In-situ coating of leather with conducting polyaniline in colloidal dispersion mode
Four different leathers and a nonwoven fibrous mat have been coated with a conducting polymer, polyaniline, in situ during the oxidation of aniline hydrochloride in the presence of poly(N-vinylpyrrolidone) stabilizer. This colloidal dispersion approach prevented the undesirable formation of free pol...
Saved in:
Published in | Synthetic metals Vol. 291; p. 117191 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Four different leathers and a nonwoven fibrous mat have been coated with a conducting polymer, polyaniline, in situ during the oxidation of aniline hydrochloride in the presence of poly(N-vinylpyrrolidone) stabilizer. This colloidal dispersion approach prevented the undesirable formation of free polyaniline precipitate outside the leather fibers. The molecular structure of polypeptide fibers with deposited polyaniline is discussed on the basis of FTIR spectra. Raman spectroscopy confirmed that individual fibers were coated with a conducting polymer. The cross-sectional optical microscopy revealed that the leather was coated on both sides. The layer thickness, tens to hundreds micrometers, was determined by the penetration depth of reaction mixture. In the case of diabetic insole mat gambrela, polyaniline penetrated throughout the sample body. This was also confirmed by the measurement of transversal resistance. The typical sheet resistance was in units to hundreds kΩ/sq and differed but was of the same order of magnitude on top and bottom sides. The samples were subject to cyclic bending and of the resistivity changes have been monitored. Antibacterial activity of some leathers improved after the coating with polyaniline.
[Display omitted]
•The samples of leather were coated with a conducting polymer.•Polyaniline was deposited in-situ using a colloidal dispersion mode.•Various modes of electrical resistance determination are provided.•A new method testing the resistance changes upon cyclic bending was developed.•The applications of conducting leather composites are proposed. |
---|---|
AbstractList | Four different leathers and a nonwoven fibrous mat have been coated with a conducting polymer, polyaniline, in situ during the oxidation of aniline hydrochloride in the presence of poly(N-vinylpyrrolidone) stabilizer. This colloidal dispersion approach prevented the undesirable formation of free polyaniline precipitate outside the leather fibers. The molecular structure of polypeptide fibers with deposited polyaniline is discussed on the basis of FTIR spectra. Raman spectroscopy confirmed that individual fibers were coated with a conducting polymer. The cross-sectional optical microscopy revealed that the leather was coated on both sides. The layer thickness, tens to hundreds micrometers, was determined by the penetration depth of reaction mixture. In the case of diabetic insole mat gambrela, polyaniline penetrated throughout the sample body. This was also confirmed by the measurement of transversal resistance. The typical sheet resistance was in units to hundreds kΩ/sq and differed but was of the same order of magnitude on top and bottom sides. The samples were subject to cyclic bending and of the resistivity changes have been monitored. Antibacterial activity of some leathers improved after the coating with polyaniline.
[Display omitted]
•The samples of leather were coated with a conducting polymer.•Polyaniline was deposited in-situ using a colloidal dispersion mode.•Various modes of electrical resistance determination are provided.•A new method testing the resistance changes upon cyclic bending was developed.•The applications of conducting leather composites are proposed. |
ArticleNumber | 117191 |
Author | Kopecký, Dušan Sáha, Tomáš Stejskal, Jaroslav Ngwabebhoh, Fahanwi Asabuwa Trchová, Miroslava Zandraa, Oyunchimeg Pfleger, Jiří Prokeš, Jan |
Author_xml | – sequence: 1 givenname: Fahanwi Asabuwa surname: Ngwabebhoh fullname: Ngwabebhoh, Fahanwi Asabuwa organization: University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic – sequence: 2 givenname: Oyunchimeg surname: Zandraa fullname: Zandraa, Oyunchimeg organization: University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic – sequence: 3 givenname: Tomáš surname: Sáha fullname: Sáha, Tomáš organization: University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic – sequence: 4 givenname: Jaroslav surname: Stejskal fullname: Stejskal, Jaroslav email: stejskal@utb.cz organization: University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic – sequence: 5 givenname: Miroslava surname: Trchová fullname: Trchová, Miroslava organization: University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic – sequence: 6 givenname: Dušan surname: Kopecký fullname: Kopecký, Dušan organization: University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic – sequence: 7 givenname: Jiří surname: Pfleger fullname: Pfleger, Jiří organization: Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic – sequence: 8 givenname: Jan surname: Prokeš fullname: Prokeš, Jan organization: Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8, Czech Republic |
BookMark | eNqFkM1KAzEUhYNUsK2-gswLzJifmcwEXCjFn0LBhboOaXLHpqRJSVKlb-_U6sZNV_dyDufA-SZo5IMHhK4Jrggm_GZdpb3Pqw3kimJKK0JaIsgZGpOuFSWjAo_QGLPh520rLtAkpTXGmAjajNHr3JfJ5l2hg8rWfxShLxyovIJYfNm8GnRvdvrH2ga3V94666GwfnCcC9YoVxibthCTDb7YBAOX6LxXLsHV752i98eHt9lzuXh5ms_uF6VmhOaS9xxqRY1mQAelW9Yd0Jpi1UIjOoIpZ8yYbmnauqe87oWgTDe66xrcciE0myJ-7NUxpBShl9toNyruJcHygEau5R8aeUAjj2iG4O2_oLZ5mB98jsq60_G7YxyGcZ8WokzagtdgbASdpQn2VMU3t7-H6w |
CitedBy_id | crossref_primary_10_1116_6_0002497 crossref_primary_10_3390_coatings15010048 crossref_primary_10_1016_j_porgcoat_2023_107495 crossref_primary_10_3390_polym15193904 crossref_primary_10_3390_nano13202794 crossref_primary_10_1016_j_jaap_2023_106056 crossref_primary_10_1016_j_biombioe_2025_107742 crossref_primary_10_1016_j_jece_2023_110919 crossref_primary_10_1016_j_jpcs_2024_111876 crossref_primary_10_1016_j_jwpe_2025_107203 crossref_primary_10_3390_coatings13030608 |
Cites_doi | 10.1021/cm990537f 10.1002/aelm.202000259 10.1007/s11696-019-00982-9 10.1016/j.ijbiomac.2021.01.121 10.1021/acs.jpca.8b09794 10.1016/j.apsusc.2016.11.024 10.1080/05704928.2018.1426595 10.1021/acsami.1c00880 10.1351/pac200577050815 10.1002/pat.3483 10.1002/mabi.202100386 10.17222/mit.2019.238 10.1007/s10904-021-02204-w 10.1021/ie503956p 10.1002/pi.5947 10.1016/j.colsurfa.2018.03.065 10.1021/acsomega.1c02330 10.1021/nn800201n 10.1007/s11696-016-0072-9 10.1016/j.jcis.2004.02.053 10.1016/j.jpowsour.2010.06.084 10.1016/j.memsci.2021.119844 10.1006/jcis.2001.8197 10.3390/polym12123016 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.synthmet.2022.117191 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1879-3290 |
ExternalDocumentID | 10_1016_j_synthmet_2022_117191 S0379677922001850 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SSZ T5K UNMZH WH7 WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-6f6e4a2dc3e2c318b48e2420a7e598102633dd8bd74f264f9923c5c88507699c3 |
IEDL.DBID | .~1 |
ISSN | 0379-6779 |
IngestDate | Tue Jul 01 00:54:16 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Fri Feb 23 02:39:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conducting composites Polyaniline Conducting leather Sheet resistance Bending tests |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-6f6e4a2dc3e2c318b48e2420a7e598102633dd8bd74f264f9923c5c88507699c3 |
ParticipantIDs | crossref_primary_10_1016_j_synthmet_2022_117191 crossref_citationtrail_10_1016_j_synthmet_2022_117191 elsevier_sciencedirect_doi_10_1016_j_synthmet_2022_117191 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Synthetic metals |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Kang, Zhang, Xie, Zhu, Zou, Liu, Chen, Shi, Zhang, Huang, Wu, Huo (bib7) 2020; 6 Stejskal, Sapurina (bib15) 2004; 274 Riede, Helmstedt, Sapurina, Stejskal (bib14) 2002; 248 Stejskal (bib18) 2017; 71 Stejskal, Sapurina (bib10) 2005; 77 Gangopadhyay, De (bib1) 2000; 12 Wegene, Thanikaivelan (bib8) 2014; 53 Demisie, Palanisamy, Kaliappa, Kavati, Bangaru (bib9) 2015; 26 Trchová, Stejskal (bib20) 2018; 122 Zhang, Zeng, Jiang, Li, Bai, Li, Li (bib5) 2021; 13 Maráková, Humpolíček, Kašpárková, Capáková, Martinková, Bober, Trchová, Stejskal (bib12) 2017; 396 Salehi, Golbaten-Mofrad, Jafari, Goodarzi, Entezari, Hashemi, Zamanlui (bib25) 2021; 173 Stejskal, Trchová, Bober, Humpolíček, Kašpárková, Sapurina, Shishov, Varga (bib2) 2015 Grm, Zavec, Dražić (bib6) 2020; 54 Stejskal, Trchová, Kasparyan, Kopecký, Kolská, Prokeš, Křivka, Vajďák, Humpolíček (bib16) 2021; 6 Fenniche, Henni, Khane, Aouf, Harfouche, Bensalem, Zerrouki, Belkhalfa (bib23) 2022; 32 Li, Tang, Sun, Li, Ge, Ye, Fang (bib21) 2021; 640 Riaz, Zeeshan, Zarif, IIyas, Muhammad, Safi, Rahim, Rizvi, Rehman (bib19) 2018; 53 Ngwabebhoh, Saha, Nguyen, Brodnjak, Sáha, Lengalová, Sáha (bib11) 2020; 12 Pang, Wu, Jiang, Shi, Si, Wang, Cao, Hou, Zhu (bib22) 2022; 22 Snook, Kao, Best (bib3) 2011; 196 Stejskal (bib4) 2020; 69 Ma, Cheung, Wei, Bogozi, Chiu, Wang, Pontoriero, Mendelsohn, He (bib17) 2008; 2 Stejskal (bib24) 2020; 74 Yu, Pang, Zhang, Zhou, Wei (bib13) 2018; 548 Snook (10.1016/j.synthmet.2022.117191_bib3) 2011; 196 Stejskal (10.1016/j.synthmet.2022.117191_bib18) 2017; 71 Demisie (10.1016/j.synthmet.2022.117191_bib9) 2015; 26 Stejskal (10.1016/j.synthmet.2022.117191_bib16) 2021; 6 Wegene (10.1016/j.synthmet.2022.117191_bib8) 2014; 53 Pang (10.1016/j.synthmet.2022.117191_bib22) 2022; 22 Stejskal (10.1016/j.synthmet.2022.117191_bib2) 2015 Stejskal (10.1016/j.synthmet.2022.117191_bib24) 2020; 74 Maráková (10.1016/j.synthmet.2022.117191_bib12) 2017; 396 Stejskal (10.1016/j.synthmet.2022.117191_bib10) 2005; 77 Ma (10.1016/j.synthmet.2022.117191_bib17) 2008; 2 Gangopadhyay (10.1016/j.synthmet.2022.117191_bib1) 2000; 12 Ngwabebhoh (10.1016/j.synthmet.2022.117191_bib11) 2020; 12 Zhang (10.1016/j.synthmet.2022.117191_bib7) 2020; 6 Li (10.1016/j.synthmet.2022.117191_bib21) 2021; 640 Fenniche (10.1016/j.synthmet.2022.117191_bib23) 2022; 32 Stejskal (10.1016/j.synthmet.2022.117191_bib15) 2004; 274 Riede (10.1016/j.synthmet.2022.117191_bib14) 2002; 248 Zhang (10.1016/j.synthmet.2022.117191_bib5) 2021; 13 Stejskal (10.1016/j.synthmet.2022.117191_bib4) 2020; 69 Grm (10.1016/j.synthmet.2022.117191_bib6) 2020; 54 Riaz (10.1016/j.synthmet.2022.117191_bib19) 2018; 53 Salehi (10.1016/j.synthmet.2022.117191_bib25) 2021; 173 Yu (10.1016/j.synthmet.2022.117191_bib13) 2018; 548 Trchová (10.1016/j.synthmet.2022.117191_bib20) 2018; 122 |
References_xml | – volume: 71 start-page: 269 year: 2017 end-page: 291 ident: bib18 article-title: Conducting polymer hydrogels publication-title: Chem. Pap. – volume: 548 start-page: 117 year: 2018 end-page: 124 ident: bib13 article-title: Conductivity and antibacterial properties of wool fabrics finished by polyaniline/chitosan publication-title: Colloid Surf. A, Physicochem. Eng. Asp. – volume: 53 start-page: 703 year: 2018 end-page: 746 ident: bib19 article-title: FTIR analysis of natural and synthetic collagen publication-title: Appl. Spectrosc. Rev. – volume: 122 start-page: 9298 year: 2018 end-page: 9306 ident: bib20 article-title: Resonance Raman spectroscopy of conducting polypyrrole nanotubes: disordered surface versus ordered body publication-title: J. Phys. Chem. A – volume: 26 start-page: 521 year: 2015 end-page: 527 ident: bib9 article-title: Concurrent genesis of color and electrical conductivity in leathers through in-situ polymerization of aniline for smart product applications publication-title: Polym. Adv. Technol. – volume: 22 start-page: 2100386 year: 2022 ident: bib22 article-title: A polyaniline nanoparticles crosslinked hydrogel with excellent photothermal antibacterial and mechanical properties for wound dressing publication-title: Macromol. Biosci. – volume: 69 start-page: 662 year: 2020 end-page: 664 ident: bib4 article-title: Conducting polymers are not just conducting: a perspective for emerging technology publication-title: Polym. Int. – volume: 12 start-page: 608 year: 2000 end-page: 622 ident: bib1 article-title: Conducting polymer nanocomposites: a brief overview publication-title: Chem. Mater. – volume: 54 start-page: 761 year: 2020 end-page: 768 ident: bib6 article-title: A carbon-nanotubes-based heating fabric composite for automotive applications publication-title: Mater. Tehnol. – volume: 6 start-page: 2000259 year: 2020 ident: bib7 article-title: Conformal and antibacterial PPy-leather electrode for ECG monitoring publication-title: Adv. Electron. Mater. – volume: 173 start-page: 467 year: 2021 end-page: 480 ident: bib25 article-title: Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay publication-title: Int. J. Biol. Macromol. – volume: 13 start-page: 11332 year: 2021 end-page: 11343 ident: bib5 article-title: Leather solid waste/poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding publication-title: ACS Appl. Mater. Interfaces – volume: 77 start-page: 815 year: 2005 end-page: 826 ident: bib10 article-title: Polyaniline: Thin films and colloidal dispersions (IUPAC technical report) publication-title: Pure Appl. Chem. – volume: 396 start-page: 169 year: 2017 end-page: 176 ident: bib12 article-title: Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles publication-title: Appl. Surf. Sci. – volume: 6 start-page: 20895 year: 2021 end-page: 20901 ident: bib16 article-title: Pressure-sensitive conducting and antibacterial materials obtained by in-situ dispersion coating of macroporous melamine sponges with polypyrrole publication-title: ACS Omega – volume: 2 start-page: 1197 year: 2008 end-page: 1204 ident: bib17 article-title: Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer publication-title: ACS Nano – volume: 274 start-page: 489 year: 2004 end-page: 495 ident: bib15 article-title: On the origin of colloidal particles in the dispersion polymerization of aniline publication-title: J. Colloid Interface Sci. – volume: 640 year: 2021 ident: bib21 article-title: Electrochemical manufacture of graphene oxide/polyaniline conductive membrane for antibacterial application and electrically enhanced water permeability publication-title: J. Membr. Sci. – year: 2015 ident: bib2 article-title: Conducting polymers: polyaniline publication-title: Encyclopedia of Polymer Science and Technology – volume: 196 start-page: 1 year: 2011 end-page: 12 ident: bib3 article-title: Conducting-polymer-based supercapacitor devices and electrodes publication-title: J. Power Sources – volume: 12 start-page: 3016 year: 2020 ident: bib11 article-title: Preparation and characterization of nonwoven fibrous biocomposites for footwear components publication-title: Polymers – volume: 248 start-page: 413 year: 2002 end-page: 418 ident: bib14 article-title: In situ polymerized polyaniline films 4. Film formation in dispersion polymerization of aniline publication-title: J. Colloid Interface Sci. – volume: 32 start-page: 1011 year: 2022 end-page: 1025 ident: bib23 article-title: Electrochemical synthesis of reduced graphene oxide-wrapped polyaniline nanorods for improved photocatalytic and antibacterial activities publication-title: J. Inorg. Organometal. Polym. Mater. – volume: 74 start-page: 1 year: 2020 end-page: 54 ident: bib24 article-title: Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition publication-title: Chem. Pap. – volume: 53 start-page: 18209 year: 2014 end-page: 18215 ident: bib8 article-title: Conducting leathers for smart product applications publication-title: Ind. Eng. Chem. Res. – volume: 12 start-page: 608 year: 2000 ident: 10.1016/j.synthmet.2022.117191_bib1 article-title: Conducting polymer nanocomposites: a brief overview publication-title: Chem. Mater. doi: 10.1021/cm990537f – volume: 6 start-page: 2000259 year: 2020 ident: 10.1016/j.synthmet.2022.117191_bib7 article-title: Conformal and antibacterial PPy-leather electrode for ECG monitoring publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000259 – volume: 74 start-page: 1 year: 2020 ident: 10.1016/j.synthmet.2022.117191_bib24 article-title: Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition publication-title: Chem. Pap. doi: 10.1007/s11696-019-00982-9 – volume: 173 start-page: 467 year: 2021 ident: 10.1016/j.synthmet.2022.117191_bib25 article-title: Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.01.121 – volume: 122 start-page: 9298 year: 2018 ident: 10.1016/j.synthmet.2022.117191_bib20 article-title: Resonance Raman spectroscopy of conducting polypyrrole nanotubes: disordered surface versus ordered body publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b09794 – volume: 396 start-page: 169 year: 2017 ident: 10.1016/j.synthmet.2022.117191_bib12 article-title: Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.11.024 – volume: 53 start-page: 703 year: 2018 ident: 10.1016/j.synthmet.2022.117191_bib19 article-title: FTIR analysis of natural and synthetic collagen publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2018.1426595 – volume: 13 start-page: 11332 year: 2021 ident: 10.1016/j.synthmet.2022.117191_bib5 article-title: Leather solid waste/poly(vinyl alcohol)/polyaniline aerogel with mechanical robustness, flame retardancy, and enhanced electromagnetic interference shielding publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00880 – volume: 77 start-page: 815 year: 2005 ident: 10.1016/j.synthmet.2022.117191_bib10 article-title: Polyaniline: Thin films and colloidal dispersions (IUPAC technical report) publication-title: Pure Appl. Chem. doi: 10.1351/pac200577050815 – volume: 26 start-page: 521 year: 2015 ident: 10.1016/j.synthmet.2022.117191_bib9 article-title: Concurrent genesis of color and electrical conductivity in leathers through in-situ polymerization of aniline for smart product applications publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3483 – volume: 22 start-page: 2100386 year: 2022 ident: 10.1016/j.synthmet.2022.117191_bib22 article-title: A polyaniline nanoparticles crosslinked hydrogel with excellent photothermal antibacterial and mechanical properties for wound dressing publication-title: Macromol. Biosci. doi: 10.1002/mabi.202100386 – volume: 54 start-page: 761 year: 2020 ident: 10.1016/j.synthmet.2022.117191_bib6 article-title: A carbon-nanotubes-based heating fabric composite for automotive applications publication-title: Mater. Tehnol. doi: 10.17222/mit.2019.238 – volume: 32 start-page: 1011 year: 2022 ident: 10.1016/j.synthmet.2022.117191_bib23 article-title: Electrochemical synthesis of reduced graphene oxide-wrapped polyaniline nanorods for improved photocatalytic and antibacterial activities publication-title: J. Inorg. Organometal. Polym. Mater. doi: 10.1007/s10904-021-02204-w – volume: 53 start-page: 18209 year: 2014 ident: 10.1016/j.synthmet.2022.117191_bib8 article-title: Conducting leathers for smart product applications publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie503956p – volume: 69 start-page: 662 year: 2020 ident: 10.1016/j.synthmet.2022.117191_bib4 article-title: Conducting polymers are not just conducting: a perspective for emerging technology publication-title: Polym. Int. doi: 10.1002/pi.5947 – volume: 548 start-page: 117 year: 2018 ident: 10.1016/j.synthmet.2022.117191_bib13 article-title: Conductivity and antibacterial properties of wool fabrics finished by polyaniline/chitosan publication-title: Colloid Surf. A, Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.03.065 – year: 2015 ident: 10.1016/j.synthmet.2022.117191_bib2 article-title: Conducting polymers: polyaniline – volume: 6 start-page: 20895 year: 2021 ident: 10.1016/j.synthmet.2022.117191_bib16 article-title: Pressure-sensitive conducting and antibacterial materials obtained by in-situ dispersion coating of macroporous melamine sponges with polypyrrole publication-title: ACS Omega doi: 10.1021/acsomega.1c02330 – volume: 2 start-page: 1197 year: 2008 ident: 10.1016/j.synthmet.2022.117191_bib17 article-title: Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer publication-title: ACS Nano doi: 10.1021/nn800201n – volume: 71 start-page: 269 year: 2017 ident: 10.1016/j.synthmet.2022.117191_bib18 article-title: Conducting polymer hydrogels publication-title: Chem. Pap. doi: 10.1007/s11696-016-0072-9 – volume: 274 start-page: 489 year: 2004 ident: 10.1016/j.synthmet.2022.117191_bib15 article-title: On the origin of colloidal particles in the dispersion polymerization of aniline publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.02.053 – volume: 196 start-page: 1 year: 2011 ident: 10.1016/j.synthmet.2022.117191_bib3 article-title: Conducting-polymer-based supercapacitor devices and electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.084 – volume: 640 year: 2021 ident: 10.1016/j.synthmet.2022.117191_bib21 article-title: Electrochemical manufacture of graphene oxide/polyaniline conductive membrane for antibacterial application and electrically enhanced water permeability publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119844 – volume: 248 start-page: 413 year: 2002 ident: 10.1016/j.synthmet.2022.117191_bib14 article-title: In situ polymerized polyaniline films 4. Film formation in dispersion polymerization of aniline publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2001.8197 – volume: 12 start-page: 3016 year: 2020 ident: 10.1016/j.synthmet.2022.117191_bib11 article-title: Preparation and characterization of nonwoven fibrous biocomposites for footwear components publication-title: Polymers doi: 10.3390/polym12123016 |
SSID | ssj0001925 |
Score | 2.4426088 |
Snippet | Four different leathers and a nonwoven fibrous mat have been coated with a conducting polymer, polyaniline, in situ during the oxidation of aniline... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117191 |
SubjectTerms | Bending tests Conducting composites Conducting leather Polyaniline Sheet resistance |
Title | In-situ coating of leather with conducting polyaniline in colloidal dispersion mode |
URI | https://dx.doi.org/10.1016/j.synthmet.2022.117191 |
Volume | 291 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQCAEHBAPEc8qBa7a1SZvmiCamDcQugMStatNUdBrtxMqBC78duw8YEhIHjnVjtXLd-HPyxQa4TBCDahkpnprIcmmV5rEJBMd8CNGxp9y02i64m_rjR3nz5D2twbA9C0O0ymbur-f0arZuJP3Gmv1FlvXvB0JpXyntEi0oqPJ2KRV5ee_jm-aBCKaiMeJgTqNXTgnPesv3vHx-scSpdF3av3S083uAWgk6oz3YbdAiu6pfaB_WbN6BrWHbpK0DOyv1BDuwWfE5zfIA7ic5X2blGzNFRMRmVqRsXqM9RkuvKM-p0ivdWhTz9yjPCG-yLGfkGUWW4GOTjMqI03Iao4Y5h_A4un4YjnnTP4Eb4bgl91PfyshNjLAuSoJYBhYj8iBS1tMBIgtfiCQJ4kTJFHFRqhHsGc8EaEvla23EEaznRW6PgWFehn-vEwnHaBlglpQoJbQZpMZRsZf6J-C1RgtNU1ycelzMw5ZFNgtbY4dk7LA29gn0v_QWdXmNPzV0-03CH44SYgz4Q_f0H7pnsE1XNZPlHNbL1zd7gXikjLuVw3Vh42pyO55-Aknk364 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MwDLWmITQ4IBggxmcOXMPWpm2aI5pAG2y7DKTdqjZNRdFoJ9Yd9u-x1xYNCYkD16RWK8e1n5MXG-A2RgyqnFDyRIeGO0YqHmlfcMyHEB270k42xwXjiTd4dZ5m7qwB_fouDNEqK99f-vSNt65GupU2u4s07U57QipPSmUTLcinvH2HqlO5Tdi5Hz4PJt8OGUHMhsmIz3MS2Loo_H63XGfF24chWqVt0xGmpazfY9RW3Hk8hIMKMLL78puOoGGyNrT6dZ-2NuxvlRRsw-6G0qmXxzAdZnyZFium85C4zSxP2LwEfIx2X3E8o2KvNLXI5-swSwlysjRjZBx5GuNr45QqidOOGqOeOSfw-vjw0h_wqoUC18KyC-4lnnFCO9bC2DjiR45vMCj3Qmlc5SO48ISIYz-KpZMgNEoU4j3tah_VKT2ltDiFZpZn5gwYpmb4A1uhsLRyfEyUYimF0r1EWzJyE68Dbq20QFf1xanNxTyoiWTvQa3sgJQdlMruQPdbblFW2PhTQtVrEvywlQDDwB-y5_-QvYHW4GU8CkbDyfMF7NFMSWy5hGbxuTJXCE-K6Loyvy_9CeJf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+coating+of+leather+with+conducting+polyaniline+in+colloidal+dispersion+mode&rft.jtitle=Synthetic+metals&rft.au=Ngwabebhoh%2C+Fahanwi+Asabuwa&rft.au=Zandraa%2C+Oyunchimeg&rft.au=S%C3%A1ha%2C+Tom%C3%A1%C5%A1&rft.au=Stejskal%2C+Jaroslav&rft.date=2022-12-01&rft.issn=0379-6779&rft.volume=291&rft.spage=117191&rft_id=info:doi/10.1016%2Fj.synthmet.2022.117191&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_synthmet_2022_117191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-6779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-6779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-6779&client=summon |