.2021.114144_bb0175 article-title: An experimental assessment of nanostructured material embedded in a PCM based heat sink for transient thermal management of electronics publication-title: Trans. Phenom. Nano Micro Scales – volume: 112 start-page: 649 year: 2017 ident: 10.1016/j.microrel.2021.114144_bb0065 article-title: Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.05.004 – volume: 30 start-page: 2363 issue: 16 year: 2010 ident: 10.1016/j.microrel.2021.114144_bb0015 article-title: Active cooling of a mobile phone handset publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.06.002 – volume: 313 start-page: 113544 year: 2020 ident: 10.1016/j.microrel.2021.114144_bb0190 article-title: Inclusion of nanoparticles in PCM for heat release unit publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113544 – volume: 106 start-page: 793 year: 2015 ident: 10.1016/j.microrel.2021.114144_bb0090 article-title: Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids publication-title: Ener. Conv. Manage. doi: 10.1016/j.enconman.2015.10.015 – volume: 208 start-page: 719 issue: 15 year: 2017 ident: 10.1016/j.microrel.2021.114144_bb0195 article-title: Nano-enhanced phase change material for thermal management of BICPV publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.09.076 – volume: 50 start-page: 1639 year: 2011 ident: 10.1016/j.microrel.2021.114144_bb0155 article-title: A direct comparison of three different material enhancement methods on transient thermal response of paraffin phase change material exposed to high heat fluxes publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.04.005 – volume: 112 start-page: 1349 year: 2013 ident: 10.1016/j.microrel.2021.114144_bb0270 article-title: Experimental investigation of inserts configurations and PCM type on thermal performance of PCM based heat sinks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.04.059 – ident: 10.1016/j.microrel.2021.114144_bb0210 doi: 10.1115/POWER2019-1883 |
SSID | ssj0007011 |
Score | 2.5528953 |
Snippet | Present experimental study reports the thermal performance of nano-enhanced phase change material (NePCM) based thermal energy storage system for cooling of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114144 |
SubjectTerms | Heat sink Nanoenhanced Phase change material Thermal conductivity enhancers Thermal management |
Title | Thermal performance of heat sink using nano-enhanced phase change material (NePCM) for cooling of electronic components |
URI | https://dx.doi.org/10.1016/j.microrel.2021.114144 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD140EPa7DPJsRRLVVo8WOgtbLLbFzUJteLN3-5OHraC0IPHhMwmzA7zyH7zDUK3nCupxEQ4hLrw6yZmTsC1digzzGitfC8_PR8MZX_En8ZiXEPdqhcGYJWl7y98eu6tyzvtUpvtbD6HHl8qqUc4JTnxGXCCcu6Blbe-NjAPzyXF1DwqHXh6q0t40XoD0NvKwBEEJUCba8uLvwPUVtDpHaHDMlvEneKDjlHNJCfoYItD8BR92o22znWJs00LAE4nGJwsfreVJgZo-xQnKkkdk8zyE3-czWz0wkXXL7ZJa26H-G5oXrqDe2zXwXEK43ymsNRmVA4GBHqaAPjiDI16D6_dvlNOU3BiRujahiKfCzcmdgeE71ETeCKQmmkZMWMramJkYFNYroTNYCIyCbzYRIoZbtyJlNzX7BzVE_uGC4R9qW1pa4IIikOuYqB4l0rCP1USMcEaSFQqDOOSahwmXizDClO2CCvVh6D6sFB9A7V_5LKCbGOnRFDtUPjLbEIbEXbIXv5D9grtw1UOHCTXqL5efZgbm52so2Zufk2013l87g-_AQuy5Qg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8JQEH5BPKgH4xpxfQcPeijw1rZHQySoQDxAwq3p8tiCLUGMN3-7M10EExMOXtvOazPzOsubb2YIuZXS174aKovxOh7dhMJyZRRZXBhhosh37DR73unqVl8-D9SgRBpFLQzCKnPdn-n0VFvnV2o5N2vzyQRrfLnmNpOcpY3P5BbZlvD74hiD6tcK52HXWTY2j2sLH18rE55W3xD1tjCYg-AM--ZCfPG3hVqzOs0Dsp-7i_Qh-6JDUjLxEdlbayJ4TD5B0qBdZ3S-qgGgyZCilqXvEGpSxLaPaOzHiWXicZryp_MxmC-alf1S8FrTjUjvuua10bmnsA4NE5znM8KlVrNyKELQkxjRFyek33zsNVpWPk7BCgXjS7BFjlT1kIEIlGNz49rK1ZGIdCAMhNTMaBd8WOkrcGECNnTt0AS-MNLUh1pLJxKnpBzDG84IdXQEsa1xA4wOpR9ij3ftazxUZYFQokJUwUIvzHuN48iLmVeAyqZewXoPWe9lrK-Q2g_dPOu2sZHCLSTk_do3HpiEDbTn_6C9ITutXqfttZ-6LxdkF-9kALJLUl4uPswVuCrL4Drdit9ZeeaT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+performance+of+heat+sink+using+nano-enhanced+phase+change+material+%28NePCM%29+for+cooling+of+electronic+components&rft.jtitle=Microelectronics+and+reliability&rft.au=Kumar%2C+Anuj&rft.au=Kothari%2C+Rohit&rft.au=Sahu%2C+Santosh+Kumar&rft.au=Kundalwal%2C+Shailesh+Ishwarlal&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0026-2714&rft.volume=121&rft_id=info:doi/10.1016%2Fj.microrel.2021.114144&rft.externalDocID=S0026271421001104 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |