Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model

Silicon–graphite (Si–Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high capacity and mild volume change. However, it is difficult to understand electrochemical interactions of Si and Gr in Si–Gr composite anodes and i...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 31; no. 7; pp. 78201 - 684
Main Authors Chen, Yue, Guo, Fuliang, Yang, Lufeng, Lu, Jiaze, Liu, Danna, Wang, Huayu, Zheng, Jieyun, Yu, Xiqian, Li, Hong
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.06.2022
School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China%Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China%Li Auto Inc.,Beijing 101399,China
Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China
Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicon–graphite (Si–Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high capacity and mild volume change. However, it is difficult to understand electrochemical interactions of Si and Gr in Si–Gr composite anodes and internal polarization of LIBs with regular experiment methods. Herein, we establish an electrochemical-mechanical coupled model to study the effect of rate and Si content on the electrochemical and stress behavior in a Si–Gr composite anode. The results show that the composites of Si and Gr not only improve the lithiation kinetics of Gr but also alleviate the voltage hysteresis of Si and decrease the risk of lithium plating in the negative electrode. What’s more, the Si content is a tradeoff between electrode capacity and electrode volume variation. Further, various internal polarization contributions of cells using Si–Gr composite anodes are quantified by the voltage decomposition method. The results indicate that the electrochemical polarization of electrode materials and the electrolyte ohmic over-potential are dominant factors in the rate performance of cells, which provides theoretical guidance for improving the rate performance of LIBs using Si–Gr composite anodes.
AbstractList Silicon–graphite (Si–Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high capacity and mild volume change. However, it is difficult to understand electrochemical interactions of Si and Gr in Si–Gr composite anodes and internal polarization of LIBs with regular experiment methods. Herein, we establish an electrochemical-mechanical coupled model to study the effect of rate and Si content on the electrochemical and stress behavior in a Si–Gr composite anode. The results show that the composites of Si and Gr not only improve the lithiation kinetics of Gr but also alleviate the voltage hysteresis of Si and decrease the risk of lithium plating in the negative electrode. What’s more, the Si content is a tradeoff between electrode capacity and electrode volume variation. Further, various internal polarization contributions of cells using Si–Gr composite anodes are quantified by the voltage decomposition method. The results indicate that the electrochemical polarization of electrode materials and the electrolyte ohmic over-potential are dominant factors in the rate performance of cells, which provides theoretical guidance for improving the rate performance of LIBs using Si–Gr composite anodes.
Silicon-graphite(Si-Gr)composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries(LIBs)owing to their relatively high capacity and mild volume change.However,it is difficult to understand electro-chemical interactions of Si and Gr in Si-Gr composite anodes and internal polarization of LIBs with regular experiment methods.Herein,we establish an electrochemical-mechanical coupled model to study the effect of rate and Si content on the electrochemical and stress behavior in a Si-Gr composite anode.The results show that the composites of Si and Gr not only improve the lithiation kinetics of Gr but also alleviate the voltage hysteresis of Si and decrease the risk of lithium plating in the negative electrode.What's more,the Si content is a tradeoff between electrode capacity and electrode volume variation.Further,various internal polarization contributions of cells using Si-Gr composite anodes are quantified by the voltage decomposition method.The results indicate that the electrochemical polarization of electrode materials and the electrolyte ohmic over-potential are dominant factors in the rate performance of cells,which provides theoretical guidance for improving the rate performance of LIBs using Si-Gr composite anodes.
Author Guo, Fuliang
Li, Hong
Zheng, Jieyun
Yu, Xiqian
Liu, Danna
Yang, Lufeng
Lu, Jiaze
Chen, Yue
Wang, Huayu
AuthorAffiliation Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China%Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China%Li Auto Inc.,Beijing 101399,China;Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Scien
AuthorAffiliation_xml – name: Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China%Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China%Li Auto Inc.,Beijing 101399,China;Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China;Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China
Author_xml – sequence: 1
  givenname: Yue
  surname: Chen
  fullname: Chen, Yue
  organization: School of Physical Sciences, University of Chinese Academy of Sciences , China
– sequence: 2
  givenname: Fuliang
  surname: Guo
  fullname: Guo, Fuliang
  organization: School of Physical Sciences, University of Chinese Academy of Sciences , China
– sequence: 3
  givenname: Lufeng
  surname: Yang
  fullname: Yang, Lufeng
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences , China
– sequence: 4
  givenname: Jiaze
  surname: Lu
  fullname: Lu, Jiaze
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences , China
– sequence: 5
  givenname: Danna
  surname: Liu
  fullname: Liu, Danna
  organization: Beijing WeLion New Energy Technology Co., Ltd. , China
– sequence: 6
  givenname: Huayu
  surname: Wang
  fullname: Wang, Huayu
  organization: Tianmu Lake Institute of Advanced Energy Storage Technologies , China
– sequence: 7
  givenname: Jieyun
  surname: Zheng
  fullname: Zheng, Jieyun
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences , China
– sequence: 8
  givenname: Xiqian
  surname: Yu
  fullname: Yu, Xiqian
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences , China
– sequence: 9
  givenname: Hong
  surname: Li
  fullname: Li, Hong
  organization: Tianmu Lake Institute of Advanced Energy Storage Technologies , China
BookMark eNp9ULtOxDAQdHFIPHtKdzQE1nk4oUSIl4QEBdTWxnHufHLsyPbpBF_Dp-IQBBISVDuanRntzj5ZWGcVIccMzhg0zTnjdZkxqPg5Sg4sX5C9b2qX7IewBuAM8mKPvD9512q7pNINY0qxMSEbvW43UTsbKNqOahuVt2jo6Ax6_YbTKrE0aKOTPFt6HFc6qjklTAit6xTtnadGx5XeDNnkaTGmKK0C3SY2iagySkbv5EoNWqLJBiVXaCdIh5RgDslOjyaoo695QF5urp-v7rKHx9v7q8uHTBYsjxnn0LVFK-v0KPIyr1lXVLzuWN8oVkp20bNKYlmWBbC6KLqyUU2j6qqvAORF2RUH5GTO3aLt0S7F2m2mn4N4W26NUDnkOdTQQFLCrJTeheBVL0avB_SvgoGY-hdT2WIqW8z9Jwv_ZZE6frYYPWrzn_F0Nmo3_lz0p_wDllKfhw
CitedBy_id crossref_primary_10_1149_1945_7111_ad59c7
crossref_primary_10_1016_j_electacta_2024_145010
crossref_primary_10_1016_j_electacta_2023_142947
crossref_primary_10_1016_j_ensm_2024_103216
crossref_primary_10_1039_D4EE05595K
Cites_doi 10.1016/j.jmps.2020.104102
10.1002/(ISSN)1616-3028
10.1038/s41560-020-00748-8
10.1038/s41467-021-22662-7
10.1149/1.3589301
10.1021/acsnano.9b05055
10.1149/1.1836921
10.1149/1.1391556
10.1149/1.3474225
10.1115/1.4042432
10.1002/cssc.v13.3
10.1088/1674-1056/ab943c
10.1149/1.3111037
10.1016/j.ensm.2021.06.013
10.1016/j.jpowsour.2019.227667
10.1016/j.jpowsour.2010.02.013
10.1149/1945-7111/abaa69
10.19799/j.cnki.2095-4239.2020-0050
10.1021/acs.jpcc.9b05298
10.1007/s10008-006-0095-1
10.1149/1945-7111/aba96f
10.1016/0013-4686(95)00162-8
10.1149/2.1211906jes
10.1016/j.electacta.2020.136901
10.1021/acs.jpcc.7b00185
10.1149/1.3486161
10.1002/aenm.201803380
10.1007/s43207-020-00098-x
10.1038/s41598-021-98123-4
10.1149/2.1691712jes
10.1016/j.micromeso.2020.110325
10.1016/j.jpowsour.2018.12.010
10.1016/j.nanoen.2018.04.062
10.1002/batt.202100182
10.1021/nl3044508
10.1149/1.2185287
10.1016/j.jpowsour.2021.230552
10.1002/aenm.v7.20
10.1016/j.jpowsour.2018.11.043
10.1002/aenm.202000363
ContentType Journal Article
Copyright 2022 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2022 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ac6012
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EndPage 684
ExternalDocumentID zgwl_e202207080
10_1088_1674_1056_ac6012
cpb_31_7_078201
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
M45
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c312t-660db3bc7167a64271d3567d1f8e14c19f15ca444301733d48e88e75f500c94d3
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:17 EDT 2025
Tue Jul 01 02:55:46 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Wed Aug 21 03:35:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Si-Gr
rate performance
electrochemical interactions
polarization
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-660db3bc7167a64271d3567d1f8e14c19f15ca444301733d48e88e75f500c94d3
PageCount 11
ParticipantIDs iop_journals_10_1088_1674_1056_ac6012
crossref_primary_10_1088_1674_1056_ac6012
crossref_citationtrail_10_1088_1674_1056_ac6012
wanfang_journals_zgwl_e202207080
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2022
Publisher Chinese Physical Society and IOP Publishing Ltd
School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China%Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China%Li Auto Inc.,Beijing 101399,China
Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China
Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
– name: Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China
– name: School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China%Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China%Li Auto Inc.,Beijing 101399,China
– name: Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China
– name: Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
– name: Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
– name: School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
References Smith (cpb_31_7_078201bib14) 2017; 121
Duffner (cpb_31_7_078201bib1) 2021; 6
Chandrasekaran (cpb_31_7_078201bib12) 2010; 157
Liu (cpb_31_7_078201bib17) 2019; 86
de Vasconcelos (cpb_31_7_078201bib36) 2020; 144
Jung (cpb_31_7_078201bib40) 2021; 58
Pan (cpb_31_7_078201bib28) 2019; 413
Lory (cpb_31_7_078201bib19) 2020; 167
Vidal (cpb_31_7_078201bib33) 2021; 514
Moon (cpb_31_7_078201bib10) 2021; 12
McDowell (cpb_31_7_078201bib35) 2013; 13
Liu (cpb_31_7_078201bib16) 2020; 450
Xu (cpb_31_7_078201bib5) 2020; 358
Zuo (cpb_31_7_078201bib4) 2020; 10
Pereira (cpb_31_7_078201bib18) 2019; 166
Baggetto (cpb_31_7_078201bib32) 2008; 18
Richter (cpb_31_7_078201bib9) 2020; 13
Yu (cpb_31_7_078201bib34) 1999; 146
Doyle (cpb_31_7_078201bib26) 1996; 143
Kim (cpb_31_7_078201bib38) 2020; 305
Yao (cpb_31_7_078201bib7) 2019; 9
Christensen (cpb_31_7_078201bib22) 2006; 153
Nyman (cpb_31_7_078201bib24) 2010; 157
Doyle (cpb_31_7_078201bib21) 1995; 40
Li (cpb_31_7_078201bib27) 2020; 167
Heubner (cpb_31_7_078201bib11) 2021; 5
Chandrasekaran (cpb_31_7_078201bib13) 2011; 158
Louli (cpb_31_7_078201bib29) 2017; 164
Sethuraman (cpb_31_7_078201bib31) 2010; 195
Chevrier (cpb_31_7_078201bib30) 2009; 156
Chandesris (cpb_31_7_078201bib15) 2019; 123
Berhaut (cpb_31_7_078201bib8) 2019; 13
Zhuang (cpb_31_7_078201bib20) 2020; 29
Sturm (cpb_31_7_078201bib25) 2019; 412
Radin (cpb_31_7_078201bib2) 2017; 7
Christensen (cpb_31_7_078201bib23) 2006; 10
Sattar (cpb_31_7_078201bib39) 2021; 11
Wenjun (cpb_31_7_078201bib6) 2020; 9
Mei (cpb_31_7_078201bib37) 2021; 41
Xia (cpb_31_7_078201bib3) 2018; 49
References_xml – volume: 144
  year: 2020
  ident: cpb_31_7_078201bib36
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.104102
– volume: 18
  start-page: 1057
  year: 2008
  ident: cpb_31_7_078201bib32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/(ISSN)1616-3028
– volume: 6
  start-page: 123
  year: 2021
  ident: cpb_31_7_078201bib1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00748-8
– volume: 12
  start-page: 2714
  year: 2021
  ident: cpb_31_7_078201bib10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22662-7
– volume: 158
  start-page: A859
  year: 2011
  ident: cpb_31_7_078201bib13
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3589301
– volume: 13
  year: 2019
  ident: cpb_31_7_078201bib8
  publication-title: Acs Nano
  doi: 10.1021/acsnano.9b05055
– volume: 143
  start-page: 1890
  year: 1996
  ident: cpb_31_7_078201bib26
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1836921
– volume: 146
  start-page: 8
  year: 1999
  ident: cpb_31_7_078201bib34
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1391556
– volume: 157
  year: 2010
  ident: cpb_31_7_078201bib12
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3474225
– volume: 86
  year: 2019
  ident: cpb_31_7_078201bib17
  publication-title: J. Appl. Mech.-Trans. Asme
  doi: 10.1115/1.4042432
– volume: 13
  start-page: 529
  year: 2020
  ident: cpb_31_7_078201bib9
  publication-title: ChemSusChem
  doi: 10.1002/cssc.v13.3
– volume: 29
  year: 2020
  ident: cpb_31_7_078201bib20
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab943c
– volume: 156
  start-page: A454
  year: 2009
  ident: cpb_31_7_078201bib30
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3111037
– volume: 41
  start-page: 209
  year: 2021
  ident: cpb_31_7_078201bib37
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.06.013
– volume: 450
  year: 2020
  ident: cpb_31_7_078201bib16
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227667
– volume: 195
  start-page: 5062
  year: 2010
  ident: cpb_31_7_078201bib31
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.02.013
– volume: 167
  year: 2020
  ident: cpb_31_7_078201bib19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abaa69
– volume: 9
  start-page: 448
  year: 2020
  ident: cpb_31_7_078201bib6
  publication-title: Energy Storage Sci. Technol.
  doi: 10.19799/j.cnki.2095-4239.2020-0050
– volume: 123
  year: 2019
  ident: cpb_31_7_078201bib15
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b05298
– volume: 10
  start-page: 293
  year: 2006
  ident: cpb_31_7_078201bib23
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-006-0095-1
– volume: 167
  year: 2020
  ident: cpb_31_7_078201bib27
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/aba96f
– volume: 40
  start-page: 2191
  year: 1995
  ident: cpb_31_7_078201bib21
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(95)00162-8
– volume: 166
  year: 2019
  ident: cpb_31_7_078201bib18
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1211906jes
– volume: 358
  year: 2020
  ident: cpb_31_7_078201bib5
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136901
– volume: 121
  year: 2017
  ident: cpb_31_7_078201bib14
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b00185
– volume: 157
  year: 2010
  ident: cpb_31_7_078201bib24
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3486161
– volume: 9
  year: 2019
  ident: cpb_31_7_078201bib7
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803380
– volume: 58
  start-page: 1
  year: 2021
  ident: cpb_31_7_078201bib40
  publication-title: J. Korean Ceram. Soc.
  doi: 10.1007/s43207-020-00098-x
– volume: 11
  year: 2021
  ident: cpb_31_7_078201bib39
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-98123-4
– volume: 164
  year: 2017
  ident: cpb_31_7_078201bib29
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1691712jes
– volume: 305
  year: 2020
  ident: cpb_31_7_078201bib38
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110325
– volume: 413
  start-page: 20
  year: 2019
  ident: cpb_31_7_078201bib28
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.12.010
– volume: 49
  start-page: 434
  year: 2018
  ident: cpb_31_7_078201bib3
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.062
– volume: 5
  year: 2021
  ident: cpb_31_7_078201bib11
  publication-title: Batteries & Supercaps
  doi: 10.1002/batt.202100182
– volume: 13
  start-page: 758
  year: 2013
  ident: cpb_31_7_078201bib35
  publication-title: Nano Lett.
  doi: 10.1021/nl3044508
– volume: 153
  year: 2006
  ident: cpb_31_7_078201bib22
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2185287
– volume: 514
  year: 2021
  ident: cpb_31_7_078201bib33
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230552
– volume: 7
  year: 2017
  ident: cpb_31_7_078201bib2
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.v7.20
– volume: 412
  start-page: 204
  year: 2019
  ident: cpb_31_7_078201bib25
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.043
– volume: 10
  year: 2020
  ident: cpb_31_7_078201bib4
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000363
SSID ssj0061023
Score 2.2984211
Snippet Silicon–graphite (Si–Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high...
Silicon-graphite(Si-Gr)composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries(LIBs)owing to their relatively high capacity...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 78201
SubjectTerms electrochemical interactions
polarization
rate performance
Si-Gr
Title Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
URI https://iopscience.iop.org/article/10.1088/1674-1056/ac6012
https://d.wanfangdata.com.cn/periodical/zgwl-e202207080
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6uIuxFXXVZdV1yWA8eMtOPpDuNJ1kUXXD1oOBBaNLV6XHYsWdwZhD8Nf5Uq5KMLxZZvIWmknQqST2SyleM_YxsBLGytJEUOiiyMEKDtKKobZEYVWhw6XxO_mRHF_L3pbqcY3tPb2GGoyD6O1j0QMGehSEgTncpbl5QwviuAXQnUP4upDrLKH3B8enZTAxnhElA3taMOtxR_quFVzrpE_brXvC0jWl7L5TN4TK7mv2mjzH525lOqg7cv0Fw_OA4VthSMEL5vif9wuZsu8oWXTAojNfYwxmBM7U9TvHmwxbVEncR7SE11pibtuZ9f5Q44CNyjsNrTvzKx_0Brq5WOChsNGh9K3RJjfWGteVoJnM0_q_70xtBdSoH8YkeO6dDYSTiITcPBDADcWPpfTIVucvcs84uDg_Ofx2JkMlBQBonE5FlUV2lFaBzlhv0ePK4TlWW13GjbSwhLppYgZFSorjJ07SW2mptc9WoKIJC1ulXNt_ieL8xDspKo6pK2iSSpkHzCsBC0WA_BWradIN1Z3NZQoA5p2wbg9Jdt2tdEt9L4nvp-b7Bdp9qjDzExzu0OzidZdjn43foeFhAz7T3vbtBiX-dJChmdbT5n01tsc9Ux4enfWfzk9up3UZDaFL9cAv-EYBcAVw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoEagX3ohCAR_gwMHJ7tre9R5RIWp5lByo1NviHXtDRLqJmkSV-mv4qZ2xHV5CFRI3azVjr1_zsMffMPYi8xnk2tNG0uigqNoKA8qL2vm6sLo2ENL5fDwqD47VuxN9kvKchrcw80US_QMsRqDgOIQpIM4MKW5eUML4oQV0J4rhwnVb7LqWpSTw_MNP440oLgmXgDyuDUe6p_xbLb_ppS1sO7zi6TvbT35ROKPb7MvmV2OcybfBetUO4OIPFMf_6MsddisZo_x1JL_Lrvn-HrsRgkJheZ99HxNIUz_hFHc-71E98RDZnlJkLbntHZ_GI8UZX5CTnF514le-nM5wlfUiQGKjYRtroctq5Js7z9Fc5ugEfJ2uTwXxtAHqEz13TofDSMRTjh5IoAbi1NM7ZSrykMHnATsevf28fyBSRgcBMi9Woiwz18oW0EmrLHo-Ve6kLiuXd8bnCvK6yzVYpRSKnUpKp4w3xle601kGtXLyIdvusb-PGAftldVtq3yRKduhmQXgoe6wnRo1rtxlw818NpDgzinrxqwJ1-7GNDT2DY19E8d-l736wbGIUB9X0L7EKW3Sfl9eQcfTIvpJezE5nzX410WB4tZkj_-xqufs5vjNqPlwePT-Cdsh9hixtse2V2dr_xRto1X7LKz_S_lDBsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+component+contributions+and+internal+polarization+in+silicon-graphite+composite+anode+for+lithium-ion+batteries+with+an+electrochemical-mechanical+model&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yue+Chen&rft.au=Fuliang+Guo&rft.au=Lufeng+Yang&rft.au=Jiaze+Lu&rft.date=2022-06-01&rft.pub=School+of+Physical+Sciences%2CUniversity+of+Chinese+Academy+of+Sciences%2CBeijing+100049%2CChina%25Beijing+Advanced+Innovation+Center+for+Materials+Genome+Engineering%2CKey+Laboratory+for+Renewable+Energy%2CBeijing+Key+Laboratory+for+New+Energy+Materials+and+Devices%2CInstitute+of+Physics%2CChinese+Academy+of+Sciences%2CBeijing+100190%2CChina%25Beijing+WeLion+New+Energy+Technology+Co.%2CLtd.%2CBeijing+100176%2CChina%25Li+Auto+Inc.%2CBeijing+101399%2CChina&rft.issn=1674-1056&rft.volume=31&rft.issue=7&rft.spage=674&rft.epage=684&rft_id=info:doi/10.1088%2F1674-1056%2Fac6012&rft.externalDocID=zgwl_e202207080
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg