Comprehensive heat transfer performance analysis of liquid metal based nanofluid laminar flow in circular tube

•Heat transfer of liquid metal nanofluid laminar flow in tube is studied.•Heat transfer performance of four kinds of fluids is compared.•Lower thermal conductivity nanoparticles cannot improve heat transfer performance.•High concentration carbon nanotubes nanoparticle is a better choice. Liquid meta...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical sciences Vol. 175; p. 105530
Main Authors Zhou, Xiaoming, Jiang, Yuqi, Wang, Yang, Jiang, Yanni, Huang, Hulin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Heat transfer of liquid metal nanofluid laminar flow in tube is studied.•Heat transfer performance of four kinds of fluids is compared.•Lower thermal conductivity nanoparticles cannot improve heat transfer performance.•High concentration carbon nanotubes nanoparticle is a better choice. Liquid metal based nanofluid is expected to be the ultimate coolant, however, till date a comprehensive heat transfer analysis of this fluid flow is still lacking. The paper presents the comprehensive analysis of heat transfer, entropy generation and performance evaluation of liquid metal nanofluid laminar flow in a circular tube subject to constant wall heat flux, in which the two-phase mixture model is adopted to simulate the nanofluid flow, and three types of nanoparticles (namely Alumina (Al2O3), Diamond (Diam), Carbon nanotubes (CNT)) is considered. The computational results show that, as nanoparticles volume fraction increases, the average heat transfer coefficient of Ga-Diam and Ga-CNT increases, but that of Ga-Al2O3 decreases. The corresponding total entropy generation of Ga-Diam and Ga-CNT decreases, and that of Ga-Al2O3 increases. Particularly, as Re = 1000 and αp=0.06 the average Nusselt number of nanofluids Ga-CNT, Ga-Diam and Ga-Al2O3 relative to that of pure liquid metal Ga are increased by 17.3%, 16.1% and −2.1%, respectively. In general, the liquid metal based nanofluid with high concentration carbon nanotubes nanoparticles is a better choice for heat transfer enhancement, however, from the view point of energy utilization efficiency low concentration nanoparticles is more suitable. Variation of average Nusselt number with nanoparticles volume fraction [Display omitted]
AbstractList •Heat transfer of liquid metal nanofluid laminar flow in tube is studied.•Heat transfer performance of four kinds of fluids is compared.•Lower thermal conductivity nanoparticles cannot improve heat transfer performance.•High concentration carbon nanotubes nanoparticle is a better choice. Liquid metal based nanofluid is expected to be the ultimate coolant, however, till date a comprehensive heat transfer analysis of this fluid flow is still lacking. The paper presents the comprehensive analysis of heat transfer, entropy generation and performance evaluation of liquid metal nanofluid laminar flow in a circular tube subject to constant wall heat flux, in which the two-phase mixture model is adopted to simulate the nanofluid flow, and three types of nanoparticles (namely Alumina (Al2O3), Diamond (Diam), Carbon nanotubes (CNT)) is considered. The computational results show that, as nanoparticles volume fraction increases, the average heat transfer coefficient of Ga-Diam and Ga-CNT increases, but that of Ga-Al2O3 decreases. The corresponding total entropy generation of Ga-Diam and Ga-CNT decreases, and that of Ga-Al2O3 increases. Particularly, as Re = 1000 and αp=0.06 the average Nusselt number of nanofluids Ga-CNT, Ga-Diam and Ga-Al2O3 relative to that of pure liquid metal Ga are increased by 17.3%, 16.1% and −2.1%, respectively. In general, the liquid metal based nanofluid with high concentration carbon nanotubes nanoparticles is a better choice for heat transfer enhancement, however, from the view point of energy utilization efficiency low concentration nanoparticles is more suitable. Variation of average Nusselt number with nanoparticles volume fraction [Display omitted]
ArticleNumber 105530
Author Wang, Yang
Huang, Hulin
Zhou, Xiaoming
Jiang, Yuqi
Jiang, Yanni
Author_xml – sequence: 1
  givenname: Xiaoming
  surname: Zhou
  fullname: Zhou, Xiaoming
  organization: College of Mechanical and Electrical Engineering, Hohai University, Jiangsu, China
– sequence: 2
  givenname: Yuqi
  surname: Jiang
  fullname: Jiang, Yuqi
  organization: Sichuan Branch, Commercial Aircraft Corporation of China, Chengdu, China
– sequence: 3
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: China Ship Development and Design Center, Wuhan, Hubei, China
– sequence: 4
  givenname: Yanni
  surname: Jiang
  fullname: Jiang, Yanni
  email: ynjiang@hhu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Hohai University, Jiangsu, China
– sequence: 5
  givenname: Hulin
  surname: Huang
  fullname: Huang, Hulin
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BookMark eNqFkMtKAzEUhoNUsK2-guQFpuYyV3ChFG9QcKPrkElOaIZMUpNppW_vDNWNm64O_Od8P5xvgWY-eEDolpIVJbS861a260ElZVeMsCksCk4u0JzWVZMxWrIZmpNxk1U54VdokVJHCK1IwefIr0O_i7AFn-wB8BbkgIcofTIQ8Q6iCbGXXgGWXrpjsgkHg5392luNexikw61MoLGXPhg3pU721suIjQvf2HqsbFR7NwbDvoVrdGmkS3DzO5fo8_npY_2abd5f3taPm0xxyoasLBtleF4So2tF86KSpi60plISbhS0SlHWlI2uedsWhNZtrvOc5XWleMsKpvgSladeFUNKEYzYRdvLeBSUiMma6MSfNTFZEydrI3j_D1R2kIMNfrRi3Xn84YTD-NzBQhTjBYz-tI2gBqGDPVfxAxYskfg
CitedBy_id crossref_primary_10_1080_01430750_2021_1914160
crossref_primary_10_1016_j_compositesa_2022_107216
crossref_primary_10_1016_j_tsep_2024_103000
crossref_primary_10_1002_htj_22319
crossref_primary_10_1002_mma_7124
crossref_primary_10_1016_j_matpr_2022_08_347
crossref_primary_10_1016_j_ijmecsci_2022_107589
crossref_primary_10_1166_jon_2023_2095
crossref_primary_10_1080_00986445_2021_1978077
crossref_primary_10_1016_j_ijmecsci_2021_106270
crossref_primary_10_3389_fenrg_2021_727447
crossref_primary_10_11728_cjss2024_02_2023_0036
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125631
crossref_primary_10_1080_15567036_2023_2195826
crossref_primary_10_1016_j_applthermaleng_2024_123117
crossref_primary_10_1016_j_rser_2022_112453
crossref_primary_10_1080_01457632_2022_2034087
crossref_primary_10_1016_j_jfueco_2021_100034
crossref_primary_10_1016_j_applthermaleng_2024_123551
crossref_primary_10_1088_1742_6596_2748_1_012011
crossref_primary_10_1016_j_ijmecsci_2022_107437
crossref_primary_10_1016_j_ijmecsci_2022_107657
crossref_primary_10_1016_j_ijthermalsci_2025_109787
crossref_primary_10_1016_j_aej_2021_06_035
crossref_primary_10_1002_mma_6728
crossref_primary_10_1016_j_ijmecsci_2023_108144
Cites_doi 10.1021/i160003a005
10.1016/j.energy.2012.06.009
10.1016/j.ijheatfluidflow.2006.04.006
10.1016/j.jtice.2016.05.035
10.1016/j.molliq.2018.05.124
10.1186/s11671-017-2170-1
10.1016/0360-5442(80)90091-2
10.1063/1.1700493
10.1016/j.spmi.2003.09.012
10.1016/j.ijheatmasstransfer.2005.01.029
10.1016/j.physleta.2006.09.041
10.1134/S0869864319030028
10.1016/j.enconman.2013.09.049
10.1016/j.applthermaleng.2006.03.014
10.1080/08916159808946559
10.1016/j.ijheatmasstransfer.2010.06.016
10.1115/1.4006662
10.1016/j.enconman.2010.10.002
10.1115/1.1532008
10.1115/1.4039685
10.1108/MMMS-07-2018-0133
10.1016/j.molliq.2017.11.123
10.1016/j.icheatmasstransfer.2012.06.009
10.1016/S1164-0235(02)00082-1
10.1016/j.spmi.2003.09.011
10.1016/j.ijthermalsci.2008.01.001
10.1108/MMMS-11-2018-0190
10.1016/0017-9310(78)90064-9
10.1016/j.applthermaleng.2006.10.034
10.1016/j.ijthermalsci.2012.03.009
10.1016/j.applthermaleng.2009.06.019
10.1186/1556-276X-6-252
10.1016/j.icheatmasstransfer.2009.10.003
10.1007/s10973-019-08985-0
10.1016/0360-5442(96)00062-X
10.1016/j.ijheatfluidflow.2005.02.004
10.1016/j.icheatmasstransfer.2011.03.024
10.1016/S0065-2717(08)70172-2
10.1016/S0360-5442(98)00010-3
10.1016/j.icheatmasstransfer.2019.05.003
10.1002/htj.21375
10.1016/j.expthermflusci.2012.04.017
10.1016/j.energy.2014.09.025
10.1016/j.ijheatmasstransfer.2015.11.068
10.1016/j.icheatmasstransfer.2017.12.006
10.1108/09615530610649717
10.1016/j.icheatmasstransfer.2012.04.003
10.1016/j.applthermaleng.2006.02.036
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijmecsci.2020.105530
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2162
ExternalDocumentID 10_1016_j_ijmecsci_2020_105530
S0020740319346685
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSZ
T5K
TN5
UNMZH
XPP
XSW
ZMT
~G-
29J
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c312t-669cf3460fd8c1457af85dd1aa03fcebcc12969d83bb5018b4d442487c3b252c3
IEDL.DBID .~1
ISSN 0020-7403
IngestDate Tue Jul 01 03:06:45 EDT 2025
Thu Apr 24 23:02:46 EDT 2025
Fri Feb 23 02:47:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanoparticles
Liquid metal nanofluid
Numerical simulation
Heat transfer
Two-phase mixture model
Entropy generation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-669cf3460fd8c1457af85dd1aa03fcebcc12969d83bb5018b4d442487c3b252c3
ParticipantIDs crossref_primary_10_1016_j_ijmecsci_2020_105530
crossref_citationtrail_10_1016_j_ijmecsci_2020_105530
elsevier_sciencedirect_doi_10_1016_j_ijmecsci_2020_105530
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of mechanical sciences
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schiller, Naumann (bib0048) 1935; 77
Brinkman (bib0050) 1952; 20
Mahanthesh, Lorenzini, Oudina, Animasaun (bib0025) 2019
Pak, Cho (bib0006) 1998; 11
Bejan (bib0029) 1978; 21
Bejan (bib0028) 1980; 5
Mebarek-Oudina, Bessaïh (bib0021) 2019; 26
Sahin (bib0032) 2002; 2
Maiga, Palm, Nguyen, Roy, Galanis (bib0011) 2005; 26
Abbasian Arani, Amani (bib0009) 2012; 42
Xuan, Li (bib0007) 2003; 125
Behzadmehr, Saffar-Avval, Galanis (bib0018) 2007; 28
Bianco, Manca, Nardini (bib0051) 2014; 77
Palm, Roy, Nguyen (bib0016) 2006; 26
Qi, Wang, Ma, Guo (bib0043) 2017; 12
Zhou, Jiang, Li (bib0045) 2019; 106
Moghaddami, Mohammadzade, Esfehani (bib0033) 2011; 52
Maiga, Nguyen, Galanis, Roy (bib0010) 2004; 35
Qi, Wan, Wang, Han (bib0042) 2017
Nazari, Ghasempour, Ahmadi, Heydarian, Shafii (bib0001) 2018; 91
Sahin (bib0031) 1998; 23
Singh, Anoop, Sundararajan, Das (bib0034) 2010; 53
Jang, Choi (bib0015) 2006; 26
Hamilton, Crosser (bib0049) 1962; 1
Maiga, Cong Tam, Galanis, Roy, Mare, Coqueux (bib0012) 2006; 16
Zhou, Li, Cheng, Huai (bib0046) 2018; 140
Choi (bib0005) 1995; 231
Kalidasan, Rajesh Kanna (bib0054) 2016; 65
Mahian, Mahmud, Heris (bib0038) 2012; 134
Bianco, Nardini, Manca (bib0036) 2014; 77
Raza, Mebarek-Oudina, Chamkha (bib0023) 2019; 15
Koo, Kleinstreuer (bib0014) 2005; 48
Leong, Saidur, Mahlia (bib0040) 2012; 39
Bianco, Manca, Nardini (bib0037) 2013; 2013
Manninen, Taivassalo, Kallio (bib0047) 1996; 288
Akbarinia, Behzadmehr (bib0017) 2007; 27
Ansys Incorporated. Ansys-fluent 12.0 user manual. 2009.
Namburu, Das, Tanguturi, Vajjha (bib0019) 2009; 48
Raza, Farooq, Mebarek-Oudina, Mahanthesh (bib0024) 2019; 15
Roy, Nguyen, Lajoie (bib0013) 2004; 35
Ma, Liu (bib0004) 2007; 361
Leong, Saidur, Khairulmaini, Michael, Kamyar (bib0041) 2012; 39
Ahmadi, Mirlohi, Nazari, Ghasempour (bib0002) 2018; 265
Qi, Liang, Rao (bib0044) 2016; 94
Fotukian, Nasr Esfahany (bib0008) 2010; 37
Roy, Gherasim, Nadeau, Poitras, Nguyen (bib0052) 2012; 58
Mahian, Mahmud, Heris (bib0039) 2012; 44
Ijaz, Zeeshan, Bhatti, Ellahi (bib0003) 2018; 250
Mohammed, Gunnasegaran, Shuaib (bib0053) 2011; 38
Bianco, Nardini, Manca (bib0035) 2011; 6
F. Mebarek‐Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, 2019,48(1):135–47.
Bejan (bib0027) 1982
Sahin (bib0030) 1996; 21
Bianco, Chiacchio, Manca, Nardini (bib0020) 2009; 29
Bejan (bib0026) 1982; 15
Leong (10.1016/j.ijmecsci.2020.105530_bib0040) 2012; 39
Ahmadi (10.1016/j.ijmecsci.2020.105530_bib0002) 2018; 265
Maiga (10.1016/j.ijmecsci.2020.105530_bib0011) 2005; 26
Bejan (10.1016/j.ijmecsci.2020.105530_bib0028) 1980; 5
Choi (10.1016/j.ijmecsci.2020.105530_bib0005) 1995; 231
Moghaddami (10.1016/j.ijmecsci.2020.105530_bib0033) 2011; 52
Leong (10.1016/j.ijmecsci.2020.105530_bib0041) 2012; 39
Mahian (10.1016/j.ijmecsci.2020.105530_bib0039) 2012; 44
Roy (10.1016/j.ijmecsci.2020.105530_bib0052) 2012; 58
Zhou (10.1016/j.ijmecsci.2020.105530_bib0045) 2019; 106
Brinkman (10.1016/j.ijmecsci.2020.105530_bib0050) 1952; 20
Sahin (10.1016/j.ijmecsci.2020.105530_bib0031) 1998; 23
Qi (10.1016/j.ijmecsci.2020.105530_bib0043) 2017; 12
Bianco (10.1016/j.ijmecsci.2020.105530_bib0020) 2009; 29
Jang (10.1016/j.ijmecsci.2020.105530_bib0015) 2006; 26
Akbarinia (10.1016/j.ijmecsci.2020.105530_bib0017) 2007; 27
Bianco (10.1016/j.ijmecsci.2020.105530_bib0051) 2014; 77
10.1016/j.ijmecsci.2020.105530_bib0022
Bianco (10.1016/j.ijmecsci.2020.105530_bib0037) 2013; 2013
Bianco (10.1016/j.ijmecsci.2020.105530_bib0035) 2011; 6
Qi (10.1016/j.ijmecsci.2020.105530_bib0044) 2016; 94
Fotukian (10.1016/j.ijmecsci.2020.105530_bib0008) 2010; 37
Raza (10.1016/j.ijmecsci.2020.105530_bib0024) 2019; 15
Bejan (10.1016/j.ijmecsci.2020.105530_bib0027) 1982
Kalidasan (10.1016/j.ijmecsci.2020.105530_bib0054) 2016; 65
Xuan (10.1016/j.ijmecsci.2020.105530_bib0007) 2003; 125
Bianco (10.1016/j.ijmecsci.2020.105530_bib0036) 2014; 77
Roy (10.1016/j.ijmecsci.2020.105530_bib0013) 2004; 35
Maiga (10.1016/j.ijmecsci.2020.105530_bib0010) 2004; 35
Pak (10.1016/j.ijmecsci.2020.105530_bib0006) 1998; 11
Qi (10.1016/j.ijmecsci.2020.105530_bib0042) 2017
Mahian (10.1016/j.ijmecsci.2020.105530_bib0038) 2012; 134
Schiller (10.1016/j.ijmecsci.2020.105530_bib0048) 1935; 77
Raza (10.1016/j.ijmecsci.2020.105530_bib0023) 2019; 15
Hamilton (10.1016/j.ijmecsci.2020.105530_bib0049) 1962; 1
Nazari (10.1016/j.ijmecsci.2020.105530_bib0001) 2018; 91
Bejan (10.1016/j.ijmecsci.2020.105530_bib0026) 1982; 15
10.1016/j.ijmecsci.2020.105530_bib0055
Koo (10.1016/j.ijmecsci.2020.105530_bib0014) 2005; 48
Palm (10.1016/j.ijmecsci.2020.105530_bib0016) 2006; 26
Mohammed (10.1016/j.ijmecsci.2020.105530_bib0053) 2011; 38
Ijaz (10.1016/j.ijmecsci.2020.105530_bib0003) 2018; 250
Behzadmehr (10.1016/j.ijmecsci.2020.105530_bib0018) 2007; 28
Maiga (10.1016/j.ijmecsci.2020.105530_bib0012) 2006; 16
Zhou (10.1016/j.ijmecsci.2020.105530_bib0046) 2018; 140
Singh (10.1016/j.ijmecsci.2020.105530_bib0034) 2010; 53
Mahanthesh (10.1016/j.ijmecsci.2020.105530_bib0025) 2019
Namburu (10.1016/j.ijmecsci.2020.105530_bib0019) 2009; 48
Manninen (10.1016/j.ijmecsci.2020.105530_bib0047) 1996; 288
Ma (10.1016/j.ijmecsci.2020.105530_bib0004) 2007; 361
Abbasian Arani (10.1016/j.ijmecsci.2020.105530_bib0009) 2012; 42
Sahin (10.1016/j.ijmecsci.2020.105530_bib0032) 2002; 2
Bejan (10.1016/j.ijmecsci.2020.105530_bib0029) 1978; 21
Mebarek-Oudina (10.1016/j.ijmecsci.2020.105530_bib0021) 2019; 26
Sahin (10.1016/j.ijmecsci.2020.105530_bib0030) 1996; 21
References_xml – volume: 42
  start-page: 107
  year: 2012
  end-page: 115
  ident: bib0009
  article-title: Experimental study on the effect of TiO
  publication-title: Exp Therm Fluid Sci
– volume: 21
  start-page: 1179
  year: 1996
  end-page: 1187
  ident: bib0030
  article-title: Thermodynamics of laminar viscous flow through a duct subjected to constant heat flux
  publication-title: Energy
– volume: 288
  start-page: 9
  year: 1996
  end-page: 18
  ident: bib0047
  publication-title: On the mixture model for multiphase flow
– volume: 21
  start-page: 655
  year: 1978
  end-page: 658
  ident: bib0029
  article-title: General criterion for rating heat-exchanger performance
  publication-title: Int J Heat Mass Transf
– volume: 26
  start-page: 2209
  year: 2006
  end-page: 2218
  ident: bib0016
  article-title: Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties
  publication-title: Appl Therm Eng
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 12.
  ident: bib0037
  article-title: Second law analysis of Al
  publication-title: Adv Mech Eng
– volume: 26
  start-page: 530
  year: 2005
  end-page: 546
  ident: bib0011
  article-title: Heat transfer enhancement by using nanofluids in forced convection flows
  publication-title: Int J Heat Fluid Flow
– volume: 11
  start-page: 151
  year: 1998
  end-page: 170
  ident: bib0006
  article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
  publication-title: Exp Heat Transf
– volume: 38
  start-page: 767
  year: 2011
  end-page: 773
  ident: bib0053
  article-title: The impact of various nanofluid types on triangular microchannels heat sink cooling performance
  publication-title: Int Commun Heat Mass Transf
– volume: 5
  start-page: 721
  year: 1980
  end-page: 732
  ident: bib0028
  article-title: Second law analysis in heat transfer
  publication-title: Energy
– reference: Ansys Incorporated. Ansys-fluent 12.0 user manual. 2009.
– volume: 58
  start-page: 120
  year: 2012
  end-page: 129
  ident: bib0052
  article-title: Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows
  publication-title: Int J Therm Sci
– volume: 12
  start-page: 396
  year: 2017
  end-page: 410
  ident: bib0043
  article-title: Experimental research on stability and natural convection of TiO
  publication-title: Nanoscale Res Lett
– volume: 361
  start-page: 252
  year: 2007
  end-page: 256
  ident: bib0004
  article-title: Liquid metal nanofluid as ultimate coolant
  publication-title: Phys Lett A
– year: 1982
  ident: bib0027
  article-title: Entropy generation through heat and fluid flow
– volume: 231
  start-page: 99
  year: 1995
  end-page: 103
  ident: bib0005
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
  publication-title: ASME FED
– volume: 39
  start-page: 1169
  year: 2012
  end-page: 1175
  ident: bib0040
  article-title: Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature
  publication-title: Int Commun Heat Mass Transf
– volume: 37
  start-page: 214
  year: 2010
  end-page: 219
  ident: bib0008
  article-title: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/Water nanofluid inside a circular tube
  publication-title: Int Commun Heat Mass Transf
– volume: 16
  start-page: 275
  year: 2006
  end-page: 292
  ident: bib0012
  article-title: Heat transfer enhancement in turbulent tube flow using Al
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 1
  start-page: 187
  year: 1962
  end-page: 191
  ident: bib0049
  article-title: Thermal conductivity of heterogeneous two component systems
  publication-title: Ind Eng Chem Fundam
– volume: 77
  start-page: 318
  year: 1935
  end-page: 320
  ident: bib0048
  article-title: A drag coefficient correlation
  publication-title: Z Ver.Deutsch Ing
– volume: 26
  start-page: 2457
  year: 2006
  end-page: 2463
  ident: bib0015
  article-title: Cooling performance of a microchannel heat sink with nanofluids
  publication-title: Appl Therm Eng
– volume: 15
  start-page: 1
  year: 1982
  end-page: 58
  ident: bib0026
  article-title: Second-Law analysis in heat transfer and thermal design
  publication-title: Adv. Heat Transfer
– volume: 77
  start-page: 306
  year: 2014
  end-page: 314
  ident: bib0036
  article-title: Entropy generation analysis of turbulent convection flow of Al
  publication-title: Energy Convers Manag
– volume: 94
  start-page: 316
  year: 2016
  end-page: 326
  ident: bib0044
  article-title: Study on the flow and heat transfer of liquid metal base nanofluid with different nanoparticle radiuses based on two-phase lattice Boltzmann method
  publication-title: Int J Heat Mass Transf
– volume: 35
  start-page: 497
  year: 2004
  end-page: 511
  ident: bib0013
  article-title: Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids
  publication-title: Superlattices Microstruct
– volume: 53
  start-page: 4757
  year: 2010
  end-page: 4767
  ident: bib0034
  article-title: Entropy generation due to flow and heat transfer in nanofluids
  publication-title: Int J Heat Mass Transf
– volume: 35
  start-page: 543
  year: 2004
  end-page: 557
  ident: bib0010
  article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube
  publication-title: Superlattices Microstruct
– volume: 28
  start-page: 211
  year: 2007
  end-page: 219
  ident: bib0018
  article-title: Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach
  publication-title: Int J Heat Fluid Flow
– reference: F. Mebarek‐Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, 2019,48(1):135–47.
– volume: 39
  start-page: 838
  year: 2012
  end-page: 843
  ident: bib0041
  article-title: Heat transfer and entropy analysis of three different types of heat exchangers operated with nanofluids
  publication-title: Int Commun Heat Mass Transf
– volume: 140
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0046
  article-title: Numerical study of liquid metal based nanofluid forced convection in circular tubes
  publication-title: ASME J Heat Transf
– start-page: 1
  year: 2017
  end-page: 18
  ident: bib0042
  article-title: Study on stabilities, thermophysical properties and natural convective heat transfer characteristics of TiO
  publication-title: Indian J Phys
– volume: 29
  start-page: 3632
  year: 2009
  end-page: 3642
  ident: bib0020
  article-title: Numerical investigation of nanofluids forced convection in circular tubes
  publication-title: Appl Therm Eng
– volume: 250
  start-page: 80
  year: 2018
  end-page: 87
  ident: bib0003
  article-title: Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel
  publication-title: J Mol Liq
– volume: 15
  start-page: 737
  year: 2019
  end-page: 757
  ident: bib0023
  article-title: Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects
  publication-title: Multidiscip Model Mater Struct
– volume: 106
  start-page: 46
  year: 2019
  end-page: 54
  ident: bib0045
  article-title: Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing liquid metal nanofluid
  publication-title: Int Commun Heat Mass Transf
– volume: 44
  start-page: 438
  year: 2012
  end-page: 446
  ident: bib0039
  article-title: Analysis of entropy generation between corotating cylinders using nanofluids
  publication-title: Energy
– volume: 134
  year: 2012
  ident: bib0038
  article-title: Effect of uncertainties in physical properties on entropy generation between two rotating cylinders with nanofluids
  publication-title: J Heat Transf
– volume: 2
  start-page: 314
  year: 2002
  end-page: 321
  ident: bib0032
  article-title: Entropy generation and pumping power in a turbulent fluid flow through a smooth pipe subjected to constant heat flux
  publication-title: Exergy-Int J
– volume: 48
  start-page: 2652
  year: 2005
  end-page: 2661
  ident: bib0014
  article-title: Laminar nanofluid flow in micro-heat sinks
  publication-title: Int J Heat Mass Transf
– volume: 6
  start-page: 1
  year: 2011
  end-page: 12
  ident: bib0035
  article-title: Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes
  publication-title: Nanoscale Res Lett
– year: 2019
  ident: bib0025
  article-title: Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces
  publication-title: J Therm Anal Calorim
– volume: 15
  start-page: 913
  year: 2019
  end-page: 931
  ident: bib0024
  article-title: Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet: numerical and statistical analysis
  publication-title: Multidiscip Model Mater Struct
– volume: 91
  start-page: 90
  year: 2018
  end-page: 94
  ident: bib0001
  article-title: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe
  publication-title: Int Commun Heat Mass Transf
– volume: 77
  start-page: 403
  year: 2014
  end-page: 413
  ident: bib0051
  article-title: Performance analysis of turbulent convection heat transfer of Al
  publication-title: Energy
– volume: 27
  start-page: 1327
  year: 2007
  end-page: 1337
  ident: bib0017
  article-title: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes
  publication-title: Appl Therm Eng
– volume: 23
  start-page: 465
  year: 1998
  end-page: 473
  ident: bib0031
  article-title: Irreversibilities in various duct geometries with constant wall heat flux and laminar flow
  publication-title: Energy
– volume: 52
  start-page: 1397
  year: 2011
  end-page: 1405
  ident: bib0033
  article-title: Second law analysis of nanofluid flow
  publication-title: Energy Convers Manag
– volume: 265
  start-page: 181
  year: 2018
  end-page: 188
  ident: bib0002
  article-title: A review of thermal conductivity of various nanofluids
  publication-title: J Mol Liq
– volume: 20
  start-page: 571
  year: 1952
  ident: bib0050
  article-title: The viscosity of concentrated suspensions and solutions
  publication-title: J Chem Phys
– volume: 125
  start-page: 151
  year: 2003
  end-page: 155
  ident: bib0007
  article-title: Investigation on convective heat transfer and flow features of nanofluids
  publication-title: J Heat Transf
– volume: 26
  start-page: 325
  year: 2019
  end-page: 334
  ident: bib0021
  article-title: Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources
  publication-title: Thermophys Aeromech
– volume: 48
  start-page: 290
  year: 2009
  end-page: 302
  ident: bib0019
  article-title: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties
  publication-title: Int J Therm Sci
– volume: 65
  start-page: 331
  year: 2016
  end-page: 340
  ident: bib0054
  article-title: Effective utilization of MWCNT-water nanofluid for the enhancement of laminar natural convection inside the open square enclosure
  publication-title: J Taiwan Inst Chem Eng
– volume: 1
  start-page: 187
  issue: 3
  year: 1962
  ident: 10.1016/j.ijmecsci.2020.105530_bib0049
  article-title: Thermal conductivity of heterogeneous two component systems
  publication-title: Ind Eng Chem Fundam
  doi: 10.1021/i160003a005
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.ijmecsci.2020.105530_bib0037
  article-title: Second law analysis of Al2O3-water nanofluid turbulent forced convection in a circular cross section tube with constant wall temperature
  publication-title: Adv Mech Eng
– volume: 44
  start-page: 438
  year: 2012
  ident: 10.1016/j.ijmecsci.2020.105530_bib0039
  article-title: Analysis of entropy generation between corotating cylinders using nanofluids
  publication-title: Energy
  doi: 10.1016/j.energy.2012.06.009
– volume: 28
  start-page: 211
  year: 2007
  ident: 10.1016/j.ijmecsci.2020.105530_bib0018
  article-title: Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2006.04.006
– volume: 65
  start-page: 331
  year: 2016
  ident: 10.1016/j.ijmecsci.2020.105530_bib0054
  article-title: Effective utilization of MWCNT-water nanofluid for the enhancement of laminar natural convection inside the open square enclosure
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2016.05.035
– volume: 265
  start-page: 181
  year: 2018
  ident: 10.1016/j.ijmecsci.2020.105530_bib0002
  article-title: A review of thermal conductivity of various nanofluids
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2018.05.124
– volume: 12
  start-page: 396
  issue: 1
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.105530_bib0043
  article-title: Experimental research on stability and natural convection of TiO2-water nanofluid in enclosures with different rotation angles
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-017-2170-1
– volume: 5
  start-page: 721
  year: 1980
  ident: 10.1016/j.ijmecsci.2020.105530_bib0028
  article-title: Second law analysis in heat transfer
  publication-title: Energy
  doi: 10.1016/0360-5442(80)90091-2
– volume: 20
  start-page: 571
  issue: 4
  year: 1952
  ident: 10.1016/j.ijmecsci.2020.105530_bib0050
  article-title: The viscosity of concentrated suspensions and solutions
  publication-title: J Chem Phys
  doi: 10.1063/1.1700493
– volume: 35
  start-page: 543
  year: 2004
  ident: 10.1016/j.ijmecsci.2020.105530_bib0010
  article-title: Heat transfer behaviours of nanofluids in a uniformly heated tube
  publication-title: Superlattices Microstruct
  doi: 10.1016/j.spmi.2003.09.012
– ident: 10.1016/j.ijmecsci.2020.105530_bib0055
– volume: 48
  start-page: 2652
  year: 2005
  ident: 10.1016/j.ijmecsci.2020.105530_bib0014
  article-title: Laminar nanofluid flow in micro-heat sinks
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2005.01.029
– volume: 361
  start-page: 252
  year: 2007
  ident: 10.1016/j.ijmecsci.2020.105530_bib0004
  article-title: Liquid metal nanofluid as ultimate coolant
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2006.09.041
– year: 1982
  ident: 10.1016/j.ijmecsci.2020.105530_bib0027
– volume: 26
  start-page: 325
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.105530_bib0021
  article-title: Numerical simulation of natural convection heat transfer of copper-water nanofluid in a vertical cylindrical annulus with heat sources
  publication-title: Thermophys Aeromech
  doi: 10.1134/S0869864319030028
– volume: 77
  start-page: 306
  year: 2014
  ident: 10.1016/j.ijmecsci.2020.105530_bib0036
  article-title: Entropy generation analysis of turbulent convection flow of Al2O3-water nanofluid in a circular tube subjected to constant wall heat flux
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.09.049
– volume: 26
  start-page: 2209
  year: 2006
  ident: 10.1016/j.ijmecsci.2020.105530_bib0016
  article-title: Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.03.014
– volume: 11
  start-page: 151
  issue: 2
  year: 1998
  ident: 10.1016/j.ijmecsci.2020.105530_bib0006
  article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
  publication-title: Exp Heat Transf
  doi: 10.1080/08916159808946559
– volume: 53
  start-page: 4757
  year: 2010
  ident: 10.1016/j.ijmecsci.2020.105530_bib0034
  article-title: Entropy generation due to flow and heat transfer in nanofluids
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2010.06.016
– volume: 134
  issue: 10
  year: 2012
  ident: 10.1016/j.ijmecsci.2020.105530_bib0038
  article-title: Effect of uncertainties in physical properties on entropy generation between two rotating cylinders with nanofluids
  publication-title: J Heat Transf
  doi: 10.1115/1.4006662
– volume: 77
  start-page: 318
  year: 1935
  ident: 10.1016/j.ijmecsci.2020.105530_bib0048
  article-title: A drag coefficient correlation
  publication-title: Z Ver.Deutsch Ing
– start-page: 1
  year: 2017
  ident: 10.1016/j.ijmecsci.2020.105530_bib0042
  article-title: Study on stabilities, thermophysical properties and natural convective heat transfer characteristics of TiO2-water nanofluids
  publication-title: Indian J Phys
– volume: 52
  start-page: 1397
  year: 2011
  ident: 10.1016/j.ijmecsci.2020.105530_bib0033
  article-title: Second law analysis of nanofluid flow
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.10.002
– volume: 125
  start-page: 151
  issue: 1
  year: 2003
  ident: 10.1016/j.ijmecsci.2020.105530_bib0007
  article-title: Investigation on convective heat transfer and flow features of nanofluids
  publication-title: J Heat Transf
  doi: 10.1115/1.1532008
– volume: 140
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijmecsci.2020.105530_bib0046
  article-title: Numerical study of liquid metal based nanofluid forced convection in circular tubes
  publication-title: ASME J Heat Transf
  doi: 10.1115/1.4039685
– volume: 15
  start-page: 737
  issue: 4
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.105530_bib0023
  article-title: Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects
  publication-title: Multidiscip Model Mater Struct
  doi: 10.1108/MMMS-07-2018-0133
– volume: 250
  start-page: 80
  year: 2018
  ident: 10.1016/j.ijmecsci.2020.105530_bib0003
  article-title: Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2017.11.123
– volume: 39
  start-page: 1169
  year: 2012
  ident: 10.1016/j.ijmecsci.2020.105530_bib0040
  article-title: Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2012.06.009
– volume: 2
  start-page: 314
  year: 2002
  ident: 10.1016/j.ijmecsci.2020.105530_bib0032
  article-title: Entropy generation and pumping power in a turbulent fluid flow through a smooth pipe subjected to constant heat flux
  publication-title: Exergy-Int J
  doi: 10.1016/S1164-0235(02)00082-1
– volume: 35
  start-page: 497
  year: 2004
  ident: 10.1016/j.ijmecsci.2020.105530_bib0013
  article-title: Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids
  publication-title: Superlattices Microstruct
  doi: 10.1016/j.spmi.2003.09.011
– volume: 48
  start-page: 290
  issue: 2
  year: 2009
  ident: 10.1016/j.ijmecsci.2020.105530_bib0019
  article-title: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2008.01.001
– volume: 15
  start-page: 913
  issue: 5
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.105530_bib0024
  article-title: Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet: numerical and statistical analysis
  publication-title: Multidiscip Model Mater Struct
  doi: 10.1108/MMMS-11-2018-0190
– volume: 21
  start-page: 655
  year: 1978
  ident: 10.1016/j.ijmecsci.2020.105530_bib0029
  article-title: General criterion for rating heat-exchanger performance
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(78)90064-9
– volume: 27
  start-page: 1327
  year: 2007
  ident: 10.1016/j.ijmecsci.2020.105530_bib0017
  article-title: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.10.034
– volume: 58
  start-page: 120
  year: 2012
  ident: 10.1016/j.ijmecsci.2020.105530_bib0052
  article-title: Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2012.03.009
– volume: 288
  start-page: 9
  year: 1996
  ident: 10.1016/j.ijmecsci.2020.105530_bib0047
– volume: 29
  start-page: 3632
  year: 2009
  ident: 10.1016/j.ijmecsci.2020.105530_bib0020
  article-title: Numerical investigation of nanofluids forced convection in circular tubes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2009.06.019
– volume: 6
  start-page: 1
  year: 2011
  ident: 10.1016/j.ijmecsci.2020.105530_bib0035
  article-title: Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-252
– volume: 37
  start-page: 214
  year: 2010
  ident: 10.1016/j.ijmecsci.2020.105530_bib0008
  article-title: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/Water nanofluid inside a circular tube
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2009.10.003
– year: 2019
  ident: 10.1016/j.ijmecsci.2020.105530_bib0025
  article-title: Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08985-0
– volume: 21
  start-page: 1179
  issue: 12
  year: 1996
  ident: 10.1016/j.ijmecsci.2020.105530_bib0030
  article-title: Thermodynamics of laminar viscous flow through a duct subjected to constant heat flux
  publication-title: Energy
  doi: 10.1016/0360-5442(96)00062-X
– volume: 26
  start-page: 530
  issue: 4
  year: 2005
  ident: 10.1016/j.ijmecsci.2020.105530_bib0011
  article-title: Heat transfer enhancement by using nanofluids in forced convection flows
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2005.02.004
– volume: 38
  start-page: 767
  year: 2011
  ident: 10.1016/j.ijmecsci.2020.105530_bib0053
  article-title: The impact of various nanofluid types on triangular microchannels heat sink cooling performance
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2011.03.024
– volume: 15
  start-page: 1
  year: 1982
  ident: 10.1016/j.ijmecsci.2020.105530_bib0026
  article-title: Second-Law analysis in heat transfer and thermal design
  publication-title: Adv. Heat Transfer
  doi: 10.1016/S0065-2717(08)70172-2
– volume: 23
  start-page: 465
  issue: 6
  year: 1998
  ident: 10.1016/j.ijmecsci.2020.105530_bib0031
  article-title: Irreversibilities in various duct geometries with constant wall heat flux and laminar flow
  publication-title: Energy
  doi: 10.1016/S0360-5442(98)00010-3
– volume: 106
  start-page: 46
  year: 2019
  ident: 10.1016/j.ijmecsci.2020.105530_bib0045
  article-title: Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing liquid metal nanofluid
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2019.05.003
– ident: 10.1016/j.ijmecsci.2020.105530_bib0022
  doi: 10.1002/htj.21375
– volume: 42
  start-page: 107
  year: 2012
  ident: 10.1016/j.ijmecsci.2020.105530_bib0009
  article-title: Experimental study on the effect of TiO2–water nanofluid on heat transfer and pressure drop
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2012.04.017
– volume: 231
  start-page: 99
  year: 1995
  ident: 10.1016/j.ijmecsci.2020.105530_bib0005
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
  publication-title: ASME FED
– volume: 77
  start-page: 403
  year: 2014
  ident: 10.1016/j.ijmecsci.2020.105530_bib0051
  article-title: Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.025
– volume: 94
  start-page: 316
  year: 2016
  ident: 10.1016/j.ijmecsci.2020.105530_bib0044
  article-title: Study on the flow and heat transfer of liquid metal base nanofluid with different nanoparticle radiuses based on two-phase lattice Boltzmann method
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.11.068
– volume: 91
  start-page: 90
  year: 2018
  ident: 10.1016/j.ijmecsci.2020.105530_bib0001
  article-title: Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2017.12.006
– volume: 16
  start-page: 275
  issue: 3
  year: 2006
  ident: 10.1016/j.ijmecsci.2020.105530_bib0012
  article-title: Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension
  publication-title: Int J Numer Methods Heat Fluid Flow
  doi: 10.1108/09615530610649717
– volume: 39
  start-page: 838
  year: 2012
  ident: 10.1016/j.ijmecsci.2020.105530_bib0041
  article-title: Heat transfer and entropy analysis of three different types of heat exchangers operated with nanofluids
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2012.04.003
– volume: 26
  start-page: 2457
  year: 2006
  ident: 10.1016/j.ijmecsci.2020.105530_bib0015
  article-title: Cooling performance of a microchannel heat sink with nanofluids
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.02.036
SSID ssj0017053
Score 2.4081736
Snippet •Heat transfer of liquid metal nanofluid laminar flow in tube is studied.•Heat transfer performance of four kinds of fluids is compared.•Lower thermal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105530
SubjectTerms Entropy generation
Heat transfer
Liquid metal nanofluid
Nanoparticles
Numerical simulation
Two-phase mixture model
Title Comprehensive heat transfer performance analysis of liquid metal based nanofluid laminar flow in circular tube
URI https://dx.doi.org/10.1016/j.ijmecsci.2020.105530
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9sQevaZPs5nUsxVIVe7LQW8jO7mJKmtaQ4s3f7k4etYLQg8csmRAms_PNkO-bJeRBgRuYQhisIEyExQ1imi0VJRZn4AKXiRMFqHd-nfqTGX-ee_MOGbVaGKRVNrm_zulVtm5WBo03B-s0RY2va_APVTiM-36IQnPOA4zy_teW5oHTYuq_zKZNwrt3VMKLfrpYKjAPN32iWx156yEb-i-A2gGd8Qk5bqpFOqxf6JR0VH5GjnZmCJ6THHd0od5rIjrF3ErLqhpVBV3_yAJo0owfoStNs_Rjk0q6VKb0pghkkuZJvtIZrpoYQZEu1dnqk6Y5hbSoyKq03Ah1QWbjx7fRxGoOUbCAOW5p-X4E2jjI1jIEh3tBokNPSidJbKZBCQCD-H4kQyYEDvcTXHLumjYGmHA9F9gl6earXF0RykMVOZLZgCcWm25WeNpnYEvFJFfatnvEaz0XQzNhHA-6yOKWSraIW4_H6PG49niPDLZ263rGxl6LqP0w8a9oiQ0Q7LG9_oftDTnEq5oqdku6ZbFRd6YoKcV9FXX35GD49DKZfgPqFuM4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswEB1BWQALxOvq8vaCbWgS23ksEQKVV1cgsYvisa2bqqS9VSp-H0_jQJGQWLB1NFY0sefMKHPOAJwbjFOXCGOQZqUKhENMd6XyMhAcYxS6jPKU-M6Pw2TwLO5e5MsKXHVcGGqr9LG_jemLaO1X-t6b_WlVEcc3dvhHLBwukiSTq7BG6lSyB2uXt_eD4cfPhDT0YpSuUiKDJaLw6KIavRp0-7tSMV5MvZXUEP0dRi3hzs02bPmEkV2277QDK6behc0lGcE9qOlSz8y_thedUXhlzSIhNTM2_WQGsNIrkLCJZePq_7zS7NW47JsRlmlWl_XEjmnVHRPi6TI7nryxqmZYzRb9qqyZK7MPzzfXT1eDwM9RCJBHcRMkSY7W-Si0OsNIyLS0mdQ6KsuQWzQK0YF-kuuMK0X6fkpoIWJXySBXsYyR_4FePanNX2AiM3mkeYg0tNgVtErahGOoDdfC2DA8ANl5rkAvMk6zLsZF1002KjqPF-TxovX4AfQ_7KatzMaPFnn3YYovB6ZwWPCD7eEvbM9gffD0-FA83A7vj2CDnrSdY8fQa2Zzc-JylEad-jP4DrZu5ek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+heat+transfer+performance+analysis+of+liquid+metal+based+nanofluid+laminar+flow+in+circular+tube&rft.jtitle=International+journal+of+mechanical+sciences&rft.au=Zhou%2C+Xiaoming&rft.au=Jiang%2C+Yuqi&rft.au=Wang%2C+Yang&rft.au=Jiang%2C+Yanni&rft.date=2020-06-01&rft.issn=0020-7403&rft.volume=175&rft.spage=105530&rft_id=info:doi/10.1016%2Fj.ijmecsci.2020.105530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijmecsci_2020_105530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7403&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7403&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7403&client=summon