Construction of ZnO@NiO heterostructure photoelectrodes for improved photoelectrochemical performance
In this report, a p-n junction has been constructed using ZnO/NiO heterostructured photoelectrode by spin coating NiO layers over vertically aligned ZnO nanorod arrays to demonstrate its potential in water splitting applications. Before investigating their PEC performance, we thoroughly studied the...
Saved in:
Published in | International journal of hydrogen energy Vol. 46; no. 73; pp. 36176 - 36188 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
22.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this report, a p-n junction has been constructed using ZnO/NiO heterostructured photoelectrode by spin coating NiO layers over vertically aligned ZnO nanorod arrays to demonstrate its potential in water splitting applications. Before investigating their PEC performance, we thoroughly studied the introduction of NiO layers on the structure, morphology and light absorption property of ZnO nanorods. 9 layered NiO coated ZnO nanorods exhibited optimum photocurrent density of 0.251 mA/cm2 at 0.8 V vs. Ag/AgCl which is attributed to its high absorbance and better charge transfer as recorded from UV–Vis and EIS data. Furthermore, we also studied the effect of (cation (Mg) and anion (Cl)) doping in PEC performance of ZnO nanorods on this optimized sample. Cl_ZnO/NiO showed high Jph of 1.282 mA/cm2 at 1.2 V vs. Ag/AgCl under visible light illumination. The reason behind better photoresponse is its enhanced absorption and well-defined p-n heterojunction between Cl_ZnO and NiO which favoured the separation and transfer of the photocarriers. The results displayed in this work provides a suitable approach of building p-n junction for high performance PEC water oxidation.
[Display omitted]
•Influence of NiO layers on surface of undoped and doped ZnO nanorods for PEC performance have been demonstrated.•9 layer NiO coated ZnO and Cl_ZnO/NiO heterostructure showed enhanced PEC activity.•The mechanism of PEC water splitting process in ZnO/NiO p-n heterojunction is proposed. |
---|---|
AbstractList | In this report, a p-n junction has been constructed using ZnO/NiO heterostructured photoelectrode by spin coating NiO layers over vertically aligned ZnO nanorod arrays to demonstrate its potential in water splitting applications. Before investigating their PEC performance, we thoroughly studied the introduction of NiO layers on the structure, morphology and light absorption property of ZnO nanorods. 9 layered NiO coated ZnO nanorods exhibited optimum photocurrent density of 0.251 mA/cm2 at 0.8 V vs. Ag/AgCl which is attributed to its high absorbance and better charge transfer as recorded from UV–Vis and EIS data. Furthermore, we also studied the effect of (cation (Mg) and anion (Cl)) doping in PEC performance of ZnO nanorods on this optimized sample. Cl_ZnO/NiO showed high Jph of 1.282 mA/cm2 at 1.2 V vs. Ag/AgCl under visible light illumination. The reason behind better photoresponse is its enhanced absorption and well-defined p-n heterojunction between Cl_ZnO and NiO which favoured the separation and transfer of the photocarriers. The results displayed in this work provides a suitable approach of building p-n junction for high performance PEC water oxidation.
[Display omitted]
•Influence of NiO layers on surface of undoped and doped ZnO nanorods for PEC performance have been demonstrated.•9 layer NiO coated ZnO and Cl_ZnO/NiO heterostructure showed enhanced PEC activity.•The mechanism of PEC water splitting process in ZnO/NiO p-n heterojunction is proposed. |
Author | Thangavel, R. Sahoo, Pooja Sharma, Akash Padhan, Subash |
Author_xml | – sequence: 1 givenname: Pooja surname: Sahoo fullname: Sahoo, Pooja organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India – sequence: 2 givenname: Akash surname: Sharma fullname: Sharma, Akash organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India – sequence: 3 givenname: Subash surname: Padhan fullname: Padhan, Subash organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India – sequence: 4 givenname: R. surname: Thangavel fullname: Thangavel, R. email: rthangavel@iitism.ac.in organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India |
BookMark | eNqFkM1qwzAQhEVJoUnbVyh-Abtayz8S9JAS-gehubSXXoQsr7GMbQVZCeTtq5D20F5yWtjZGXa-BZmNdkRC7oAmQKG47xLTtYcaR0xSmkJCeQJ5dkHmwEsRs4yXMzKnrKAxAyGuyGKaOkqhpJmYE1zZcfJup72xY2Sb6GvcLN_NJmrRo7Mnaecw2rbWW-xRe2drnKLGusgMW2f3WP8RdYuD0aqPtujC0aBGjTfkslH9hLc_85p8Pj99rF7j9eblbfW4jjWD1MecZnnOFHJgXABCqRhoxplQrGK6ChsKNM0LwJLlQjCdqpplTVVnKRS0atg1eTjl6vD65LCR2nh1rOadMr0EKo_IZCd_kckjMkm5DMiCvfhn3zozKHc4b1yejBjK7Q06OWmDoXhtXIAia2vORXwDJVaPcw |
CitedBy_id | crossref_primary_10_1016_j_surfin_2024_103970 crossref_primary_10_3390_nano12050839 crossref_primary_10_1016_j_ijhydene_2021_12_107 crossref_primary_10_1016_j_surfin_2024_105376 crossref_primary_10_1021_acs_energyfuels_2c01350 crossref_primary_10_1016_j_jallcom_2025_179281 crossref_primary_10_1039_D4NR00761A crossref_primary_10_1039_D3CP01996A crossref_primary_10_1016_j_ijhydene_2023_03_083 crossref_primary_10_1002_cptc_202200294 crossref_primary_10_3390_nano12030433 crossref_primary_10_1016_j_jelechem_2024_118790 crossref_primary_10_29130_dubited_1167452 crossref_primary_10_1021_acs_cgd_4c00396 crossref_primary_10_1016_j_seppur_2024_126644 crossref_primary_10_1016_j_jcis_2023_07_161 crossref_primary_10_1016_j_jallcom_2024_176882 crossref_primary_10_1039_D2RA05894D |
Cites_doi | 10.1039/C5NR07236K 10.1039/c4tc00157e 10.1038/natrevmats.2017.50 10.1007/s10854-019-00814-2 10.1039/C4CY00974F 10.1016/j.ijhydene.2017.03.029 10.1039/C5NJ01815C 10.1002/ejic.202000026 10.1039/C9DT04296B 10.1016/j.matlet.2019.05.145 10.1016/j.ijhydene.2018.08.042 10.1063/5.0035348 10.1016/j.ijhydene.2018.01.099 10.1016/j.electacta.2020.137426 10.1039/C6TA07592D 10.1016/j.jcis.2019.09.037 10.1016/j.ijhydene.2014.01.072 10.1016/j.cej.2020.127709 10.1007/s10562-019-03084-z 10.1016/j.apsusc.2018.01.292 10.1039/C4RA12535E 10.1088/1674-4926/41/9/091702 10.1016/j.apcatb.2021.120160 10.1039/D0TA00629G 10.1039/C5RA08903D 10.1038/238037a0 10.1039/C8TA04165B 10.1016/j.ijhydene.2020.04.071 10.1039/C6RA19520B 10.1021/acs.jpcc.1c04208 10.1021/acsami.0c21583 10.1021/acsami.9b21810 10.1021/acs.inorgchem.8b01221 10.1016/j.snb.2015.08.058 10.1016/j.solener.2019.09.045 10.1007/s00339-017-1237-2 10.1016/j.apcatb.2018.01.067 10.1016/j.nanoen.2016.08.054 10.1016/j.spmi.2017.09.019 10.1088/1361-6528/abae9a 10.1016/j.ijhydene.2020.06.173 10.1016/j.ijhydene.2020.06.301 10.1016/j.jssc.2018.05.020 10.1002/adma.201701599 10.1039/C4CP01734J 10.1016/j.jallcom.2019.05.111 10.1016/j.nanoen.2018.10.043 10.1016/j.ijhydene.2020.08.247 |
ContentType | Journal Article |
Copyright | 2021 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2021 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2021.08.154 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 36188 |
ExternalDocumentID | 10_1016_j_ijhydene_2021_08_154 S0360319921033991 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c312t-804553ae813891e17a31c3839a3b3cb1e10102561e735993c2ad34fbd42160bf3 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Thu Apr 24 23:02:18 EDT 2025 Tue Jul 01 02:02:03 EDT 2025 Fri Feb 23 02:43:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 73 |
Keywords | Water splitting Photocurrent density ZnO/NiO P–N junction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-804553ae813891e17a31c3839a3b3cb1e10102561e735993c2ad34fbd42160bf3 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2021_08_154 crossref_primary_10_1016_j_ijhydene_2021_08_154 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2021_08_154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-22 |
PublicationDateYYYYMMDD | 2021-10-22 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ma, Huang, Liu, Liu, Wang, Zhao (bib12) 2020; 41 Li, Wu (bib1) 2015; 5 Wu, Liu, Chen, Zhou, Wei (bib20) 2018; 440 Fujishima, Honda (bib4) 1972; 238 Liu, Zhang, Ke, Zhang, Tian, Xu (bib43) 2018; 228 Patel, Chauhan, Mukhopadhyay (bib48) 2014; 16 Tahir, Tasleem, Tahir (bib6) 2020; 45 Zeng, Xue, He, Li, Zhu, Li (bib19) 2021; 367 Sahoo, Sharma, Padhan, Thangavel (bib31) 2020; 45 Swain, Sultana, Moma, Parida (bib42) 2018; 57 Tian, Fan, Dong, Ma, Ma (bib35) 2016; 6 Chen, Takata, Domen (bib7) 2017; 2 Liu, Zhu, Guo, Meng, Liu, Fortunato (bib32) 2017; 29 An, Zhang (bib28) 2017; 123 Xie, Zhai, Zhu, Li, Qiu, Tong (bib21) 2014; 39 Tahir, Asiri, Nawaz (bib5) 2020; 45 Lu, Toe, Ji, Chen, Wen, Wong (bib15) 2020; 12 Wang, Xi, Lin, Li, Hu, Zhao (bib27) 2021; 13 Sekizawa, Oh-ishi, Morikawa (bib49) 2020; 49 Kegel, Povey, Pemble (bib11) 2018; 54 Desai, Vyas, Saratale, Sartale (bib13) 2019; 44 Eftekhari, Babu, Ramakrishna (bib8) 2017; 42 Mao, Cheng, Wang, Yang, Li, Chen (bib29) 2016; 40 Shen, Yan, Bai, Zheng, Sun, Liu (bib34) 2015; 5 Chu, Li, Wang, Ma, Li, Zhang (bib26) 2019; 252 Zhang, Qin, Yu, Zhang, Zhao, Qian (bib25) 2019; 30 Decavoli, Boldrini, Manfredi, Abbotto (bib47) 2020 Song, Zhu, Zeng, Wang, Li, Fan (bib46) 2020; 150 Maity, Karmakar, Mandal, Pal, Khan, Mandal (bib39) 2020; 31 Pan, Wang, Xie, Wang, Zhang, Zou (bib44) 2016; 28 Qu, Fu, Yu, Deng, Xing, Xue (bib33) 2016; 222 Afroz, Moniruddin, Bakranov, Kudaibergenov, Nuraje (bib10) 2018; 6 Lee, Lin, Liao, Lee, Sheu (bib22) 2021; 125 Wu, Zheng, Toe, Wen, Hart, Amal (bib16) 2020; 8 Kumbhar, Lee, Lee, Lee (bib45) 2019; 557 Nakate, Ahmad, Patil, Wang, Bhat, Mahmoudi (bib38) 2019; 797 Li, Zhao, Zhang, Zhang, Jiang, Li (bib40) 2015; 5 Shi, Xu, Wu, Zhang, Zhang, Tian (bib24) 2016; 8 Zeng, Cao, Liao, Liang, Wei, Xu (bib17) 2021; 292 Sahoo, Sharma, Thangavel (bib30) 2019; 30621 Dai, Pan, Chen, Chen, Wen, Zhang (bib23) 2014; 2 Joy, Mathew, George (bib3) 2018; 43 Zhao, Ren, Chen, Yang, Guo (bib41) 2018; 265 Sahoo, Sharma, Padhan, Udayabhanu, Thangavel (bib14) 2019; 193 Zhao, Wang, Zhai, Shao, Bai, Liu (bib37) 2021; 13 Lu, Chen, Yao, Wen, Hart, Tsounis (bib18) 2021; 420 Sultan, Mumtaz, Ali, Khan, Iqbal (bib36) 2017; 112 Kalanur, Yoo, Park, Seo (bib9) 2017; 5 Galdámez-Martínez, Bai, Santana, Sprick, Dutt (bib2) 2020; 45 Zeng (10.1016/j.ijhydene.2021.08.154_bib19) 2021; 367 Nakate (10.1016/j.ijhydene.2021.08.154_bib38) 2019; 797 Fujishima (10.1016/j.ijhydene.2021.08.154_bib4) 1972; 238 Tahir (10.1016/j.ijhydene.2021.08.154_bib5) 2020; 45 Chen (10.1016/j.ijhydene.2021.08.154_bib7) 2017; 2 Afroz (10.1016/j.ijhydene.2021.08.154_bib10) 2018; 6 Shi (10.1016/j.ijhydene.2021.08.154_bib24) 2016; 8 An (10.1016/j.ijhydene.2021.08.154_bib28) 2017; 123 Shen (10.1016/j.ijhydene.2021.08.154_bib34) 2015; 5 Sultan (10.1016/j.ijhydene.2021.08.154_bib36) 2017; 112 Maity (10.1016/j.ijhydene.2021.08.154_bib39) 2020; 31 Tian (10.1016/j.ijhydene.2021.08.154_bib35) 2016; 6 Zhang (10.1016/j.ijhydene.2021.08.154_bib25) 2019; 30 Chu (10.1016/j.ijhydene.2021.08.154_bib26) 2019; 252 Liu (10.1016/j.ijhydene.2021.08.154_bib32) 2017; 29 Li (10.1016/j.ijhydene.2021.08.154_bib40) 2015; 5 Zhao (10.1016/j.ijhydene.2021.08.154_bib37) 2021; 13 Wang (10.1016/j.ijhydene.2021.08.154_bib27) 2021; 13 Decavoli (10.1016/j.ijhydene.2021.08.154_bib47) 2020 Pan (10.1016/j.ijhydene.2021.08.154_bib44) 2016; 28 Mao (10.1016/j.ijhydene.2021.08.154_bib29) 2016; 40 Lu (10.1016/j.ijhydene.2021.08.154_bib18) 2021; 420 Sekizawa (10.1016/j.ijhydene.2021.08.154_bib49) 2020; 49 Wu (10.1016/j.ijhydene.2021.08.154_bib16) 2020; 8 Liu (10.1016/j.ijhydene.2021.08.154_bib43) 2018; 228 Kumbhar (10.1016/j.ijhydene.2021.08.154_bib45) 2019; 557 Eftekhari (10.1016/j.ijhydene.2021.08.154_bib8) 2017; 42 Dai (10.1016/j.ijhydene.2021.08.154_bib23) 2014; 2 Sahoo (10.1016/j.ijhydene.2021.08.154_bib31) 2020; 45 Wu (10.1016/j.ijhydene.2021.08.154_bib20) 2018; 440 Sahoo (10.1016/j.ijhydene.2021.08.154_bib30) 2019; 30621 Song (10.1016/j.ijhydene.2021.08.154_bib46) 2020; 150 Zhao (10.1016/j.ijhydene.2021.08.154_bib41) 2018; 265 Patel (10.1016/j.ijhydene.2021.08.154_bib48) 2014; 16 Desai (10.1016/j.ijhydene.2021.08.154_bib13) 2019; 44 Lu (10.1016/j.ijhydene.2021.08.154_bib15) 2020; 12 Zeng (10.1016/j.ijhydene.2021.08.154_bib17) 2021; 292 Galdámez-Martínez (10.1016/j.ijhydene.2021.08.154_bib2) 2020; 45 Xie (10.1016/j.ijhydene.2021.08.154_bib21) 2014; 39 Lee (10.1016/j.ijhydene.2021.08.154_bib22) 2021; 125 Kalanur (10.1016/j.ijhydene.2021.08.154_bib9) 2017; 5 Li (10.1016/j.ijhydene.2021.08.154_bib1) 2015; 5 Kegel (10.1016/j.ijhydene.2021.08.154_bib11) 2018; 54 Joy (10.1016/j.ijhydene.2021.08.154_bib3) 2018; 43 Sahoo (10.1016/j.ijhydene.2021.08.154_bib14) 2019; 193 Qu (10.1016/j.ijhydene.2021.08.154_bib33) 2016; 222 Ma (10.1016/j.ijhydene.2021.08.154_bib12) 2020; 41 Tahir (10.1016/j.ijhydene.2021.08.154_bib6) 2020; 45 Swain (10.1016/j.ijhydene.2021.08.154_bib42) 2018; 57 |
References_xml | – volume: 45 start-page: 15985 year: 2020 end-page: 16038 ident: bib6 article-title: Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production publication-title: Int J Hydrogen Energy – start-page: 978 year: 2020 end-page: 999 ident: bib47 article-title: Molecular organic sensitizers for photoelectrochemical water splitting publication-title: Eur J Inorg Chem – volume: 43 start-page: 4804 year: 2018 end-page: 4817 ident: bib3 article-title: Nanomaterials for photoelectrochemical water splitting – review publication-title: Int J Hydrogen Energy – volume: 440 start-page: 1101 year: 2018 end-page: 1106 ident: bib20 article-title: Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting publication-title: Appl Surf Sci – volume: 367 start-page: 137426 year: 2021 ident: bib19 article-title: Investigation of interfacial charge transfer in CuxO@TiO2 heterojunction nanowire arrays towards highly efficient solar water splitting publication-title: Electrochim Acta – volume: 45 start-page: 31942 year: 2020 end-page: 31951 ident: bib2 article-title: Photocatalytic hydrogen production performance of 1-D ZnO nanostructures: role of structural properties publication-title: Int J Hydrogen Energy – volume: 112 start-page: 210 year: 2017 end-page: 217 ident: bib36 article-title: Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions publication-title: Superlattice Microst – volume: 12 start-page: 8324 year: 2020 end-page: 8332 ident: bib15 article-title: Light-induced formation of MoO x S y clusters on CdS nanorods as cocatalyst for enhanced hydrogen evolution publication-title: ACS Appl Mater Interfaces – volume: 44 start-page: 2091 year: 2019 end-page: 2127 ident: bib13 article-title: Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting publication-title: Int J Hydrogen Energy – volume: 252 start-page: 219 year: 2019 end-page: 222 ident: bib26 article-title: Porous NiO/ZnO flower-like heterostructures consisting of interlaced nanosheet/particle framework for enhanced photodegradation of tetracycline publication-title: Mater Lett – volume: 5 start-page: 5976 year: 2015 end-page: 5981 ident: bib34 article-title: A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction publication-title: RSC Adv – volume: 13 year: 2021 ident: bib27 article-title: Effective photocatalytic water splitting enhancement using GaN/ZnO/NiO core/shell nanocolumns publication-title: J Renew Sustain Energy – volume: 797 start-page: 456 year: 2019 end-page: 464 ident: bib38 article-title: Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures publication-title: J Alloys Compd – volume: 54 start-page: 409 year: 2018 end-page: 428 ident: bib11 article-title: Zinc oxide for solar water splitting: a brief review of the material's challenges and associated opportunities publication-title: Nanomater Energy – volume: 8 start-page: 5638 year: 2020 end-page: 5646 ident: bib16 article-title: A pulse electrodeposited amorphous tunnel layer stabilises Cu 2 O for efficient photoelectrochemical water splitting under visible-light irradiation publication-title: J Mater Chem – volume: 420 start-page: 127709 year: 2021 ident: bib18 article-title: Photogenerated charge dynamics of CdS nanorods with spatially distributed MoS2 for photocatalytic hydrogen generation publication-title: Chem Eng J – volume: 6 start-page: 109091 year: 2016 end-page: 109098 ident: bib35 article-title: NiO/ZnO p–n heterostructures and their gas sensing properties for reduced operating temperature publication-title: RSC Adv – volume: 123 start-page: 647 year: 2017 ident: bib28 article-title: Fabrication of NiO quantum dot-modified ZnO nanorod arrays for efficient photoelectrochemical water splitting publication-title: Appl Phys A – volume: 29 start-page: 1701599 year: 2017 ident: bib32 article-title: Solution combustion synthesis: low-temperature processing for p-type Cu:NiO thin films for transparent electronics publication-title: Adv Mater – volume: 2 start-page: 4606 year: 2014 ident: bib23 article-title: Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance publication-title: J Mater Chem C – volume: 31 start-page: 475403 year: 2020 ident: bib39 article-title: Earth abundant transition metal ferrite nanoparticles anchored ZnO nanorods as efficient and stable photoanodes for solar water splitting publication-title: Nanotechnology – volume: 40 start-page: 107 year: 2016 end-page: 112 ident: bib29 article-title: Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance publication-title: New J Chem – volume: 45 start-page: 22576 year: 2020 end-page: 22588 ident: bib31 article-title: Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays publication-title: Int J Hydrogen Energy – volume: 222 start-page: 78 year: 2016 end-page: 86 ident: bib33 article-title: High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor publication-title: Sensor Actuator B Chem – volume: 49 start-page: 659 year: 2020 end-page: 666 ident: bib49 article-title: Photoelectrochemical water-splitting over a surface modified p-type Cr 2 O 3 photocathode publication-title: Dalton Trans – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: bib4 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – volume: 5 start-page: 1455 year: 2017 end-page: 1461 ident: bib9 article-title: Insights into the electronic bands of WO 3/BiVO 4/TiO 2 , revealing high solar water splitting efficiency publication-title: J Mater Chem – volume: 13 start-page: 9206 year: 2021 end-page: 9215 ident: bib37 article-title: Construction of Zn/Ni bimetallic organic framework derived ZnO/NiO heterostructure with superior N -propanol sensing performance publication-title: ACS Appl Mater Interfaces – volume: 228 start-page: 64 year: 2018 end-page: 74 ident: bib43 article-title: 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution publication-title: Appl Catal B Environ – volume: 41 year: 2020 ident: bib12 article-title: Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting publication-title: J Semiconduct – volume: 57 start-page: 10059 year: 2018 end-page: 10071 ident: bib42 article-title: Fabrication of hierarchical two-dimensional MoS 2 nanoflowers decorated upon cubic CaIn 2 S 4 microflowers: facile approach to construct novel metal-free p–n heterojunction semiconductors with superior charge separation efficiency publication-title: Inorg Chem – volume: 28 start-page: 296 year: 2016 end-page: 303 ident: bib44 article-title: Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation publication-title: Nanomater Energy – volume: 30621 start-page: 30621 year: 2019 ident: bib30 publication-title: Influence of Cu incorporation on physical properties of nickel oxide thin films synthesized by sol-gel method – volume: 193 start-page: 148 year: 2019 end-page: 163 ident: bib14 article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications publication-title: Sol Energy – volume: 16 start-page: 20900 year: 2014 end-page: 20908 ident: bib48 article-title: Revealing the charge transport mechanism of a photoelectrochemical cell: analysis using A.C. voltage perturbation publication-title: Phys Chem Chem Phys – volume: 6 start-page: 21696 year: 2018 end-page: 21718 ident: bib10 article-title: A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials publication-title: J Mater Chem – volume: 42 start-page: 11078 year: 2017 end-page: 11109 ident: bib8 article-title: Photoelectrode nanomaterials for photoelectrochemical water splitting publication-title: Int J Hydrogen Energy – volume: 45 start-page: 24544 year: 2020 end-page: 24557 ident: bib5 article-title: A perspective on the fabrication of heterogeneous photocatalysts for enhanced hydrogen production publication-title: Int J Hydrogen Energy – volume: 30 start-page: 5158 year: 2019 end-page: 5169 ident: bib25 article-title: Preparation of ternary Pt–NiO–ZnO hybrids and investigation of its photocatalytic performance toward methyl orange publication-title: J Mater Sci Mater Electron – volume: 125 start-page: 16776 year: 2021 end-page: 16783 ident: bib22 article-title: Stable photoelectrochemical water splitting using p–n GaN junction decorated with nickel oxides as photoanodes publication-title: J Phys Chem C – volume: 39 start-page: 4820 year: 2014 end-page: 4827 ident: bib21 article-title: NiO decorated Mo:BiVO4 photoanode with enhanced visible-light photoelectrochemical activity publication-title: Int J Hydrogen Energy – volume: 5 start-page: 67610 year: 2015 end-page: 67616 ident: bib40 article-title: Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity publication-title: RSC Adv – volume: 150 start-page: 1878 year: 2020 end-page: 1889 ident: bib46 article-title: Cobalt phosphate cocatalyst loaded-CdS nanorod photoanode with well-defined junctions for highly efficient photoelectrochemical water splitting publication-title: Catal Lett – volume: 292 start-page: 120160 year: 2021 ident: bib17 article-title: Construction of hydroxide pn junction for water splitting electrocatalysis publication-title: Appl Catal B Environ – volume: 2 start-page: 17050 year: 2017 ident: bib7 article-title: Particulate photocatalysts for overall water splitting publication-title: Nat Rev Mater – volume: 557 start-page: 478 year: 2019 end-page: 487 ident: bib45 article-title: Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting publication-title: J Colloid Interface Sci – volume: 8 start-page: 9997 year: 2016 end-page: 10003 ident: bib24 article-title: Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires publication-title: Nanoscale – volume: 5 start-page: 1360 year: 2015 end-page: 1384 ident: bib1 article-title: Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review publication-title: Catal Sci Technol – volume: 265 start-page: 345 year: 2018 end-page: 352 ident: bib41 article-title: The enhanced ethanol sensing properties obtained by the introduction of NiO into ZnO/SnO2 mixed metal oxides publication-title: J Solid State Chem – volume: 8 start-page: 9997 year: 2016 ident: 10.1016/j.ijhydene.2021.08.154_bib24 article-title: Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires publication-title: Nanoscale doi: 10.1039/C5NR07236K – volume: 2 start-page: 4606 year: 2014 ident: 10.1016/j.ijhydene.2021.08.154_bib23 article-title: Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance publication-title: J Mater Chem C doi: 10.1039/c4tc00157e – volume: 2 start-page: 17050 year: 2017 ident: 10.1016/j.ijhydene.2021.08.154_bib7 article-title: Particulate photocatalysts for overall water splitting publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2017.50 – volume: 30 start-page: 5158 year: 2019 ident: 10.1016/j.ijhydene.2021.08.154_bib25 article-title: Preparation of ternary Pt–NiO–ZnO hybrids and investigation of its photocatalytic performance toward methyl orange publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-019-00814-2 – volume: 5 start-page: 1360 year: 2015 ident: 10.1016/j.ijhydene.2021.08.154_bib1 article-title: Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review publication-title: Catal Sci Technol doi: 10.1039/C4CY00974F – volume: 42 start-page: 11078 year: 2017 ident: 10.1016/j.ijhydene.2021.08.154_bib8 article-title: Photoelectrode nanomaterials for photoelectrochemical water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.03.029 – volume: 40 start-page: 107 year: 2016 ident: 10.1016/j.ijhydene.2021.08.154_bib29 article-title: Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance publication-title: New J Chem doi: 10.1039/C5NJ01815C – start-page: 978 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib47 article-title: Molecular organic sensitizers for photoelectrochemical water splitting publication-title: Eur J Inorg Chem doi: 10.1002/ejic.202000026 – volume: 49 start-page: 659 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib49 article-title: Photoelectrochemical water-splitting over a surface modified p-type Cr 2 O 3 photocathode publication-title: Dalton Trans doi: 10.1039/C9DT04296B – volume: 252 start-page: 219 year: 2019 ident: 10.1016/j.ijhydene.2021.08.154_bib26 article-title: Porous NiO/ZnO flower-like heterostructures consisting of interlaced nanosheet/particle framework for enhanced photodegradation of tetracycline publication-title: Mater Lett doi: 10.1016/j.matlet.2019.05.145 – volume: 44 start-page: 2091 year: 2019 ident: 10.1016/j.ijhydene.2021.08.154_bib13 article-title: Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.08.042 – volume: 13 year: 2021 ident: 10.1016/j.ijhydene.2021.08.154_bib27 article-title: Effective photocatalytic water splitting enhancement using GaN/ZnO/NiO core/shell nanocolumns publication-title: J Renew Sustain Energy doi: 10.1063/5.0035348 – volume: 43 start-page: 4804 year: 2018 ident: 10.1016/j.ijhydene.2021.08.154_bib3 article-title: Nanomaterials for photoelectrochemical water splitting – review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.099 – volume: 367 start-page: 137426 year: 2021 ident: 10.1016/j.ijhydene.2021.08.154_bib19 article-title: Investigation of interfacial charge transfer in CuxO@TiO2 heterojunction nanowire arrays towards highly efficient solar water splitting publication-title: Electrochim Acta doi: 10.1016/j.electacta.2020.137426 – volume: 5 start-page: 1455 year: 2017 ident: 10.1016/j.ijhydene.2021.08.154_bib9 article-title: Insights into the electronic bands of WO 3/BiVO 4/TiO 2 , revealing high solar water splitting efficiency publication-title: J Mater Chem doi: 10.1039/C6TA07592D – volume: 557 start-page: 478 year: 2019 ident: 10.1016/j.ijhydene.2021.08.154_bib45 article-title: Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.09.037 – volume: 39 start-page: 4820 year: 2014 ident: 10.1016/j.ijhydene.2021.08.154_bib21 article-title: NiO decorated Mo:BiVO4 photoanode with enhanced visible-light photoelectrochemical activity publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.072 – volume: 420 start-page: 127709 year: 2021 ident: 10.1016/j.ijhydene.2021.08.154_bib18 article-title: Photogenerated charge dynamics of CdS nanorods with spatially distributed MoS2 for photocatalytic hydrogen generation publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127709 – volume: 30621 start-page: 30621 year: 2019 ident: 10.1016/j.ijhydene.2021.08.154_bib30 – volume: 150 start-page: 1878 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib46 article-title: Cobalt phosphate cocatalyst loaded-CdS nanorod photoanode with well-defined junctions for highly efficient photoelectrochemical water splitting publication-title: Catal Lett doi: 10.1007/s10562-019-03084-z – volume: 440 start-page: 1101 year: 2018 ident: 10.1016/j.ijhydene.2021.08.154_bib20 article-title: Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.01.292 – volume: 5 start-page: 5976 year: 2015 ident: 10.1016/j.ijhydene.2021.08.154_bib34 article-title: A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction publication-title: RSC Adv doi: 10.1039/C4RA12535E – volume: 41 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib12 article-title: Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting publication-title: J Semiconduct doi: 10.1088/1674-4926/41/9/091702 – volume: 292 start-page: 120160 year: 2021 ident: 10.1016/j.ijhydene.2021.08.154_bib17 article-title: Construction of hydroxide pn junction for water splitting electrocatalysis publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2021.120160 – volume: 8 start-page: 5638 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib16 article-title: A pulse electrodeposited amorphous tunnel layer stabilises Cu 2 O for efficient photoelectrochemical water splitting under visible-light irradiation publication-title: J Mater Chem doi: 10.1039/D0TA00629G – volume: 5 start-page: 67610 year: 2015 ident: 10.1016/j.ijhydene.2021.08.154_bib40 article-title: Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity publication-title: RSC Adv doi: 10.1039/C5RA08903D – volume: 238 start-page: 37 year: 1972 ident: 10.1016/j.ijhydene.2021.08.154_bib4 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 6 start-page: 21696 year: 2018 ident: 10.1016/j.ijhydene.2021.08.154_bib10 article-title: A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials publication-title: J Mater Chem doi: 10.1039/C8TA04165B – volume: 45 start-page: 15985 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib6 article-title: Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.04.071 – volume: 6 start-page: 109091 year: 2016 ident: 10.1016/j.ijhydene.2021.08.154_bib35 article-title: NiO/ZnO p–n heterostructures and their gas sensing properties for reduced operating temperature publication-title: RSC Adv doi: 10.1039/C6RA19520B – volume: 125 start-page: 16776 year: 2021 ident: 10.1016/j.ijhydene.2021.08.154_bib22 article-title: Stable photoelectrochemical water splitting using p–n GaN junction decorated with nickel oxides as photoanodes publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.1c04208 – volume: 13 start-page: 9206 year: 2021 ident: 10.1016/j.ijhydene.2021.08.154_bib37 article-title: Construction of Zn/Ni bimetallic organic framework derived ZnO/NiO heterostructure with superior N -propanol sensing performance publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c21583 – volume: 12 start-page: 8324 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib15 article-title: Light-induced formation of MoO x S y clusters on CdS nanorods as cocatalyst for enhanced hydrogen evolution publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b21810 – volume: 57 start-page: 10059 year: 2018 ident: 10.1016/j.ijhydene.2021.08.154_bib42 article-title: Fabrication of hierarchical two-dimensional MoS 2 nanoflowers decorated upon cubic CaIn 2 S 4 microflowers: facile approach to construct novel metal-free p–n heterojunction semiconductors with superior charge separation efficiency publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.8b01221 – volume: 222 start-page: 78 year: 2016 ident: 10.1016/j.ijhydene.2021.08.154_bib33 article-title: High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor publication-title: Sensor Actuator B Chem doi: 10.1016/j.snb.2015.08.058 – volume: 193 start-page: 148 year: 2019 ident: 10.1016/j.ijhydene.2021.08.154_bib14 article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications publication-title: Sol Energy doi: 10.1016/j.solener.2019.09.045 – volume: 123 start-page: 647 year: 2017 ident: 10.1016/j.ijhydene.2021.08.154_bib28 article-title: Fabrication of NiO quantum dot-modified ZnO nanorod arrays for efficient photoelectrochemical water splitting publication-title: Appl Phys A doi: 10.1007/s00339-017-1237-2 – volume: 228 start-page: 64 year: 2018 ident: 10.1016/j.ijhydene.2021.08.154_bib43 article-title: 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2018.01.067 – volume: 28 start-page: 296 year: 2016 ident: 10.1016/j.ijhydene.2021.08.154_bib44 article-title: Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation publication-title: Nanomater Energy doi: 10.1016/j.nanoen.2016.08.054 – volume: 112 start-page: 210 year: 2017 ident: 10.1016/j.ijhydene.2021.08.154_bib36 article-title: Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions publication-title: Superlattice Microst doi: 10.1016/j.spmi.2017.09.019 – volume: 31 start-page: 475403 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib39 article-title: Earth abundant transition metal ferrite nanoparticles anchored ZnO nanorods as efficient and stable photoanodes for solar water splitting publication-title: Nanotechnology doi: 10.1088/1361-6528/abae9a – volume: 45 start-page: 22576 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib31 article-title: Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.06.173 – volume: 45 start-page: 24544 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib5 article-title: A perspective on the fabrication of heterogeneous photocatalysts for enhanced hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.06.301 – volume: 265 start-page: 345 year: 2018 ident: 10.1016/j.ijhydene.2021.08.154_bib41 article-title: The enhanced ethanol sensing properties obtained by the introduction of NiO into ZnO/SnO2 mixed metal oxides publication-title: J Solid State Chem doi: 10.1016/j.jssc.2018.05.020 – volume: 29 start-page: 1701599 year: 2017 ident: 10.1016/j.ijhydene.2021.08.154_bib32 article-title: Solution combustion synthesis: low-temperature processing for p-type Cu:NiO thin films for transparent electronics publication-title: Adv Mater doi: 10.1002/adma.201701599 – volume: 16 start-page: 20900 year: 2014 ident: 10.1016/j.ijhydene.2021.08.154_bib48 article-title: Revealing the charge transport mechanism of a photoelectrochemical cell: analysis using A.C. voltage perturbation publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP01734J – volume: 797 start-page: 456 year: 2019 ident: 10.1016/j.ijhydene.2021.08.154_bib38 article-title: Improved selectivity and low concentration hydrogen gas sensor application of Pd sensitized heterojunction n-ZnO/p-NiO nanostructures publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.05.111 – volume: 54 start-page: 409 year: 2018 ident: 10.1016/j.ijhydene.2021.08.154_bib11 article-title: Zinc oxide for solar water splitting: a brief review of the material's challenges and associated opportunities publication-title: Nanomater Energy doi: 10.1016/j.nanoen.2018.10.043 – volume: 45 start-page: 31942 year: 2020 ident: 10.1016/j.ijhydene.2021.08.154_bib2 article-title: Photocatalytic hydrogen production performance of 1-D ZnO nanostructures: role of structural properties publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.247 |
SSID | ssj0017049 |
Score | 2.4710097 |
Snippet | In this report, a p-n junction has been constructed using ZnO/NiO heterostructured photoelectrode by spin coating NiO layers over vertically aligned ZnO... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 36176 |
SubjectTerms | Photocurrent density P–N junction Water splitting ZnO/NiO |
Title | Construction of ZnO@NiO heterostructure photoelectrodes for improved photoelectrochemical performance |
URI | https://dx.doi.org/10.1016/j.ijhydene.2021.08.154 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEV5VB5Y09SxncdGVVEVEO0AlSqWKH5ETYWSCMrAwm_nnDillZA6MMbxSdHZvvsuvvsOoRtJmdA9JRyDdh0WptKJIPpxiAppaC5ufGFudJ_G_mjKHmZ81kKDphbGpFVa21_b9Mpa2xHXatMts8x9BttrSnAiCFoouNmqgp0FZpd3v1dpHiSwEBgmO2b2WpXwopst5l9wvA1dpldReRLO_nZQa05neIgOLFrE_fqDjlBL58dof41D8ARp03KzIYHFRYpf88ntOJvguUl0KepXn-8al_NiWdiuN0p_YECrOKt-KWi18VJaDgFc_hYVnKLp8O5lMHJs7wRHUuItwfEwzmmiw-oiUpMgoURCNBolVFApYMSQyQF40gHlgFGklyjKUqGYR_yeSOkZ2smLXJ8jrDhXgYI4UyZw4rkfhT2uia_9SKqUJKKNeKOwWFpicdPf4i1uMsgWcaPo2Cg67oUxKLqN3JVcWVNrbJWImvWINzZJDPZ_i-zFP2Qv0Z55Mi7L867QDqycvgYsshSdarN10G7__nE0_gEGneC1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGIAB8RTl6YE1TR3HabKBKqoCfQy0UsVixY-oqVBSQRlY-O2cE6e0ElIHVtsnRWf77rv47juEbiX1hW4q4Ri06_hhIp0Ioh-HqJCG5uEmEOZFtz8IumP_acImNdSuamFMWqW1_aVNL6y1HXGtNt15mrovYHtNCU4EQQsFNwsh0LYP19e0MWh8L_M8SMtiYFjtmOUrZcKzRjqbfsH9NnyZXsHlSZj_t4da8TqdA7Rv4SK-L7_oENV0doT2VkgEj5E2PTcrFlicJ_g1G94N0iGemkyXvJz6fNd4Ps0XuW17o_QHBriK0-KfglZrk9KSCOD5b1XBCRp3HkbtrmObJziSEm8BnsdnjMY6LF4iNWnFlEgIR6OYCioFjBg2OUBPukUZgBTpxYr6iVC-R4KmSOgp2sryTJ8hrBhTLQWBpozhyrMgCptMk0AHkVQJiUUdsUphXFpmcdPg4o1XKWQzXimaG0XzZshB0XXkLuXmJbfGRomo2g--dko4OIANsuf_kL1BO91Rv8d7j4PnC7RrZoz_8rxLtAW7qK8AmCzEdXHwfgA_yOJD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+ZnO%40NiO+heterostructure+photoelectrodes+for+improved+photoelectrochemical+performance&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Sahoo%2C+Pooja&rft.au=Sharma%2C+Akash&rft.au=Padhan%2C+Subash&rft.au=Thangavel%2C+R.&rft.date=2021-10-22&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=46&rft.issue=73&rft.spage=36176&rft.epage=36188&rft_id=info:doi/10.1016%2Fj.ijhydene.2021.08.154&rft.externalDocID=S0360319921033991 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |