Detection of the spatiotemporal field of a single-shot terahertz pulse based on spectral holography

According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single- shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is coupled into a broadened chirped femtosecond pulse according to electro-optical sam...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 6; pp. 212 - 216
Main Author 王晓雷 费扬 李璐杰 王强 朱竹青
Format Journal Article
LanguageEnglish
Published 01.06.2014
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/23/6/064202

Cover

More Information
Summary:According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single- shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is coupled into a broadened chirped femtosecond pulse according to electro-optical sampling theory in the detecting system. Then the reference wave and the signal wave are split by Dammann grating and spread into the interference band-pass filter. The filtered sub-waves are at different central-frequencies because of the different incident angles. These sub-waves at different central-frequencies interfere to form sub-holograms, which are recorded in a single frame of a charge coupled device (CCD). The sub-holograms are numerically processed, and the spatiotemporal field distribution of the original terahertz pulse is reconstructed. The computer simulations verify the feasibility of the proposed method.
Bibliography:spatiotemporal field of single-shot terahertz pulse, Dammann grating, interference band-pass filter,spectral holography
11-5639/O4
According to electro-optical sampling theory, we propose a new method to detect the spatiotemporal field of a single- shot terahertz pulse by spectral holography for the first time. The single-shot terahertz pulse is coupled into a broadened chirped femtosecond pulse according to electro-optical sampling theory in the detecting system. Then the reference wave and the signal wave are split by Dammann grating and spread into the interference band-pass filter. The filtered sub-waves are at different central-frequencies because of the different incident angles. These sub-waves at different central-frequencies interfere to form sub-holograms, which are recorded in a single frame of a charge coupled device (CCD). The sub-holograms are numerically processed, and the spatiotemporal field distribution of the original terahertz pulse is reconstructed. The computer simulations verify the feasibility of the proposed method.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/6/064202