The doped Co on Rh/Ni@Ni–N–C that weakened the catalytic performance for ammonia borane hydrolysis
Alloy catalyst has been widely studied and used for hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) with excellent catalytic performance due to the synergistic effect of bimetal. Herein, a series of Rh1-xCox/Ni@Ni–N–C catalysts were prepared by an impregnation reduction method. The optimiz...
Saved in:
Published in | International journal of hydrogen energy Vol. 48; no. 7; pp. 2640 - 2651 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
22.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alloy catalyst has been widely studied and used for hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) with excellent catalytic performance due to the synergistic effect of bimetal. Herein, a series of Rh1-xCox/Ni@Ni–N–C catalysts were prepared by an impregnation reduction method. The optimized Rh0.75Co0.25/Ni@Ni–N–C catalyst exhibited good catalytic performance with turnover frequency of 223.08 molH2 molcat−1 min−1 at 303 K, but decreased the catalytic performance compared with Rh/Ni@Ni–N–C. According to the XPS and Raman analysis, the RhCo alloy nanoparticles could be loaded at the defect position of Ni@Ni–N–C, and the Co nanoparticles occupied the intercalation between Rh and the defective site of the carrier, which could weaken the catalytic activity of AB hydrolysis. Based on the above research, we proposed the catalytic mechanism of the activation of the RhCo–H species. This work provides a new strategy for designing alloy-supported nano-catalysts.
•The introduction of Co nanoparticles are occupied the position between Rh and defective site of Ni@Ni–N–C.•The introduction of Co nanoparticles reduce the catalytic activity of Rh/Ni@Ni–N–C.•The optimized catalyst Rh0.75Co0.25/Ni@Ni–N–C exhibits outstanding activity on hydrolysis of AB. |
---|---|
AbstractList | Alloy catalyst has been widely studied and used for hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) with excellent catalytic performance due to the synergistic effect of bimetal. Herein, a series of Rh1-xCox/Ni@Ni–N–C catalysts were prepared by an impregnation reduction method. The optimized Rh0.75Co0.25/Ni@Ni–N–C catalyst exhibited good catalytic performance with turnover frequency of 223.08 molH2 molcat−1 min−1 at 303 K, but decreased the catalytic performance compared with Rh/Ni@Ni–N–C. According to the XPS and Raman analysis, the RhCo alloy nanoparticles could be loaded at the defect position of Ni@Ni–N–C, and the Co nanoparticles occupied the intercalation between Rh and the defective site of the carrier, which could weaken the catalytic activity of AB hydrolysis. Based on the above research, we proposed the catalytic mechanism of the activation of the RhCo–H species. This work provides a new strategy for designing alloy-supported nano-catalysts.
•The introduction of Co nanoparticles are occupied the position between Rh and defective site of Ni@Ni–N–C.•The introduction of Co nanoparticles reduce the catalytic activity of Rh/Ni@Ni–N–C.•The optimized catalyst Rh0.75Co0.25/Ni@Ni–N–C exhibits outstanding activity on hydrolysis of AB. |
Author | Zhang, Chen-Xi Zheng, Yue-Qing Liu, Lin-Chang Zhu, Hong-Lin Zhang, Zi-Hao |
Author_xml | – sequence: 1 givenname: Zi-Hao surname: Zhang fullname: Zhang, Zi-Hao – sequence: 2 givenname: Lin-Chang surname: Liu fullname: Liu, Lin-Chang – sequence: 3 givenname: Chen-Xi surname: Zhang fullname: Zhang, Chen-Xi – sequence: 4 givenname: Hong-Lin surname: Zhu fullname: Zhu, Hong-Lin – sequence: 5 givenname: Yue-Qing surname: Zheng fullname: Zheng, Yue-Qing email: zhengyueqing@nbu.edu.cn |
BookMark | eNqFkEtqwzAQhkVJoUnaKxRdwI5kOVIEXaSEviCkUNK1GctjojS2gixavOsdesOepAppN91kMcz8A_88vhEZtK5FQq45SznjcrJN7XbTV9himrEsi82USXFGhnymdCLymRqQIROSJYJrfUFGXbdljCuW6yGp1xukldtjRReOupa-bCYrO1_Z78-vVYwFDRsI9APhLS6ookJqIMCuD9bQPfra-QZagzQWFJrGtRZo6Ty0SONV3u36znaX5LyGXYdXv3lMXu_v1ovHZPn88LS4XSZG8CwkquZKGK2klkYjx2wGogSYaokasMyndWmmOVNyipgzUSlZGsFKMDyqslJiTORxrvGu6zzWxd7bBnxfcFYcaBXb4o9WcaB16Eda0Xjzz2hsgGBdGzzY3Wn7_GjH-Ny7RV90xmLEUlmPJhSVs6dG_ABzOJAf |
CitedBy_id | crossref_primary_10_3390_en18051105 crossref_primary_10_1021_acscatal_4c03380 crossref_primary_10_1016_j_ijhydene_2024_04_222 crossref_primary_10_1002_cctc_202401271 crossref_primary_10_1039_D3NJ02532B crossref_primary_10_1007_s10904_023_02910_7 crossref_primary_10_1016_j_ijhydene_2025_02_208 crossref_primary_10_1016_j_ijhydene_2023_02_008 crossref_primary_10_1016_j_ijhydene_2023_11_004 crossref_primary_10_1039_D3NJ03802E |
Cites_doi | 10.1016/j.fuel.2021.120750 10.1016/j.ijhydene.2015.06.144 10.1016/j.jallcom.2022.166207 10.1016/j.ijhydene.2018.03.043 10.1039/D0SE00660B 10.1021/acssuschemeng.9b07402 10.1039/D0CY01422B 10.1016/j.ijhydene.2014.11.031 10.1016/j.ijhydene.2017.10.040 10.1016/j.matchemphys.2020.123919 10.1039/D0TA02544E 10.1021/acssuschemeng.0c00745 10.1016/j.snb.2019.126945 10.1016/j.ijhydene.2020.12.199 10.1016/j.jcis.2019.03.070 10.1016/j.matchemphys.2017.10.036 10.1021/acsami.6b11210 10.1016/j.ijhydene.2017.12.079 10.1016/j.optmat.2021.111452 10.1002/anie.202013985 10.1016/j.fuel.2022.123616 10.1016/j.ijhydene.2021.09.107 10.1126/science.aad0832 10.1021/acssuschemeng.8b06745 10.1021/acsaem.2c00908 10.1016/j.cej.2021.133648 10.1016/j.jcis.2021.11.078 10.1016/j.apcatb.2016.05.061 10.1016/j.jcis.2019.06.038 10.1021/acs.inorgchem.9b03607 10.1039/C9NR07144J 10.1021/acsaem.0c02645 10.1039/C4RA00469H 10.1016/j.ijhydene.2014.12.047 10.1021/acsaem.1c03171 10.1016/j.jallcom.2022.165076 10.1016/j.ijhydene.2021.10.215 10.1016/j.ijhydene.2018.02.148 10.1016/j.carbon.2021.08.072 10.1016/j.carbon.2005.02.018 10.1016/j.energy.2019.04.196 10.1016/j.jpowsour.2007.03.015 10.1021/acs.accounts.0c00525 10.1016/j.carbon.2015.09.002 10.1021/acsami.1c22972 10.1021/acsaem.9b00997 10.1039/C8NR08384C |
ContentType | Journal Article |
Copyright | 2022 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2022 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2022.10.063 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 2651 |
ExternalDocumentID | 10_1016_j_ijhydene_2022_10_063 S0360319922047073 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c312t-7f173c97696c9e1e28a3baa596e9aeb45fbc540765ee403d76bc30bac1403bd73 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Tue Jul 01 02:02:27 EDT 2025 Thu Apr 24 22:50:10 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Hydrolytic dehydrogenation RhCo nanoparticles Ni@Ni–N–C Alloy catalyst Ammonia borane |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-7f173c97696c9e1e28a3baa596e9aeb45fbc540765ee403d76bc30bac1403bd73 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2022_10_063 crossref_citationtrail_10_1016_j_ijhydene_2022_10_063 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_10_063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-22 |
PublicationDateYYYYMMDD | 2023-01-22 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Deng, Zhou, Zou, Qian, Wang (bib21) 2022; 5 Zhu, Li, Wei, Wang, Xiao, Li, Wu, Chen (bib30) 2021; 185 Song, Cheng, Li, Fan, Liu, Tang, Lu (bib5) 2020; 8 Shen, Yang, Hu, Luo, Cheng (bib44) 2015; 40 Akbayrak, Özçifçi, Tabak (bib32) 2019; 546 Bozkurt, Özer, Yurtcan (bib2) 2019; 180 Akbayrak, Tonbul, Özkar (bib49) 2020; 8 Bai, Xu, Xing, Zeng, Jiang, Chen (bib45) 2016; 8 Akbayrak, Gençtürk, Morkan, Özkar (bib47) 2014; 4 Qu, Yu, Li, Gui, Jiang, Xu, Chen, Peng (bib25) 2017; 42 Perazzolo, Durante, Pilot, Paduano, Zheng, Martucci, Gaetano, Gennaro (bib37) 2015; 95 Contreras, Dominguez, Tiznado, Takeuchi, Contreras (bib54) 2019; 11 Zhang, Hu, Lv, Li, Ren, Huang (bib31) 2021; 46 He, Peng, Wang, Long, Fan (bib3) 2021; 297 Wei, Qiu, Yin, Liu, Xia, Wen, Zou, Xu, Sun, Chu (bib16) 2022; 921 Yao, Lu, Jia, Chen, Liu (bib14) 2015; 40 Liu, Zhu, Zheng (bib26) 2022; 5 Pei, Niu, Zhang, Zhang, Ma, Li (bib41) 2022; 47 Wang, W, Fu, Astruc (bib1) 2020; 53 Wei, Liu, Peng, Song, Liu, Liu, Li, Yang, Lu (bib13) 2019; 7 Yao, Zhang, Chen, Yu, Gao, Hu, Wang (bib40) 2018; 43 Abay, Rakap (bib24) 2020; 10 Yuan, Sun, Wu, Yuan, Zhan, Wang, Han (bib29) 2020; 59 Sadezky, Muckenhuber, Grothe, Niessner, Poschl (bib38) 2005; 43 Xiao, Fakhri, Janani (bib9) 2021; 27 Cai, Yang, Wu, Shu, Qu, Fakhri, Gupta (bib10) 2021; 258 Lu, Hu, Xu, Wang, Zhang, Xu, Gao, Bi, Fan (bib15) 2018; 43 Chen, Hu, Ming, Xu, Wang, Zhang, Wu, Gao, Bi, Fan (bib43) 2018; 43 Karatas, Çetin, Akkus, Akinay, Gülcan (bib52) 2022 Zhang, Qiao, Wu, Fakhri, Gupta (bib7) 2021; 120 Gong, Wu, Sheng, Zhang, Wu (bib18) 2022; 14 Guo, Ding, Luo, Gu, Yu (bib23) 2019; 2 Wang, Zhang, Liu, Liu, Liu (bib28) 2018; 204 Xu, Yu, Zhang, Zhou, Zhang, Ge, Wang, Qin (bib53) 2022; 609 Yao, Zhao, Wang, Li, Lu, Wang (bib4) 2020; 12 Guo, Wang, Li, Xiao, Wang, Zhang (bib36) 2018; 43 Chandra, Xu (bib50) 2007; 168 Zhu, Guo, Long, Fan (bib19) 2022; 319 Song, Cheng, Li, Fan, Liu, Tang, Lu (bib12) 2020; 8 Li, Zhao, Liu, Sun, Huang, Zhang, Zhang, Lu (bib42) 2021; 60 Peng, Zhang, Guo, Mao, Wang, Long, Fan (bib11) 2022; 433 Abay, Rakap (bib33) 2020; 10 Ma, Zhu, Zheng, Shui (bib39) 2021; 4 Fang, Zhang, Wang, Liu, Xue, Xu, Zhang, Song, Zhu, Zhuang (bib27) 2020; 8 Özhava, Özkar (bib51) 2015; 40 Chen, He, Guo, Jiang, Jiang, Wu (bib34) 2019; 299 Zhao, Hu, Li, Cai, Wang, Fan (bib20) 2022; 912 Wang, Chen, He, Jiang, Long, Fan (bib17) 2021; 46 Guo, Shibuya, Akiba, Saji, Kondo, Nakamura (bib55) 2016; 351 Wei, Liu, Peng, Song, Liu, Liu, Li, Yang, Lu (bib22) 2019; 7 Zhou, Huang, Wen, Shen, Liu, Guo, Li (bib6) 2020; 4 Akbayrak, Tonbul, Özkar (bib46) 2016; 198 Bahadoran, Najafizadeh, Liu, Zhang, Ramakrishna, Fakhri, Gupta (bib8) 2021; 26 Tonbul, Akbayrak, Özkar (bib48) 2019; 553 Ma, Zhu, Zheng, Shui (bib35) 2021; 4 Zhang (10.1016/j.ijhydene.2022.10.063_bib31) 2021; 46 Zhou (10.1016/j.ijhydene.2022.10.063_bib6) 2020; 4 Peng (10.1016/j.ijhydene.2022.10.063_bib11) 2022; 433 Akbayrak (10.1016/j.ijhydene.2022.10.063_bib47) 2014; 4 Sadezky (10.1016/j.ijhydene.2022.10.063_bib38) 2005; 43 Yao (10.1016/j.ijhydene.2022.10.063_bib4) 2020; 12 Lu (10.1016/j.ijhydene.2022.10.063_bib15) 2018; 43 Pei (10.1016/j.ijhydene.2022.10.063_bib41) 2022; 47 Shen (10.1016/j.ijhydene.2022.10.063_bib44) 2015; 40 Bahadoran (10.1016/j.ijhydene.2022.10.063_bib8) 2021; 26 Zhao (10.1016/j.ijhydene.2022.10.063_bib20) 2022; 912 Qu (10.1016/j.ijhydene.2022.10.063_bib25) 2017; 42 Ma (10.1016/j.ijhydene.2022.10.063_bib35) 2021; 4 Karatas (10.1016/j.ijhydene.2022.10.063_bib52) 2022 Chen (10.1016/j.ijhydene.2022.10.063_bib43) 2018; 43 Guo (10.1016/j.ijhydene.2022.10.063_bib55) 2016; 351 Fang (10.1016/j.ijhydene.2022.10.063_bib27) 2020; 8 Chen (10.1016/j.ijhydene.2022.10.063_bib34) 2019; 299 Li (10.1016/j.ijhydene.2022.10.063_bib42) 2021; 60 Yao (10.1016/j.ijhydene.2022.10.063_bib14) 2015; 40 Wei (10.1016/j.ijhydene.2022.10.063_bib13) 2019; 7 Özhava (10.1016/j.ijhydene.2022.10.063_bib51) 2015; 40 Guo (10.1016/j.ijhydene.2022.10.063_bib36) 2018; 43 Bai (10.1016/j.ijhydene.2022.10.063_bib45) 2016; 8 Perazzolo (10.1016/j.ijhydene.2022.10.063_bib37) 2015; 95 Cai (10.1016/j.ijhydene.2022.10.063_bib10) 2021; 258 Abay (10.1016/j.ijhydene.2022.10.063_bib24) 2020; 10 Zhang (10.1016/j.ijhydene.2022.10.063_bib7) 2021; 120 Bozkurt (10.1016/j.ijhydene.2022.10.063_bib2) 2019; 180 Wei (10.1016/j.ijhydene.2022.10.063_bib16) 2022; 921 Song (10.1016/j.ijhydene.2022.10.063_bib5) 2020; 8 He (10.1016/j.ijhydene.2022.10.063_bib3) 2021; 297 Deng (10.1016/j.ijhydene.2022.10.063_bib21) 2022; 5 Xu (10.1016/j.ijhydene.2022.10.063_bib53) 2022; 609 Yao (10.1016/j.ijhydene.2022.10.063_bib40) 2018; 43 Yuan (10.1016/j.ijhydene.2022.10.063_bib29) 2020; 59 Wang (10.1016/j.ijhydene.2022.10.063_bib28) 2018; 204 Zhu (10.1016/j.ijhydene.2022.10.063_bib30) 2021; 185 Abay (10.1016/j.ijhydene.2022.10.063_bib33) 2020; 10 Wang (10.1016/j.ijhydene.2022.10.063_bib1) 2020; 53 Xiao (10.1016/j.ijhydene.2022.10.063_bib9) 2021; 27 Chandra (10.1016/j.ijhydene.2022.10.063_bib50) 2007; 168 Akbayrak (10.1016/j.ijhydene.2022.10.063_bib49) 2020; 8 Akbayrak (10.1016/j.ijhydene.2022.10.063_bib32) 2019; 546 Tonbul (10.1016/j.ijhydene.2022.10.063_bib48) 2019; 553 Contreras (10.1016/j.ijhydene.2022.10.063_bib54) 2019; 11 Guo (10.1016/j.ijhydene.2022.10.063_bib23) 2019; 2 Zhu (10.1016/j.ijhydene.2022.10.063_bib19) 2022; 319 Wei (10.1016/j.ijhydene.2022.10.063_bib22) 2019; 7 Akbayrak (10.1016/j.ijhydene.2022.10.063_bib46) 2016; 198 Wang (10.1016/j.ijhydene.2022.10.063_bib17) 2021; 46 Song (10.1016/j.ijhydene.2022.10.063_bib12) 2020; 8 Ma (10.1016/j.ijhydene.2022.10.063_bib39) 2021; 4 Gong (10.1016/j.ijhydene.2022.10.063_bib18) 2022; 14 Liu (10.1016/j.ijhydene.2022.10.063_bib26) 2022; 5 |
References_xml | – volume: 4 start-page: 1442 year: 2021 end-page: 1448 ident: bib39 article-title: An insight into anchoring of cobalt phthalocyanines onto carbon: efficiency of the CO publication-title: ACS Appl Energy Mater – volume: 11 start-page: 2829 year: 2019 end-page: 2839 ident: bib54 article-title: N-doped carbon nanotubes enriched with graphitic nitrogen in a buckypaper configuration as efficient 3D electrodes for oxygen reduction to H publication-title: Nanoscale – volume: 180 start-page: 702 year: 2019 end-page: 713 ident: bib2 article-title: Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co publication-title: Energy – start-page: 1 year: 2022 end-page: 13 ident: bib52 article-title: Rh (0) nanoparticles impregnated on two-dimensional transition metal carbides, MXene, as an effective nanocatalyst for ammonia-borane hydrolysis publication-title: Int J Hydrogen Res – volume: 8 start-page: 4216 year: 2020 end-page: 4224 ident: bib49 article-title: Magnetically separable Rh publication-title: ACS Sustainable Chem Eng – volume: 609 start-page: 755 year: 2022 end-page: 763 ident: bib53 article-title: Rhodium nanoparticles confined in titania nanotubes for efficient hydrogen evolution from ammonia borane publication-title: J Colloid Interface Sci – volume: 14 start-page: 13231 year: 2022 end-page: 13239 ident: bib18 article-title: Hydrolysis of ammonia borane on a single Pt atom supported by n-doped graphene publication-title: ACS Appl Mater Interfaces – volume: 43 start-page: 1731 year: 2005 end-page: 1742 ident: bib38 article-title: Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information publication-title: Carbon – volume: 40 start-page: 1062 year: 2015 end-page: 1070 ident: bib44 article-title: Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage publication-title: Int J Hydrogen Energy – volume: 40 start-page: 10491 year: 2015 end-page: 10501 ident: bib51 article-title: Rhodium(0) nanoparticles supported on hydroxyapatite nanospheres and further stabilized by dihydrogen phosphate ion: a highly active catalyst in hydrogen generation from the methanolysis of ammonia borane publication-title: Int J Hydrogen Energy – volume: 43 start-page: 7038 year: 2018 end-page: 7045 ident: bib15 article-title: Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g-C publication-title: Int J Hydrogen Energy – volume: 8 start-page: 3995 year: 2020 end-page: 4002 ident: bib5 article-title: Carbon dots and RuP publication-title: ACS Sustainable Chem Eng – volume: 10 start-page: 7270 year: 2020 end-page: 7279 ident: bib24 article-title: Rh–M (M: Co, Cu, and Fe) nanoclusters as highly efficient and durable catalysts for the methanolysis of ammonia borane publication-title: Catal Sci Technol – volume: 5 start-page: 731 year: 2022 end-page: 739 ident: bib26 article-title: Defective enhanced subnano-Rh catalyst supported on an Ni@Ni-N-C substrate for highly efficient hydrolytic dehydrogenation of ammonia borane publication-title: ACS Appl Energy Mater – volume: 319 year: 2022 ident: bib19 article-title: Restructuring morphology and surface-electronic-structure of Pt-Co3O4-δ-carbon toward ultra-highly efficient hydrogen production publication-title: Fuel – volume: 43 start-page: 2718 year: 2018 end-page: 2725 ident: bib40 article-title: Ni publication-title: Int J Hydrogen Energy – volume: 299 year: 2019 ident: bib34 article-title: Three-dimensional porous Ni, N-codoped C networks for highly sensitive and selective non-enzymatic glucose sensing publication-title: Sensor Actuat B Chem – volume: 53 start-page: 2483 year: 2020 end-page: 2493 ident: bib1 article-title: Hydrogen generation upon nanocatalyzed hydrolysis of hydrogen-rich boron derivatives: recent developments publication-title: Acc Chem Res – volume: 4 start-page: 13742 year: 2014 end-page: 13748 ident: bib47 article-title: Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane publication-title: RSC Adv – volume: 553 start-page: 581 year: 2019 end-page: 587 ident: bib48 article-title: Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane publication-title: J Colloid Interface Sci – volume: 921 year: 2022 ident: bib16 article-title: Nitrogen-doped carbon encapsulated Ru-decorated Co publication-title: J Alloys Compd – volume: 2 start-page: 5851 year: 2019 end-page: 5861 ident: bib23 article-title: NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: composition-dependent activity and support size effect publication-title: ACS Appl Energy Mater – volume: 46 start-page: 11587 year: 2021 end-page: 11597 ident: bib17 article-title: Facile construction of composition-tuned ruthenium-nickel nanoparticles on g-C publication-title: Int J Hydrogen Energy – volume: 4 start-page: 1442 year: 2021 end-page: 1448 ident: bib35 article-title: An insight into anchoring of cobalt phthalocyanines onto carbon: efficiency of the CO publication-title: ACS Appl Energy Mater – volume: 433 year: 2022 ident: bib11 article-title: Universal low-temperature oxidative thermal redispersion strategy for green and sustainable fabrication of oxygen-rich carbons anchored metal nanoparticles for hydrogen evolution reactions publication-title: Chem Eng J – volume: 42 start-page: 30037 year: 2017 end-page: 30043 ident: bib25 article-title: CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage publication-title: Int J Hydrogen Energy – volume: 912 year: 2022 ident: bib20 article-title: Low-temperature control over deposition of ultrafine Pd nanoparticles on porous carbon nanosheets for highly efficient dehydrogenation of ammonia borane publication-title: J Alloys Compd – volume: 168 start-page: 135 year: 2007 end-page: 142 ident: bib50 article-title: Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts publication-title: J Power Sources – volume: 60 start-page: 3290 year: 2021 end-page: 3298 ident: bib42 article-title: Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production publication-title: Angew Chem Int Ed – volume: 5 start-page: 7408 year: 2022 end-page: 7419 ident: bib21 article-title: PdCo alloy supported on a ZIF-derived n-doped carbon hollow polyhedron for dehydrogenation of ammonia borane publication-title: ACS Appl Energy Mater – volume: 8 start-page: 15752 year: 2020 end-page: 15759 ident: bib27 article-title: A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc–air batteries publication-title: J Mater Chem – volume: 27 year: 2021 ident: bib9 article-title: Synthesis of spinel Tin ferrite decorated on Bismuth ferrite nanostructures for synergetic photocatalytic, superior drug delivery, and antibacterial efficiencies publication-title: Surface Interfac – volume: 185 start-page: 9 year: 2021 end-page: 16 ident: bib30 article-title: Achieving efficient electroreduction of CO publication-title: Carbon – volume: 43 start-page: 7893 year: 2018 end-page: 7902 ident: bib36 article-title: Taming transition metals on N-doped CNTs by a one-pot method for efficient oxygen reduction reaction publication-title: Int J Hydrogen Energy – volume: 546 start-page: 324 year: 2019 end-page: 332 ident: bib32 article-title: Noble metal nanoparticles supported on activated carbon: highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane publication-title: J Colloid Interface Sci – volume: 297 year: 2021 ident: bib3 article-title: Air-engaged fabrication of nitrogen-doped carbon skeleton as an excellent platform for ultrafine well-dispersed RuNi alloy nanoparticles toward efficient hydrolysis of ammonia borane publication-title: Fuel – volume: 26 year: 2021 ident: bib8 article-title: Co-doping silver and iron on graphitic carbon nitride-carrageenan nanocomposite for the photocatalytic process, rapidly colorimetric detection and antibacterial properties publication-title: Surface Interfac – volume: 7 start-page: 7014 year: 2019 end-page: 7023 ident: bib13 article-title: Cobalt-Ruthenium nanoalloys parceled in porous nitrogen-doped graphene as highly efficient difunctional catalysts for hydrogen evolution reaction and hydrolysis of ammonia borane publication-title: ACS Sustainable Chem Eng – volume: 46 start-page: 38692 year: 2021 end-page: 38700 ident: bib31 article-title: Hollow NH publication-title: Int J Hydrogen Energy – volume: 8 start-page: 33635 year: 2016 end-page: 33641 ident: bib45 article-title: Hydrothermal synthesis and catalytic application of ultrathin rhodium nanosheet nanoassemblies publication-title: ACS Appl Mater Interfaces – volume: 351 start-page: 361 year: 2016 end-page: 365 ident: bib55 article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts publication-title: Science – volume: 12 start-page: 638 year: 2020 end-page: 647 ident: bib4 article-title: An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis publication-title: Nanoscale – volume: 120 year: 2021 ident: bib7 article-title: Sustainable nano-composites polyglutamic acid functionalized Ag/g-C publication-title: Opt Mater – volume: 95 start-page: 949 year: 2015 end-page: 963 ident: bib37 article-title: Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide publication-title: Carbon – volume: 40 start-page: 2207 year: 2015 end-page: 2215 ident: bib14 article-title: In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H publication-title: Int J Hydrogen Energy – volume: 43 start-page: 2718 year: 2018 end-page: 2725 ident: bib43 article-title: Carbon-supported small Rh nanoparticles prepared with sodium citrate: toward high catalytic activity for hydrogen evolution from ammonia borane Hydrolysis publication-title: Int J Hydrogen Energy – volume: 198 start-page: 162 year: 2016 end-page: 170 ident: bib46 article-title: Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane publication-title: Appl Catal B Environ – volume: 204 start-page: 58 year: 2018 end-page: 61 ident: bib28 article-title: Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: highly efficient hydrolysis of ammonia borane publication-title: Mater Chem Phys – volume: 47 start-page: 2819 year: 2022 end-page: 2831 ident: bib41 article-title: Ionic liquid microemulsion mediated synthesis of Pt/TiO publication-title: Int J Hydrogen Energy – volume: 7 start-page: 7014 year: 2019 end-page: 7023 ident: bib22 article-title: Cobalt-Ruthenium nanoalloys parceled in porous nitrogen-doped graphene as highly efficient difunctional catalysts for hydrogen evolution reaction and hydrolysis of ammonia borane publication-title: ACS Sustainable Chem Eng – volume: 59 start-page: 2104 year: 2020 end-page: 2110 ident: bib29 article-title: Engineering nickel/palladium heterojunctions for dehydrogenation of ammonia borane: improving the catalytic performance with 3D mesoporous structures and external nitrogen-doped carbon layers publication-title: Inorg Chem – volume: 4 start-page: 3677 year: 2020 end-page: 3686 ident: bib6 article-title: Ru-Fe nanoalloys supported on N-doped carbon as efficient catalysts for hydrogen generation from ammonia borane publication-title: Sustain Energy Fuels – volume: 10 start-page: 7270 year: 2020 end-page: 7279 ident: bib33 article-title: Rh-M (M: Co, Cu, Fe) nanoclusters as highly efficient and durable catalysts for the methanolysis of ammonia borane publication-title: Catal Sci Technol – volume: 8 start-page: 3995 year: 2020 end-page: 4002 ident: bib12 article-title: Carbon Dots and RuP publication-title: ACS Sustainable Chem Eng – volume: 258 year: 2021 ident: bib10 article-title: Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO publication-title: Mater Chem Phys – volume: 297 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib3 article-title: Air-engaged fabrication of nitrogen-doped carbon skeleton as an excellent platform for ultrafine well-dispersed RuNi alloy nanoparticles toward efficient hydrolysis of ammonia borane publication-title: Fuel doi: 10.1016/j.fuel.2021.120750 – volume: 40 start-page: 10491 year: 2015 ident: 10.1016/j.ijhydene.2022.10.063_bib51 article-title: Rhodium(0) nanoparticles supported on hydroxyapatite nanospheres and further stabilized by dihydrogen phosphate ion: a highly active catalyst in hydrogen generation from the methanolysis of ammonia borane publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.144 – volume: 921 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib16 article-title: Nitrogen-doped carbon encapsulated Ru-decorated Co2P supported on graphene oxide as efficient catalysts for hydrogen generation from ammonia borane publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.166207 – volume: 43 start-page: 7893 year: 2018 ident: 10.1016/j.ijhydene.2022.10.063_bib36 article-title: Taming transition metals on N-doped CNTs by a one-pot method for efficient oxygen reduction reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.043 – volume: 4 start-page: 3677 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib6 article-title: Ru-Fe nanoalloys supported on N-doped carbon as efficient catalysts for hydrogen generation from ammonia borane publication-title: Sustain Energy Fuels doi: 10.1039/D0SE00660B – volume: 8 start-page: 4216 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib49 article-title: Magnetically separable Rh0/Co3O4 nanocatalyst provides over a million turnovers in hydrogen release from ammonia borane publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.9b07402 – volume: 10 start-page: 7270 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib24 article-title: Rh–M (M: Co, Cu, and Fe) nanoclusters as highly efficient and durable catalysts for the methanolysis of ammonia borane publication-title: Catal Sci Technol doi: 10.1039/D0CY01422B – volume: 40 start-page: 1062 year: 2015 ident: 10.1016/j.ijhydene.2022.10.063_bib44 article-title: Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.11.031 – volume: 42 start-page: 30037 year: 2017 ident: 10.1016/j.ijhydene.2022.10.063_bib25 article-title: CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.10.040 – volume: 258 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib10 article-title: Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO4 nanoparticles for catalytic reduction, photocatalysis activity, and antibacterial properties publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2020.123919 – volume: 8 start-page: 15752 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib27 article-title: A metal and nitrogen doped carbon composite with both oxygen reduction and evolution active sites for rechargeable zinc–air batteries publication-title: J Mater Chem doi: 10.1039/D0TA02544E – volume: 8 start-page: 3995 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib12 article-title: Carbon Dots and RuP2 nanohybrid as an efficient bifunctional catalyst for electrochemical hydrogen evolution reaction and hydrolysis of ammonia borane publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.0c00745 – volume: 10 start-page: 7270 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib33 article-title: Rh-M (M: Co, Cu, Fe) nanoclusters as highly efficient and durable catalysts for the methanolysis of ammonia borane publication-title: Catal Sci Technol doi: 10.1039/D0CY01422B – volume: 299 year: 2019 ident: 10.1016/j.ijhydene.2022.10.063_bib34 article-title: Three-dimensional porous Ni, N-codoped C networks for highly sensitive and selective non-enzymatic glucose sensing publication-title: Sensor Actuat B Chem doi: 10.1016/j.snb.2019.126945 – volume: 46 start-page: 11587 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib17 article-title: Facile construction of composition-tuned ruthenium-nickel nanoparticles on g-C3N4 for enhanced hydrolysis of ammonia borane without base additives publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.199 – volume: 546 start-page: 324 year: 2019 ident: 10.1016/j.ijhydene.2022.10.063_bib32 article-title: Noble metal nanoparticles supported on activated carbon: highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.03.070 – volume: 26 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib8 article-title: Co-doping silver and iron on graphitic carbon nitride-carrageenan nanocomposite for the photocatalytic process, rapidly colorimetric detection and antibacterial properties publication-title: Surface Interfac – volume: 204 start-page: 58 year: 2018 ident: 10.1016/j.ijhydene.2022.10.063_bib28 article-title: Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: highly efficient hydrolysis of ammonia borane publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2017.10.036 – volume: 8 start-page: 33635 year: 2016 ident: 10.1016/j.ijhydene.2022.10.063_bib45 article-title: Hydrothermal synthesis and catalytic application of ultrathin rhodium nanosheet nanoassemblies publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b11210 – volume: 43 start-page: 2718 year: 2018 ident: 10.1016/j.ijhydene.2022.10.063_bib43 article-title: Carbon-supported small Rh nanoparticles prepared with sodium citrate: toward high catalytic activity for hydrogen evolution from ammonia borane Hydrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.12.079 – volume: 120 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib7 article-title: Sustainable nano-composites polyglutamic acid functionalized Ag/g-C3N4/SiC for the ultrasensitive colorimetric assay, visible light irradiated photocatalysis and antibacterial efficiency publication-title: Opt Mater doi: 10.1016/j.optmat.2021.111452 – volume: 60 start-page: 3290 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib42 article-title: Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production publication-title: Angew Chem Int Ed doi: 10.1002/anie.202013985 – volume: 319 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib19 article-title: Restructuring morphology and surface-electronic-structure of Pt-Co3O4-δ-carbon toward ultra-highly efficient hydrogen production publication-title: Fuel doi: 10.1016/j.fuel.2022.123616 – volume: 46 start-page: 38692 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib31 article-title: Hollow NH2-MIL-101@TA derived electrocatalyst for enhanced oxygen reduction reaction and oxygen evolution reaction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.107 – volume: 351 start-page: 361 year: 2016 ident: 10.1016/j.ijhydene.2022.10.063_bib55 article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts publication-title: Science doi: 10.1126/science.aad0832 – volume: 7 start-page: 7014 year: 2019 ident: 10.1016/j.ijhydene.2022.10.063_bib13 article-title: Cobalt-Ruthenium nanoalloys parceled in porous nitrogen-doped graphene as highly efficient difunctional catalysts for hydrogen evolution reaction and hydrolysis of ammonia borane publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.8b06745 – volume: 5 start-page: 7408 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib21 article-title: PdCo alloy supported on a ZIF-derived n-doped carbon hollow polyhedron for dehydrogenation of ammonia borane publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.2c00908 – volume: 433 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib11 article-title: Universal low-temperature oxidative thermal redispersion strategy for green and sustainable fabrication of oxygen-rich carbons anchored metal nanoparticles for hydrogen evolution reactions publication-title: Chem Eng J doi: 10.1016/j.cej.2021.133648 – volume: 609 start-page: 755 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib53 article-title: Rhodium nanoparticles confined in titania nanotubes for efficient hydrogen evolution from ammonia borane publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.11.078 – volume: 27 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib9 article-title: Synthesis of spinel Tin ferrite decorated on Bismuth ferrite nanostructures for synergetic photocatalytic, superior drug delivery, and antibacterial efficiencies publication-title: Surface Interfac – volume: 198 start-page: 162 year: 2016 ident: 10.1016/j.ijhydene.2022.10.063_bib46 article-title: Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2016.05.061 – volume: 553 start-page: 581 year: 2019 ident: 10.1016/j.ijhydene.2022.10.063_bib48 article-title: Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.06.038 – volume: 59 start-page: 2104 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib29 article-title: Engineering nickel/palladium heterojunctions for dehydrogenation of ammonia borane: improving the catalytic performance with 3D mesoporous structures and external nitrogen-doped carbon layers publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.9b03607 – volume: 12 start-page: 638 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib4 article-title: An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis publication-title: Nanoscale doi: 10.1039/C9NR07144J – volume: 4 start-page: 1442 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib39 article-title: An insight into anchoring of cobalt phthalocyanines onto carbon: efficiency of the CO2 reduction reaction publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.0c02645 – volume: 4 start-page: 13742 year: 2014 ident: 10.1016/j.ijhydene.2022.10.063_bib47 article-title: Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane publication-title: RSC Adv doi: 10.1039/C4RA00469H – volume: 40 start-page: 2207 year: 2015 ident: 10.1016/j.ijhydene.2022.10.063_bib14 article-title: In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.12.047 – volume: 5 start-page: 731 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib26 article-title: Defective enhanced subnano-Rh catalyst supported on an Ni@Ni-N-C substrate for highly efficient hydrolytic dehydrogenation of ammonia borane publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.1c03171 – volume: 912 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib20 article-title: Low-temperature control over deposition of ultrafine Pd nanoparticles on porous carbon nanosheets for highly efficient dehydrogenation of ammonia borane publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.165076 – volume: 47 start-page: 2819 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib41 article-title: Ionic liquid microemulsion mediated synthesis of Pt/TiO2 nanocomposites for ammonia borane hydrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.215 – volume: 43 start-page: 7038 year: 2018 ident: 10.1016/j.ijhydene.2022.10.063_bib15 article-title: Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g-C3N4 under mild Conditions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.148 – start-page: 1 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib52 article-title: Rh (0) nanoparticles impregnated on two-dimensional transition metal carbides, MXene, as an effective nanocatalyst for ammonia-borane hydrolysis publication-title: Int J Hydrogen Res – volume: 185 start-page: 9 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib30 article-title: Achieving efficient electroreduction of CO2 to CO in a wide potential window by encapsulating Ni nanoparticles in N-doped carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2021.08.072 – volume: 43 start-page: 1731 year: 2005 ident: 10.1016/j.ijhydene.2022.10.063_bib38 article-title: Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information publication-title: Carbon doi: 10.1016/j.carbon.2005.02.018 – volume: 180 start-page: 702 year: 2019 ident: 10.1016/j.ijhydene.2022.10.063_bib2 article-title: Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4 publication-title: Energy doi: 10.1016/j.energy.2019.04.196 – volume: 168 start-page: 135 year: 2007 ident: 10.1016/j.ijhydene.2022.10.063_bib50 article-title: Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.03.015 – volume: 53 start-page: 2483 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib1 article-title: Hydrogen generation upon nanocatalyzed hydrolysis of hydrogen-rich boron derivatives: recent developments publication-title: Acc Chem Res doi: 10.1021/acs.accounts.0c00525 – volume: 95 start-page: 949 year: 2015 ident: 10.1016/j.ijhydene.2022.10.063_bib37 article-title: Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide publication-title: Carbon doi: 10.1016/j.carbon.2015.09.002 – volume: 4 start-page: 1442 year: 2021 ident: 10.1016/j.ijhydene.2022.10.063_bib35 article-title: An insight into anchoring of cobalt phthalocyanines onto carbon: efficiency of the CO2 reduction reaction publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.0c02645 – volume: 7 start-page: 7014 year: 2019 ident: 10.1016/j.ijhydene.2022.10.063_bib22 article-title: Cobalt-Ruthenium nanoalloys parceled in porous nitrogen-doped graphene as highly efficient difunctional catalysts for hydrogen evolution reaction and hydrolysis of ammonia borane publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.8b06745 – volume: 43 start-page: 2718 year: 2018 ident: 10.1016/j.ijhydene.2022.10.063_bib40 article-title: Ni0 encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium publication-title: Int J Hydrogen Energy – volume: 14 start-page: 13231 year: 2022 ident: 10.1016/j.ijhydene.2022.10.063_bib18 article-title: Hydrolysis of ammonia borane on a single Pt atom supported by n-doped graphene publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c22972 – volume: 2 start-page: 5851 year: 2019 ident: 10.1016/j.ijhydene.2022.10.063_bib23 article-title: NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: composition-dependent activity and support size effect publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.9b00997 – volume: 8 start-page: 3995 year: 2020 ident: 10.1016/j.ijhydene.2022.10.063_bib5 article-title: Carbon dots and RuP2 nanohybrid as an efficient bifunctional catalyst for electrochemical hydrogen evolution reaction and hydrolysis of ammonia borane publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.0c00745 – volume: 11 start-page: 2829 year: 2019 ident: 10.1016/j.ijhydene.2022.10.063_bib54 article-title: N-doped carbon nanotubes enriched with graphitic nitrogen in a buckypaper configuration as efficient 3D electrodes for oxygen reduction to H2O2 publication-title: Nanoscale doi: 10.1039/C8NR08384C |
SSID | ssj0017049 |
Score | 2.4603589 |
Snippet | Alloy catalyst has been widely studied and used for hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) with excellent catalytic performance due to the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2640 |
SubjectTerms | Alloy catalyst Ammonia borane Hydrolytic dehydrogenation Ni@Ni–N–C RhCo nanoparticles |
Title | The doped Co on Rh/Ni@Ni–N–C that weakened the catalytic performance for ammonia borane hydrolysis |
URI | https://dx.doi.org/10.1016/j.ijhydene.2022.10.063 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3wuOXjttk2bdnNTFmVV7MEHeCtJOmW7SrtIRbyI_8F_6C9xZrddVxA8eCi0IVOGyWRmms58w9iR9C1uMVBOLnrWCY2IHWOUdrws9I0xHiiPipOvkmhwF17cy_sF1m9rYSitsrH9U5s-sdbNiNtI0x0XhXuDtpdKcJQQXhijplIFexiTlnffZmkeftyEwDjZodlzVcKjbjEavuL2JrhMIbqU5RUFvzuoOadztsZWm2iRn0wZWmcLUG6wlTkMwU2W40LzrBpDxvsVr0p-PXST4jgpPt8_Erz6vB7qmr-AfkAWMnwCPjmzecV38vF33QDHG65JLQvNSTNK4Mj3UzUBLdlid2ent_2B0zRPcGzgi9qJcz8OLAYbKrIKfBA9HRitpYpAaTChzI0l8L1IAoRekMWRsYFntCUAP5PFwTZbLKsSdhgHkDYC_PARSoeRyZW1ucmk7Fkvpx-xu0y2EkttgyxODS4e0zaFbJS2kk5J0jSOkt5l7oxuPMXW-JNCtQuS_tCSFB3AH7R7_6DdZ8vUZp6OXoQ4YIv10zMcYjBSm85E2zps6eT8cpB8AfiF4qc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDI54HIADWl7itUsOXDtt06ad3ECjHc3y6IGHxK1KUlfTAbUjVIS4rPY_8A_5Jdgz7ewgIXHgUKmN4spybMdN7c-MHUvfoomBcnLRtU5oROwYo7TjZaFvjPFAeVScfJlEg9vw7E7eLbBeWwtDaZWN75_69Im3bkbcRpruuCjca_S9VIKjhPDCGDV1kS2HaL7UxqDzd5bn4cdNDIyzHZo-VyY86hSj4QvaN-FlCtGhNK8o-HyHmtt1-j_YehMu8tMpRxtsAcpNtjYHIrjFclxpnlVjyHiv4lXJr4ZuUpwkxdu_1wSvHq-HuubPoO-RhQyfgE8ObV7wnXz8v3CA4w3XpJeF5qQaJXDk-7GaoJZss9v-75vewGm6Jzg28EXtxLkfBxajDRVZBT6Irg6M1lJFoDSYUObGEvpeJAFCL8jiyNjAM9oSgp_J4mCHLZVVCbuMA0gbAX75CKXDyOTK2txkUnatl9Of2D0mW4mltoEWpw4XD2mbQzZKW0mnJGkaR0nvMXdGN56Ca3xJodoFST-oSYo7wBe0-9-gPWIrg5vLi_TiT3J-wFap5zydwwhxyJbqxyf4iZFJbX5NNO8dOnvkNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+doped+Co+on+Rh%2FNi%40Ni%E2%80%93N%E2%80%93C+that+weakened+the+catalytic+performance+for+ammonia+borane+hydrolysis&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhang%2C+Zi-Hao&rft.au=Liu%2C+Lin-Chang&rft.au=Zhang%2C+Chen-Xi&rft.au=Zhu%2C+Hong-Lin&rft.date=2023-01-22&rft.issn=0360-3199&rft.volume=48&rft.issue=7&rft.spage=2640&rft.epage=2651&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.10.063&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2022_10_063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |