Preliminary development of a novel catamaran floating offshore wind turbine platform and assessment of dynamic behaviours for intermediate water depth application
This paper presents the preliminary development of a novel catamaran Floating Offshore Wind Turbine (FOWT) concept and a numerical assessment of its dynamic characteristics subject to operational conditions when operating in 150 m water depth. A numerical tool, F2A, which couples FAST and ANSYS AQWA...
Saved in:
Published in | Ocean engineering Vol. 258; p. 111769 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents the preliminary development of a novel catamaran Floating Offshore Wind Turbine (FOWT) concept and a numerical assessment of its dynamic characteristics subject to operational conditions when operating in 150 m water depth. A numerical tool, F2A, which couples FAST and ANSYS AQWA numerical tools via a Dynamic Link Library (DLL) is used to conduct efficient aero-hydro-servo-elastic simulations. The tool enables fully coupled time-domain simulations to predict the hydrodynamic loads, mooring tensions (using AQWA) and aero-elastic loads (using FAST) which is required for the complete evaluation of a FOWT's dynamic behaviour and performance. A verification study is conducted by comparing the catamaran FOWT's inherent characteristics against the ITI Energy barge FOWT. Furthermore, validation of the numerical results is achieved through comparisons with published results of similar models. More specifically, performance indicators of wind turbine platforms including dynamic responses, stability, and power production under operational conditions. It has been observed that the catamaran concept has significantly reduced responses (22% and 7% reduction in F-A tower-base bending moment and rotor thrust, respectively) and improved stability (50% reduction in pitch response (RAO)) compared to the barge. The catamaran concept offers steady production in a full range of operation conditions. This research confirms that a catamaran floating support platform offers a viable alternative to existing support FOWT concepts for application in intermediate water and provides greater insight into the behavior of barge-type FOWT concepts.
•Preliminary design and application of a novel catamaran concept of FOWT for intermediate water depth.•Dynamic behaviours of a catamaran FOWT under different headings and operating conditions have been investigated.•Performance of the catamaran FOWT has been compared with ITI barge FOWT. |
---|---|
AbstractList | This paper presents the preliminary development of a novel catamaran Floating Offshore Wind Turbine (FOWT) concept and a numerical assessment of its dynamic characteristics subject to operational conditions when operating in 150 m water depth. A numerical tool, F2A, which couples FAST and ANSYS AQWA numerical tools via a Dynamic Link Library (DLL) is used to conduct efficient aero-hydro-servo-elastic simulations. The tool enables fully coupled time-domain simulations to predict the hydrodynamic loads, mooring tensions (using AQWA) and aero-elastic loads (using FAST) which is required for the complete evaluation of a FOWT's dynamic behaviour and performance. A verification study is conducted by comparing the catamaran FOWT's inherent characteristics against the ITI Energy barge FOWT. Furthermore, validation of the numerical results is achieved through comparisons with published results of similar models. More specifically, performance indicators of wind turbine platforms including dynamic responses, stability, and power production under operational conditions. It has been observed that the catamaran concept has significantly reduced responses (22% and 7% reduction in F-A tower-base bending moment and rotor thrust, respectively) and improved stability (50% reduction in pitch response (RAO)) compared to the barge. The catamaran concept offers steady production in a full range of operation conditions. This research confirms that a catamaran floating support platform offers a viable alternative to existing support FOWT concepts for application in intermediate water and provides greater insight into the behavior of barge-type FOWT concepts.
•Preliminary design and application of a novel catamaran concept of FOWT for intermediate water depth.•Dynamic behaviours of a catamaran FOWT under different headings and operating conditions have been investigated.•Performance of the catamaran FOWT has been compared with ITI barge FOWT. |
ArticleNumber | 111769 |
Author | Wang, Jin Bashir, Musa Loughney, Sean Yang, Yang Cutler, Joshua |
Author_xml | – sequence: 1 givenname: Joshua orcidid: 0000-0001-8430-3575 surname: Cutler fullname: Cutler, Joshua organization: School of Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK – sequence: 2 givenname: Musa orcidid: 0000-0002-4331-4275 surname: Bashir fullname: Bashir, Musa email: m.b.bashir@ljmu.ac.uk organization: School of Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK – sequence: 3 givenname: Yang surname: Yang fullname: Yang, Yang organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, PR China – sequence: 4 givenname: Jin orcidid: 0000-0003-4646-9106 surname: Wang fullname: Wang, Jin organization: School of Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK – sequence: 5 givenname: Sean surname: Loughney fullname: Loughney, Sean organization: School of Engineering, Liverpool John Moores University, Liverpool, L3 3AF, UK |
BookMark | eNqFkM9OIzEMxiMEEgX2FVZ5gSlJpvNP4gBCwCIhsYfdc-TJOK2rmWSUhKK-Dk-6YQsXLlxsyfb32f6dsWPnHTL2U4qlFLK-3C69QXDo1ksllFpKKZu6O2IL2TZlUamqPWYLIVRXtEK2p-wsxq0Qoq5FuWBvvwOONJGDsOcD7nD084QucW85cOdzgRtIMEEAx-3oIZFb566NGx-Qv5IbeHoJPTnk8wjJ-jBxyEWIEWP89Br2DiYyvMcN7Mi_hMjzJCeXMEw4EKTslUPIR8xpw2GeR8qLybsLdmJhjPjjI5-zv_d3f25_FU_PD4-3N0-FKaVKRQO1xaZvKjX0FtvSNK0UqmxlCcIAVJ1UoPpW1tYMK2gAxIBduaqtBOwr25Xn7Orga4KPMaDVhtL_C1IAGrUU-p233upP3vqdtz7wzvL6i3wOlLHtvxdeH4SYn9sRBh0NoTOZSkCT9ODpO4t_8FGnCA |
CitedBy_id | crossref_primary_10_3389_fbuil_2024_1497123 crossref_primary_10_1016_j_oceaneng_2023_114654 crossref_primary_10_1016_j_oceaneng_2024_116996 crossref_primary_10_3390_en16010002 crossref_primary_10_1016_j_enconman_2024_118799 crossref_primary_10_3390_su16041663 crossref_primary_10_1016_j_oceaneng_2024_118291 crossref_primary_10_1016_j_engstruct_2023_117309 crossref_primary_10_1016_j_oceaneng_2025_120970 crossref_primary_10_3390_jmse12030392 crossref_primary_10_1007_s11804_024_00406_5 crossref_primary_10_1016_j_renene_2023_119824 crossref_primary_10_3390_jmse11071368 crossref_primary_10_1007_s40722_024_00343_z crossref_primary_10_1016_j_awe_2025_100041 crossref_primary_10_1051_e3sconf_202457303011 |
Cites_doi | 10.1088/1755-1315/121/5/052041 10.1115/1.4025804 10.1007/s13344-021-0017-0 10.3846/1648-4142.2008.23.245-252 10.1007/s13344-020-0055-z 10.1002/we.2608 10.1016/j.oceaneng.2021.108887 10.3390/jmse7030056 10.1016/j.rser.2016.01.109 10.1007/s13344-020-0061-1 10.3390/math9050475 10.1002/we.347 10.3390/fluids5040187 10.1016/j.energy.2018.04.163 10.1115/1.4026607 10.1016/j.apenergy.2020.116246 10.1016/j.renene.2020.07.134 10.1002/we.442 10.3390/en11051187 10.1016/S0029-8018(97)00056-5 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2022.111769 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2022_111769 S0029801822011167 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c312t-7a6fe7b752dbfe83c781023813a0caa5912a2b816fcd4a7aa0de9346f1aeb5f93 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Thu Apr 24 23:03:52 EDT 2025 Tue Jul 01 02:14:57 EDT 2025 Fri Feb 23 02:39:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-7a6fe7b752dbfe83c781023813a0caa5912a2b816fcd4a7aa0de9346f1aeb5f93 |
ORCID | 0000-0003-4646-9106 0000-0001-8430-3575 0000-0002-4331-4275 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2022_111769 crossref_primary_10_1016_j_oceaneng_2022_111769 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_111769 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Olondriz, Elorza, Jugo, Alonso-Quesada, Pujana-Arrese (bib29) 2018; 11 Zheng, Chen, Liang, Zhao, Shao (bib41) 2020; 5 Aboutalebi, M’zoughi, Garrido, Garrido (bib1) 2021; 9 Ideol (bib14) 2020 Jonkman (bib19) 2009; 12 Jonkman, Buhl (bib20) 2005 Principle Power (bib30) 2020 Murfet, Abdussamie (bib27) 2019; 7 Jonkman, Matha (bib18) 2011; 14 Fang (bib10) 1996 Yang (bib38) 2020 Ramachandran, Robertson, Jonkman, Masciola (bib32) 2013 Taboada (bib35) 2016 Dalmau (bib7) 2021 Wellicome, Temarel, Molland, Hudson (bib37) 1995 Equinor (bib9) 2020 Liu, Li, Yi, Chen (bib24) 2016; 60 (bib3) 2012; 14.5 Lin, Yang (bib22) 2020; 10 Thiagarajan, Dagher (bib36) 2014; 136 Brown, Ransley, Xie, Monk, De Angelis, Nicholls-Lee, Guerrini, Greaves (bib5) 2021; 282 Yang, Bashir, Li, Wang (bib39) 2021; 233 Ideol (bib13) 2020 Dabssi, Chagdali, Hémon (bib6) 2008; 23 Qasim, Gao, Peng, Liu (bib31) 2018; 121 Johlas, Martínez-Tossas, Churchfield, Lackner, Schmidt (bib15) 2021; 24 (bib28) 2021 Goupee, Koo, Kimball, Lambrakos, Dagher (bib12) 2014; 136 Barooni, Ale Ali, Ashuri (bib4) 2018; 154 Allseas (bib2) 2021 Dzan, Chang, Hsu (bib8) 2013 Yang, Bashir, Michailides, Li, Wang (bib40) 2020; 161 Fang, Chan, Incecik (bib11) 1997; 24 Jonkman, Buhl (bib16) 2006 Shi, Zhang, Ning, Jiang, Michailides, Karimirad (bib34) 2019 Meng, He, Zhao, sheng, Yang, Yang, Han, long, Yu, Mao, gang, kang (bib26) 2020; 34 Robertson, Jonkman, Vorpahl, Popko, Qvist, Frøyd, Chen, Azcona, Uzunoglu, Soares, Luan, Yutong, Pengcheng, Yde, Larsen, Nichols, Buils, Lei, Nygaard, Manolas, Heege, Vatne, Ormberg, Duarte, Godreau, Hansen, Nielsen, Riber, Le Cunff, Beyer, Yamaguchi, Jung, Shin, Shi, Park, Alves, Guérinel (bib33) 2014 Jonkman (bib17) 2007 Liu, Miao, Yue, Li, Wang, Ding (bib23) 2021; 35 Loughney, Wang, Bashir, Armin, Yang (bib25) 2021; 47 Junianto, Mukhtasor, Prastianto, Wardhana (bib21) 2020; 34 Aboutalebi (10.1016/j.oceaneng.2022.111769_bib1) 2021; 9 Liu (10.1016/j.oceaneng.2022.111769_bib24) 2016; 60 (10.1016/j.oceaneng.2022.111769_bib3) 2012; 14.5 Ideol (10.1016/j.oceaneng.2022.111769_bib14) 2020 Jonkman (10.1016/j.oceaneng.2022.111769_bib18) 2011; 14 Robertson (10.1016/j.oceaneng.2022.111769_bib33) 2014 Dabssi (10.1016/j.oceaneng.2022.111769_bib6) 2008; 23 Yang (10.1016/j.oceaneng.2022.111769_bib39) 2021; 233 Meng (10.1016/j.oceaneng.2022.111769_bib26) 2020; 34 Shi (10.1016/j.oceaneng.2022.111769_bib34) 2019 Murfet (10.1016/j.oceaneng.2022.111769_bib27) 2019; 7 Fang (10.1016/j.oceaneng.2022.111769_bib10) 1996 Allseas (10.1016/j.oceaneng.2022.111769_bib2) 2021 Jonkman (10.1016/j.oceaneng.2022.111769_bib17) 2007 (10.1016/j.oceaneng.2022.111769_bib28) 2021 Dzan (10.1016/j.oceaneng.2022.111769_bib8) 2013 Liu (10.1016/j.oceaneng.2022.111769_bib23) 2021; 35 Principle Power (10.1016/j.oceaneng.2022.111769_bib30) 2020 Olondriz (10.1016/j.oceaneng.2022.111769_bib29) 2018; 11 Dalmau (10.1016/j.oceaneng.2022.111769_bib7) 2021 Jonkman (10.1016/j.oceaneng.2022.111769_bib19) 2009; 12 Ramachandran (10.1016/j.oceaneng.2022.111769_bib32) 2013 Taboada (10.1016/j.oceaneng.2022.111769_bib35) 2016 Barooni (10.1016/j.oceaneng.2022.111769_bib4) 2018; 154 Brown (10.1016/j.oceaneng.2022.111769_bib5) 2021; 282 Johlas (10.1016/j.oceaneng.2022.111769_bib15) 2021; 24 Fang (10.1016/j.oceaneng.2022.111769_bib11) 1997; 24 Yang (10.1016/j.oceaneng.2022.111769_bib38) 2020 Zheng (10.1016/j.oceaneng.2022.111769_bib41) 2020; 5 Junianto (10.1016/j.oceaneng.2022.111769_bib21) 2020; 34 Lin (10.1016/j.oceaneng.2022.111769_bib22) 2020; 10 Ideol (10.1016/j.oceaneng.2022.111769_bib13) 2020 Loughney (10.1016/j.oceaneng.2022.111769_bib25) 2021; 47 Wellicome (10.1016/j.oceaneng.2022.111769_bib37) 1995 Goupee (10.1016/j.oceaneng.2022.111769_bib12) 2014; 136 Yang (10.1016/j.oceaneng.2022.111769_bib40) 2020; 161 Jonkman (10.1016/j.oceaneng.2022.111769_bib20) 2005 Thiagarajan (10.1016/j.oceaneng.2022.111769_bib36) 2014; 136 Jonkman (10.1016/j.oceaneng.2022.111769_bib16) 2006 Qasim (10.1016/j.oceaneng.2022.111769_bib31) 2018; 121 Equinor (10.1016/j.oceaneng.2022.111769_bib9) 2020 |
References_xml | – volume: 154 start-page: 442 year: 2018 end-page: 454 ident: bib4 article-title: An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines publication-title: Energy – volume: 10 year: 2020 ident: bib22 article-title: Hydrodynamic simulation of the semi-submersible wind float by investigating mooring systems in irregular waves publication-title: Appl. Sci. – year: 2021 ident: bib28 article-title: OpenFAST Documentation Release v3.0.0 – year: 2006 ident: bib16 article-title: TurbSim User's Guide - Technical – volume: 233 year: 2021 ident: bib39 article-title: Investigation on mooring breakage effects of a 5 MW barge-type floating offshore wind turbine using F2A publication-title: Ocean Eng. – year: 2021 ident: bib2 article-title: Pioneering Spirit – year: 2021 ident: bib7 article-title: 150 Passengers - ECO SLIM – start-page: 75 year: 2016 end-page: 87 ident: bib35 article-title: Comparative analysis review on floating offshore wind foundations (FOWF) publication-title: Ing. Nav. – year: 2020 ident: bib13 article-title: FLOATGEN – volume: 24 start-page: 901 year: 2021 end-page: 916 ident: bib15 article-title: Floating platform effects on power generation in spar and semisubmersible wind turbines publication-title: Wind Energy – volume: 11 year: 2018 ident: bib29 article-title: An advanced control technique for floating offshore wind turbines based on more compact barge platforms publication-title: Energies – year: 2020 ident: bib38 article-title: F2A User Manual – volume: 161 start-page: 606 year: 2020 end-page: 625 ident: bib40 article-title: Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines publication-title: Renew. Energy – start-page: 148 year: 2013 end-page: 152 ident: bib8 article-title: Designing and building of a catamaran and its stability analysis publication-title: Proc. - 2013 2nd Int. Conf. Robot. Vis. Signal Process. RVSP 2013 – volume: 136 start-page: 1 year: 2014 end-page: 10 ident: bib12 article-title: Experimental comparison of three floating wind turbine concepts publication-title: J. Offshore Mech. Arctic Eng. – volume: 47 year: 2021 ident: bib25 article-title: Development and application of a multiple-attribute decision-analysis methodology for site selection of floating offshore wind farms on the UK Continental Shelf publication-title: Sustain. Energy Technol. Assessments – volume: 35 start-page: 186 year: 2021 end-page: 200 ident: bib23 article-title: Dynamic response of offshore wind turbine on 3×3 barge array floating platform under extreme sea conditions publication-title: China Ocean Eng. – start-page: 369 year: 2013 end-page: 376 ident: bib32 article-title: Investigation of response amplitude operators for floating offshore wind turbines publication-title: Proceedings of the International Offshore and Polar Engineering Conference – year: 2020 ident: bib9 article-title: Hywind Scotland – year: 2020 ident: bib30 article-title: Principle Power – volume: 23 start-page: 245 year: 2008 end-page: 252 ident: bib6 article-title: Hydrodynamic coefficients and forces on multihulls in shallow water with constant or variable depth publication-title: Transport – volume: 136 start-page: 1 year: 2014 end-page: 6 ident: bib36 article-title: A review of floating platform concepts for offshore wind energy generation publication-title: J. Offshore Mech. Arctic Eng. – volume: 14 start-page: 557 year: 2011 end-page: 569 ident: bib18 article-title: Dynamics of offshore floating wind turbines-analysis of three concepts publication-title: Wind Energy – volume: 9 start-page: 1 year: 2021 end-page: 22 ident: bib1 article-title: Performance analysis on the use of oscillating water column in barge-based floating offshore wind turbines publication-title: Mathematics – volume: 282 year: 2021 ident: bib5 article-title: On the impact of motion-thrust coupling in floating tidal energy applications publication-title: Appl. Energy – year: 2019 ident: bib34 article-title: A comparative study on the dynamic response of three semisubmersible floating offshore wind turbines publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE – volume: 14.5 year: 2012 ident: bib3 publication-title: AQWA Reference Manual Release – year: 2020 ident: bib14 article-title: HIBIKI - Floating Wind Turbine Solution – volume: 34 start-page: 608 year: 2020 end-page: 620 ident: bib26 article-title: Dynamic response of 6MW spar type floating offshore wind turbine by experiment and numerical analyses publication-title: China Ocean Eng. – year: 2014 ident: bib33 article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE – volume: 121 year: 2018 ident: bib31 article-title: Catamaran or semi-submersible for floating platform - selection of a better design publication-title: IOP Conf. Ser. Earth Environ. Sci. – volume: 24 start-page: 949 year: 1997 end-page: 966 ident: bib11 article-title: Investigation of motions of catamarans in regular waves - II publication-title: Ocean Eng. – volume: 60 start-page: 433 year: 2016 end-page: 449 ident: bib24 article-title: Developments in semi-submersible floating foundations supporting wind turbines: a comprehensive review publication-title: Renew. Sustain. Energy Rev. – volume: 7 year: 2019 ident: bib27 article-title: Loads and response of a tension leg platform wind turbine with non-rotating blades: an experimental study publication-title: J. Mar. Sci. Eng. – year: 2005 ident: bib20 article-title: FAST User's Guide – year: 2007 ident: bib17 article-title: Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine – year: 1995 ident: bib37 article-title: Ship Science Report No.93 Theoretical Prediction of the Seakeeping Characteristics of Fast Displacement Catamarans – volume: 5 start-page: 1 year: 2020 end-page: 28 ident: bib41 article-title: Hydrodynamic responses of a 6 MW spar-type floating offshore wind turbine in regular waves and uniform current publication-title: Fluid – year: 1996 ident: bib10 article-title: An Investigation of Motions of Catamarans in Regular Waves – volume: 12 start-page: 459 year: 2009 end-page: 492 ident: bib19 article-title: Dynamics of offshore floating wind turbines-model development and verification publication-title: Wind Energy – volume: 34 start-page: 677 year: 2020 end-page: 687 ident: bib21 article-title: Motion responses analysis for tidal current energy platform: quad-spar and catamaran types publication-title: China Ocean Eng. – volume: 121 year: 2018 ident: 10.1016/j.oceaneng.2022.111769_bib31 article-title: Catamaran or semi-submersible for floating platform - selection of a better design publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/121/5/052041 – year: 2005 ident: 10.1016/j.oceaneng.2022.111769_bib20 – year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib38 – volume: 136 start-page: 1 year: 2014 ident: 10.1016/j.oceaneng.2022.111769_bib12 article-title: Experimental comparison of three floating wind turbine concepts publication-title: J. Offshore Mech. Arctic Eng. doi: 10.1115/1.4025804 – volume: 35 start-page: 186 year: 2021 ident: 10.1016/j.oceaneng.2022.111769_bib23 article-title: Dynamic response of offshore wind turbine on 3×3 barge array floating platform under extreme sea conditions publication-title: China Ocean Eng. doi: 10.1007/s13344-021-0017-0 – year: 1995 ident: 10.1016/j.oceaneng.2022.111769_bib37 – volume: 23 start-page: 245 year: 2008 ident: 10.1016/j.oceaneng.2022.111769_bib6 article-title: Hydrodynamic coefficients and forces on multihulls in shallow water with constant or variable depth publication-title: Transport doi: 10.3846/1648-4142.2008.23.245-252 – volume: 34 start-page: 608 year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib26 article-title: Dynamic response of 6MW spar type floating offshore wind turbine by experiment and numerical analyses publication-title: China Ocean Eng. doi: 10.1007/s13344-020-0055-z – volume: 24 start-page: 901 year: 2021 ident: 10.1016/j.oceaneng.2022.111769_bib15 article-title: Floating platform effects on power generation in spar and semisubmersible wind turbines publication-title: Wind Energy doi: 10.1002/we.2608 – volume: 233 year: 2021 ident: 10.1016/j.oceaneng.2022.111769_bib39 article-title: Investigation on mooring breakage effects of a 5 MW barge-type floating offshore wind turbine using F2A publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108887 – year: 1996 ident: 10.1016/j.oceaneng.2022.111769_bib10 – year: 2019 ident: 10.1016/j.oceaneng.2022.111769_bib34 article-title: A comparative study on the dynamic response of three semisubmersible floating offshore wind turbines – volume: 7 year: 2019 ident: 10.1016/j.oceaneng.2022.111769_bib27 article-title: Loads and response of a tension leg platform wind turbine with non-rotating blades: an experimental study publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse7030056 – volume: 60 start-page: 433 year: 2016 ident: 10.1016/j.oceaneng.2022.111769_bib24 article-title: Developments in semi-submersible floating foundations supporting wind turbines: a comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.01.109 – start-page: 75 year: 2016 ident: 10.1016/j.oceaneng.2022.111769_bib35 article-title: Comparative analysis review on floating offshore wind foundations (FOWF) publication-title: Ing. Nav. – volume: 34 start-page: 677 year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib21 article-title: Motion responses analysis for tidal current energy platform: quad-spar and catamaran types publication-title: China Ocean Eng. doi: 10.1007/s13344-020-0061-1 – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.oceaneng.2022.111769_bib1 article-title: Performance analysis on the use of oscillating water column in barge-based floating offshore wind turbines publication-title: Mathematics doi: 10.3390/math9050475 – volume: 47 year: 2021 ident: 10.1016/j.oceaneng.2022.111769_bib25 article-title: Development and application of a multiple-attribute decision-analysis methodology for site selection of floating offshore wind farms on the UK Continental Shelf publication-title: Sustain. Energy Technol. Assessments – volume: 14.5 year: 2012 ident: 10.1016/j.oceaneng.2022.111769_bib3 – year: 2006 ident: 10.1016/j.oceaneng.2022.111769_bib16 – year: 2021 ident: 10.1016/j.oceaneng.2022.111769_bib2 – start-page: 148 year: 2013 ident: 10.1016/j.oceaneng.2022.111769_bib8 article-title: Designing and building of a catamaran and its stability analysis – volume: 12 start-page: 459 year: 2009 ident: 10.1016/j.oceaneng.2022.111769_bib19 article-title: Dynamics of offshore floating wind turbines-model development and verification publication-title: Wind Energy doi: 10.1002/we.347 – year: 2014 ident: 10.1016/j.oceaneng.2022.111769_bib33 article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system – year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib13 – year: 2007 ident: 10.1016/j.oceaneng.2022.111769_bib17 – volume: 10 year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib22 article-title: Hydrodynamic simulation of the semi-submersible wind float by investigating mooring systems in irregular waves publication-title: Appl. Sci. – volume: 5 start-page: 1 year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib41 article-title: Hydrodynamic responses of a 6 MW spar-type floating offshore wind turbine in regular waves and uniform current publication-title: Fluid doi: 10.3390/fluids5040187 – volume: 154 start-page: 442 year: 2018 ident: 10.1016/j.oceaneng.2022.111769_bib4 article-title: An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines publication-title: Energy doi: 10.1016/j.energy.2018.04.163 – year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib30 – volume: 136 start-page: 1 year: 2014 ident: 10.1016/j.oceaneng.2022.111769_bib36 article-title: A review of floating platform concepts for offshore wind energy generation publication-title: J. Offshore Mech. Arctic Eng. doi: 10.1115/1.4026607 – volume: 282 year: 2021 ident: 10.1016/j.oceaneng.2022.111769_bib5 article-title: On the impact of motion-thrust coupling in floating tidal energy applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.116246 – year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib14 – year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib9 – volume: 161 start-page: 606 year: 2020 ident: 10.1016/j.oceaneng.2022.111769_bib40 article-title: Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2020.07.134 – year: 2021 ident: 10.1016/j.oceaneng.2022.111769_bib28 – start-page: 369 year: 2013 ident: 10.1016/j.oceaneng.2022.111769_bib32 article-title: Investigation of response amplitude operators for floating offshore wind turbines – volume: 14 start-page: 557 year: 2011 ident: 10.1016/j.oceaneng.2022.111769_bib18 article-title: Dynamics of offshore floating wind turbines-analysis of three concepts publication-title: Wind Energy doi: 10.1002/we.442 – year: 2021 ident: 10.1016/j.oceaneng.2022.111769_bib7 – volume: 11 year: 2018 ident: 10.1016/j.oceaneng.2022.111769_bib29 article-title: An advanced control technique for floating offshore wind turbines based on more compact barge platforms publication-title: Energies doi: 10.3390/en11051187 – volume: 24 start-page: 949 year: 1997 ident: 10.1016/j.oceaneng.2022.111769_bib11 article-title: Investigation of motions of catamarans in regular waves - II publication-title: Ocean Eng. doi: 10.1016/S0029-8018(97)00056-5 |
SSID | ssj0006603 |
Score | 2.4244611 |
Snippet | This paper presents the preliminary development of a novel catamaran Floating Offshore Wind Turbine (FOWT) concept and a numerical assessment of its dynamic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111769 |
Title | Preliminary development of a novel catamaran floating offshore wind turbine platform and assessment of dynamic behaviours for intermediate water depth application |
URI | https://dx.doi.org/10.1016/j.oceaneng.2022.111769 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7LelFBdFV8Ljl4rdumTdMeRZRVcfWg4K1M28QHa7vUinjxx_hLneljdwVhD14KTTNpyIT5ZpJ5MHYkY0QdlHoWYrmwPOlKCxJhrARsUEaldmgoGvl65A_vvcsH-dBhp20sDLlVNrK_lumVtG5aBs1qDibPzxTjK0KUr_gvqpfuU0S55yna5cdfMzcP37fd1s2Des9FCb8cI0RAprNHtBOFIOmhyPH5L4CaA53zdbbWaIv8pJ7QBuvorMdW5nII9tjqDY3eJJ7eZN-3hR5XlbqKT57OPIJ4bjjwLMcGTkc2r4Agxc04B_J7xq_m7SkvNP9AG50jDKHBrPlkDCUptRywEaY5PGmstK5kz5sw__fijWNPTtkniioapcSx8FHgJCblE5-7KN9i9-dnd6dDq6nDYCWuI0pLgW-0ipUUaWx04CYqcCqod8FOAGToCBBx4PgmST1QAHaqQ9fzjQM6liZ0t1k3yzO9w7hyA1smGnVO1MNSCGITGJ8ugqR2ggDsXSbbxY-SJkk51coYR6032kvUMi0ipkU103bZYEo3qdN0LKQIW95GvzZchFiygHbvH7T7bJne6FjakQesWxbv-hD1mjLuVxu3z5ZOLq6Gox9jLfz8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UBBQi204rP4wDVs4qzj5IgQaCmw9AASt2iS2AW0TVYhCPF3-KXMbJxlkZA49JKDk3EsjzVvbM-8AdhXGaEOWT2PsFx6AxUqD3NpvRx91FYXfmI5G_liFA2vB79v1M0CHHW5MBxW6Wx_a9On1tq19N1s9id3d5zjKxOyr_Qvrpce6S-wyOxUqgeLh6dnw9HMIEeRH3aRHiwwlyh8f0AogaUp_9JWUUo2IJpjnz_CqDncOfkGq85hFIftmL7DginXYHmORnANVi65d8c9vQ4vf2oznhbrqp9F8RYUJCorUJQVNQg-tfmHhFPCjivk0Gd6ax9uq9qIJ9qmC0Ii2jMbMRljw36tQGrEGY0n91W0xeyFy_R_rB8EfSmYgKKeJqQ01Bc9ahrEpLkVc3flP-D65PjqaOi5UgxeHgay8TRG1uhMK1lk1sRhruNgivYh-jmiSgKJMouDyObFADWiX5gkHEQ2QJMpm4Q_oVdWpdkAocPYV7kht5NcsQLjzMY24rsgZYI4Rn8TVDf5ae54yrlcxjjtAtLu005pKSstbZW2Cf2Z3KRl6vhUIul0m75bcynBySeyW_8huwdLw6uL8_T8dHS2DV_5DZ9SB2oHek39aHbJzWmyX24ZvwL88v-t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+development+of+a+novel+catamaran+floating+offshore+wind+turbine+platform+and+assessment+of+dynamic+behaviours+for+intermediate+water+depth+application&rft.jtitle=Ocean+engineering&rft.au=Cutler%2C+Joshua&rft.au=Bashir%2C+Musa&rft.au=Yang%2C+Yang&rft.au=Wang%2C+Jin&rft.date=2022-08-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=258&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.111769&rft.externalDocID=S0029801822011167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |