Preliminary development of a novel catamaran floating offshore wind turbine platform and assessment of dynamic behaviours for intermediate water depth application

This paper presents the preliminary development of a novel catamaran Floating Offshore Wind Turbine (FOWT) concept and a numerical assessment of its dynamic characteristics subject to operational conditions when operating in 150 m water depth. A numerical tool, F2A, which couples FAST and ANSYS AQWA...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 258; p. 111769
Main Authors Cutler, Joshua, Bashir, Musa, Yang, Yang, Wang, Jin, Loughney, Sean
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.08.2022
Online AccessGet full text

Cover

Loading…
Abstract This paper presents the preliminary development of a novel catamaran Floating Offshore Wind Turbine (FOWT) concept and a numerical assessment of its dynamic characteristics subject to operational conditions when operating in 150 m water depth. A numerical tool, F2A, which couples FAST and ANSYS AQWA numerical tools via a Dynamic Link Library (DLL) is used to conduct efficient aero-hydro-servo-elastic simulations. The tool enables fully coupled time-domain simulations to predict the hydrodynamic loads, mooring tensions (using AQWA) and aero-elastic loads (using FAST) which is required for the complete evaluation of a FOWT's dynamic behaviour and performance. A verification study is conducted by comparing the catamaran FOWT's inherent characteristics against the ITI Energy barge FOWT. Furthermore, validation of the numerical results is achieved through comparisons with published results of similar models. More specifically, performance indicators of wind turbine platforms including dynamic responses, stability, and power production under operational conditions. It has been observed that the catamaran concept has significantly reduced responses (22% and 7% reduction in F-A tower-base bending moment and rotor thrust, respectively) and improved stability (50% reduction in pitch response (RAO)) compared to the barge. The catamaran concept offers steady production in a full range of operation conditions. This research confirms that a catamaran floating support platform offers a viable alternative to existing support FOWT concepts for application in intermediate water and provides greater insight into the behavior of barge-type FOWT concepts. •Preliminary design and application of a novel catamaran concept of FOWT for intermediate water depth.•Dynamic behaviours of a catamaran FOWT under different headings and operating conditions have been investigated.•Performance of the catamaran FOWT has been compared with ITI barge FOWT.
AbstractList This paper presents the preliminary development of a novel catamaran Floating Offshore Wind Turbine (FOWT) concept and a numerical assessment of its dynamic characteristics subject to operational conditions when operating in 150 m water depth. A numerical tool, F2A, which couples FAST and ANSYS AQWA numerical tools via a Dynamic Link Library (DLL) is used to conduct efficient aero-hydro-servo-elastic simulations. The tool enables fully coupled time-domain simulations to predict the hydrodynamic loads, mooring tensions (using AQWA) and aero-elastic loads (using FAST) which is required for the complete evaluation of a FOWT's dynamic behaviour and performance. A verification study is conducted by comparing the catamaran FOWT's inherent characteristics against the ITI Energy barge FOWT. Furthermore, validation of the numerical results is achieved through comparisons with published results of similar models. More specifically, performance indicators of wind turbine platforms including dynamic responses, stability, and power production under operational conditions. It has been observed that the catamaran concept has significantly reduced responses (22% and 7% reduction in F-A tower-base bending moment and rotor thrust, respectively) and improved stability (50% reduction in pitch response (RAO)) compared to the barge. The catamaran concept offers steady production in a full range of operation conditions. This research confirms that a catamaran floating support platform offers a viable alternative to existing support FOWT concepts for application in intermediate water and provides greater insight into the behavior of barge-type FOWT concepts. •Preliminary design and application of a novel catamaran concept of FOWT for intermediate water depth.•Dynamic behaviours of a catamaran FOWT under different headings and operating conditions have been investigated.•Performance of the catamaran FOWT has been compared with ITI barge FOWT.
ArticleNumber 111769
Author Wang, Jin
Bashir, Musa
Loughney, Sean
Yang, Yang
Cutler, Joshua
Author_xml – sequence: 1
  givenname: Joshua
  orcidid: 0000-0001-8430-3575
  surname: Cutler
  fullname: Cutler, Joshua
  organization: School of Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK
– sequence: 2
  givenname: Musa
  orcidid: 0000-0002-4331-4275
  surname: Bashir
  fullname: Bashir, Musa
  email: m.b.bashir@ljmu.ac.uk
  organization: School of Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK
– sequence: 3
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, PR China
– sequence: 4
  givenname: Jin
  orcidid: 0000-0003-4646-9106
  surname: Wang
  fullname: Wang, Jin
  organization: School of Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK
– sequence: 5
  givenname: Sean
  surname: Loughney
  fullname: Loughney, Sean
  organization: School of Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK
BookMark eNqFkM9OIzEMxiMEEgX2FVZ5gSlJpvNP4gBCwCIhsYfdc-TJOK2rmWSUhKK-Dk-6YQsXLlxsyfb32f6dsWPnHTL2U4qlFLK-3C69QXDo1ksllFpKKZu6O2IL2TZlUamqPWYLIVRXtEK2p-wsxq0Qoq5FuWBvvwOONJGDsOcD7nD084QucW85cOdzgRtIMEEAx-3oIZFb566NGx-Qv5IbeHoJPTnk8wjJ-jBxyEWIEWP89Br2DiYyvMcN7Mi_hMjzJCeXMEw4EKTslUPIR8xpw2GeR8qLybsLdmJhjPjjI5-zv_d3f25_FU_PD4-3N0-FKaVKRQO1xaZvKjX0FtvSNK0UqmxlCcIAVJ1UoPpW1tYMK2gAxIBduaqtBOwr25Xn7Orga4KPMaDVhtL_C1IAGrUU-p233upP3vqdtz7wzvL6i3wOlLHtvxdeH4SYn9sRBh0NoTOZSkCT9ODpO4t_8FGnCA
CitedBy_id crossref_primary_10_3389_fbuil_2024_1497123
crossref_primary_10_1016_j_oceaneng_2023_114654
crossref_primary_10_1016_j_oceaneng_2024_116996
crossref_primary_10_3390_en16010002
crossref_primary_10_1016_j_enconman_2024_118799
crossref_primary_10_3390_su16041663
crossref_primary_10_1016_j_oceaneng_2024_118291
crossref_primary_10_1016_j_engstruct_2023_117309
crossref_primary_10_1016_j_oceaneng_2025_120970
crossref_primary_10_3390_jmse12030392
crossref_primary_10_1007_s11804_024_00406_5
crossref_primary_10_1016_j_renene_2023_119824
crossref_primary_10_3390_jmse11071368
crossref_primary_10_1007_s40722_024_00343_z
crossref_primary_10_1016_j_awe_2025_100041
crossref_primary_10_1051_e3sconf_202457303011
Cites_doi 10.1088/1755-1315/121/5/052041
10.1115/1.4025804
10.1007/s13344-021-0017-0
10.3846/1648-4142.2008.23.245-252
10.1007/s13344-020-0055-z
10.1002/we.2608
10.1016/j.oceaneng.2021.108887
10.3390/jmse7030056
10.1016/j.rser.2016.01.109
10.1007/s13344-020-0061-1
10.3390/math9050475
10.1002/we.347
10.3390/fluids5040187
10.1016/j.energy.2018.04.163
10.1115/1.4026607
10.1016/j.apenergy.2020.116246
10.1016/j.renene.2020.07.134
10.1002/we.442
10.3390/en11051187
10.1016/S0029-8018(97)00056-5
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2022.111769
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2022_111769
S0029801822011167
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c312t-7a6fe7b752dbfe83c781023813a0caa5912a2b816fcd4a7aa0de9346f1aeb5f93
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Thu Apr 24 23:03:52 EDT 2025
Tue Jul 01 02:14:57 EDT 2025
Fri Feb 23 02:39:43 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-7a6fe7b752dbfe83c781023813a0caa5912a2b816fcd4a7aa0de9346f1aeb5f93
ORCID 0000-0003-4646-9106
0000-0001-8430-3575
0000-0002-4331-4275
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2022_111769
crossref_primary_10_1016_j_oceaneng_2022_111769
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_111769
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Olondriz, Elorza, Jugo, Alonso-Quesada, Pujana-Arrese (bib29) 2018; 11
Zheng, Chen, Liang, Zhao, Shao (bib41) 2020; 5
Aboutalebi, M’zoughi, Garrido, Garrido (bib1) 2021; 9
Ideol (bib14) 2020
Jonkman (bib19) 2009; 12
Jonkman, Buhl (bib20) 2005
Principle Power (bib30) 2020
Murfet, Abdussamie (bib27) 2019; 7
Jonkman, Matha (bib18) 2011; 14
Fang (bib10) 1996
Yang (bib38) 2020
Ramachandran, Robertson, Jonkman, Masciola (bib32) 2013
Taboada (bib35) 2016
Dalmau (bib7) 2021
Wellicome, Temarel, Molland, Hudson (bib37) 1995
Equinor (bib9) 2020
Liu, Li, Yi, Chen (bib24) 2016; 60
(bib3) 2012; 14.5
Lin, Yang (bib22) 2020; 10
Thiagarajan, Dagher (bib36) 2014; 136
Brown, Ransley, Xie, Monk, De Angelis, Nicholls-Lee, Guerrini, Greaves (bib5) 2021; 282
Yang, Bashir, Li, Wang (bib39) 2021; 233
Ideol (bib13) 2020
Dabssi, Chagdali, Hémon (bib6) 2008; 23
Qasim, Gao, Peng, Liu (bib31) 2018; 121
Johlas, Martínez-Tossas, Churchfield, Lackner, Schmidt (bib15) 2021; 24
(bib28) 2021
Goupee, Koo, Kimball, Lambrakos, Dagher (bib12) 2014; 136
Barooni, Ale Ali, Ashuri (bib4) 2018; 154
Allseas (bib2) 2021
Dzan, Chang, Hsu (bib8) 2013
Yang, Bashir, Michailides, Li, Wang (bib40) 2020; 161
Fang, Chan, Incecik (bib11) 1997; 24
Jonkman, Buhl (bib16) 2006
Shi, Zhang, Ning, Jiang, Michailides, Karimirad (bib34) 2019
Meng, He, Zhao, sheng, Yang, Yang, Han, long, Yu, Mao, gang, kang (bib26) 2020; 34
Robertson, Jonkman, Vorpahl, Popko, Qvist, Frøyd, Chen, Azcona, Uzunoglu, Soares, Luan, Yutong, Pengcheng, Yde, Larsen, Nichols, Buils, Lei, Nygaard, Manolas, Heege, Vatne, Ormberg, Duarte, Godreau, Hansen, Nielsen, Riber, Le Cunff, Beyer, Yamaguchi, Jung, Shin, Shi, Park, Alves, Guérinel (bib33) 2014
Jonkman (bib17) 2007
Liu, Miao, Yue, Li, Wang, Ding (bib23) 2021; 35
Loughney, Wang, Bashir, Armin, Yang (bib25) 2021; 47
Junianto, Mukhtasor, Prastianto, Wardhana (bib21) 2020; 34
Aboutalebi (10.1016/j.oceaneng.2022.111769_bib1) 2021; 9
Liu (10.1016/j.oceaneng.2022.111769_bib24) 2016; 60
(10.1016/j.oceaneng.2022.111769_bib3) 2012; 14.5
Ideol (10.1016/j.oceaneng.2022.111769_bib14) 2020
Jonkman (10.1016/j.oceaneng.2022.111769_bib18) 2011; 14
Robertson (10.1016/j.oceaneng.2022.111769_bib33) 2014
Dabssi (10.1016/j.oceaneng.2022.111769_bib6) 2008; 23
Yang (10.1016/j.oceaneng.2022.111769_bib39) 2021; 233
Meng (10.1016/j.oceaneng.2022.111769_bib26) 2020; 34
Shi (10.1016/j.oceaneng.2022.111769_bib34) 2019
Murfet (10.1016/j.oceaneng.2022.111769_bib27) 2019; 7
Fang (10.1016/j.oceaneng.2022.111769_bib10) 1996
Allseas (10.1016/j.oceaneng.2022.111769_bib2) 2021
Jonkman (10.1016/j.oceaneng.2022.111769_bib17) 2007
(10.1016/j.oceaneng.2022.111769_bib28) 2021
Dzan (10.1016/j.oceaneng.2022.111769_bib8) 2013
Liu (10.1016/j.oceaneng.2022.111769_bib23) 2021; 35
Principle Power (10.1016/j.oceaneng.2022.111769_bib30) 2020
Olondriz (10.1016/j.oceaneng.2022.111769_bib29) 2018; 11
Dalmau (10.1016/j.oceaneng.2022.111769_bib7) 2021
Jonkman (10.1016/j.oceaneng.2022.111769_bib19) 2009; 12
Ramachandran (10.1016/j.oceaneng.2022.111769_bib32) 2013
Taboada (10.1016/j.oceaneng.2022.111769_bib35) 2016
Barooni (10.1016/j.oceaneng.2022.111769_bib4) 2018; 154
Brown (10.1016/j.oceaneng.2022.111769_bib5) 2021; 282
Johlas (10.1016/j.oceaneng.2022.111769_bib15) 2021; 24
Fang (10.1016/j.oceaneng.2022.111769_bib11) 1997; 24
Yang (10.1016/j.oceaneng.2022.111769_bib38) 2020
Zheng (10.1016/j.oceaneng.2022.111769_bib41) 2020; 5
Junianto (10.1016/j.oceaneng.2022.111769_bib21) 2020; 34
Lin (10.1016/j.oceaneng.2022.111769_bib22) 2020; 10
Ideol (10.1016/j.oceaneng.2022.111769_bib13) 2020
Loughney (10.1016/j.oceaneng.2022.111769_bib25) 2021; 47
Wellicome (10.1016/j.oceaneng.2022.111769_bib37) 1995
Goupee (10.1016/j.oceaneng.2022.111769_bib12) 2014; 136
Yang (10.1016/j.oceaneng.2022.111769_bib40) 2020; 161
Jonkman (10.1016/j.oceaneng.2022.111769_bib20) 2005
Thiagarajan (10.1016/j.oceaneng.2022.111769_bib36) 2014; 136
Jonkman (10.1016/j.oceaneng.2022.111769_bib16) 2006
Qasim (10.1016/j.oceaneng.2022.111769_bib31) 2018; 121
Equinor (10.1016/j.oceaneng.2022.111769_bib9) 2020
References_xml – volume: 154
  start-page: 442
  year: 2018
  end-page: 454
  ident: bib4
  article-title: An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines
  publication-title: Energy
– volume: 10
  year: 2020
  ident: bib22
  article-title: Hydrodynamic simulation of the semi-submersible wind float by investigating mooring systems in irregular waves
  publication-title: Appl. Sci.
– year: 2021
  ident: bib28
  article-title: OpenFAST Documentation Release v3.0.0
– year: 2006
  ident: bib16
  article-title: TurbSim User's Guide - Technical
– volume: 233
  year: 2021
  ident: bib39
  article-title: Investigation on mooring breakage effects of a 5 MW barge-type floating offshore wind turbine using F2A
  publication-title: Ocean Eng.
– year: 2021
  ident: bib2
  article-title: Pioneering Spirit
– year: 2021
  ident: bib7
  article-title: 150 Passengers - ECO SLIM
– start-page: 75
  year: 2016
  end-page: 87
  ident: bib35
  article-title: Comparative analysis review on floating offshore wind foundations (FOWF)
  publication-title: Ing. Nav.
– year: 2020
  ident: bib13
  article-title: FLOATGEN
– volume: 24
  start-page: 901
  year: 2021
  end-page: 916
  ident: bib15
  article-title: Floating platform effects on power generation in spar and semisubmersible wind turbines
  publication-title: Wind Energy
– volume: 11
  year: 2018
  ident: bib29
  article-title: An advanced control technique for floating offshore wind turbines based on more compact barge platforms
  publication-title: Energies
– year: 2020
  ident: bib38
  article-title: F2A User Manual
– volume: 161
  start-page: 606
  year: 2020
  end-page: 625
  ident: bib40
  article-title: Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines
  publication-title: Renew. Energy
– start-page: 148
  year: 2013
  end-page: 152
  ident: bib8
  article-title: Designing and building of a catamaran and its stability analysis
  publication-title: Proc. - 2013 2nd Int. Conf. Robot. Vis. Signal Process. RVSP 2013
– volume: 136
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib12
  article-title: Experimental comparison of three floating wind turbine concepts
  publication-title: J. Offshore Mech. Arctic Eng.
– volume: 47
  year: 2021
  ident: bib25
  article-title: Development and application of a multiple-attribute decision-analysis methodology for site selection of floating offshore wind farms on the UK Continental Shelf
  publication-title: Sustain. Energy Technol. Assessments
– volume: 35
  start-page: 186
  year: 2021
  end-page: 200
  ident: bib23
  article-title: Dynamic response of offshore wind turbine on 3×3 barge array floating platform under extreme sea conditions
  publication-title: China Ocean Eng.
– start-page: 369
  year: 2013
  end-page: 376
  ident: bib32
  article-title: Investigation of response amplitude operators for floating offshore wind turbines
  publication-title: Proceedings of the International Offshore and Polar Engineering Conference
– year: 2020
  ident: bib9
  article-title: Hywind Scotland
– year: 2020
  ident: bib30
  article-title: Principle Power
– volume: 23
  start-page: 245
  year: 2008
  end-page: 252
  ident: bib6
  article-title: Hydrodynamic coefficients and forces on multihulls in shallow water with constant or variable depth
  publication-title: Transport
– volume: 136
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib36
  article-title: A review of floating platform concepts for offshore wind energy generation
  publication-title: J. Offshore Mech. Arctic Eng.
– volume: 14
  start-page: 557
  year: 2011
  end-page: 569
  ident: bib18
  article-title: Dynamics of offshore floating wind turbines-analysis of three concepts
  publication-title: Wind Energy
– volume: 9
  start-page: 1
  year: 2021
  end-page: 22
  ident: bib1
  article-title: Performance analysis on the use of oscillating water column in barge-based floating offshore wind turbines
  publication-title: Mathematics
– volume: 282
  year: 2021
  ident: bib5
  article-title: On the impact of motion-thrust coupling in floating tidal energy applications
  publication-title: Appl. Energy
– year: 2019
  ident: bib34
  article-title: A comparative study on the dynamic response of three semisubmersible floating offshore wind turbines
  publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
– volume: 14.5
  year: 2012
  ident: bib3
  publication-title: AQWA Reference Manual Release
– year: 2020
  ident: bib14
  article-title: HIBIKI - Floating Wind Turbine Solution
– volume: 34
  start-page: 608
  year: 2020
  end-page: 620
  ident: bib26
  article-title: Dynamic response of 6MW spar type floating offshore wind turbine by experiment and numerical analyses
  publication-title: China Ocean Eng.
– year: 2014
  ident: bib33
  article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system
  publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
– volume: 121
  year: 2018
  ident: bib31
  article-title: Catamaran or semi-submersible for floating platform - selection of a better design
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
– volume: 24
  start-page: 949
  year: 1997
  end-page: 966
  ident: bib11
  article-title: Investigation of motions of catamarans in regular waves - II
  publication-title: Ocean Eng.
– volume: 60
  start-page: 433
  year: 2016
  end-page: 449
  ident: bib24
  article-title: Developments in semi-submersible floating foundations supporting wind turbines: a comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 7
  year: 2019
  ident: bib27
  article-title: Loads and response of a tension leg platform wind turbine with non-rotating blades: an experimental study
  publication-title: J. Mar. Sci. Eng.
– year: 2005
  ident: bib20
  article-title: FAST User's Guide
– year: 2007
  ident: bib17
  article-title: Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine
– year: 1995
  ident: bib37
  article-title: Ship Science Report No.93 Theoretical Prediction of the Seakeeping Characteristics of Fast Displacement Catamarans
– volume: 5
  start-page: 1
  year: 2020
  end-page: 28
  ident: bib41
  article-title: Hydrodynamic responses of a 6 MW spar-type floating offshore wind turbine in regular waves and uniform current
  publication-title: Fluid
– year: 1996
  ident: bib10
  article-title: An Investigation of Motions of Catamarans in Regular Waves
– volume: 12
  start-page: 459
  year: 2009
  end-page: 492
  ident: bib19
  article-title: Dynamics of offshore floating wind turbines-model development and verification
  publication-title: Wind Energy
– volume: 34
  start-page: 677
  year: 2020
  end-page: 687
  ident: bib21
  article-title: Motion responses analysis for tidal current energy platform: quad-spar and catamaran types
  publication-title: China Ocean Eng.
– volume: 121
  year: 2018
  ident: 10.1016/j.oceaneng.2022.111769_bib31
  article-title: Catamaran or semi-submersible for floating platform - selection of a better design
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/121/5/052041
– year: 2005
  ident: 10.1016/j.oceaneng.2022.111769_bib20
– year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib38
– volume: 136
  start-page: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2022.111769_bib12
  article-title: Experimental comparison of three floating wind turbine concepts
  publication-title: J. Offshore Mech. Arctic Eng.
  doi: 10.1115/1.4025804
– volume: 35
  start-page: 186
  year: 2021
  ident: 10.1016/j.oceaneng.2022.111769_bib23
  article-title: Dynamic response of offshore wind turbine on 3×3 barge array floating platform under extreme sea conditions
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-021-0017-0
– year: 1995
  ident: 10.1016/j.oceaneng.2022.111769_bib37
– volume: 23
  start-page: 245
  year: 2008
  ident: 10.1016/j.oceaneng.2022.111769_bib6
  article-title: Hydrodynamic coefficients and forces on multihulls in shallow water with constant or variable depth
  publication-title: Transport
  doi: 10.3846/1648-4142.2008.23.245-252
– volume: 34
  start-page: 608
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib26
  article-title: Dynamic response of 6MW spar type floating offshore wind turbine by experiment and numerical analyses
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-020-0055-z
– volume: 24
  start-page: 901
  year: 2021
  ident: 10.1016/j.oceaneng.2022.111769_bib15
  article-title: Floating platform effects on power generation in spar and semisubmersible wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.2608
– volume: 233
  year: 2021
  ident: 10.1016/j.oceaneng.2022.111769_bib39
  article-title: Investigation on mooring breakage effects of a 5 MW barge-type floating offshore wind turbine using F2A
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108887
– year: 1996
  ident: 10.1016/j.oceaneng.2022.111769_bib10
– year: 2019
  ident: 10.1016/j.oceaneng.2022.111769_bib34
  article-title: A comparative study on the dynamic response of three semisubmersible floating offshore wind turbines
– volume: 7
  year: 2019
  ident: 10.1016/j.oceaneng.2022.111769_bib27
  article-title: Loads and response of a tension leg platform wind turbine with non-rotating blades: an experimental study
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse7030056
– volume: 60
  start-page: 433
  year: 2016
  ident: 10.1016/j.oceaneng.2022.111769_bib24
  article-title: Developments in semi-submersible floating foundations supporting wind turbines: a comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.01.109
– start-page: 75
  year: 2016
  ident: 10.1016/j.oceaneng.2022.111769_bib35
  article-title: Comparative analysis review on floating offshore wind foundations (FOWF)
  publication-title: Ing. Nav.
– volume: 34
  start-page: 677
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib21
  article-title: Motion responses analysis for tidal current energy platform: quad-spar and catamaran types
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-020-0061-1
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.1016/j.oceaneng.2022.111769_bib1
  article-title: Performance analysis on the use of oscillating water column in barge-based floating offshore wind turbines
  publication-title: Mathematics
  doi: 10.3390/math9050475
– volume: 47
  year: 2021
  ident: 10.1016/j.oceaneng.2022.111769_bib25
  article-title: Development and application of a multiple-attribute decision-analysis methodology for site selection of floating offshore wind farms on the UK Continental Shelf
  publication-title: Sustain. Energy Technol. Assessments
– volume: 14.5
  year: 2012
  ident: 10.1016/j.oceaneng.2022.111769_bib3
– year: 2006
  ident: 10.1016/j.oceaneng.2022.111769_bib16
– year: 2021
  ident: 10.1016/j.oceaneng.2022.111769_bib2
– start-page: 148
  year: 2013
  ident: 10.1016/j.oceaneng.2022.111769_bib8
  article-title: Designing and building of a catamaran and its stability analysis
– volume: 12
  start-page: 459
  year: 2009
  ident: 10.1016/j.oceaneng.2022.111769_bib19
  article-title: Dynamics of offshore floating wind turbines-model development and verification
  publication-title: Wind Energy
  doi: 10.1002/we.347
– year: 2014
  ident: 10.1016/j.oceaneng.2022.111769_bib33
  article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system
– year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib13
– year: 2007
  ident: 10.1016/j.oceaneng.2022.111769_bib17
– volume: 10
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib22
  article-title: Hydrodynamic simulation of the semi-submersible wind float by investigating mooring systems in irregular waves
  publication-title: Appl. Sci.
– volume: 5
  start-page: 1
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib41
  article-title: Hydrodynamic responses of a 6 MW spar-type floating offshore wind turbine in regular waves and uniform current
  publication-title: Fluid
  doi: 10.3390/fluids5040187
– volume: 154
  start-page: 442
  year: 2018
  ident: 10.1016/j.oceaneng.2022.111769_bib4
  article-title: An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.163
– year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib30
– volume: 136
  start-page: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2022.111769_bib36
  article-title: A review of floating platform concepts for offshore wind energy generation
  publication-title: J. Offshore Mech. Arctic Eng.
  doi: 10.1115/1.4026607
– volume: 282
  year: 2021
  ident: 10.1016/j.oceaneng.2022.111769_bib5
  article-title: On the impact of motion-thrust coupling in floating tidal energy applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.116246
– year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib14
– year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib9
– volume: 161
  start-page: 606
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111769_bib40
  article-title: Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.07.134
– year: 2021
  ident: 10.1016/j.oceaneng.2022.111769_bib28
– start-page: 369
  year: 2013
  ident: 10.1016/j.oceaneng.2022.111769_bib32
  article-title: Investigation of response amplitude operators for floating offshore wind turbines
– volume: 14
  start-page: 557
  year: 2011
  ident: 10.1016/j.oceaneng.2022.111769_bib18
  article-title: Dynamics of offshore floating wind turbines-analysis of three concepts
  publication-title: Wind Energy
  doi: 10.1002/we.442
– year: 2021
  ident: 10.1016/j.oceaneng.2022.111769_bib7
– volume: 11
  year: 2018
  ident: 10.1016/j.oceaneng.2022.111769_bib29
  article-title: An advanced control technique for floating offshore wind turbines based on more compact barge platforms
  publication-title: Energies
  doi: 10.3390/en11051187
– volume: 24
  start-page: 949
  year: 1997
  ident: 10.1016/j.oceaneng.2022.111769_bib11
  article-title: Investigation of motions of catamarans in regular waves - II
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(97)00056-5
SSID ssj0006603
Score 2.4244611
Snippet This paper presents the preliminary development of a novel catamaran Floating Offshore Wind Turbine (FOWT) concept and a numerical assessment of its dynamic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111769
Title Preliminary development of a novel catamaran floating offshore wind turbine platform and assessment of dynamic behaviours for intermediate water depth application
URI https://dx.doi.org/10.1016/j.oceaneng.2022.111769
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7LelFBdFV8Ljl4rdumTdMeRZRVcfWg4K1M28QHa7vUinjxx_hLneljdwVhD14KTTNpyIT5ZpJ5MHYkY0QdlHoWYrmwPOlKCxJhrARsUEaldmgoGvl65A_vvcsH-dBhp20sDLlVNrK_lumVtG5aBs1qDibPzxTjK0KUr_gvqpfuU0S55yna5cdfMzcP37fd1s2Des9FCb8cI0RAprNHtBOFIOmhyPH5L4CaA53zdbbWaIv8pJ7QBuvorMdW5nII9tjqDY3eJJ7eZN-3hR5XlbqKT57OPIJ4bjjwLMcGTkc2r4Agxc04B_J7xq_m7SkvNP9AG50jDKHBrPlkDCUptRywEaY5PGmstK5kz5sw__fijWNPTtkniioapcSx8FHgJCblE5-7KN9i9-dnd6dDq6nDYCWuI0pLgW-0ipUUaWx04CYqcCqod8FOAGToCBBx4PgmST1QAHaqQ9fzjQM6liZ0t1k3yzO9w7hyA1smGnVO1MNSCGITGJ8ugqR2ggDsXSbbxY-SJkk51coYR6032kvUMi0ipkU103bZYEo3qdN0LKQIW95GvzZchFiygHbvH7T7bJne6FjakQesWxbv-hD1mjLuVxu3z5ZOLq6Gox9jLfz8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UBBQi204rP4wDVs4qzj5IgQaCmw9AASt2iS2AW0TVYhCPF3-KXMbJxlkZA49JKDk3EsjzVvbM-8AdhXGaEOWT2PsFx6AxUqD3NpvRx91FYXfmI5G_liFA2vB79v1M0CHHW5MBxW6Wx_a9On1tq19N1s9id3d5zjKxOyr_Qvrpce6S-wyOxUqgeLh6dnw9HMIEeRH3aRHiwwlyh8f0AogaUp_9JWUUo2IJpjnz_CqDncOfkGq85hFIftmL7DginXYHmORnANVi65d8c9vQ4vf2oznhbrqp9F8RYUJCorUJQVNQg-tfmHhFPCjivk0Gd6ax9uq9qIJ9qmC0Ii2jMbMRljw36tQGrEGY0n91W0xeyFy_R_rB8EfSmYgKKeJqQ01Bc9ahrEpLkVc3flP-D65PjqaOi5UgxeHgay8TRG1uhMK1lk1sRhruNgivYh-jmiSgKJMouDyObFADWiX5gkHEQ2QJMpm4Q_oVdWpdkAocPYV7kht5NcsQLjzMY24rsgZYI4Rn8TVDf5ae54yrlcxjjtAtLu005pKSstbZW2Cf2Z3KRl6vhUIul0m75bcynBySeyW_8huwdLw6uL8_T8dHS2DV_5DZ9SB2oHek39aHbJzWmyX24ZvwL88v-t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+development+of+a+novel+catamaran+floating+offshore+wind+turbine+platform+and+assessment+of+dynamic+behaviours+for+intermediate+water+depth+application&rft.jtitle=Ocean+engineering&rft.au=Cutler%2C+Joshua&rft.au=Bashir%2C+Musa&rft.au=Yang%2C+Yang&rft.au=Wang%2C+Jin&rft.date=2022-08-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=258&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.111769&rft.externalDocID=S0029801822011167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon