Comprehensive heat transfer performance analysis of liquid metal based nanofluid laminar flow in circular tube
•Heat transfer of liquid metal nanofluid laminar flow in tube is studied.•Heat transfer performance of four kinds of fluids is compared.•Lower thermal conductivity nanoparticles cannot improve heat transfer performance.•High concentration carbon nanotubes nanoparticle is a better choice. Liquid meta...
Saved in:
Published in | International journal of mechanical sciences Vol. 175; p. 105530 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Heat transfer of liquid metal nanofluid laminar flow in tube is studied.•Heat transfer performance of four kinds of fluids is compared.•Lower thermal conductivity nanoparticles cannot improve heat transfer performance.•High concentration carbon nanotubes nanoparticle is a better choice.
Liquid metal based nanofluid is expected to be the ultimate coolant, however, till date a comprehensive heat transfer analysis of this fluid flow is still lacking. The paper presents the comprehensive analysis of heat transfer, entropy generation and performance evaluation of liquid metal nanofluid laminar flow in a circular tube subject to constant wall heat flux, in which the two-phase mixture model is adopted to simulate the nanofluid flow, and three types of nanoparticles (namely Alumina (Al2O3), Diamond (Diam), Carbon nanotubes (CNT)) is considered. The computational results show that, as nanoparticles volume fraction increases, the average heat transfer coefficient of Ga-Diam and Ga-CNT increases, but that of Ga-Al2O3 decreases. The corresponding total entropy generation of Ga-Diam and Ga-CNT decreases, and that of Ga-Al2O3 increases. Particularly, as Re = 1000 and αp=0.06 the average Nusselt number of nanofluids Ga-CNT, Ga-Diam and Ga-Al2O3 relative to that of pure liquid metal Ga are increased by 17.3%, 16.1% and −2.1%, respectively. In general, the liquid metal based nanofluid with high concentration carbon nanotubes nanoparticles is a better choice for heat transfer enhancement, however, from the view point of energy utilization efficiency low concentration nanoparticles is more suitable.
Variation of average Nusselt number with nanoparticles volume fraction [Display omitted] |
---|---|
AbstractList | •Heat transfer of liquid metal nanofluid laminar flow in tube is studied.•Heat transfer performance of four kinds of fluids is compared.•Lower thermal conductivity nanoparticles cannot improve heat transfer performance.•High concentration carbon nanotubes nanoparticle is a better choice.
Liquid metal based nanofluid is expected to be the ultimate coolant, however, till date a comprehensive heat transfer analysis of this fluid flow is still lacking. The paper presents the comprehensive analysis of heat transfer, entropy generation and performance evaluation of liquid metal nanofluid laminar flow in a circular tube subject to constant wall heat flux, in which the two-phase mixture model is adopted to simulate the nanofluid flow, and three types of nanoparticles (namely Alumina (Al2O3), Diamond (Diam), Carbon nanotubes (CNT)) is considered. The computational results show that, as nanoparticles volume fraction increases, the average heat transfer coefficient of Ga-Diam and Ga-CNT increases, but that of Ga-Al2O3 decreases. The corresponding total entropy generation of Ga-Diam and Ga-CNT decreases, and that of Ga-Al2O3 increases. Particularly, as Re = 1000 and αp=0.06 the average Nusselt number of nanofluids Ga-CNT, Ga-Diam and Ga-Al2O3 relative to that of pure liquid metal Ga are increased by 17.3%, 16.1% and −2.1%, respectively. In general, the liquid metal based nanofluid with high concentration carbon nanotubes nanoparticles is a better choice for heat transfer enhancement, however, from the view point of energy utilization efficiency low concentration nanoparticles is more suitable.
Variation of average Nusselt number with nanoparticles volume fraction [Display omitted] |
ArticleNumber | 105530 |
Author | Wang, Yang Huang, Hulin Zhou, Xiaoming Jiang, Yuqi Jiang, Yanni |
Author_xml | – sequence: 1 givenname: Xiaoming surname: Zhou fullname: Zhou, Xiaoming organization: College of Mechanical and Electrical Engineering, Hohai University, Jiangsu, China – sequence: 2 givenname: Yuqi surname: Jiang fullname: Jiang, Yuqi organization: Sichuan Branch, Commercial Aircraft Corporation of China, Chengdu, China – sequence: 3 givenname: Yang surname: Wang fullname: Wang, Yang organization: China Ship Development and Design Center, Wuhan, Hubei, China – sequence: 4 givenname: Yanni surname: Jiang fullname: Jiang, Yanni email: ynjiang@hhu.edu.cn organization: College of Mechanical and Electrical Engineering, Hohai University, Jiangsu, China – sequence: 5 givenname: Hulin surname: Huang fullname: Huang, Hulin organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
BookMark | eNqFkMtKAzEUhoNUsK2-guQFpuYyV3ChFG9QcKPrkElOaIZMUpNppW_vDNWNm64O_Od8P5xvgWY-eEDolpIVJbS861a260ElZVeMsCksCk4u0JzWVZMxWrIZmpNxk1U54VdokVJHCK1IwefIr0O_i7AFn-wB8BbkgIcofTIQ8Q6iCbGXXgGWXrpjsgkHg5392luNexikw61MoLGXPhg3pU721suIjQvf2HqsbFR7NwbDvoVrdGmkS3DzO5fo8_npY_2abd5f3taPm0xxyoasLBtleF4So2tF86KSpi60plISbhS0SlHWlI2uedsWhNZtrvOc5XWleMsKpvgSladeFUNKEYzYRdvLeBSUiMma6MSfNTFZEydrI3j_D1R2kIMNfrRi3Xn84YTD-NzBQhTjBYz-tI2gBqGDPVfxAxYskfg |
CitedBy_id | crossref_primary_10_1080_01430750_2021_1914160 crossref_primary_10_1016_j_compositesa_2022_107216 crossref_primary_10_1016_j_tsep_2024_103000 crossref_primary_10_1002_htj_22319 crossref_primary_10_1002_mma_7124 crossref_primary_10_1016_j_matpr_2022_08_347 crossref_primary_10_1016_j_ijmecsci_2022_107589 crossref_primary_10_1166_jon_2023_2095 crossref_primary_10_1080_00986445_2021_1978077 crossref_primary_10_1016_j_ijmecsci_2021_106270 crossref_primary_10_3389_fenrg_2021_727447 crossref_primary_10_11728_cjss2024_02_2023_0036 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125631 crossref_primary_10_1080_15567036_2023_2195826 crossref_primary_10_1016_j_applthermaleng_2024_123117 crossref_primary_10_1016_j_rser_2022_112453 crossref_primary_10_1080_01457632_2022_2034087 crossref_primary_10_1016_j_jfueco_2021_100034 crossref_primary_10_1016_j_applthermaleng_2024_123551 crossref_primary_10_1088_1742_6596_2748_1_012011 crossref_primary_10_1016_j_ijmecsci_2022_107437 crossref_primary_10_1016_j_ijmecsci_2022_107657 crossref_primary_10_1016_j_ijthermalsci_2025_109787 crossref_primary_10_1016_j_aej_2021_06_035 crossref_primary_10_1002_mma_6728 crossref_primary_10_1016_j_ijmecsci_2023_108144 |
Cites_doi | 10.1021/i160003a005 10.1016/j.energy.2012.06.009 10.1016/j.ijheatfluidflow.2006.04.006 10.1016/j.jtice.2016.05.035 10.1016/j.molliq.2018.05.124 10.1186/s11671-017-2170-1 10.1016/0360-5442(80)90091-2 10.1063/1.1700493 10.1016/j.spmi.2003.09.012 10.1016/j.ijheatmasstransfer.2005.01.029 10.1016/j.physleta.2006.09.041 10.1134/S0869864319030028 10.1016/j.enconman.2013.09.049 10.1016/j.applthermaleng.2006.03.014 10.1080/08916159808946559 10.1016/j.ijheatmasstransfer.2010.06.016 10.1115/1.4006662 10.1016/j.enconman.2010.10.002 10.1115/1.1532008 10.1115/1.4039685 10.1108/MMMS-07-2018-0133 10.1016/j.molliq.2017.11.123 10.1016/j.icheatmasstransfer.2012.06.009 10.1016/S1164-0235(02)00082-1 10.1016/j.spmi.2003.09.011 10.1016/j.ijthermalsci.2008.01.001 10.1108/MMMS-11-2018-0190 10.1016/0017-9310(78)90064-9 10.1016/j.applthermaleng.2006.10.034 10.1016/j.ijthermalsci.2012.03.009 10.1016/j.applthermaleng.2009.06.019 10.1186/1556-276X-6-252 10.1016/j.icheatmasstransfer.2009.10.003 10.1007/s10973-019-08985-0 10.1016/0360-5442(96)00062-X 10.1016/j.ijheatfluidflow.2005.02.004 10.1016/j.icheatmasstransfer.2011.03.024 10.1016/S0065-2717(08)70172-2 10.1016/S0360-5442(98)00010-3 10.1016/j.icheatmasstransfer.2019.05.003 10.1002/htj.21375 10.1016/j.expthermflusci.2012.04.017 10.1016/j.energy.2014.09.025 10.1016/j.ijheatmasstransfer.2015.11.068 10.1016/j.icheatmasstransfer.2017.12.006 10.1108/09615530610649717 10.1016/j.icheatmasstransfer.2012.04.003 10.1016/j.applthermaleng.2006.02.036 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijmecsci.2020.105530 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2162 |
ExternalDocumentID | 10_1016_j_ijmecsci_2020_105530 S0020740319346685 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SST SSZ T5K TN5 UNMZH XPP XSW ZMT ~G- 29J 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c312t-669cf3460fd8c1457af85dd1aa03fcebcc12969d83bb5018b4d442487c3b252c3 |
IEDL.DBID | .~1 |
ISSN | 0020-7403 |
IngestDate | Tue Jul 01 03:06:45 EDT 2025 Thu Apr 24 23:02:46 EDT 2025 Fri Feb 23 02:47:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticles Liquid metal nanofluid Numerical simulation Heat transfer Two-phase mixture model Entropy generation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-669cf3460fd8c1457af85dd1aa03fcebcc12969d83bb5018b4d442487c3b252c3 |
ParticipantIDs | crossref_primary_10_1016_j_ijmecsci_2020_105530 crossref_citationtrail_10_1016_j_ijmecsci_2020_105530 elsevier_sciencedirect_doi_10_1016_j_ijmecsci_2020_105530 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of mechanical sciences |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Schiller, Naumann (bib0048) 1935; 77 Brinkman (bib0050) 1952; 20 Mahanthesh, Lorenzini, Oudina, Animasaun (bib0025) 2019 Pak, Cho (bib0006) 1998; 11 Bejan (bib0029) 1978; 21 Bejan (bib0028) 1980; 5 Mebarek-Oudina, Bessaïh (bib0021) 2019; 26 Sahin (bib0032) 2002; 2 Maiga, Palm, Nguyen, Roy, Galanis (bib0011) 2005; 26 Abbasian Arani, Amani (bib0009) 2012; 42 Xuan, Li (bib0007) 2003; 125 Behzadmehr, Saffar-Avval, Galanis (bib0018) 2007; 28 Bianco, Manca, Nardini (bib0051) 2014; 77 Palm, Roy, Nguyen (bib0016) 2006; 26 Qi, Wang, Ma, Guo (bib0043) 2017; 12 Zhou, Jiang, Li (bib0045) 2019; 106 Moghaddami, Mohammadzade, Esfehani (bib0033) 2011; 52 Maiga, Nguyen, Galanis, Roy (bib0010) 2004; 35 Qi, Wan, Wang, Han (bib0042) 2017 Nazari, Ghasempour, Ahmadi, Heydarian, Shafii (bib0001) 2018; 91 Sahin (bib0031) 1998; 23 Singh, Anoop, Sundararajan, Das (bib0034) 2010; 53 Jang, Choi (bib0015) 2006; 26 Hamilton, Crosser (bib0049) 1962; 1 Maiga, Cong Tam, Galanis, Roy, Mare, Coqueux (bib0012) 2006; 16 Zhou, Li, Cheng, Huai (bib0046) 2018; 140 Choi (bib0005) 1995; 231 Kalidasan, Rajesh Kanna (bib0054) 2016; 65 Mahian, Mahmud, Heris (bib0038) 2012; 134 Bianco, Nardini, Manca (bib0036) 2014; 77 Raza, Mebarek-Oudina, Chamkha (bib0023) 2019; 15 Koo, Kleinstreuer (bib0014) 2005; 48 Leong, Saidur, Mahlia (bib0040) 2012; 39 Bianco, Manca, Nardini (bib0037) 2013; 2013 Manninen, Taivassalo, Kallio (bib0047) 1996; 288 Akbarinia, Behzadmehr (bib0017) 2007; 27 Ansys Incorporated. Ansys-fluent 12.0 user manual. 2009. Namburu, Das, Tanguturi, Vajjha (bib0019) 2009; 48 Raza, Farooq, Mebarek-Oudina, Mahanthesh (bib0024) 2019; 15 Roy, Nguyen, Lajoie (bib0013) 2004; 35 Ma, Liu (bib0004) 2007; 361 Leong, Saidur, Khairulmaini, Michael, Kamyar (bib0041) 2012; 39 Ahmadi, Mirlohi, Nazari, Ghasempour (bib0002) 2018; 265 Qi, Liang, Rao (bib0044) 2016; 94 Fotukian, Nasr Esfahany (bib0008) 2010; 37 Roy, Gherasim, Nadeau, Poitras, Nguyen (bib0052) 2012; 58 Mahian, Mahmud, Heris (bib0039) 2012; 44 Ijaz, Zeeshan, Bhatti, Ellahi (bib0003) 2018; 250 Mohammed, Gunnasegaran, Shuaib (bib0053) 2011; 38 Bianco, Nardini, Manca (bib0035) 2011; 6 F. Mebarek‐Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, 2019,48(1):135–47. Bejan (bib0027) 1982 Sahin (bib0030) 1996; 21 Bianco, Chiacchio, Manca, Nardini (bib0020) 2009; 29 Bejan (bib0026) 1982; 15 Leong (10.1016/j.ijmecsci.2020.105530_bib0040) 2012; 39 Ahmadi (10.1016/j.ijmecsci.2020.105530_bib0002) 2018; 265 Maiga (10.1016/j.ijmecsci.2020.105530_bib0011) 2005; 26 Bejan (10.1016/j.ijmecsci.2020.105530_bib0028) 1980; 5 Choi (10.1016/j.ijmecsci.2020.105530_bib0005) 1995; 231 Moghaddami (10.1016/j.ijmecsci.2020.105530_bib0033) 2011; 52 Leong (10.1016/j.ijmecsci.2020.105530_bib0041) 2012; 39 Mahian (10.1016/j.ijmecsci.2020.105530_bib0039) 2012; 44 Roy (10.1016/j.ijmecsci.2020.105530_bib0052) 2012; 58 Zhou (10.1016/j.ijmecsci.2020.105530_bib0045) 2019; 106 Brinkman (10.1016/j.ijmecsci.2020.105530_bib0050) 1952; 20 Sahin (10.1016/j.ijmecsci.2020.105530_bib0031) 1998; 23 Qi (10.1016/j.ijmecsci.2020.105530_bib0043) 2017; 12 Bianco (10.1016/j.ijmecsci.2020.105530_bib0020) 2009; 29 Jang (10.1016/j.ijmecsci.2020.105530_bib0015) 2006; 26 Akbarinia (10.1016/j.ijmecsci.2020.105530_bib0017) 2007; 27 Bianco (10.1016/j.ijmecsci.2020.105530_bib0051) 2014; 77 10.1016/j.ijmecsci.2020.105530_bib0022 Bianco (10.1016/j.ijmecsci.2020.105530_bib0037) 2013; 2013 Bianco (10.1016/j.ijmecsci.2020.105530_bib0035) 2011; 6 Qi (10.1016/j.ijmecsci.2020.105530_bib0044) 2016; 94 Fotukian (10.1016/j.ijmecsci.2020.105530_bib0008) 2010; 37 Raza (10.1016/j.ijmecsci.2020.105530_bib0024) 2019; 15 Bejan (10.1016/j.ijmecsci.2020.105530_bib0027) 1982 Kalidasan (10.1016/j.ijmecsci.2020.105530_bib0054) 2016; 65 Xuan (10.1016/j.ijmecsci.2020.105530_bib0007) 2003; 125 Bianco (10.1016/j.ijmecsci.2020.105530_bib0036) 2014; 77 Roy (10.1016/j.ijmecsci.2020.105530_bib0013) 2004; 35 Maiga (10.1016/j.ijmecsci.2020.105530_bib0010) 2004; 35 Pak (10.1016/j.ijmecsci.2020.105530_bib0006) 1998; 11 Qi (10.1016/j.ijmecsci.2020.105530_bib0042) 2017 Mahian (10.1016/j.ijmecsci.2020.105530_bib0038) 2012; 134 Schiller (10.1016/j.ijmecsci.2020.105530_bib0048) 1935; 77 Raza (10.1016/j.ijmecsci.2020.105530_bib0023) 2019; 15 Hamilton (10.1016/j.ijmecsci.2020.105530_bib0049) 1962; 1 Nazari (10.1016/j.ijmecsci.2020.105530_bib0001) 2018; 91 Bejan (10.1016/j.ijmecsci.2020.105530_bib0026) 1982; 15 10.1016/j.ijmecsci.2020.105530_bib0055 Koo (10.1016/j.ijmecsci.2020.105530_bib0014) 2005; 48 Palm (10.1016/j.ijmecsci.2020.105530_bib0016) 2006; 26 Mohammed (10.1016/j.ijmecsci.2020.105530_bib0053) 2011; 38 Ijaz (10.1016/j.ijmecsci.2020.105530_bib0003) 2018; 250 Behzadmehr (10.1016/j.ijmecsci.2020.105530_bib0018) 2007; 28 Maiga (10.1016/j.ijmecsci.2020.105530_bib0012) 2006; 16 Zhou (10.1016/j.ijmecsci.2020.105530_bib0046) 2018; 140 Singh (10.1016/j.ijmecsci.2020.105530_bib0034) 2010; 53 Mahanthesh (10.1016/j.ijmecsci.2020.105530_bib0025) 2019 Namburu (10.1016/j.ijmecsci.2020.105530_bib0019) 2009; 48 Manninen (10.1016/j.ijmecsci.2020.105530_bib0047) 1996; 288 Ma (10.1016/j.ijmecsci.2020.105530_bib0004) 2007; 361 Abbasian Arani (10.1016/j.ijmecsci.2020.105530_bib0009) 2012; 42 Sahin (10.1016/j.ijmecsci.2020.105530_bib0032) 2002; 2 Bejan (10.1016/j.ijmecsci.2020.105530_bib0029) 1978; 21 Mebarek-Oudina (10.1016/j.ijmecsci.2020.105530_bib0021) 2019; 26 Sahin (10.1016/j.ijmecsci.2020.105530_bib0030) 1996; 21 |
References_xml | – volume: 42 start-page: 107 year: 2012 end-page: 115 ident: bib0009 article-title: Experimental study on the effect of TiO publication-title: Exp Therm Fluid Sci – volume: 21 start-page: 1179 year: 1996 end-page: 1187 ident: bib0030 article-title: Thermodynamics of laminar viscous flow through a duct subjected to constant heat flux publication-title: Energy – volume: 288 start-page: 9 year: 1996 end-page: 18 ident: bib0047 publication-title: On the mixture model for multiphase flow – volume: 21 start-page: 655 year: 1978 end-page: 658 ident: bib0029 article-title: General criterion for rating heat-exchanger performance publication-title: Int J Heat Mass Transf – volume: 26 start-page: 2209 year: 2006 end-page: 2218 ident: bib0016 article-title: Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties publication-title: Appl Therm Eng – volume: 2013 start-page: 1 year: 2013 end-page: 12. ident: bib0037 article-title: Second law analysis of Al publication-title: Adv Mech Eng – volume: 26 start-page: 530 year: 2005 end-page: 546 ident: bib0011 article-title: Heat transfer enhancement by using nanofluids in forced convection flows publication-title: Int J Heat Fluid Flow – volume: 11 start-page: 151 year: 1998 end-page: 170 ident: bib0006 article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles publication-title: Exp Heat Transf – volume: 38 start-page: 767 year: 2011 end-page: 773 ident: bib0053 article-title: The impact of various nanofluid types on triangular microchannels heat sink cooling performance publication-title: Int Commun Heat Mass Transf – volume: 5 start-page: 721 year: 1980 end-page: 732 ident: bib0028 article-title: Second law analysis in heat transfer publication-title: Energy – reference: Ansys Incorporated. Ansys-fluent 12.0 user manual. 2009. – volume: 58 start-page: 120 year: 2012 end-page: 129 ident: bib0052 article-title: Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows publication-title: Int J Therm Sci – volume: 12 start-page: 396 year: 2017 end-page: 410 ident: bib0043 article-title: Experimental research on stability and natural convection of TiO publication-title: Nanoscale Res Lett – volume: 361 start-page: 252 year: 2007 end-page: 256 ident: bib0004 article-title: Liquid metal nanofluid as ultimate coolant publication-title: Phys Lett A – year: 1982 ident: bib0027 article-title: Entropy generation through heat and fluid flow – volume: 231 start-page: 99 year: 1995 end-page: 103 ident: bib0005 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: ASME FED – volume: 39 start-page: 1169 year: 2012 end-page: 1175 ident: bib0040 article-title: Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature publication-title: Int Commun Heat Mass Transf – volume: 37 start-page: 214 year: 2010 end-page: 219 ident: bib0008 article-title: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/Water nanofluid inside a circular tube publication-title: Int Commun Heat Mass Transf – volume: 16 start-page: 275 year: 2006 end-page: 292 ident: bib0012 article-title: Heat transfer enhancement in turbulent tube flow using Al publication-title: Int J Numer Methods Heat Fluid Flow – volume: 1 start-page: 187 year: 1962 end-page: 191 ident: bib0049 article-title: Thermal conductivity of heterogeneous two component systems publication-title: Ind Eng Chem Fundam – volume: 77 start-page: 318 year: 1935 end-page: 320 ident: bib0048 article-title: A drag coefficient correlation publication-title: Z Ver.Deutsch Ing – volume: 26 start-page: 2457 year: 2006 end-page: 2463 ident: bib0015 article-title: Cooling performance of a microchannel heat sink with nanofluids publication-title: Appl Therm Eng – volume: 15 start-page: 1 year: 1982 end-page: 58 ident: bib0026 article-title: Second-Law analysis in heat transfer and thermal design publication-title: Adv. Heat Transfer – volume: 77 start-page: 306 year: 2014 end-page: 314 ident: bib0036 article-title: Entropy generation analysis of turbulent convection flow of Al publication-title: Energy Convers Manag – volume: 94 start-page: 316 year: 2016 end-page: 326 ident: bib0044 article-title: Study on the flow and heat transfer of liquid metal base nanofluid with different nanoparticle radiuses based on two-phase lattice Boltzmann method publication-title: Int J Heat Mass Transf – volume: 35 start-page: 497 year: 2004 end-page: 511 ident: bib0013 article-title: Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids publication-title: Superlattices Microstruct – volume: 53 start-page: 4757 year: 2010 end-page: 4767 ident: bib0034 article-title: Entropy generation due to flow and heat transfer in nanofluids publication-title: Int J Heat Mass Transf – volume: 35 start-page: 543 year: 2004 end-page: 557 ident: bib0010 article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube publication-title: Superlattices Microstruct – volume: 28 start-page: 211 year: 2007 end-page: 219 ident: bib0018 article-title: Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach publication-title: Int J Heat Fluid Flow – reference: F. Mebarek‐Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, 2019,48(1):135–47. – volume: 39 start-page: 838 year: 2012 end-page: 843 ident: bib0041 article-title: Heat transfer and entropy analysis of three different types of heat exchangers operated with nanofluids publication-title: Int Commun Heat Mass Transf – volume: 140 start-page: 1 year: 2018 end-page: 9 ident: bib0046 article-title: Numerical study of liquid metal based nanofluid forced convection in circular tubes publication-title: ASME J Heat Transf – start-page: 1 year: 2017 end-page: 18 ident: bib0042 article-title: Study on stabilities, thermophysical properties and natural convective heat transfer characteristics of TiO publication-title: Indian J Phys – volume: 29 start-page: 3632 year: 2009 end-page: 3642 ident: bib0020 article-title: Numerical investigation of nanofluids forced convection in circular tubes publication-title: Appl Therm Eng – volume: 250 start-page: 80 year: 2018 end-page: 87 ident: bib0003 article-title: Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel publication-title: J Mol Liq – volume: 15 start-page: 737 year: 2019 end-page: 757 ident: bib0023 article-title: Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects publication-title: Multidiscip Model Mater Struct – volume: 106 start-page: 46 year: 2019 end-page: 54 ident: bib0045 article-title: Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing liquid metal nanofluid publication-title: Int Commun Heat Mass Transf – volume: 44 start-page: 438 year: 2012 end-page: 446 ident: bib0039 article-title: Analysis of entropy generation between corotating cylinders using nanofluids publication-title: Energy – volume: 134 year: 2012 ident: bib0038 article-title: Effect of uncertainties in physical properties on entropy generation between two rotating cylinders with nanofluids publication-title: J Heat Transf – volume: 2 start-page: 314 year: 2002 end-page: 321 ident: bib0032 article-title: Entropy generation and pumping power in a turbulent fluid flow through a smooth pipe subjected to constant heat flux publication-title: Exergy-Int J – volume: 48 start-page: 2652 year: 2005 end-page: 2661 ident: bib0014 article-title: Laminar nanofluid flow in micro-heat sinks publication-title: Int J Heat Mass Transf – volume: 6 start-page: 1 year: 2011 end-page: 12 ident: bib0035 article-title: Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes publication-title: Nanoscale Res Lett – year: 2019 ident: bib0025 article-title: Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces publication-title: J Therm Anal Calorim – volume: 15 start-page: 913 year: 2019 end-page: 931 ident: bib0024 article-title: Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet: numerical and statistical analysis publication-title: Multidiscip Model Mater Struct – volume: 91 start-page: 90 year: 2018 end-page: 94 ident: bib0001 article-title: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe publication-title: Int Commun Heat Mass Transf – volume: 77 start-page: 403 year: 2014 end-page: 413 ident: bib0051 article-title: Performance analysis of turbulent convection heat transfer of Al publication-title: Energy – volume: 27 start-page: 1327 year: 2007 end-page: 1337 ident: bib0017 article-title: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes publication-title: Appl Therm Eng – volume: 23 start-page: 465 year: 1998 end-page: 473 ident: bib0031 article-title: Irreversibilities in various duct geometries with constant wall heat flux and laminar flow publication-title: Energy – volume: 52 start-page: 1397 year: 2011 end-page: 1405 ident: bib0033 article-title: Second law analysis of nanofluid flow publication-title: Energy Convers Manag – volume: 265 start-page: 181 year: 2018 end-page: 188 ident: bib0002 article-title: A review of thermal conductivity of various nanofluids publication-title: J Mol Liq – volume: 20 start-page: 571 year: 1952 ident: bib0050 article-title: The viscosity of concentrated suspensions and solutions publication-title: J Chem Phys – volume: 125 start-page: 151 year: 2003 end-page: 155 ident: bib0007 article-title: Investigation on convective heat transfer and flow features of nanofluids publication-title: J Heat Transf – volume: 26 start-page: 325 year: 2019 end-page: 334 ident: bib0021 article-title: Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources publication-title: Thermophys Aeromech – volume: 48 start-page: 290 year: 2009 end-page: 302 ident: bib0019 article-title: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties publication-title: Int J Therm Sci – volume: 65 start-page: 331 year: 2016 end-page: 340 ident: bib0054 article-title: Effective utilization of MWCNT-water nanofluid for the enhancement of laminar natural convection inside the open square enclosure publication-title: J Taiwan Inst Chem Eng – volume: 1 start-page: 187 issue: 3 year: 1962 ident: 10.1016/j.ijmecsci.2020.105530_bib0049 article-title: Thermal conductivity of heterogeneous two component systems publication-title: Ind Eng Chem Fundam doi: 10.1021/i160003a005 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.ijmecsci.2020.105530_bib0037 article-title: Second law analysis of Al2O3-water nanofluid turbulent forced convection in a circular cross section tube with constant wall temperature publication-title: Adv Mech Eng – volume: 44 start-page: 438 year: 2012 ident: 10.1016/j.ijmecsci.2020.105530_bib0039 article-title: Analysis of entropy generation between corotating cylinders using nanofluids publication-title: Energy doi: 10.1016/j.energy.2012.06.009 – volume: 28 start-page: 211 year: 2007 ident: 10.1016/j.ijmecsci.2020.105530_bib0018 article-title: Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2006.04.006 – volume: 65 start-page: 331 year: 2016 ident: 10.1016/j.ijmecsci.2020.105530_bib0054 article-title: Effective utilization of MWCNT-water nanofluid for the enhancement of laminar natural convection inside the open square enclosure publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2016.05.035 – volume: 265 start-page: 181 year: 2018 ident: 10.1016/j.ijmecsci.2020.105530_bib0002 article-title: A review of thermal conductivity of various nanofluids publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.05.124 – volume: 12 start-page: 396 issue: 1 year: 2017 ident: 10.1016/j.ijmecsci.2020.105530_bib0043 article-title: Experimental research on stability and natural convection of TiO2-water nanofluid in enclosures with different rotation angles publication-title: Nanoscale Res Lett doi: 10.1186/s11671-017-2170-1 – volume: 5 start-page: 721 year: 1980 ident: 10.1016/j.ijmecsci.2020.105530_bib0028 article-title: Second law analysis in heat transfer publication-title: Energy doi: 10.1016/0360-5442(80)90091-2 – volume: 20 start-page: 571 issue: 4 year: 1952 ident: 10.1016/j.ijmecsci.2020.105530_bib0050 article-title: The viscosity of concentrated suspensions and solutions publication-title: J Chem Phys doi: 10.1063/1.1700493 – volume: 35 start-page: 543 year: 2004 ident: 10.1016/j.ijmecsci.2020.105530_bib0010 article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube publication-title: Superlattices Microstruct doi: 10.1016/j.spmi.2003.09.012 – ident: 10.1016/j.ijmecsci.2020.105530_bib0055 – volume: 48 start-page: 2652 year: 2005 ident: 10.1016/j.ijmecsci.2020.105530_bib0014 article-title: Laminar nanofluid flow in micro-heat sinks publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2005.01.029 – volume: 361 start-page: 252 year: 2007 ident: 10.1016/j.ijmecsci.2020.105530_bib0004 article-title: Liquid metal nanofluid as ultimate coolant publication-title: Phys Lett A doi: 10.1016/j.physleta.2006.09.041 – year: 1982 ident: 10.1016/j.ijmecsci.2020.105530_bib0027 – volume: 26 start-page: 325 year: 2019 ident: 10.1016/j.ijmecsci.2020.105530_bib0021 article-title: Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources publication-title: Thermophys Aeromech doi: 10.1134/S0869864319030028 – volume: 77 start-page: 306 year: 2014 ident: 10.1016/j.ijmecsci.2020.105530_bib0036 article-title: Entropy generation analysis of turbulent convection flow of Al2O3-water nanofluid in a circular tube subjected to constant wall heat flux publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.09.049 – volume: 26 start-page: 2209 year: 2006 ident: 10.1016/j.ijmecsci.2020.105530_bib0016 article-title: Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.03.014 – volume: 11 start-page: 151 issue: 2 year: 1998 ident: 10.1016/j.ijmecsci.2020.105530_bib0006 article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles publication-title: Exp Heat Transf doi: 10.1080/08916159808946559 – volume: 53 start-page: 4757 year: 2010 ident: 10.1016/j.ijmecsci.2020.105530_bib0034 article-title: Entropy generation due to flow and heat transfer in nanofluids publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.06.016 – volume: 134 issue: 10 year: 2012 ident: 10.1016/j.ijmecsci.2020.105530_bib0038 article-title: Effect of uncertainties in physical properties on entropy generation between two rotating cylinders with nanofluids publication-title: J Heat Transf doi: 10.1115/1.4006662 – volume: 77 start-page: 318 year: 1935 ident: 10.1016/j.ijmecsci.2020.105530_bib0048 article-title: A drag coefficient correlation publication-title: Z Ver.Deutsch Ing – start-page: 1 year: 2017 ident: 10.1016/j.ijmecsci.2020.105530_bib0042 article-title: Study on stabilities, thermophysical properties and natural convective heat transfer characteristics of TiO2-water nanofluids publication-title: Indian J Phys – volume: 52 start-page: 1397 year: 2011 ident: 10.1016/j.ijmecsci.2020.105530_bib0033 article-title: Second law analysis of nanofluid flow publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.10.002 – volume: 125 start-page: 151 issue: 1 year: 2003 ident: 10.1016/j.ijmecsci.2020.105530_bib0007 article-title: Investigation on convective heat transfer and flow features of nanofluids publication-title: J Heat Transf doi: 10.1115/1.1532008 – volume: 140 start-page: 1 year: 2018 ident: 10.1016/j.ijmecsci.2020.105530_bib0046 article-title: Numerical study of liquid metal based nanofluid forced convection in circular tubes publication-title: ASME J Heat Transf doi: 10.1115/1.4039685 – volume: 15 start-page: 737 issue: 4 year: 2019 ident: 10.1016/j.ijmecsci.2020.105530_bib0023 article-title: Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects publication-title: Multidiscip Model Mater Struct doi: 10.1108/MMMS-07-2018-0133 – volume: 250 start-page: 80 year: 2018 ident: 10.1016/j.ijmecsci.2020.105530_bib0003 article-title: Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.11.123 – volume: 39 start-page: 1169 year: 2012 ident: 10.1016/j.ijmecsci.2020.105530_bib0040 article-title: Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2012.06.009 – volume: 2 start-page: 314 year: 2002 ident: 10.1016/j.ijmecsci.2020.105530_bib0032 article-title: Entropy generation and pumping power in a turbulent fluid flow through a smooth pipe subjected to constant heat flux publication-title: Exergy-Int J doi: 10.1016/S1164-0235(02)00082-1 – volume: 35 start-page: 497 year: 2004 ident: 10.1016/j.ijmecsci.2020.105530_bib0013 article-title: Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids publication-title: Superlattices Microstruct doi: 10.1016/j.spmi.2003.09.011 – volume: 48 start-page: 290 issue: 2 year: 2009 ident: 10.1016/j.ijmecsci.2020.105530_bib0019 article-title: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2008.01.001 – volume: 15 start-page: 913 issue: 5 year: 2019 ident: 10.1016/j.ijmecsci.2020.105530_bib0024 article-title: Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet: numerical and statistical analysis publication-title: Multidiscip Model Mater Struct doi: 10.1108/MMMS-11-2018-0190 – volume: 21 start-page: 655 year: 1978 ident: 10.1016/j.ijmecsci.2020.105530_bib0029 article-title: General criterion for rating heat-exchanger performance publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(78)90064-9 – volume: 27 start-page: 1327 year: 2007 ident: 10.1016/j.ijmecsci.2020.105530_bib0017 article-title: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.10.034 – volume: 58 start-page: 120 year: 2012 ident: 10.1016/j.ijmecsci.2020.105530_bib0052 article-title: Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2012.03.009 – volume: 288 start-page: 9 year: 1996 ident: 10.1016/j.ijmecsci.2020.105530_bib0047 – volume: 29 start-page: 3632 year: 2009 ident: 10.1016/j.ijmecsci.2020.105530_bib0020 article-title: Numerical investigation of nanofluids forced convection in circular tubes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2009.06.019 – volume: 6 start-page: 1 year: 2011 ident: 10.1016/j.ijmecsci.2020.105530_bib0035 article-title: Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-6-252 – volume: 37 start-page: 214 year: 2010 ident: 10.1016/j.ijmecsci.2020.105530_bib0008 article-title: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/Water nanofluid inside a circular tube publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2009.10.003 – year: 2019 ident: 10.1016/j.ijmecsci.2020.105530_bib0025 article-title: Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08985-0 – volume: 21 start-page: 1179 issue: 12 year: 1996 ident: 10.1016/j.ijmecsci.2020.105530_bib0030 article-title: Thermodynamics of laminar viscous flow through a duct subjected to constant heat flux publication-title: Energy doi: 10.1016/0360-5442(96)00062-X – volume: 26 start-page: 530 issue: 4 year: 2005 ident: 10.1016/j.ijmecsci.2020.105530_bib0011 article-title: Heat transfer enhancement by using nanofluids in forced convection flows publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2005.02.004 – volume: 38 start-page: 767 year: 2011 ident: 10.1016/j.ijmecsci.2020.105530_bib0053 article-title: The impact of various nanofluid types on triangular microchannels heat sink cooling performance publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2011.03.024 – volume: 15 start-page: 1 year: 1982 ident: 10.1016/j.ijmecsci.2020.105530_bib0026 article-title: Second-Law analysis in heat transfer and thermal design publication-title: Adv. Heat Transfer doi: 10.1016/S0065-2717(08)70172-2 – volume: 23 start-page: 465 issue: 6 year: 1998 ident: 10.1016/j.ijmecsci.2020.105530_bib0031 article-title: Irreversibilities in various duct geometries with constant wall heat flux and laminar flow publication-title: Energy doi: 10.1016/S0360-5442(98)00010-3 – volume: 106 start-page: 46 year: 2019 ident: 10.1016/j.ijmecsci.2020.105530_bib0045 article-title: Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing liquid metal nanofluid publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2019.05.003 – ident: 10.1016/j.ijmecsci.2020.105530_bib0022 doi: 10.1002/htj.21375 – volume: 42 start-page: 107 year: 2012 ident: 10.1016/j.ijmecsci.2020.105530_bib0009 article-title: Experimental study on the effect of TiO2–water nanofluid on heat transfer and pressure drop publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2012.04.017 – volume: 231 start-page: 99 year: 1995 ident: 10.1016/j.ijmecsci.2020.105530_bib0005 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: ASME FED – volume: 77 start-page: 403 year: 2014 ident: 10.1016/j.ijmecsci.2020.105530_bib0051 article-title: Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature publication-title: Energy doi: 10.1016/j.energy.2014.09.025 – volume: 94 start-page: 316 year: 2016 ident: 10.1016/j.ijmecsci.2020.105530_bib0044 article-title: Study on the flow and heat transfer of liquid metal base nanofluid with different nanoparticle radiuses based on two-phase lattice Boltzmann method publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.11.068 – volume: 91 start-page: 90 year: 2018 ident: 10.1016/j.ijmecsci.2020.105530_bib0001 article-title: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2017.12.006 – volume: 16 start-page: 275 issue: 3 year: 2006 ident: 10.1016/j.ijmecsci.2020.105530_bib0012 article-title: Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension publication-title: Int J Numer Methods Heat Fluid Flow doi: 10.1108/09615530610649717 – volume: 39 start-page: 838 year: 2012 ident: 10.1016/j.ijmecsci.2020.105530_bib0041 article-title: Heat transfer and entropy analysis of three different types of heat exchangers operated with nanofluids publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2012.04.003 – volume: 26 start-page: 2457 year: 2006 ident: 10.1016/j.ijmecsci.2020.105530_bib0015 article-title: Cooling performance of a microchannel heat sink with nanofluids publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.02.036 |
SSID | ssj0017053 |
Score | 2.4081736 |
Snippet | •Heat transfer of liquid metal nanofluid laminar flow in tube is studied.•Heat transfer performance of four kinds of fluids is compared.•Lower thermal... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105530 |
SubjectTerms | Entropy generation Heat transfer Liquid metal nanofluid Nanoparticles Numerical simulation Two-phase mixture model |
Title | Comprehensive heat transfer performance analysis of liquid metal based nanofluid laminar flow in circular tube |
URI | https://dx.doi.org/10.1016/j.ijmecsci.2020.105530 |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9sQevaZPs5nUsxVIVe7LQW8jO7mJKmtaQ4s3f7k4etYLQg8csmRAms_PNkO-bJeRBgRuYQhisIEyExQ1imi0VJRZn4AKXiRMFqHd-nfqTGX-ee_MOGbVaGKRVNrm_zulVtm5WBo03B-s0RY2va_APVTiM-36IQnPOA4zy_teW5oHTYuq_zKZNwrt3VMKLfrpYKjAPN32iWx156yEb-i-A2gGd8Qk5bqpFOqxf6JR0VH5GjnZmCJ6THHd0od5rIjrF3ErLqhpVBV3_yAJo0owfoStNs_Rjk0q6VKb0pghkkuZJvtIZrpoYQZEu1dnqk6Y5hbSoyKq03Ah1QWbjx7fRxGoOUbCAOW5p-X4E2jjI1jIEh3tBokNPSidJbKZBCQCD-H4kQyYEDvcTXHLumjYGmHA9F9gl6earXF0RykMVOZLZgCcWm25WeNpnYEvFJFfatnvEaz0XQzNhHA-6yOKWSraIW4_H6PG49niPDLZ263rGxl6LqP0w8a9oiQ0Q7LG9_oftDTnEq5oqdku6ZbFRd6YoKcV9FXX35GD49DKZfgPqFuM4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswEB1BWQALxOvq8vaCbWgS23ksEQKVV1cgsYvisa2bqqS9VSp-H0_jQJGQWLB1NFY0sefMKHPOAJwbjFOXCGOQZqUKhENMd6XyMhAcYxS6jPKU-M6Pw2TwLO5e5MsKXHVcGGqr9LG_jemLaO1X-t6b_WlVEcc3dvhHLBwukiSTq7BG6lSyB2uXt_eD4cfPhDT0YpSuUiKDJaLw6KIavRp0-7tSMV5MvZXUEP0dRi3hzs02bPmEkV2277QDK6behc0lGcE9qOlSz8y_thedUXhlzSIhNTM2_WQGsNIrkLCJZePq_7zS7NW47JsRlmlWl_XEjmnVHRPi6TI7nryxqmZYzRb9qqyZK7MPzzfXT1eDwM9RCJBHcRMkSY7W-Si0OsNIyLS0mdQ6KsuQWzQK0YF-kuuMK0X6fkpoIWJXySBXsYyR_4FePanNX2AiM3mkeYg0tNgVtErahGOoDdfC2DA8ANl5rkAvMk6zLsZF1002KjqPF-TxovX4AfQ_7KatzMaPFnn3YYovB6ZwWPCD7eEvbM9gffD0-FA83A7vj2CDnrSdY8fQa2Zzc-JylEad-jP4DrZu5ek |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+heat+transfer+performance+analysis+of+liquid+metal+based+nanofluid+laminar+flow+in+circular+tube&rft.jtitle=International+journal+of+mechanical+sciences&rft.au=Zhou%2C+Xiaoming&rft.au=Jiang%2C+Yuqi&rft.au=Wang%2C+Yang&rft.au=Jiang%2C+Yanni&rft.date=2020-06-01&rft.issn=0020-7403&rft.volume=175&rft.spage=105530&rft_id=info:doi/10.1016%2Fj.ijmecsci.2020.105530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmecsci_2020_105530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7403&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7403&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7403&client=summon |