Thermal performance of heat sink using nano-enhanced phase change material (NePCM) for cooling of electronic components

Present experimental study reports the thermal performance of nano-enhanced phase change material (NePCM) based thermal energy storage system for cooling of electronic components. The NePCM based heat sink (HS) cooling is a passive cooling technique that can eliminate the fan-based conventional cool...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 121; p. 114144
Main Authors Kumar, Anuj, Kothari, Rohit, Sahu, Santosh Kumar, Kundalwal, Shailesh Ishwarlal
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Present experimental study reports the thermal performance of nano-enhanced phase change material (NePCM) based thermal energy storage system for cooling of electronic components. The NePCM based heat sink (HS) cooling is a passive cooling technique that can eliminate the fan-based conventional cooling technique. A plate heater was used to impersonate the heat generated by microelectronics. Here, copper oxide (CuO), paraffin wax, and aluminum are considered as nanoparticle, phase change material (PCM), and HS material, respectively. Different HS configurations such as HS with no fin (HSNF), HS with rectangular plate fins (HSRPF), HS with square pin fins (HSSPF), and HS with circular pin fins (HSCPF) are studied for a fixed volume fraction of fin material. The performance of various HS configurations are analyzed for different nanoparticle concentration (∅=0.5–3.0), and heat flux values (q′′=1.5–3.0 kW/m2). For ∅= 3.0, thermal conductivity and viscosity of NePCM are found to increase by 150% and 100%, respectively. The HSSPF involving PCM/NePCM exhibits better thermal performance compared to other HS configurations. The maximum reduction in temperature is found to be 13 °C and 15 °C for HSSPF involving PCM and NePCM (∅= 0.5), respectively. The highest enhancement ratio of 5.0 is obtained for HSSPF at q″= 2.0 kW/m2 for SPT of 65 °C. The addition of CuO nanoparticle beyond ∅=0.5 decreases the HS performance considerably. [Display omitted] •Copper oxide based NePCM is studied experimentally.•Thermal conductivity and latent heat are measured for thermal analysis.•Thermal conductivity and viscosity are increased by 150% and 100%, respectively.•Maximum 15 °C temperature reduction is observed for HSSPF with ∅= 0.5 NePCM.•An enhancement ratio of 5.0 is obtained for HSSPF at q″= 2.0 kW/m−2
AbstractList Present experimental study reports the thermal performance of nano-enhanced phase change material (NePCM) based thermal energy storage system for cooling of electronic components. The NePCM based heat sink (HS) cooling is a passive cooling technique that can eliminate the fan-based conventional cooling technique. A plate heater was used to impersonate the heat generated by microelectronics. Here, copper oxide (CuO), paraffin wax, and aluminum are considered as nanoparticle, phase change material (PCM), and HS material, respectively. Different HS configurations such as HS with no fin (HSNF), HS with rectangular plate fins (HSRPF), HS with square pin fins (HSSPF), and HS with circular pin fins (HSCPF) are studied for a fixed volume fraction of fin material. The performance of various HS configurations are analyzed for different nanoparticle concentration (∅=0.5–3.0), and heat flux values (q′′=1.5–3.0 kW/m2). For ∅= 3.0, thermal conductivity and viscosity of NePCM are found to increase by 150% and 100%, respectively. The HSSPF involving PCM/NePCM exhibits better thermal performance compared to other HS configurations. The maximum reduction in temperature is found to be 13 °C and 15 °C for HSSPF involving PCM and NePCM (∅= 0.5), respectively. The highest enhancement ratio of 5.0 is obtained for HSSPF at q″= 2.0 kW/m2 for SPT of 65 °C. The addition of CuO nanoparticle beyond ∅=0.5 decreases the HS performance considerably. [Display omitted] •Copper oxide based NePCM is studied experimentally.•Thermal conductivity and latent heat are measured for thermal analysis.•Thermal conductivity and viscosity are increased by 150% and 100%, respectively.•Maximum 15 °C temperature reduction is observed for HSSPF with ∅= 0.5 NePCM.•An enhancement ratio of 5.0 is obtained for HSSPF at q″= 2.0 kW/m−2
ArticleNumber 114144
Author Sahu, Santosh Kumar
Kothari, Rohit
Kundalwal, Shailesh Ishwarlal
Kumar, Anuj
Author_xml – sequence: 1
  givenname: Anuj
  surname: Kumar
  fullname: Kumar, Anuj
  email: phd1801103004@iiti.ac.in
– sequence: 2
  givenname: Rohit
  surname: Kothari
  fullname: Kothari, Rohit
– sequence: 3
  givenname: Santosh Kumar
  surname: Sahu
  fullname: Sahu, Santosh Kumar
– sequence: 4
  givenname: Shailesh Ishwarlal
  surname: Kundalwal
  fullname: Kundalwal, Shailesh Ishwarlal
BookMark eNqFkDlPwzAYQD0UibbwF5BHGBLsxLkkBlDFJZVjKLPlOF8al8SObAPi3-OosLB08an3ZL8FmmmjAaEzSmJKaH65iwclrbHQxwlJaEwpo4zN0JyQJI-SgrJjtHBuRwgpCKVz9LXpwA6ixyPY1oSVloBNizsQHjul3_FHGLdYC20i0N103-CxEw6wDLst4EF4sCoozp_hdfV0gYMHS2P6iQsq6EF6a7SS4XQYw4O1dyfoqBW9g9PfeYne7m43q4do_XL_uLpZRzKliY9KUrKMSApNk5VFAlWRVXmTNnmdAtQphbwqac1EVlZpTduqkFCLFBiQNs9Z2aRLdLX3hirOWWi5VF54ZbS3QvWcEj6F4zv-F45P4fg-XMDzf_ho1SDs92Hweg9C-NynAsudVDDFUzbk4I1RhxQ_slKSeg
CitedBy_id crossref_primary_10_1016_j_est_2022_105027
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122272
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123204
crossref_primary_10_2298_TSCI220523134R
crossref_primary_10_1016_j_csite_2025_106010
crossref_primary_10_1016_j_csite_2023_103262
crossref_primary_10_1007_s10973_022_11223_9
crossref_primary_10_2298_TSCI230908073K
crossref_primary_10_1007_s11356_023_27468_2
crossref_primary_10_1016_j_est_2023_108450
crossref_primary_10_1016_j_est_2023_108057
crossref_primary_10_1002_htj_23224
crossref_primary_10_1016_j_est_2024_113241
crossref_primary_10_1063_5_0239679
crossref_primary_10_1002_htj_23185
crossref_primary_10_1016_j_est_2021_103328
crossref_primary_10_1016_j_est_2024_114051
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123927
crossref_primary_10_1016_j_enbuild_2024_114164
crossref_primary_10_1016_j_tsep_2024_102525
crossref_primary_10_1016_j_est_2021_103596
crossref_primary_10_32604_jrm_2022_022232
crossref_primary_10_1016_j_icheatmasstransfer_2025_108748
crossref_primary_10_1016_j_microrel_2021_114417
crossref_primary_10_1016_j_renene_2024_121024
crossref_primary_10_1016_j_enconman_2022_115902
crossref_primary_10_3390_math9243235
crossref_primary_10_1080_00986445_2021_1974418
crossref_primary_10_1615_ComputThermalScien_2024056420
crossref_primary_10_1016_j_applthermaleng_2025_125651
crossref_primary_10_1016_j_nanoen_2024_110212
crossref_primary_10_1016_j_csite_2024_104410
crossref_primary_10_1016_j_pecs_2024_101162
crossref_primary_10_3390_en16031066
crossref_primary_10_3390_en15228416
crossref_primary_10_1016_j_energy_2024_133420
crossref_primary_10_1016_j_est_2022_105240
crossref_primary_10_1016_j_est_2024_112935
crossref_primary_10_1016_j_rineng_2024_103579
crossref_primary_10_3390_ma15228244
crossref_primary_10_1016_j_egyr_2023_07_052
crossref_primary_10_1063_5_0127543
crossref_primary_10_1016_j_csite_2022_101826
crossref_primary_10_1016_j_est_2024_110470
crossref_primary_10_1016_j_icheatmasstransfer_2024_107773
crossref_primary_10_1016_j_csite_2022_102553
crossref_primary_10_1016_j_csite_2024_105628
crossref_primary_10_1016_j_est_2021_103224
crossref_primary_10_1002_ente_202301398
crossref_primary_10_1016_j_est_2023_106849
crossref_primary_10_3390_en15228746
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125730
crossref_primary_10_1016_j_applthermaleng_2024_125219
crossref_primary_10_1016_j_csite_2022_101855
crossref_primary_10_1016_j_icheatmasstransfer_2024_108194
crossref_primary_10_1016_j_applthermaleng_2024_125254
crossref_primary_10_1016_j_applthermaleng_2024_122420
crossref_primary_10_1016_j_applthermaleng_2024_122423
crossref_primary_10_1016_j_matpr_2023_02_187
crossref_primary_10_1016_j_inoche_2024_113258
crossref_primary_10_1016_j_jclepro_2023_136101
crossref_primary_10_1016_j_csite_2024_104247
crossref_primary_10_1016_j_est_2022_105659
crossref_primary_10_1016_j_est_2023_109118
crossref_primary_10_1088_1402_4896_ac3118
Cites_doi 10.1016/j.applthermaleng.2017.12.066
10.1039/D0TA05247G
10.1016/j.applthermaleng.2020.115747
10.1016/j.ijheatmasstransfer.2013.08.010
10.1016/j.applthermaleng.2010.06.021
10.1016/j.ijheatmasstransfer.2013.02.065
10.1016/j.applthermaleng.2019.114342
10.1016/j.applthermaleng.2011.02.029
10.1115/1.4006305
10.1134/S1810232817020114
10.1016/j.ijheatmasstransfer.2017.10.008
10.1016/j.tsep.2017.10.021
10.1016/j.powtec.2014.08.009
10.1016/j.tca.2019.05.002
10.1016/j.ijheatmasstransfer.2011.11.020
10.1016/j.est.2020.101497
10.1016/j.enconman.2018.10.037
10.1016/j.tca.2018.11.014
10.1016/j.applthermaleng.2016.09.028
10.1016/j.ijheatfluidflow.2010.02.016
10.1631/jzus.A1200208
10.1016/j.ijthermalsci.2013.12.018
10.1016/j.ijheatmasstransfer.2019.118852
10.1115/1.2804948
10.1016/j.tca.2012.07.017
10.1016/j.jpowsour.2020.228398
10.1016/j.ijheatmasstransfer.2017.07.114
10.1016/j.applthermaleng.2018.09.002
10.1007/s00231-018-2453-9
10.1016/j.applthermaleng.2011.07.031
10.1016/j.applthermaleng.2012.07.002
10.1115/MNHMT2016-6499
10.1016/j.tca.2009.03.016
10.1016/j.molliq.2017.09.017
10.1016/j.ijheatmasstransfer.2018.02.044
10.1016/j.renene.2019.07.115
10.1016/j.applthermaleng.2016.10.090
10.1016/j.ijheatmasstransfer.2017.05.004
10.1016/j.applthermaleng.2010.06.002
10.1016/j.molliq.2020.113544
10.1016/j.enconman.2015.10.015
10.1016/j.apenergy.2017.09.076
10.1016/j.ijthermalsci.2011.04.005
10.1016/j.apenergy.2013.04.059
10.1115/POWER2019-1883
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.microrel.2021.114144
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_microrel_2021_114144
S0026271421001104
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c312t-808450c1edd5872e97596d3d6b3eeb31e6981b4a5893b1f97ceba3e4e0f6648d3
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Tue Jul 01 01:27:35 EDT 2025
Thu Apr 24 22:58:27 EDT 2025
Tue Mar 11 03:40:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Thermal management
Thermal conductivity enhancers
Nanoenhanced
Phase change material
Heat sink
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-808450c1edd5872e97596d3d6b3eeb31e6981b4a5893b1f97ceba3e4e0f6648d3
ParticipantIDs crossref_citationtrail_10_1016_j_microrel_2021_114144
crossref_primary_10_1016_j_microrel_2021_114144
elsevier_sciencedirect_doi_10_1016_j_microrel_2021_114144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Microelectronics and reliability
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mahmoud, Tang, Toh, Al-Dadah, Soo (bb0270) 2013; 112
R. Kothari, D.V. Vaidya, V. Shelke, S.K. Sahu, S.I. Kundalwal, Experimental investigation of thermal performance of nano-enhanced phase change materials for thermal management of electronic components, ASME 2019 Power Conference, POWER2019-1883, July 15–18, 2019, Salt Lake City, UT, USA.
Peyghambarzadeh, Hashemabadi, Jamnani, Hoseini (bb0240) 2011; 31
Chintakrinda, Weinstein, Fleischer (bb0155) 2011; 50
Bayat, Faridzadeh, Toghraie (bb0180) 2018; 5
Kothari, Sahu, Kundalwal, Mahalkar (bb0275) 2020
Ali, Arshad (bb0065) 2017; 112
Ho, Gao (bb0160) 2013; 62
Ashraf, Ali, Usman, Arshad (bb0080) 2017; 115
Saha, Dutta (bb0045) 2010; 30
Kothari, Das, Sahu, Kundalwal (bb0100) 2019; 55
S.P. Venkateshan, Mechanical measurements, Ane books India, first ed., New Delhi, (2008).
Sharma, Ganesan, Sahu, Metselaar, Mahila (bb0135) 2014; 268
Babazadeh, Sheremet, Mohammed, Hajizadeh, Li (bb0190) 2020; 313
S.K. Sahoo, M.K. Das, P. Rath, Numerical study of cyclic melting and solidification of nano enhanced phase change material based heat sink in thermal management of electronic components, ASME 2016 5th Int. Conf. Micro/Nanoscale Heat Mass Transf. MNHMT2016, Biopolis, Singapore, January 4–6, 2016.
Fan, Khodadadi (bb0145) 2012; 134
Saha, Srinivasan, Dutta (bb0105) 2008; 130
Tariq, Ali, Akram, Janjua (bb0170) 2020; 30
Viswanath, Wakharkar, Watwe, Lebonheur (bb0005) 2000; Q3
Lu, Hua, Liu, Cheng (bb0020) 2009; 493
Xiao, Zhang, Li, Yang (bb0125) 2020; 8
Alimohammadi, Aghli, Alavi, Sardarabadi, Passandideh-Fard (bb0200) 2017; 111
Burns, Scroger, Strouse, Croarkin, Guthrie (bb0255) 1993
Kumaresan, Velraj (bb0235) 2012; 545
bb0220
Ali, Ashraf, Giovanneilli, Irfan, Irshad, Hamid, Hassan, Arshad (bb0085) 2018; 123
Reddy, Venkatachalapathy (bb0250) 2019; 672
Ouyang, Weng, Hu, Chen, Huang, Wang (bb0025) 2019; 676
Kumar, Kothari, Sahu, Kundalwal, Paulraj (bb0050) 2021
Sharma, Micheli, Chang, Tahir, Reddy, Mallick (bb0195) 2017; 208
Karus, Bar-Cohen (bb0010) 1983; vol. 1
Bondareva, Buonomo, Manca, Sheremet (bb0185) 2018; 144
Nabil, Khodadadi (bb0150) 2013; 67
Zhao, Xing, Liu (bb0285) 2020; 146
Baby, Balaji (bb0260) 2014; 79
Akilu, Baheta, Sharma (bb0230) 2017; 246
Rehman, Ali (bb0030) 2020; 146
Minea, Moldoveanu (bb0225) 2017; 26
Kothari, Das, Sahu, Kundalwal (bb0095) 2019
Farzahenia, Khatibi, Sardarabadi, Passandiedeh (bb0165) 2019; 179
Grimes, Wlash, Walsh (bb0015) 2010; 30
Teng, Cheng, Cheng (bb0290) 2013; 50
Joseph, Sajith (bb0205) 2019; 163
Hosseinizadeh, Tan, Moosania (bb0055) 2011; 31
Ali, Arshad (bb0090) 2015; 106
Baby, Balaji (bb0110) 2013; 54
Arshad, Ali, Ali, Manzoor (bb0070) 2017; 112
Lv, Yang, Zhang (bb0120) 2020; 179
Baby, Balaji (bb0215) 2012
Arshad, Ali, Yan, Hussein, Ahmadlouydarab (bb0115) 2018; 132
Vajjha, Das, Namburu (bb0245) 2010; 31
Huang, Sun, Yao, Zhang (bb0280) 2020
Motahar, Khodabandeh (bb0175) 2018; 6
Kothari, Mahalkar, Sahu, Kundalwal (bb0035) 2018
Baby, Balaji (bb0040) 2012; 55
Sebti, Mastiani, Mirzaei, Dadvand, Kashani, Hosseini (bb0140) 2013; 14
Lv, Liu, Zhang, Yang (bb0060) 2020; 468
Arshad, Ali, Khushnood, Jabbal (bb0075) 2018; 117
Grimes (10.1016/j.microrel.2021.114144_bb0015) 2010; 30
Farzahenia (10.1016/j.microrel.2021.114144_bb0165) 2019; 179
Sebti (10.1016/j.microrel.2021.114144_bb0140) 2013; 14
Saha (10.1016/j.microrel.2021.114144_bb0105) 2008; 130
Kothari (10.1016/j.microrel.2021.114144_bb0095) 2019
Ashraf (10.1016/j.microrel.2021.114144_bb0080) 2017; 115
Lv (10.1016/j.microrel.2021.114144_bb0120) 2020; 179
Tariq (10.1016/j.microrel.2021.114144_bb0170) 2020; 30
Rehman (10.1016/j.microrel.2021.114144_bb0030) 2020; 146
10.1016/j.microrel.2021.114144_bb0265
Kumar (10.1016/j.microrel.2021.114144_bb0050) 2021
Teng (10.1016/j.microrel.2021.114144_bb0290) 2013; 50
Xiao (10.1016/j.microrel.2021.114144_bb0125) 2020; 8
Burns (10.1016/j.microrel.2021.114144_bb0255) 1993
Lu (10.1016/j.microrel.2021.114144_bb0020) 2009; 493
Joseph (10.1016/j.microrel.2021.114144_bb0205) 2019; 163
Baby (10.1016/j.microrel.2021.114144_bb0215) 2012
Zhao (10.1016/j.microrel.2021.114144_bb0285) 2020; 146
Babazadeh (10.1016/j.microrel.2021.114144_bb0190) 2020; 313
Saha (10.1016/j.microrel.2021.114144_bb0045) 2010; 30
Sharma (10.1016/j.microrel.2021.114144_bb0195) 2017; 208
Arshad (10.1016/j.microrel.2021.114144_bb0075) 2018; 117
Arshad (10.1016/j.microrel.2021.114144_bb0070) 2017; 112
Huang (10.1016/j.microrel.2021.114144_bb0280) 2020
Kothari (10.1016/j.microrel.2021.114144_bb0100) 2019; 55
Bayat (10.1016/j.microrel.2021.114144_bb0180) 2018; 5
Lv (10.1016/j.microrel.2021.114144_bb0060) 2020; 468
Ho (10.1016/j.microrel.2021.114144_bb0160) 2013; 62
Bondareva (10.1016/j.microrel.2021.114144_bb0185) 2018; 144
Vajjha (10.1016/j.microrel.2021.114144_bb0245) 2010; 31
Reddy (10.1016/j.microrel.2021.114144_bb0250) 2019; 672
Ali (10.1016/j.microrel.2021.114144_bb0065) 2017; 112
Hosseinizadeh (10.1016/j.microrel.2021.114144_bb0055) 2011; 31
Nabil (10.1016/j.microrel.2021.114144_bb0150) 2013; 67
Motahar (10.1016/j.microrel.2021.114144_bb0175) 2018; 6
Baby (10.1016/j.microrel.2021.114144_bb0110) 2013; 54
Minea (10.1016/j.microrel.2021.114144_bb0225) 2017; 26
Karus (10.1016/j.microrel.2021.114144_bb0010) 1983; vol. 1
Viswanath (10.1016/j.microrel.2021.114144_bb0005) 2000; Q3
Alimohammadi (10.1016/j.microrel.2021.114144_bb0200) 2017; 111
Mahmoud (10.1016/j.microrel.2021.114144_bb0270) 2013; 112
Fan (10.1016/j.microrel.2021.114144_bb0145) 2012; 134
Peyghambarzadeh (10.1016/j.microrel.2021.114144_bb0240) 2011; 31
Chintakrinda (10.1016/j.microrel.2021.114144_bb0155) 2011; 50
Kothari (10.1016/j.microrel.2021.114144_bb0035) 2018
10.1016/j.microrel.2021.114144_bb0130
Akilu (10.1016/j.microrel.2021.114144_bb0230) 2017; 246
Sharma (10.1016/j.microrel.2021.114144_bb0135) 2014; 268
Kothari (10.1016/j.microrel.2021.114144_bb0275) 2020
Ali (10.1016/j.microrel.2021.114144_bb0085) 2018; 123
10.1016/j.microrel.2021.114144_bb0210
Ouyang (10.1016/j.microrel.2021.114144_bb0025) 2019; 676
Ali (10.1016/j.microrel.2021.114144_bb0090) 2015; 106
Kumaresan (10.1016/j.microrel.2021.114144_bb0235) 2012; 545
Baby (10.1016/j.microrel.2021.114144_bb0040) 2012; 55
Arshad (10.1016/j.microrel.2021.114144_bb0115) 2018; 132
Baby (10.1016/j.microrel.2021.114144_bb0260) 2014; 79
References_xml – volume: 123
  start-page: 272
  year: 2018
  end-page: 284
  ident: bb0085
  article-title: Thermal management of electronics: an experimental analysis of triangular rectangular, and circular pin-fin heat sinks for various PCMs
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  start-page: 1833
  year: 2011
  end-page: 1838
  ident: bb0240
  article-title: Improving the cooling performance of automobile radiator with Al
  publication-title: Appl. Therm. Eng.
– volume: 179
  start-page: 314
  year: 2019
  end-page: 325
  ident: bb0165
  article-title: Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management
  publication-title: Energy Convers. Manag.
– volume: 79
  start-page: 240
  year: 2014
  end-page: 249
  ident: bb0260
  article-title: Thermal performance of PCM based heat sink under different loads: an experimental study
  publication-title: Int. J. Therm. Sci.
– volume: 50
  start-page: 1639
  year: 2011
  end-page: 1647
  ident: bb0155
  article-title: A direct comparison of three different material enhancement methods on transient thermal response of paraffin phase change material exposed to high heat fluxes
  publication-title: Int. J. Therm. Sci.
– volume: 26
  start-page: 291
  year: 2017
  end-page: 301
  ident: bb0225
  article-title: Studies on Al
  publication-title: J. Eng. Thermophys.
– volume: 31
  start-page: 613
  year: 2010
  end-page: 621
  ident: bb0245
  article-title: Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator
  publication-title: Int. J. Heat Fluid Flow
– volume: 55
  start-page: 769
  year: 2019
  end-page: 790
  ident: bb0100
  article-title: Comprehensive analysis of melting and solidification of phase change material in an annulus
  publication-title: Heat Mass Transf.
– volume: 112
  start-page: 143
  year: 2017
  end-page: 155
  ident: bb0070
  article-title: Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction
  publication-title: Appl. Therm. Eng.
– volume: 179
  start-page: 115747
  year: 2020
  ident: bb0120
  article-title: Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles
  publication-title: Appl. Therm. Eng.
– reference: S.K. Sahoo, M.K. Das, P. Rath, Numerical study of cyclic melting and solidification of nano enhanced phase change material based heat sink in thermal management of electronic components, ASME 2016 5th Int. Conf. Micro/Nanoscale Heat Mass Transf. MNHMT2016, Biopolis, Singapore, January 4–6, 2016.
– volume: 130
  year: 2008
  ident: bb0105
  article-title: Studies on optimum distribution of fins in heat sinks filled with phase change materials
  publication-title: J. Heat Transf.
– volume: 54
  start-page: 65
  year: 2013
  end-page: 77
  ident: bb0110
  article-title: A neural network-based optimization of thermal performance of phase change material-based finned heat sinks- an experimental study
  publication-title: Exp. Heat Transf.
– volume: 8
  start-page: 14624
  year: 2020
  end-page: 14633
  ident: bb0125
  article-title: Custom design of solid–solid phase change material with ultra-high thermal stability for battery thermal management
  publication-title: J. Mate. Chem. A.
– volume: 134
  start-page: 1
  year: 2012
  end-page: 9
  ident: bb0145
  article-title: A theoretical and experimental investigation of unidirectional freezing of nanoparticle-enhanced phase change materials
  publication-title: J. Heat Transf.
– year: 2012
  ident: bb0215
  article-title: Thermal Management of Electronics Using Phase Change Material Based Pin Fin Heat Sink, 6th European Thermal Science Conference
  publication-title: Journal of Physics
– volume: 62
  start-page: 2
  year: 2013
  end-page: 8
  ident: bb0160
  article-title: An experimental study on melting heat transfer of paraffin dispersed with Al
  publication-title: Int. J. Heat Mass Transf.
– volume: 117
  start-page: 861
  year: 2018
  end-page: 872
  ident: bb0075
  article-title: Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter
  publication-title: Int. J. Heat Mass Transf.
– volume: 6
  start-page: 96
  year: 2018
  end-page: 103
  ident: bb0175
  article-title: An experimental assessment of nanostructured material embedded in a PCM based heat sink for transient thermal management of electronics
  publication-title: Trans. Phenom. Nano Micro Scales
– volume: 31
  start-page: 3827
  year: 2011
  end-page: 3838
  ident: bb0055
  article-title: Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins
  publication-title: Appl. Therm. Energ.
– reference: R. Kothari, D.V. Vaidya, V. Shelke, S.K. Sahu, S.I. Kundalwal, Experimental investigation of thermal performance of nano-enhanced phase change materials for thermal management of electronic components, ASME 2019 Power Conference, POWER2019-1883, July 15–18, 2019, Salt Lake City, UT, USA.
– start-page: 1
  year: 2019
  end-page: 23
  ident: bb0095
  article-title: Analysis of solidification in a finite PCM storage with internal fins by employing heat balance integral method
  publication-title: Int. J. Energy Res.
– volume: 115
  start-page: 251
  year: 2017
  end-page: 263
  ident: bb0080
  article-title: Experimental passive electronic cooling: parametric investigation of pin-fin geometries and efficient phase change material
  publication-title: Int. J. Heat Mass Transf.
– volume: 50
  start-page: 637
  year: 2013
  end-page: 644
  ident: bb0290
  article-title: Performance assessment of heat storage by phase change materials containing MWCNTS and graphite
  publication-title: Appl. Therm. Eng.
– year: 2018
  ident: bb0035
  article-title: Experimental investigation on thermal performance of PCM based heat sink for passive cooling of electronic components
  publication-title: ASME 16th International Conference on Nanochannels, Microchannels, and Minichannels, Dubrovnik, Croatia, June 10-13
– volume: 676
  start-page: 205
  year: 2019
  end-page: 213
  ident: bb0025
  article-title: Experimental investigation of thermal failure propagation in typical lithium-ion battery modules
  publication-title: Thermochem. Acta
– volume: 545
  start-page: 180
  year: 2012
  end-page: 186
  ident: bb0235
  article-title: Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids
  publication-title: Thermochem. Acta
– volume: 268
  start-page: 38
  year: 2014
  end-page: 47
  ident: bb0135
  article-title: Numerical study for enhancement of solidification of phase change materials using trapezoidal cavity
  publication-title: Powder Technol.
– volume: 313
  start-page: 113544
  year: 2020
  ident: bb0190
  article-title: Inclusion of nanoparticles in PCM for heat release unit
  publication-title: J. Mol. Liq.
– volume: 146
  start-page: 1578
  year: 2020
  end-page: 1587
  ident: bb0285
  article-title: Experimental investigation on thermal management performance of heat sink using low melting point alloy as phase change material
  publication-title: Renew. Energy
– volume: 144
  start-page: 972
  year: 2018
  end-page: 981
  ident: bb0185
  article-title: Heat transfer inside cooling system based on phase change material with alumina nanoparticles
  publication-title: Appl. Therm. Eng.
– volume: 111
  start-page: 271
  year: 2017
  end-page: 279
  ident: bb0200
  article-title: Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection
  publication-title: Appl. Therm. Eng.
– volume: 55
  start-page: 1644
  year: 2012
  end-page: 1649
  ident: bb0040
  article-title: Experimental investigation on phase change material based finned heat sink for electronic equipment cooling
  publication-title: Int. J. Heat Mass Transf.
– volume: 67
  start-page: 301
  year: 2013
  end-page: 310
  ident: bb0150
  article-title: Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials
  publication-title: Int. J. Heat Mass Transf.
– volume: 468
  start-page: 228398
  year: 2020
  ident: bb0060
  article-title: A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules
  publication-title: J. Power Sources
– ident: bb0220
  article-title: Sigma Aldrich phase change material datasheet
– volume: 208
  start-page: 719
  year: 2017
  end-page: 733
  ident: bb0195
  article-title: Nano-enhanced phase change material for thermal management of BICPV
  publication-title: Appl. Energy
– volume: 146
  start-page: 118852
  year: 2020
  ident: bb0030
  article-title: Experimental study on thermal behavior of RT-35HC paraffin within copper and iron-nickel open cell foams: energy storage for thermal management of electronics
  publication-title: Int. J. Heat Mass Transf.
– volume: 672
  start-page: 93
  year: 2019
  end-page: 100
  ident: bb0250
  article-title: Heat transfer enhancement studies in pool boiling using hybrid nanofluids
  publication-title: Thermochem. Acta
– volume: 163
  start-page: 114342
  year: 2019
  ident: bb0205
  article-title: Graphene enhanced paraffin nanocomposite based hybrid cooling system for thermal management of electronics
  publication-title: Appl. Therm. Eng.
– volume: 30
  start-page: 2363
  year: 2010
  end-page: 2369
  ident: bb0015
  article-title: Active cooling of a mobile phone handset
  publication-title: Appl. Therm. Eng.
– volume: 106
  start-page: 793
  year: 2015
  end-page: 803
  ident: bb0090
  article-title: Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO
  publication-title: Ener. Conv. Manage.
– year: 2020
  ident: bb0280
  article-title: Experimental investigation on thermal performance of a finned metal foam heat sink with phase change material
  publication-title: Heat Transf. Eng.
– volume: 30
  start-page: 2485
  year: 2010
  end-page: 2491
  ident: bb0045
  article-title: Heat transfer correlations for PCM-based heat sinks with plate fins
  publication-title: Appl. Therm. Eng.
– volume: 132
  start-page: 52
  year: 2018
  end-page: 66
  ident: bb0115
  article-title: An experimental study of enhanced heat sink for thermal management using n-eicosane as phase change material
  publication-title: App. Therm. Eng.
– volume: vol. 1
  year: 1983
  ident: bb0010
  article-title: Thermal Analysis and Control of Electronic Equipment
– volume: 493
  start-page: 25
  year: 2009
  end-page: 29
  ident: bb0020
  article-title: Thermal analysis of loop heat pipe used for high power LED
  publication-title: Thermochem. Acta
– volume: Q3
  year: 2000
  ident: bb0005
  article-title: Thermal performance challenges from silicon to systems
  publication-title: Intel Tech. J.
– volume: 14
  start-page: 307
  year: 2013
  end-page: 316
  ident: bb0140
  article-title: Numerical study of the melting of nano-enhanced phase change material in a square cavity
  publication-title: J. Zhejiang University-Sci. A (Appl. Phys. Eng.)
– reference: S.P. Venkateshan, Mechanical measurements, Ane books India, first ed., New Delhi, (2008).
– start-page: 1
  year: 2021
  end-page: 18
  ident: bb0050
  article-title: Numerical investigation of cross plate fin heat sink integrated with phase change material for cooling application of portable electronic devices
  publication-title: Int. J. Energy Res.
– volume: 30
  start-page: 101497
  year: 2020
  ident: bb0170
  article-title: Experimental investigation on graphene based nanoparticles enhanced phase change materials (GbNePCM) for thermal management of electronic equipment
  publication-title: J. Energy Stor.
– start-page: 1
  year: 2020
  end-page: 25
  ident: bb0275
  article-title: Thermal performance of phase change material-based heat sink for passive cooling of electronic components: an experimental study
  publication-title: Int. J. Energy Res.
– volume: 5
  start-page: 50
  year: 2018
  end-page: 59
  ident: bb0180
  article-title: Investigation of finned heat sink performance with nano enhanced phase change material (NePCM)
  publication-title: Therm. Sci. Eng. Prog.
– volume: 112
  start-page: 649
  year: 2017
  end-page: 661
  ident: bb0065
  article-title: Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices
  publication-title: Int. J. Heat Mass Transf.
– volume: 246
  start-page: 396
  year: 2017
  end-page: 405
  ident: bb0230
  article-title: Experimental measurement of thermal conductivity and viscosity of ethylene-glycol based hybrid nanofluid TiO
  publication-title: J. Mol. Liq.
– volume: 112
  start-page: 1349
  year: 2013
  end-page: 1356
  ident: bb0270
  article-title: Experimental investigation of inserts configurations and PCM type on thermal performance of PCM based heat sinks
  publication-title: Appl. Energy
– year: 1993
  ident: bb0255
  article-title: Temperature electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90
  publication-title: NASA STI/Recon Technical Report N
– volume: 132
  start-page: 52
  year: 2018
  ident: 10.1016/j.microrel.2021.114144_bb0115
  article-title: An experimental study of enhanced heat sink for thermal management using n-eicosane as phase change material
  publication-title: App. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.12.066
– volume: 8
  start-page: 14624
  year: 2020
  ident: 10.1016/j.microrel.2021.114144_bb0125
  article-title: Custom design of solid–solid phase change material with ultra-high thermal stability for battery thermal management
  publication-title: J. Mate. Chem. A.
  doi: 10.1039/D0TA05247G
– volume: vol. 1
  year: 1983
  ident: 10.1016/j.microrel.2021.114144_bb0010
– year: 2018
  ident: 10.1016/j.microrel.2021.114144_bb0035
  article-title: Experimental investigation on thermal performance of PCM based heat sink for passive cooling of electronic components
– volume: 179
  start-page: 115747
  year: 2020
  ident: 10.1016/j.microrel.2021.114144_bb0120
  article-title: Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115747
– volume: 67
  start-page: 301
  year: 2013
  ident: 10.1016/j.microrel.2021.114144_bb0150
  article-title: Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.08.010
– year: 2012
  ident: 10.1016/j.microrel.2021.114144_bb0215
  article-title: Thermal Management of Electronics Using Phase Change Material Based Pin Fin Heat Sink, 6th European Thermal Science Conference
– volume: 30
  start-page: 2485
  issue: 16
  year: 2010
  ident: 10.1016/j.microrel.2021.114144_bb0045
  article-title: Heat transfer correlations for PCM-based heat sinks with plate fins
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.06.021
– volume: 62
  start-page: 2
  year: 2013
  ident: 10.1016/j.microrel.2021.114144_bb0160
  article-title: An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticle in a vertical enclosure
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.02.065
– volume: 163
  start-page: 114342
  year: 2019
  ident: 10.1016/j.microrel.2021.114144_bb0205
  article-title: Graphene enhanced paraffin nanocomposite based hybrid cooling system for thermal management of electronics
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114342
– start-page: 1
  year: 2019
  ident: 10.1016/j.microrel.2021.114144_bb0095
  article-title: Analysis of solidification in a finite PCM storage with internal fins by employing heat balance integral method
  publication-title: Int. J. Energy Res.
– volume: 31
  start-page: 1833
  year: 2011
  ident: 10.1016/j.microrel.2021.114144_bb0240
  article-title: Improving the cooling performance of automobile radiator with Al2O3 nanofluid
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.02.029
– volume: 134
  start-page: 1
  year: 2012
  ident: 10.1016/j.microrel.2021.114144_bb0145
  article-title: A theoretical and experimental investigation of unidirectional freezing of nanoparticle-enhanced phase change materials
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4006305
– volume: 26
  start-page: 291
  issue: 2
  year: 2017
  ident: 10.1016/j.microrel.2021.114144_bb0225
  article-title: Studies on Al2O3, CuO, and TiO2 water based nanofluids: a comparative approach in laminar and turbulent flow
  publication-title: J. Eng. Thermophys.
  doi: 10.1134/S1810232817020114
– volume: 117
  start-page: 861
  year: 2018
  ident: 10.1016/j.microrel.2021.114144_bb0075
  article-title: Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.10.008
– volume: 5
  start-page: 50
  year: 2018
  ident: 10.1016/j.microrel.2021.114144_bb0180
  article-title: Investigation of finned heat sink performance with nano enhanced phase change material (NePCM)
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2017.10.021
– volume: 268
  start-page: 38
  year: 2014
  ident: 10.1016/j.microrel.2021.114144_bb0135
  article-title: Numerical study for enhancement of solidification of phase change materials using trapezoidal cavity
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.08.009
– volume: 676
  start-page: 205
  year: 2019
  ident: 10.1016/j.microrel.2021.114144_bb0025
  article-title: Experimental investigation of thermal failure propagation in typical lithium-ion battery modules
  publication-title: Thermochem. Acta
  doi: 10.1016/j.tca.2019.05.002
– volume: 55
  start-page: 1644
  year: 2012
  ident: 10.1016/j.microrel.2021.114144_bb0040
  article-title: Experimental investigation on phase change material based finned heat sink for electronic equipment cooling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.11.020
– volume: Q3
  year: 2000
  ident: 10.1016/j.microrel.2021.114144_bb0005
  article-title: Thermal performance challenges from silicon to systems
  publication-title: Intel Tech. J.
– volume: 30
  start-page: 101497
  year: 2020
  ident: 10.1016/j.microrel.2021.114144_bb0170
  article-title: Experimental investigation on graphene based nanoparticles enhanced phase change materials (GbNePCM) for thermal management of electronic equipment
  publication-title: J. Energy Stor.
  doi: 10.1016/j.est.2020.101497
– volume: 179
  start-page: 314
  year: 2019
  ident: 10.1016/j.microrel.2021.114144_bb0165
  article-title: Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.10.037
– volume: 672
  start-page: 93
  year: 2019
  ident: 10.1016/j.microrel.2021.114144_bb0250
  article-title: Heat transfer enhancement studies in pool boiling using hybrid nanofluids
  publication-title: Thermochem. Acta
  doi: 10.1016/j.tca.2018.11.014
– start-page: 1
  year: 2020
  ident: 10.1016/j.microrel.2021.114144_bb0275
  article-title: Thermal performance of phase change material-based heat sink for passive cooling of electronic components: an experimental study
  publication-title: Int. J. Energy Res.
– volume: 111
  start-page: 271
  year: 2017
  ident: 10.1016/j.microrel.2021.114144_bb0200
  article-title: Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.028
– volume: 31
  start-page: 613
  year: 2010
  ident: 10.1016/j.microrel.2021.114144_bb0245
  article-title: Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2010.02.016
– volume: 14
  start-page: 307
  issue: 5
  year: 2013
  ident: 10.1016/j.microrel.2021.114144_bb0140
  article-title: Numerical study of the melting of nano-enhanced phase change material in a square cavity
  publication-title: J. Zhejiang University-Sci. A (Appl. Phys. Eng.)
  doi: 10.1631/jzus.A1200208
– volume: 79
  start-page: 240
  year: 2014
  ident: 10.1016/j.microrel.2021.114144_bb0260
  article-title: Thermal performance of PCM based heat sink under different loads: an experimental study
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.12.018
– volume: 146
  start-page: 118852
  year: 2020
  ident: 10.1016/j.microrel.2021.114144_bb0030
  article-title: Experimental study on thermal behavior of RT-35HC paraffin within copper and iron-nickel open cell foams: energy storage for thermal management of electronics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118852
– start-page: 1
  year: 2021
  ident: 10.1016/j.microrel.2021.114144_bb0050
  article-title: Numerical investigation of cross plate fin heat sink integrated with phase change material for cooling application of portable electronic devices
  publication-title: Int. J. Energy Res.
– volume: 130
  issue: 3
  year: 2008
  ident: 10.1016/j.microrel.2021.114144_bb0105
  article-title: Studies on optimum distribution of fins in heat sinks filled with phase change materials
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2804948
– volume: 54
  start-page: 65
  year: 2013
  ident: 10.1016/j.microrel.2021.114144_bb0110
  article-title: A neural network-based optimization of thermal performance of phase change material-based finned heat sinks- an experimental study
  publication-title: Exp. Heat Transf.
– year: 2020
  ident: 10.1016/j.microrel.2021.114144_bb0280
  article-title: Experimental investigation on thermal performance of a finned metal foam heat sink with phase change material
  publication-title: Heat Transf. Eng.
– volume: 545
  start-page: 180
  year: 2012
  ident: 10.1016/j.microrel.2021.114144_bb0235
  article-title: Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids
  publication-title: Thermochem. Acta
  doi: 10.1016/j.tca.2012.07.017
– volume: 468
  start-page: 228398
  year: 2020
  ident: 10.1016/j.microrel.2021.114144_bb0060
  article-title: A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228398
– year: 1993
  ident: 10.1016/j.microrel.2021.114144_bb0255
  article-title: Temperature electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90
– volume: 115
  start-page: 251
  year: 2017
  ident: 10.1016/j.microrel.2021.114144_bb0080
  article-title: Experimental passive electronic cooling: parametric investigation of pin-fin geometries and efficient phase change material
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.07.114
– volume: 144
  start-page: 972
  year: 2018
  ident: 10.1016/j.microrel.2021.114144_bb0185
  article-title: Heat transfer inside cooling system based on phase change material with alumina nanoparticles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.09.002
– volume: 55
  start-page: 769
  issue: 3
  year: 2019
  ident: 10.1016/j.microrel.2021.114144_bb0100
  article-title: Comprehensive analysis of melting and solidification of phase change material in an annulus
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-018-2453-9
– volume: 31
  start-page: 3827
  year: 2011
  ident: 10.1016/j.microrel.2021.114144_bb0055
  article-title: Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins
  publication-title: Appl. Therm. Energ.
  doi: 10.1016/j.applthermaleng.2011.07.031
– volume: 50
  start-page: 637
  issue: 1
  year: 2013
  ident: 10.1016/j.microrel.2021.114144_bb0290
  article-title: Performance assessment of heat storage by phase change materials containing MWCNTS and graphite
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.07.002
– ident: 10.1016/j.microrel.2021.114144_bb0130
  doi: 10.1115/MNHMT2016-6499
– volume: 493
  start-page: 25
  year: 2009
  ident: 10.1016/j.microrel.2021.114144_bb0020
  article-title: Thermal analysis of loop heat pipe used for high power LED
  publication-title: Thermochem. Acta
  doi: 10.1016/j.tca.2009.03.016
– volume: 246
  start-page: 396
  year: 2017
  ident: 10.1016/j.microrel.2021.114144_bb0230
  article-title: Experimental measurement of thermal conductivity and viscosity of ethylene-glycol based hybrid nanofluid TiO2-CuO/C inclusions
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.09.017
– ident: 10.1016/j.microrel.2021.114144_bb0265
– volume: 123
  start-page: 272
  year: 2018
  ident: 10.1016/j.microrel.2021.114144_bb0085
  article-title: Thermal management of electronics: an experimental analysis of triangular rectangular, and circular pin-fin heat sinks for various PCMs
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.02.044
– volume: 146
  start-page: 1578
  year: 2020
  ident: 10.1016/j.microrel.2021.114144_bb0285
  article-title: Experimental investigation on thermal management performance of heat sink using low melting point alloy as phase change material
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.07.115
– volume: 112
  start-page: 143
  year: 2017
  ident: 10.1016/j.microrel.2021.114144_bb0070
  article-title: Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.10.090
– volume: 6
  start-page: 96
  issue: 2
  year: 2018
  ident: 10.1016/j.microrel.2021.114144_bb0175
  article-title: An experimental assessment of nanostructured material embedded in a PCM based heat sink for transient thermal management of electronics
  publication-title: Trans. Phenom. Nano Micro Scales
– volume: 112
  start-page: 649
  year: 2017
  ident: 10.1016/j.microrel.2021.114144_bb0065
  article-title: Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.05.004
– volume: 30
  start-page: 2363
  issue: 16
  year: 2010
  ident: 10.1016/j.microrel.2021.114144_bb0015
  article-title: Active cooling of a mobile phone handset
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.06.002
– volume: 313
  start-page: 113544
  year: 2020
  ident: 10.1016/j.microrel.2021.114144_bb0190
  article-title: Inclusion of nanoparticles in PCM for heat release unit
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113544
– volume: 106
  start-page: 793
  year: 2015
  ident: 10.1016/j.microrel.2021.114144_bb0090
  article-title: Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids
  publication-title: Ener. Conv. Manage.
  doi: 10.1016/j.enconman.2015.10.015
– volume: 208
  start-page: 719
  issue: 15
  year: 2017
  ident: 10.1016/j.microrel.2021.114144_bb0195
  article-title: Nano-enhanced phase change material for thermal management of BICPV
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.09.076
– volume: 50
  start-page: 1639
  year: 2011
  ident: 10.1016/j.microrel.2021.114144_bb0155
  article-title: A direct comparison of three different material enhancement methods on transient thermal response of paraffin phase change material exposed to high heat fluxes
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.04.005
– volume: 112
  start-page: 1349
  year: 2013
  ident: 10.1016/j.microrel.2021.114144_bb0270
  article-title: Experimental investigation of inserts configurations and PCM type on thermal performance of PCM based heat sinks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.04.059
– ident: 10.1016/j.microrel.2021.114144_bb0210
  doi: 10.1115/POWER2019-1883
SSID ssj0007011
Score 2.5528953
Snippet Present experimental study reports the thermal performance of nano-enhanced phase change material (NePCM) based thermal energy storage system for cooling of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114144
SubjectTerms Heat sink
Nanoenhanced
Phase change material
Thermal conductivity enhancers
Thermal management
Title Thermal performance of heat sink using nano-enhanced phase change material (NePCM) for cooling of electronic components
URI https://dx.doi.org/10.1016/j.microrel.2021.114144
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD140EPa7DPJsRRLVVo8WOgtbLLbFzUJteLN3-5OHraC0IPHhMwmzA7zyH7zDUK3nCupxEQ4hLrw6yZmTsC1digzzGitfC8_PR8MZX_En8ZiXEPdqhcGYJWl7y98eu6tyzvtUpvtbD6HHl8qqUc4JTnxGXCCcu6Blbe-NjAPzyXF1DwqHXh6q0t40XoD0NvKwBEEJUCba8uLvwPUVtDpHaHDMlvEneKDjlHNJCfoYItD8BR92o22znWJs00LAE4nGJwsfreVJgZo-xQnKkkdk8zyE3-czWz0wkXXL7ZJa26H-G5oXrqDe2zXwXEK43ymsNRmVA4GBHqaAPjiDI16D6_dvlNOU3BiRujahiKfCzcmdgeE71ETeCKQmmkZMWMramJkYFNYroTNYCIyCbzYRIoZbtyJlNzX7BzVE_uGC4R9qW1pa4IIikOuYqB4l0rCP1USMcEaSFQqDOOSahwmXizDClO2CCvVh6D6sFB9A7V_5LKCbGOnRFDtUPjLbEIbEXbIXv5D9grtw1UOHCTXqL5efZgbm52so2Zufk2013l87g-_AQuy5Qg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT8JQEH5BPKgH4xpxfQcPeijw1rZHQySoQDxAwq3p8tiCLUGMN3-7M10EExMOXtvOazPzOsubb2YIuZXS174aKovxOh7dhMJyZRRZXBhhosh37DR73unqVl8-D9SgRBpFLQzCKnPdn-n0VFvnV2o5N2vzyQRrfLnmNpOcpY3P5BbZlvD74hiD6tcK52HXWTY2j2sLH18rE55W3xD1tjCYg-AM--ZCfPG3hVqzOs0Dsp-7i_Qh-6JDUjLxEdlbayJ4TD5B0qBdZ3S-qgGgyZCilqXvEGpSxLaPaOzHiWXicZryp_MxmC-alf1S8FrTjUjvuua10bmnsA4NE5znM8KlVrNyKELQkxjRFyek33zsNVpWPk7BCgXjS7BFjlT1kIEIlGNz49rK1ZGIdCAMhNTMaBd8WOkrcGECNnTt0AS-MNLUh1pLJxKnpBzDG84IdXQEsa1xA4wOpR9ij3ftazxUZYFQokJUwUIvzHuN48iLmVeAyqZewXoPWe9lrK-Q2g_dPOu2sZHCLSTk_do3HpiEDbTn_6C9ITutXqfttZ-6LxdkF-9kALJLUl4uPswVuCrL4Drdit9ZeeaT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+performance+of+heat+sink+using+nano-enhanced+phase+change+material+%28NePCM%29+for+cooling+of+electronic+components&rft.jtitle=Microelectronics+and+reliability&rft.au=Kumar%2C+Anuj&rft.au=Kothari%2C+Rohit&rft.au=Sahu%2C+Santosh+Kumar&rft.au=Kundalwal%2C+Shailesh+Ishwarlal&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0026-2714&rft.volume=121&rft_id=info:doi/10.1016%2Fj.microrel.2021.114144&rft.externalDocID=S0026271421001104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon