Construction of ZnO@NiO heterostructure photoelectrodes for improved photoelectrochemical performance

In this report, a p-n junction has been constructed using ZnO/NiO heterostructured photoelectrode by spin coating NiO layers over vertically aligned ZnO nanorod arrays to demonstrate its potential in water splitting applications. Before investigating their PEC performance, we thoroughly studied the...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 46; no. 73; pp. 36176 - 36188
Main Authors Sahoo, Pooja, Sharma, Akash, Padhan, Subash, Thangavel, R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 22.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this report, a p-n junction has been constructed using ZnO/NiO heterostructured photoelectrode by spin coating NiO layers over vertically aligned ZnO nanorod arrays to demonstrate its potential in water splitting applications. Before investigating their PEC performance, we thoroughly studied the introduction of NiO layers on the structure, morphology and light absorption property of ZnO nanorods. 9 layered NiO coated ZnO nanorods exhibited optimum photocurrent density of 0.251 mA/cm2 at 0.8 V vs. Ag/AgCl which is attributed to its high absorbance and better charge transfer as recorded from UV–Vis and EIS data. Furthermore, we also studied the effect of (cation (Mg) and anion (Cl)) doping in PEC performance of ZnO nanorods on this optimized sample. Cl_ZnO/NiO showed high Jph of 1.282 mA/cm2 at 1.2 V vs. Ag/AgCl under visible light illumination. The reason behind better photoresponse is its enhanced absorption and well-defined p-n heterojunction between Cl_ZnO and NiO which favoured the separation and transfer of the photocarriers. The results displayed in this work provides a suitable approach of building p-n junction for high performance PEC water oxidation. [Display omitted] •Influence of NiO layers on surface of undoped and doped ZnO nanorods for PEC performance have been demonstrated.•9 layer NiO coated ZnO and Cl_ZnO/NiO heterostructure showed enhanced PEC activity.•The mechanism of PEC water splitting process in ZnO/NiO p-n heterojunction is proposed.
AbstractList In this report, a p-n junction has been constructed using ZnO/NiO heterostructured photoelectrode by spin coating NiO layers over vertically aligned ZnO nanorod arrays to demonstrate its potential in water splitting applications. Before investigating their PEC performance, we thoroughly studied the introduction of NiO layers on the structure, morphology and light absorption property of ZnO nanorods. 9 layered NiO coated ZnO nanorods exhibited optimum photocurrent density of 0.251 mA/cm2 at 0.8 V vs. Ag/AgCl which is attributed to its high absorbance and better charge transfer as recorded from UV–Vis and EIS data. Furthermore, we also studied the effect of (cation (Mg) and anion (Cl)) doping in PEC performance of ZnO nanorods on this optimized sample. Cl_ZnO/NiO showed high Jph of 1.282 mA/cm2 at 1.2 V vs. Ag/AgCl under visible light illumination. The reason behind better photoresponse is its enhanced absorption and well-defined p-n heterojunction between Cl_ZnO and NiO which favoured the separation and transfer of the photocarriers. The results displayed in this work provides a suitable approach of building p-n junction for high performance PEC water oxidation. [Display omitted] •Influence of NiO layers on surface of undoped and doped ZnO nanorods for PEC performance have been demonstrated.•9 layer NiO coated ZnO and Cl_ZnO/NiO heterostructure showed enhanced PEC activity.•The mechanism of PEC water splitting process in ZnO/NiO p-n heterojunction is proposed.
Author Thangavel, R.
Sahoo, Pooja
Sharma, Akash
Padhan, Subash
Author_xml – sequence: 1
  givenname: Pooja
  surname: Sahoo
  fullname: Sahoo, Pooja
  organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
– sequence: 2
  givenname: Akash
  surname: Sharma
  fullname: Sharma, Akash
  organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
– sequence: 3
  givenname: Subash
  surname: Padhan
  fullname: Padhan, Subash
  organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
– sequence: 4
  givenname: R.
  surname: Thangavel
  fullname: Thangavel, R.
  email: rthangavel@iitism.ac.in
  organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
BookMark eNqFkM1qwzAQhEVJoUnbVyh-Abtayz8S9JAS-gehubSXXoQsr7GMbQVZCeTtq5D20F5yWtjZGXa-BZmNdkRC7oAmQKG47xLTtYcaR0xSmkJCeQJ5dkHmwEsRs4yXMzKnrKAxAyGuyGKaOkqhpJmYE1zZcfJup72xY2Sb6GvcLN_NJmrRo7Mnaecw2rbWW-xRe2drnKLGusgMW2f3WP8RdYuD0aqPtujC0aBGjTfkslH9hLc_85p8Pj99rF7j9eblbfW4jjWD1MecZnnOFHJgXABCqRhoxplQrGK6ChsKNM0LwJLlQjCdqpplTVVnKRS0atg1eTjl6vD65LCR2nh1rOadMr0EKo_IZCd_kckjMkm5DMiCvfhn3zozKHc4b1yejBjK7Q06OWmDoXhtXIAia2vORXwDJVaPcw
CitedBy_id crossref_primary_10_1016_j_surfin_2024_103970
crossref_primary_10_3390_nano12050839
crossref_primary_10_1016_j_ijhydene_2021_12_107
crossref_primary_10_1016_j_surfin_2024_105376
crossref_primary_10_1021_acs_energyfuels_2c01350
crossref_primary_10_1016_j_jallcom_2025_179281
crossref_primary_10_1039_D4NR00761A
crossref_primary_10_1039_D3CP01996A
crossref_primary_10_1016_j_ijhydene_2023_03_083
crossref_primary_10_1002_cptc_202200294
crossref_primary_10_3390_nano12030433
crossref_primary_10_1016_j_jelechem_2024_118790
crossref_primary_10_29130_dubited_1167452
crossref_primary_10_1021_acs_cgd_4c00396
crossref_primary_10_1016_j_seppur_2024_126644
crossref_primary_10_1016_j_jcis_2023_07_161
crossref_primary_10_1016_j_jallcom_2024_176882
crossref_primary_10_1039_D2RA05894D
Cites_doi 10.1039/C5NR07236K
10.1039/c4tc00157e
10.1038/natrevmats.2017.50
10.1007/s10854-019-00814-2
10.1039/C4CY00974F
10.1016/j.ijhydene.2017.03.029
10.1039/C5NJ01815C
10.1002/ejic.202000026
10.1039/C9DT04296B
10.1016/j.matlet.2019.05.145
10.1016/j.ijhydene.2018.08.042
10.1063/5.0035348
10.1016/j.ijhydene.2018.01.099
10.1016/j.electacta.2020.137426
10.1039/C6TA07592D
10.1016/j.jcis.2019.09.037
10.1016/j.ijhydene.2014.01.072
10.1016/j.cej.2020.127709
10.1007/s10562-019-03084-z
10.1016/j.apsusc.2018.01.292
10.1039/C4RA12535E
10.1088/1674-4926/41/9/091702
10.1016/j.apcatb.2021.120160
10.1039/D0TA00629G
10.1039/C5RA08903D
10.1038/238037a0
10.1039/C8TA04165B
10.1016/j.ijhydene.2020.04.071
10.1039/C6RA19520B
10.1021/acs.jpcc.1c04208
10.1021/acsami.0c21583
10.1021/acsami.9b21810
10.1021/acs.inorgchem.8b01221
10.1016/j.snb.2015.08.058
10.1016/j.solener.2019.09.045
10.1007/s00339-017-1237-2
10.1016/j.apcatb.2018.01.067
10.1016/j.nanoen.2016.08.054
10.1016/j.spmi.2017.09.019
10.1088/1361-6528/abae9a
10.1016/j.ijhydene.2020.06.173
10.1016/j.ijhydene.2020.06.301
10.1016/j.jssc.2018.05.020
10.1002/adma.201701599
10.1039/C4CP01734J
10.1016/j.jallcom.2019.05.111
10.1016/j.nanoen.2018.10.043
10.1016/j.ijhydene.2020.08.247
ContentType Journal Article
Copyright 2021 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2021 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2021.08.154
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 36188
ExternalDocumentID 10_1016_j_ijhydene_2021_08_154
S0360319921033991
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c312t-804553ae813891e17a31c3839a3b3cb1e10102561e735993c2ad34fbd42160bf3
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Thu Apr 24 23:02:18 EDT 2025
Tue Jul 01 02:02:03 EDT 2025
Fri Feb 23 02:43:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 73
Keywords Water splitting
Photocurrent density
ZnO/NiO
P–N junction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-804553ae813891e17a31c3839a3b3cb1e10102561e735993c2ad34fbd42160bf3
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2021_08_154
crossref_primary_10_1016_j_ijhydene_2021_08_154
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2021_08_154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-22
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-22
  day: 22
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ma, Huang, Liu, Liu, Wang, Zhao (bib12) 2020; 41
Li, Wu (bib1) 2015; 5
Wu, Liu, Chen, Zhou, Wei (bib20) 2018; 440
Fujishima, Honda (bib4) 1972; 238
Liu, Zhang, Ke, Zhang, Tian, Xu (bib43) 2018; 228
Patel, Chauhan, Mukhopadhyay (bib48) 2014; 16
Tahir, Tasleem, Tahir (bib6) 2020; 45
Zeng, Xue, He, Li, Zhu, Li (bib19) 2021; 367
Sahoo, Sharma, Padhan, Thangavel (bib31) 2020; 45
Swain, Sultana, Moma, Parida (bib42) 2018; 57
Tian, Fan, Dong, Ma, Ma (bib35) 2016; 6
Chen, Takata, Domen (bib7) 2017; 2
Liu, Zhu, Guo, Meng, Liu, Fortunato (bib32) 2017; 29
An, Zhang (bib28) 2017; 123
Xie, Zhai, Zhu, Li, Qiu, Tong (bib21) 2014; 39
Tahir, Asiri, Nawaz (bib5) 2020; 45
Lu, Toe, Ji, Chen, Wen, Wong (bib15) 2020; 12
Wang, Xi, Lin, Li, Hu, Zhao (bib27) 2021; 13
Sekizawa, Oh-ishi, Morikawa (bib49) 2020; 49
Kegel, Povey, Pemble (bib11) 2018; 54
Desai, Vyas, Saratale, Sartale (bib13) 2019; 44
Eftekhari, Babu, Ramakrishna (bib8) 2017; 42
Mao, Cheng, Wang, Yang, Li, Chen (bib29) 2016; 40
Shen, Yan, Bai, Zheng, Sun, Liu (bib34) 2015; 5
Chu, Li, Wang, Ma, Li, Zhang (bib26) 2019; 252
Zhang, Qin, Yu, Zhang, Zhao, Qian (bib25) 2019; 30
Decavoli, Boldrini, Manfredi, Abbotto (bib47) 2020
Song, Zhu, Zeng, Wang, Li, Fan (bib46) 2020; 150
Maity, Karmakar, Mandal, Pal, Khan, Mandal (bib39) 2020; 31
Pan, Wang, Xie, Wang, Zhang, Zou (bib44) 2016; 28
Qu, Fu, Yu, Deng, Xing, Xue (bib33) 2016; 222
Afroz, Moniruddin, Bakranov, Kudaibergenov, Nuraje (bib10) 2018; 6
Lee, Lin, Liao, Lee, Sheu (bib22) 2021; 125
Wu, Zheng, Toe, Wen, Hart, Amal (bib16) 2020; 8
Kumbhar, Lee, Lee, Lee (bib45) 2019; 557
Nakate, Ahmad, Patil, Wang, Bhat, Mahmoudi (bib38) 2019; 797
Li, Zhao, Zhang, Zhang, Jiang, Li (bib40) 2015; 5
Shi, Xu, Wu, Zhang, Zhang, Tian (bib24) 2016; 8
Zeng, Cao, Liao, Liang, Wei, Xu (bib17) 2021; 292
Sahoo, Sharma, Thangavel (bib30) 2019; 30621
Dai, Pan, Chen, Chen, Wen, Zhang (bib23) 2014; 2
Joy, Mathew, George (bib3) 2018; 43
Zhao, Ren, Chen, Yang, Guo (bib41) 2018; 265
Sahoo, Sharma, Padhan, Udayabhanu, Thangavel (bib14) 2019; 193
Zhao, Wang, Zhai, Shao, Bai, Liu (bib37) 2021; 13
Lu, Chen, Yao, Wen, Hart, Tsounis (bib18) 2021; 420
Sultan, Mumtaz, Ali, Khan, Iqbal (bib36) 2017; 112
Kalanur, Yoo, Park, Seo (bib9) 2017; 5
Galdámez-Martínez, Bai, Santana, Sprick, Dutt (bib2) 2020; 45
Zeng (10.1016/j.ijhydene.2021.08.154_bib19) 2021; 367
Nakate (10.1016/j.ijhydene.2021.08.154_bib38) 2019; 797
Fujishima (10.1016/j.ijhydene.2021.08.154_bib4) 1972; 238
Tahir (10.1016/j.ijhydene.2021.08.154_bib5) 2020; 45
Chen (10.1016/j.ijhydene.2021.08.154_bib7) 2017; 2
Afroz (10.1016/j.ijhydene.2021.08.154_bib10) 2018; 6
Shi (10.1016/j.ijhydene.2021.08.154_bib24) 2016; 8
An (10.1016/j.ijhydene.2021.08.154_bib28) 2017; 123
Shen (10.1016/j.ijhydene.2021.08.154_bib34) 2015; 5
Sultan (10.1016/j.ijhydene.2021.08.154_bib36) 2017; 112
Maity (10.1016/j.ijhydene.2021.08.154_bib39) 2020; 31
Tian (10.1016/j.ijhydene.2021.08.154_bib35) 2016; 6
Zhang (10.1016/j.ijhydene.2021.08.154_bib25) 2019; 30
Chu (10.1016/j.ijhydene.2021.08.154_bib26) 2019; 252
Liu (10.1016/j.ijhydene.2021.08.154_bib32) 2017; 29
Li (10.1016/j.ijhydene.2021.08.154_bib40) 2015; 5
Zhao (10.1016/j.ijhydene.2021.08.154_bib37) 2021; 13
Wang (10.1016/j.ijhydene.2021.08.154_bib27) 2021; 13
Decavoli (10.1016/j.ijhydene.2021.08.154_bib47) 2020
Pan (10.1016/j.ijhydene.2021.08.154_bib44) 2016; 28
Mao (10.1016/j.ijhydene.2021.08.154_bib29) 2016; 40
Lu (10.1016/j.ijhydene.2021.08.154_bib18) 2021; 420
Sekizawa (10.1016/j.ijhydene.2021.08.154_bib49) 2020; 49
Wu (10.1016/j.ijhydene.2021.08.154_bib16) 2020; 8
Liu (10.1016/j.ijhydene.2021.08.154_bib43) 2018; 228
Kumbhar (10.1016/j.ijhydene.2021.08.154_bib45) 2019; 557
Eftekhari (10.1016/j.ijhydene.2021.08.154_bib8) 2017; 42
Dai (10.1016/j.ijhydene.2021.08.154_bib23) 2014; 2
Sahoo (10.1016/j.ijhydene.2021.08.154_bib31) 2020; 45
Wu (10.1016/j.ijhydene.2021.08.154_bib20) 2018; 440
Sahoo (10.1016/j.ijhydene.2021.08.154_bib30) 2019; 30621
Song (10.1016/j.ijhydene.2021.08.154_bib46) 2020; 150
Zhao (10.1016/j.ijhydene.2021.08.154_bib41) 2018; 265
Patel (10.1016/j.ijhydene.2021.08.154_bib48) 2014; 16
Desai (10.1016/j.ijhydene.2021.08.154_bib13) 2019; 44
Lu (10.1016/j.ijhydene.2021.08.154_bib15) 2020; 12
Zeng (10.1016/j.ijhydene.2021.08.154_bib17) 2021; 292
Galdámez-Martínez (10.1016/j.ijhydene.2021.08.154_bib2) 2020; 45
Xie (10.1016/j.ijhydene.2021.08.154_bib21) 2014; 39
Lee (10.1016/j.ijhydene.2021.08.154_bib22) 2021; 125
Kalanur (10.1016/j.ijhydene.2021.08.154_bib9) 2017; 5
Li (10.1016/j.ijhydene.2021.08.154_bib1) 2015; 5
Kegel (10.1016/j.ijhydene.2021.08.154_bib11) 2018; 54
Joy (10.1016/j.ijhydene.2021.08.154_bib3) 2018; 43
Sahoo (10.1016/j.ijhydene.2021.08.154_bib14) 2019; 193
Qu (10.1016/j.ijhydene.2021.08.154_bib33) 2016; 222
Ma (10.1016/j.ijhydene.2021.08.154_bib12) 2020; 41
Tahir (10.1016/j.ijhydene.2021.08.154_bib6) 2020; 45
Swain (10.1016/j.ijhydene.2021.08.154_bib42) 2018; 57
References_xml – volume: 45
  start-page: 15985
  year: 2020
  end-page: 16038
  ident: bib6
  article-title: Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production
  publication-title: Int J Hydrogen Energy
– start-page: 978
  year: 2020
  end-page: 999
  ident: bib47
  article-title: Molecular organic sensitizers for photoelectrochemical water splitting
  publication-title: Eur J Inorg Chem
– volume: 43
  start-page: 4804
  year: 2018
  end-page: 4817
  ident: bib3
  article-title: Nanomaterials for photoelectrochemical water splitting – review
  publication-title: Int J Hydrogen Energy
– volume: 440
  start-page: 1101
  year: 2018
  end-page: 1106
  ident: bib20
  article-title: Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting
  publication-title: Appl Surf Sci
– volume: 367
  start-page: 137426
  year: 2021
  ident: bib19
  article-title: Investigation of interfacial charge transfer in CuxO@TiO2 heterojunction nanowire arrays towards highly efficient solar water splitting
  publication-title: Electrochim Acta
– volume: 45
  start-page: 31942
  year: 2020
  end-page: 31951
  ident: bib2
  article-title: Photocatalytic hydrogen production performance of 1-D ZnO nanostructures: role of structural properties
  publication-title: Int J Hydrogen Energy
– volume: 112
  start-page: 210
  year: 2017
  end-page: 217
  ident: bib36
  article-title: Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions
  publication-title: Superlattice Microst
– volume: 12
  start-page: 8324
  year: 2020
  end-page: 8332
  ident: bib15
  article-title: Light-induced formation of MoO x S y clusters on CdS nanorods as cocatalyst for enhanced hydrogen evolution
  publication-title: ACS Appl Mater Interfaces
– volume: 44
  start-page: 2091
  year: 2019
  end-page: 2127
  ident: bib13
  article-title: Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
– volume: 252
  start-page: 219
  year: 2019
  end-page: 222
  ident: bib26
  article-title: Porous NiO/ZnO flower-like heterostructures consisting of interlaced nanosheet/particle framework for enhanced photodegradation of tetracycline
  publication-title: Mater Lett
– volume: 5
  start-page: 5976
  year: 2015
  end-page: 5981
  ident: bib34
  article-title: A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction
  publication-title: RSC Adv
– volume: 13
  year: 2021
  ident: bib27
  article-title: Effective photocatalytic water splitting enhancement using GaN/ZnO/NiO core/shell nanocolumns
  publication-title: J Renew Sustain Energy
– volume: 797
  start-page: 456
  year: 2019
  end-page: 464
  ident: bib38
  article-title: Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures
  publication-title: J Alloys Compd
– volume: 54
  start-page: 409
  year: 2018
  end-page: 428
  ident: bib11
  article-title: Zinc oxide for solar water splitting: a brief review of the material's challenges and associated opportunities
  publication-title: Nanomater Energy
– volume: 8
  start-page: 5638
  year: 2020
  end-page: 5646
  ident: bib16
  article-title: A pulse electrodeposited amorphous tunnel layer stabilises Cu 2 O for efficient photoelectrochemical water splitting under visible-light irradiation
  publication-title: J Mater Chem
– volume: 420
  start-page: 127709
  year: 2021
  ident: bib18
  article-title: Photogenerated charge dynamics of CdS nanorods with spatially distributed MoS2 for photocatalytic hydrogen generation
  publication-title: Chem Eng J
– volume: 6
  start-page: 109091
  year: 2016
  end-page: 109098
  ident: bib35
  article-title: NiO/ZnO p–n heterostructures and their gas sensing properties for reduced operating temperature
  publication-title: RSC Adv
– volume: 123
  start-page: 647
  year: 2017
  ident: bib28
  article-title: Fabrication of NiO quantum dot-modified ZnO nanorod arrays for efficient photoelectrochemical water splitting
  publication-title: Appl Phys A
– volume: 29
  start-page: 1701599
  year: 2017
  ident: bib32
  article-title: Solution combustion synthesis: low-temperature processing for p-type Cu:NiO thin films for transparent electronics
  publication-title: Adv Mater
– volume: 2
  start-page: 4606
  year: 2014
  ident: bib23
  article-title: Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance
  publication-title: J Mater Chem C
– volume: 31
  start-page: 475403
  year: 2020
  ident: bib39
  article-title: Earth abundant transition metal ferrite nanoparticles anchored ZnO nanorods as efficient and stable photoanodes for solar water splitting
  publication-title: Nanotechnology
– volume: 40
  start-page: 107
  year: 2016
  end-page: 112
  ident: bib29
  article-title: Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance
  publication-title: New J Chem
– volume: 45
  start-page: 22576
  year: 2020
  end-page: 22588
  ident: bib31
  article-title: Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays
  publication-title: Int J Hydrogen Energy
– volume: 222
  start-page: 78
  year: 2016
  end-page: 86
  ident: bib33
  article-title: High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor
  publication-title: Sensor Actuator B Chem
– volume: 49
  start-page: 659
  year: 2020
  end-page: 666
  ident: bib49
  article-title: Photoelectrochemical water-splitting over a surface modified p-type Cr 2 O 3 photocathode
  publication-title: Dalton Trans
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  ident: bib4
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
– volume: 5
  start-page: 1455
  year: 2017
  end-page: 1461
  ident: bib9
  article-title: Insights into the electronic bands of WO 3/BiVO 4/TiO 2 , revealing high solar water splitting efficiency
  publication-title: J Mater Chem
– volume: 13
  start-page: 9206
  year: 2021
  end-page: 9215
  ident: bib37
  article-title: Construction of Zn/Ni bimetallic organic framework derived ZnO/NiO heterostructure with superior N -propanol sensing performance
  publication-title: ACS Appl Mater Interfaces
– volume: 228
  start-page: 64
  year: 2018
  end-page: 74
  ident: bib43
  article-title: 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution
  publication-title: Appl Catal B Environ
– volume: 41
  year: 2020
  ident: bib12
  article-title: Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting
  publication-title: J Semiconduct
– volume: 57
  start-page: 10059
  year: 2018
  end-page: 10071
  ident: bib42
  article-title: Fabrication of hierarchical two-dimensional MoS 2 nanoflowers decorated upon cubic CaIn 2 S 4 microflowers: facile approach to construct novel metal-free p–n heterojunction semiconductors with superior charge separation efficiency
  publication-title: Inorg Chem
– volume: 28
  start-page: 296
  year: 2016
  end-page: 303
  ident: bib44
  article-title: Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation
  publication-title: Nanomater Energy
– volume: 30621
  start-page: 30621
  year: 2019
  ident: bib30
  publication-title: Influence of Cu incorporation on physical properties of nickel oxide thin films synthesized by sol-gel method
– volume: 193
  start-page: 148
  year: 2019
  end-page: 163
  ident: bib14
  article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications
  publication-title: Sol Energy
– volume: 16
  start-page: 20900
  year: 2014
  end-page: 20908
  ident: bib48
  article-title: Revealing the charge transport mechanism of a photoelectrochemical cell: analysis using A.C. voltage perturbation
  publication-title: Phys Chem Chem Phys
– volume: 6
  start-page: 21696
  year: 2018
  end-page: 21718
  ident: bib10
  article-title: A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials
  publication-title: J Mater Chem
– volume: 42
  start-page: 11078
  year: 2017
  end-page: 11109
  ident: bib8
  article-title: Photoelectrode nanomaterials for photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 24544
  year: 2020
  end-page: 24557
  ident: bib5
  article-title: A perspective on the fabrication of heterogeneous photocatalysts for enhanced hydrogen production
  publication-title: Int J Hydrogen Energy
– volume: 30
  start-page: 5158
  year: 2019
  end-page: 5169
  ident: bib25
  article-title: Preparation of ternary Pt–NiO–ZnO hybrids and investigation of its photocatalytic performance toward methyl orange
  publication-title: J Mater Sci Mater Electron
– volume: 125
  start-page: 16776
  year: 2021
  end-page: 16783
  ident: bib22
  article-title: Stable photoelectrochemical water splitting using p–n GaN junction decorated with nickel oxides as photoanodes
  publication-title: J Phys Chem C
– volume: 39
  start-page: 4820
  year: 2014
  end-page: 4827
  ident: bib21
  article-title: NiO decorated Mo:BiVO4 photoanode with enhanced visible-light photoelectrochemical activity
  publication-title: Int J Hydrogen Energy
– volume: 5
  start-page: 67610
  year: 2015
  end-page: 67616
  ident: bib40
  article-title: Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity
  publication-title: RSC Adv
– volume: 150
  start-page: 1878
  year: 2020
  end-page: 1889
  ident: bib46
  article-title: Cobalt phosphate cocatalyst loaded-CdS nanorod photoanode with well-defined junctions for highly efficient photoelectrochemical water splitting
  publication-title: Catal Lett
– volume: 292
  start-page: 120160
  year: 2021
  ident: bib17
  article-title: Construction of hydroxide pn junction for water splitting electrocatalysis
  publication-title: Appl Catal B Environ
– volume: 2
  start-page: 17050
  year: 2017
  ident: bib7
  article-title: Particulate photocatalysts for overall water splitting
  publication-title: Nat Rev Mater
– volume: 557
  start-page: 478
  year: 2019
  end-page: 487
  ident: bib45
  article-title: Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting
  publication-title: J Colloid Interface Sci
– volume: 8
  start-page: 9997
  year: 2016
  end-page: 10003
  ident: bib24
  article-title: Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires
  publication-title: Nanoscale
– volume: 5
  start-page: 1360
  year: 2015
  end-page: 1384
  ident: bib1
  article-title: Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review
  publication-title: Catal Sci Technol
– volume: 265
  start-page: 345
  year: 2018
  end-page: 352
  ident: bib41
  article-title: The enhanced ethanol sensing properties obtained by the introduction of NiO into ZnO/SnO2 mixed metal oxides
  publication-title: J Solid State Chem
– volume: 8
  start-page: 9997
  year: 2016
  ident: 10.1016/j.ijhydene.2021.08.154_bib24
  article-title: Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires
  publication-title: Nanoscale
  doi: 10.1039/C5NR07236K
– volume: 2
  start-page: 4606
  year: 2014
  ident: 10.1016/j.ijhydene.2021.08.154_bib23
  article-title: Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance
  publication-title: J Mater Chem C
  doi: 10.1039/c4tc00157e
– volume: 2
  start-page: 17050
  year: 2017
  ident: 10.1016/j.ijhydene.2021.08.154_bib7
  article-title: Particulate photocatalysts for overall water splitting
  publication-title: Nat Rev Mater
  doi: 10.1038/natrevmats.2017.50
– volume: 30
  start-page: 5158
  year: 2019
  ident: 10.1016/j.ijhydene.2021.08.154_bib25
  article-title: Preparation of ternary Pt–NiO–ZnO hybrids and investigation of its photocatalytic performance toward methyl orange
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-019-00814-2
– volume: 5
  start-page: 1360
  year: 2015
  ident: 10.1016/j.ijhydene.2021.08.154_bib1
  article-title: Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review
  publication-title: Catal Sci Technol
  doi: 10.1039/C4CY00974F
– volume: 42
  start-page: 11078
  year: 2017
  ident: 10.1016/j.ijhydene.2021.08.154_bib8
  article-title: Photoelectrode nanomaterials for photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.03.029
– volume: 40
  start-page: 107
  year: 2016
  ident: 10.1016/j.ijhydene.2021.08.154_bib29
  article-title: Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance
  publication-title: New J Chem
  doi: 10.1039/C5NJ01815C
– start-page: 978
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib47
  article-title: Molecular organic sensitizers for photoelectrochemical water splitting
  publication-title: Eur J Inorg Chem
  doi: 10.1002/ejic.202000026
– volume: 49
  start-page: 659
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib49
  article-title: Photoelectrochemical water-splitting over a surface modified p-type Cr 2 O 3 photocathode
  publication-title: Dalton Trans
  doi: 10.1039/C9DT04296B
– volume: 252
  start-page: 219
  year: 2019
  ident: 10.1016/j.ijhydene.2021.08.154_bib26
  article-title: Porous NiO/ZnO flower-like heterostructures consisting of interlaced nanosheet/particle framework for enhanced photodegradation of tetracycline
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2019.05.145
– volume: 44
  start-page: 2091
  year: 2019
  ident: 10.1016/j.ijhydene.2021.08.154_bib13
  article-title: Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.08.042
– volume: 13
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.154_bib27
  article-title: Effective photocatalytic water splitting enhancement using GaN/ZnO/NiO core/shell nanocolumns
  publication-title: J Renew Sustain Energy
  doi: 10.1063/5.0035348
– volume: 43
  start-page: 4804
  year: 2018
  ident: 10.1016/j.ijhydene.2021.08.154_bib3
  article-title: Nanomaterials for photoelectrochemical water splitting – review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.099
– volume: 367
  start-page: 137426
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.154_bib19
  article-title: Investigation of interfacial charge transfer in CuxO@TiO2 heterojunction nanowire arrays towards highly efficient solar water splitting
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2020.137426
– volume: 5
  start-page: 1455
  year: 2017
  ident: 10.1016/j.ijhydene.2021.08.154_bib9
  article-title: Insights into the electronic bands of WO 3/BiVO 4/TiO 2 , revealing high solar water splitting efficiency
  publication-title: J Mater Chem
  doi: 10.1039/C6TA07592D
– volume: 557
  start-page: 478
  year: 2019
  ident: 10.1016/j.ijhydene.2021.08.154_bib45
  article-title: Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2019.09.037
– volume: 39
  start-page: 4820
  year: 2014
  ident: 10.1016/j.ijhydene.2021.08.154_bib21
  article-title: NiO decorated Mo:BiVO4 photoanode with enhanced visible-light photoelectrochemical activity
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.072
– volume: 420
  start-page: 127709
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.154_bib18
  article-title: Photogenerated charge dynamics of CdS nanorods with spatially distributed MoS2 for photocatalytic hydrogen generation
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127709
– volume: 30621
  start-page: 30621
  year: 2019
  ident: 10.1016/j.ijhydene.2021.08.154_bib30
– volume: 150
  start-page: 1878
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib46
  article-title: Cobalt phosphate cocatalyst loaded-CdS nanorod photoanode with well-defined junctions for highly efficient photoelectrochemical water splitting
  publication-title: Catal Lett
  doi: 10.1007/s10562-019-03084-z
– volume: 440
  start-page: 1101
  year: 2018
  ident: 10.1016/j.ijhydene.2021.08.154_bib20
  article-title: Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2018.01.292
– volume: 5
  start-page: 5976
  year: 2015
  ident: 10.1016/j.ijhydene.2021.08.154_bib34
  article-title: A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction
  publication-title: RSC Adv
  doi: 10.1039/C4RA12535E
– volume: 41
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib12
  article-title: Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting
  publication-title: J Semiconduct
  doi: 10.1088/1674-4926/41/9/091702
– volume: 292
  start-page: 120160
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.154_bib17
  article-title: Construction of hydroxide pn junction for water splitting electrocatalysis
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2021.120160
– volume: 8
  start-page: 5638
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib16
  article-title: A pulse electrodeposited amorphous tunnel layer stabilises Cu 2 O for efficient photoelectrochemical water splitting under visible-light irradiation
  publication-title: J Mater Chem
  doi: 10.1039/D0TA00629G
– volume: 5
  start-page: 67610
  year: 2015
  ident: 10.1016/j.ijhydene.2021.08.154_bib40
  article-title: Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity
  publication-title: RSC Adv
  doi: 10.1039/C5RA08903D
– volume: 238
  start-page: 37
  year: 1972
  ident: 10.1016/j.ijhydene.2021.08.154_bib4
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 6
  start-page: 21696
  year: 2018
  ident: 10.1016/j.ijhydene.2021.08.154_bib10
  article-title: A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials
  publication-title: J Mater Chem
  doi: 10.1039/C8TA04165B
– volume: 45
  start-page: 15985
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib6
  article-title: Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.04.071
– volume: 6
  start-page: 109091
  year: 2016
  ident: 10.1016/j.ijhydene.2021.08.154_bib35
  article-title: NiO/ZnO p–n heterostructures and their gas sensing properties for reduced operating temperature
  publication-title: RSC Adv
  doi: 10.1039/C6RA19520B
– volume: 125
  start-page: 16776
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.154_bib22
  article-title: Stable photoelectrochemical water splitting using p–n GaN junction decorated with nickel oxides as photoanodes
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.1c04208
– volume: 13
  start-page: 9206
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.154_bib37
  article-title: Construction of Zn/Ni bimetallic organic framework derived ZnO/NiO heterostructure with superior N -propanol sensing performance
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c21583
– volume: 12
  start-page: 8324
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib15
  article-title: Light-induced formation of MoO x S y clusters on CdS nanorods as cocatalyst for enhanced hydrogen evolution
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b21810
– volume: 57
  start-page: 10059
  year: 2018
  ident: 10.1016/j.ijhydene.2021.08.154_bib42
  article-title: Fabrication of hierarchical two-dimensional MoS 2 nanoflowers decorated upon cubic CaIn 2 S 4 microflowers: facile approach to construct novel metal-free p–n heterojunction semiconductors with superior charge separation efficiency
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.8b01221
– volume: 222
  start-page: 78
  year: 2016
  ident: 10.1016/j.ijhydene.2021.08.154_bib33
  article-title: High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor
  publication-title: Sensor Actuator B Chem
  doi: 10.1016/j.snb.2015.08.058
– volume: 193
  start-page: 148
  year: 2019
  ident: 10.1016/j.ijhydene.2021.08.154_bib14
  article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.09.045
– volume: 123
  start-page: 647
  year: 2017
  ident: 10.1016/j.ijhydene.2021.08.154_bib28
  article-title: Fabrication of NiO quantum dot-modified ZnO nanorod arrays for efficient photoelectrochemical water splitting
  publication-title: Appl Phys A
  doi: 10.1007/s00339-017-1237-2
– volume: 228
  start-page: 64
  year: 2018
  ident: 10.1016/j.ijhydene.2021.08.154_bib43
  article-title: 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2018.01.067
– volume: 28
  start-page: 296
  year: 2016
  ident: 10.1016/j.ijhydene.2021.08.154_bib44
  article-title: Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation
  publication-title: Nanomater Energy
  doi: 10.1016/j.nanoen.2016.08.054
– volume: 112
  start-page: 210
  year: 2017
  ident: 10.1016/j.ijhydene.2021.08.154_bib36
  article-title: Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions
  publication-title: Superlattice Microst
  doi: 10.1016/j.spmi.2017.09.019
– volume: 31
  start-page: 475403
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib39
  article-title: Earth abundant transition metal ferrite nanoparticles anchored ZnO nanorods as efficient and stable photoanodes for solar water splitting
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/abae9a
– volume: 45
  start-page: 22576
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib31
  article-title: Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.06.173
– volume: 45
  start-page: 24544
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib5
  article-title: A perspective on the fabrication of heterogeneous photocatalysts for enhanced hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.06.301
– volume: 265
  start-page: 345
  year: 2018
  ident: 10.1016/j.ijhydene.2021.08.154_bib41
  article-title: The enhanced ethanol sensing properties obtained by the introduction of NiO into ZnO/SnO2 mixed metal oxides
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2018.05.020
– volume: 29
  start-page: 1701599
  year: 2017
  ident: 10.1016/j.ijhydene.2021.08.154_bib32
  article-title: Solution combustion synthesis: low-temperature processing for p-type Cu:NiO thin films for transparent electronics
  publication-title: Adv Mater
  doi: 10.1002/adma.201701599
– volume: 16
  start-page: 20900
  year: 2014
  ident: 10.1016/j.ijhydene.2021.08.154_bib48
  article-title: Revealing the charge transport mechanism of a photoelectrochemical cell: analysis using A.C. voltage perturbation
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP01734J
– volume: 797
  start-page: 456
  year: 2019
  ident: 10.1016/j.ijhydene.2021.08.154_bib38
  article-title: Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.05.111
– volume: 54
  start-page: 409
  year: 2018
  ident: 10.1016/j.ijhydene.2021.08.154_bib11
  article-title: Zinc oxide for solar water splitting: a brief review of the material's challenges and associated opportunities
  publication-title: Nanomater Energy
  doi: 10.1016/j.nanoen.2018.10.043
– volume: 45
  start-page: 31942
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.154_bib2
  article-title: Photocatalytic hydrogen production performance of 1-D ZnO nanostructures: role of structural properties
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.247
SSID ssj0017049
Score 2.4710097
Snippet In this report, a p-n junction has been constructed using ZnO/NiO heterostructured photoelectrode by spin coating NiO layers over vertically aligned ZnO...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 36176
SubjectTerms Photocurrent density
P–N junction
Water splitting
ZnO/NiO
Title Construction of ZnO@NiO heterostructure photoelectrodes for improved photoelectrochemical performance
URI https://dx.doi.org/10.1016/j.ijhydene.2021.08.154
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEV5VB5Y09SxncdGVVEVEO0AlSqWKH5ETYWSCMrAwm_nnDillZA6MMbxSdHZvvsuvvsOoRtJmdA9JRyDdh0WptKJIPpxiAppaC5ufGFudJ_G_mjKHmZ81kKDphbGpFVa21_b9Mpa2xHXatMts8x9BttrSnAiCFoouNmqgp0FZpd3v1dpHiSwEBgmO2b2WpXwopst5l9wvA1dpldReRLO_nZQa05neIgOLFrE_fqDjlBL58dof41D8ARp03KzIYHFRYpf88ntOJvguUl0KepXn-8al_NiWdiuN0p_YECrOKt-KWi18VJaDgFc_hYVnKLp8O5lMHJs7wRHUuItwfEwzmmiw-oiUpMgoURCNBolVFApYMSQyQF40gHlgFGklyjKUqGYR_yeSOkZ2smLXJ8jrDhXgYI4UyZw4rkfhT2uia_9SKqUJKKNeKOwWFpicdPf4i1uMsgWcaPo2Cg67oUxKLqN3JVcWVNrbJWImvWINzZJDPZ_i-zFP2Qv0Z55Mi7L867QDqycvgYsshSdarN10G7__nE0_gEGneC1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RTl6YE1TR3HabKBKqoCfQy0UsVixY-oqVBSQRlY-O2cE6e0ElIHVtsnRWf77rv47juEbiX1hW4q4Ri06_hhIp0Ioh-HqJCG5uEmEOZFtz8IumP_acImNdSuamFMWqW1_aVNL6y1HXGtNt15mrovYHtNCU4EQQsFNwsh0LYP19e0MWh8L_M8SMtiYFjtmOUrZcKzRjqbfsH9NnyZXsHlSZj_t4da8TqdA7Rv4SK-L7_oENV0doT2VkgEj5E2PTcrFlicJ_g1G94N0iGemkyXvJz6fNd4Ps0XuW17o_QHBriK0-KfglZrk9KSCOD5b1XBCRp3HkbtrmObJziSEm8BnsdnjMY6LF4iNWnFlEgIR6OYCioFjBg2OUBPukUZgBTpxYr6iVC-R4KmSOgp2sryTJ8hrBhTLQWBpozhyrMgCptMk0AHkVQJiUUdsUphXFpmcdPg4o1XKWQzXimaG0XzZshB0XXkLuXmJbfGRomo2g--dko4OIANsuf_kL1BO91Rv8d7j4PnC7RrZoz_8rxLtAW7qK8AmCzEdXHwfgA_yOJD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+ZnO%40NiO+heterostructure+photoelectrodes+for+improved+photoelectrochemical+performance&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Sahoo%2C+Pooja&rft.au=Sharma%2C+Akash&rft.au=Padhan%2C+Subash&rft.au=Thangavel%2C+R.&rft.date=2021-10-22&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=46&rft.issue=73&rft.spage=36176&rft.epage=36188&rft_id=info:doi/10.1016%2Fj.ijhydene.2021.08.154&rft.externalDocID=S0360319921033991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon