Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Silicon–graphite (Si–Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high capacity and mild volume change. However, it is difficult to understand electrochemical interactions of Si and Gr in Si–Gr composite anodes and i...
Saved in:
Cover
Loading…
Abstract | Silicon–graphite (Si–Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high capacity and mild volume change. However, it is difficult to understand electrochemical interactions of Si and Gr in Si–Gr composite anodes and internal polarization of LIBs with regular experiment methods. Herein, we establish an electrochemical-mechanical coupled model to study the effect of rate and Si content on the electrochemical and stress behavior in a Si–Gr composite anode. The results show that the composites of Si and Gr not only improve the lithiation kinetics of Gr but also alleviate the voltage hysteresis of Si and decrease the risk of lithium plating in the negative electrode. What’s more, the Si content is a tradeoff between electrode capacity and electrode volume variation. Further, various internal polarization contributions of cells using Si–Gr composite anodes are quantified by the voltage decomposition method. The results indicate that the electrochemical polarization of electrode materials and the electrolyte ohmic over-potential are dominant factors in the rate performance of cells, which provides theoretical guidance for improving the rate performance of LIBs using Si–Gr composite anodes. |
---|---|
AbstractList | Silicon–graphite (Si–Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high capacity and mild volume change. However, it is difficult to understand electrochemical interactions of Si and Gr in Si–Gr composite anodes and internal polarization of LIBs with regular experiment methods. Herein, we establish an electrochemical-mechanical coupled model to study the effect of rate and Si content on the electrochemical and stress behavior in a Si–Gr composite anode. The results show that the composites of Si and Gr not only improve the lithiation kinetics of Gr but also alleviate the voltage hysteresis of Si and decrease the risk of lithium plating in the negative electrode. What’s more, the Si content is a tradeoff between electrode capacity and electrode volume variation. Further, various internal polarization contributions of cells using Si–Gr composite anodes are quantified by the voltage decomposition method. The results indicate that the electrochemical polarization of electrode materials and the electrolyte ohmic over-potential are dominant factors in the rate performance of cells, which provides theoretical guidance for improving the rate performance of LIBs using Si–Gr composite anodes. Silicon-graphite(Si-Gr)composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries(LIBs)owing to their relatively high capacity and mild volume change.However,it is difficult to understand electro-chemical interactions of Si and Gr in Si-Gr composite anodes and internal polarization of LIBs with regular experiment methods.Herein,we establish an electrochemical-mechanical coupled model to study the effect of rate and Si content on the electrochemical and stress behavior in a Si-Gr composite anode.The results show that the composites of Si and Gr not only improve the lithiation kinetics of Gr but also alleviate the voltage hysteresis of Si and decrease the risk of lithium plating in the negative electrode.What's more,the Si content is a tradeoff between electrode capacity and electrode volume variation.Further,various internal polarization contributions of cells using Si-Gr composite anodes are quantified by the voltage decomposition method.The results indicate that the electrochemical polarization of electrode materials and the electrolyte ohmic over-potential are dominant factors in the rate performance of cells,which provides theoretical guidance for improving the rate performance of LIBs using Si-Gr composite anodes. |
Author | Guo, Fuliang Li, Hong Zheng, Jieyun Yu, Xiqian Liu, Danna Yang, Lufeng Lu, Jiaze Chen, Yue Wang, Huayu |
AuthorAffiliation | Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China%Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China%Li Auto Inc.,Beijing 101399,China;Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Scien |
AuthorAffiliation_xml | – name: Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China%Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China%Li Auto Inc.,Beijing 101399,China;Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China;Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China |
Author_xml | – sequence: 1 givenname: Yue surname: Chen fullname: Chen, Yue organization: School of Physical Sciences, University of Chinese Academy of Sciences , China – sequence: 2 givenname: Fuliang surname: Guo fullname: Guo, Fuliang organization: School of Physical Sciences, University of Chinese Academy of Sciences , China – sequence: 3 givenname: Lufeng surname: Yang fullname: Yang, Lufeng organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences , China – sequence: 4 givenname: Jiaze surname: Lu fullname: Lu, Jiaze organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences , China – sequence: 5 givenname: Danna surname: Liu fullname: Liu, Danna organization: Beijing WeLion New Energy Technology Co., Ltd. , China – sequence: 6 givenname: Huayu surname: Wang fullname: Wang, Huayu organization: Tianmu Lake Institute of Advanced Energy Storage Technologies , China – sequence: 7 givenname: Jieyun surname: Zheng fullname: Zheng, Jieyun organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences , China – sequence: 8 givenname: Xiqian surname: Yu fullname: Yu, Xiqian organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences , China – sequence: 9 givenname: Hong surname: Li fullname: Li, Hong organization: Tianmu Lake Institute of Advanced Energy Storage Technologies , China |
BookMark | eNp9ULtOxDAQdHFIPHtKdzQE1nk4oUSIl4QEBdTWxnHufHLsyPbpBF_Dp-IQBBISVDuanRntzj5ZWGcVIccMzhg0zTnjdZkxqPg5Sg4sX5C9b2qX7IewBuAM8mKPvD9512q7pNINY0qxMSEbvW43UTsbKNqOahuVt2jo6Ax6_YbTKrE0aKOTPFt6HFc6qjklTAit6xTtnadGx5XeDNnkaTGmKK0C3SY2iagySkbv5EoNWqLJBiVXaCdIh5RgDslOjyaoo695QF5urp-v7rKHx9v7q8uHTBYsjxnn0LVFK-v0KPIyr1lXVLzuWN8oVkp20bNKYlmWBbC6KLqyUU2j6qqvAORF2RUH5GTO3aLt0S7F2m2mn4N4W26NUDnkOdTQQFLCrJTeheBVL0avB_SvgoGY-hdT2WIqW8z9Jwv_ZZE6frYYPWrzn_F0Nmo3_lz0p_wDllKfhw |
CitedBy_id | crossref_primary_10_1149_1945_7111_ad59c7 crossref_primary_10_1016_j_electacta_2024_145010 crossref_primary_10_1016_j_electacta_2023_142947 crossref_primary_10_1016_j_ensm_2024_103216 crossref_primary_10_1039_D4EE05595K |
Cites_doi | 10.1016/j.jmps.2020.104102 10.1002/(ISSN)1616-3028 10.1038/s41560-020-00748-8 10.1038/s41467-021-22662-7 10.1149/1.3589301 10.1021/acsnano.9b05055 10.1149/1.1836921 10.1149/1.1391556 10.1149/1.3474225 10.1115/1.4042432 10.1002/cssc.v13.3 10.1088/1674-1056/ab943c 10.1149/1.3111037 10.1016/j.ensm.2021.06.013 10.1016/j.jpowsour.2019.227667 10.1016/j.jpowsour.2010.02.013 10.1149/1945-7111/abaa69 10.19799/j.cnki.2095-4239.2020-0050 10.1021/acs.jpcc.9b05298 10.1007/s10008-006-0095-1 10.1149/1945-7111/aba96f 10.1016/0013-4686(95)00162-8 10.1149/2.1211906jes 10.1016/j.electacta.2020.136901 10.1021/acs.jpcc.7b00185 10.1149/1.3486161 10.1002/aenm.201803380 10.1007/s43207-020-00098-x 10.1038/s41598-021-98123-4 10.1149/2.1691712jes 10.1016/j.micromeso.2020.110325 10.1016/j.jpowsour.2018.12.010 10.1016/j.nanoen.2018.04.062 10.1002/batt.202100182 10.1021/nl3044508 10.1149/1.2185287 10.1016/j.jpowsour.2021.230552 10.1002/aenm.v7.20 10.1016/j.jpowsour.2018.11.043 10.1002/aenm.202000363 |
ContentType | Journal Article |
Copyright | 2022 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2022 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ac6012 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EndPage | 684 |
ExternalDocumentID | zgwl_e202207080 10_1088_1674_1056_ac6012 cpb_31_7_078201 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT M45 N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c312t-660db3bc7167a64271d3567d1f8e14c19f15ca444301733d48e88e75f500c94d3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:17 EDT 2025 Tue Jul 01 02:55:46 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Wed Aug 21 03:35:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Si-Gr rate performance electrochemical interactions polarization |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-660db3bc7167a64271d3567d1f8e14c19f15ca444301733d48e88e75f500c94d3 |
PageCount | 11 |
ParticipantIDs | iop_journals_10_1088_1674_1056_ac6012 crossref_primary_10_1088_1674_1056_ac6012 crossref_citationtrail_10_1088_1674_1056_ac6012 wanfang_journals_zgwl_e202207080 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2022 |
Publisher | Chinese Physical Society and IOP Publishing Ltd School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China%Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China%Li Auto Inc.,Beijing 101399,China Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd – name: Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China – name: School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China%Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China%Li Auto Inc.,Beijing 101399,China – name: Beijing WeLion New Energy Technology Co.,Ltd.,Beijing 100176,China – name: Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China – name: Tianmu Lake Institute of Advanced Energy Storage Technologies,Liyang 213300,China%Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China – name: School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China |
References | Smith (cpb_31_7_078201bib14) 2017; 121 Duffner (cpb_31_7_078201bib1) 2021; 6 Chandrasekaran (cpb_31_7_078201bib12) 2010; 157 Liu (cpb_31_7_078201bib17) 2019; 86 de Vasconcelos (cpb_31_7_078201bib36) 2020; 144 Jung (cpb_31_7_078201bib40) 2021; 58 Pan (cpb_31_7_078201bib28) 2019; 413 Lory (cpb_31_7_078201bib19) 2020; 167 Vidal (cpb_31_7_078201bib33) 2021; 514 Moon (cpb_31_7_078201bib10) 2021; 12 McDowell (cpb_31_7_078201bib35) 2013; 13 Liu (cpb_31_7_078201bib16) 2020; 450 Xu (cpb_31_7_078201bib5) 2020; 358 Zuo (cpb_31_7_078201bib4) 2020; 10 Pereira (cpb_31_7_078201bib18) 2019; 166 Baggetto (cpb_31_7_078201bib32) 2008; 18 Richter (cpb_31_7_078201bib9) 2020; 13 Yu (cpb_31_7_078201bib34) 1999; 146 Doyle (cpb_31_7_078201bib26) 1996; 143 Kim (cpb_31_7_078201bib38) 2020; 305 Yao (cpb_31_7_078201bib7) 2019; 9 Christensen (cpb_31_7_078201bib22) 2006; 153 Nyman (cpb_31_7_078201bib24) 2010; 157 Doyle (cpb_31_7_078201bib21) 1995; 40 Li (cpb_31_7_078201bib27) 2020; 167 Heubner (cpb_31_7_078201bib11) 2021; 5 Chandrasekaran (cpb_31_7_078201bib13) 2011; 158 Louli (cpb_31_7_078201bib29) 2017; 164 Sethuraman (cpb_31_7_078201bib31) 2010; 195 Chevrier (cpb_31_7_078201bib30) 2009; 156 Chandesris (cpb_31_7_078201bib15) 2019; 123 Berhaut (cpb_31_7_078201bib8) 2019; 13 Zhuang (cpb_31_7_078201bib20) 2020; 29 Sturm (cpb_31_7_078201bib25) 2019; 412 Radin (cpb_31_7_078201bib2) 2017; 7 Christensen (cpb_31_7_078201bib23) 2006; 10 Sattar (cpb_31_7_078201bib39) 2021; 11 Wenjun (cpb_31_7_078201bib6) 2020; 9 Mei (cpb_31_7_078201bib37) 2021; 41 Xia (cpb_31_7_078201bib3) 2018; 49 |
References_xml | – volume: 144 year: 2020 ident: cpb_31_7_078201bib36 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.104102 – volume: 18 start-page: 1057 year: 2008 ident: cpb_31_7_078201bib32 publication-title: Adv. Funct. Mater. doi: 10.1002/(ISSN)1616-3028 – volume: 6 start-page: 123 year: 2021 ident: cpb_31_7_078201bib1 publication-title: Nat. Energy doi: 10.1038/s41560-020-00748-8 – volume: 12 start-page: 2714 year: 2021 ident: cpb_31_7_078201bib10 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22662-7 – volume: 158 start-page: A859 year: 2011 ident: cpb_31_7_078201bib13 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3589301 – volume: 13 year: 2019 ident: cpb_31_7_078201bib8 publication-title: Acs Nano doi: 10.1021/acsnano.9b05055 – volume: 143 start-page: 1890 year: 1996 ident: cpb_31_7_078201bib26 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836921 – volume: 146 start-page: 8 year: 1999 ident: cpb_31_7_078201bib34 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1391556 – volume: 157 year: 2010 ident: cpb_31_7_078201bib12 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3474225 – volume: 86 year: 2019 ident: cpb_31_7_078201bib17 publication-title: J. Appl. Mech.-Trans. Asme doi: 10.1115/1.4042432 – volume: 13 start-page: 529 year: 2020 ident: cpb_31_7_078201bib9 publication-title: ChemSusChem doi: 10.1002/cssc.v13.3 – volume: 29 year: 2020 ident: cpb_31_7_078201bib20 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab943c – volume: 156 start-page: A454 year: 2009 ident: cpb_31_7_078201bib30 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3111037 – volume: 41 start-page: 209 year: 2021 ident: cpb_31_7_078201bib37 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.06.013 – volume: 450 year: 2020 ident: cpb_31_7_078201bib16 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227667 – volume: 195 start-page: 5062 year: 2010 ident: cpb_31_7_078201bib31 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.02.013 – volume: 167 year: 2020 ident: cpb_31_7_078201bib19 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abaa69 – volume: 9 start-page: 448 year: 2020 ident: cpb_31_7_078201bib6 publication-title: Energy Storage Sci. Technol. doi: 10.19799/j.cnki.2095-4239.2020-0050 – volume: 123 year: 2019 ident: cpb_31_7_078201bib15 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b05298 – volume: 10 start-page: 293 year: 2006 ident: cpb_31_7_078201bib23 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-006-0095-1 – volume: 167 year: 2020 ident: cpb_31_7_078201bib27 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/aba96f – volume: 40 start-page: 2191 year: 1995 ident: cpb_31_7_078201bib21 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(95)00162-8 – volume: 166 year: 2019 ident: cpb_31_7_078201bib18 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1211906jes – volume: 358 year: 2020 ident: cpb_31_7_078201bib5 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136901 – volume: 121 year: 2017 ident: cpb_31_7_078201bib14 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b00185 – volume: 157 year: 2010 ident: cpb_31_7_078201bib24 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3486161 – volume: 9 year: 2019 ident: cpb_31_7_078201bib7 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803380 – volume: 58 start-page: 1 year: 2021 ident: cpb_31_7_078201bib40 publication-title: J. Korean Ceram. Soc. doi: 10.1007/s43207-020-00098-x – volume: 11 year: 2021 ident: cpb_31_7_078201bib39 publication-title: Sci. Rep. doi: 10.1038/s41598-021-98123-4 – volume: 164 year: 2017 ident: cpb_31_7_078201bib29 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1691712jes – volume: 305 year: 2020 ident: cpb_31_7_078201bib38 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110325 – volume: 413 start-page: 20 year: 2019 ident: cpb_31_7_078201bib28 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.12.010 – volume: 49 start-page: 434 year: 2018 ident: cpb_31_7_078201bib3 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.062 – volume: 5 year: 2021 ident: cpb_31_7_078201bib11 publication-title: Batteries & Supercaps doi: 10.1002/batt.202100182 – volume: 13 start-page: 758 year: 2013 ident: cpb_31_7_078201bib35 publication-title: Nano Lett. doi: 10.1021/nl3044508 – volume: 153 year: 2006 ident: cpb_31_7_078201bib22 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2185287 – volume: 514 year: 2021 ident: cpb_31_7_078201bib33 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230552 – volume: 7 year: 2017 ident: cpb_31_7_078201bib2 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.v7.20 – volume: 412 start-page: 204 year: 2019 ident: cpb_31_7_078201bib25 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.043 – volume: 10 year: 2020 ident: cpb_31_7_078201bib4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000363 |
SSID | ssj0061023 |
Score | 2.2984211 |
Snippet | Silicon–graphite (Si–Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high... Silicon-graphite(Si-Gr)composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries(LIBs)owing to their relatively high capacity... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 78201 |
SubjectTerms | electrochemical interactions polarization rate performance Si-Gr |
Title | Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ac6012 https://d.wanfangdata.com.cn/periodical/zgwl-e202207080 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6uIuxFXXVZdV1yWA8eMtOPpDuNJ1kUXXD1oOBBaNLV6XHYsWdwZhD8Nf5Uq5KMLxZZvIWmknQqST2SyleM_YxsBLGytJEUOiiyMEKDtKKobZEYVWhw6XxO_mRHF_L3pbqcY3tPb2GGoyD6O1j0QMGehSEgTncpbl5QwviuAXQnUP4upDrLKH3B8enZTAxnhElA3taMOtxR_quFVzrpE_brXvC0jWl7L5TN4TK7mv2mjzH525lOqg7cv0Fw_OA4VthSMEL5vif9wuZsu8oWXTAojNfYwxmBM7U9TvHmwxbVEncR7SE11pibtuZ9f5Q44CNyjsNrTvzKx_0Brq5WOChsNGh9K3RJjfWGteVoJnM0_q_70xtBdSoH8YkeO6dDYSTiITcPBDADcWPpfTIVucvcs84uDg_Ofx2JkMlBQBonE5FlUV2lFaBzlhv0ePK4TlWW13GjbSwhLppYgZFSorjJ07SW2mptc9WoKIJC1ulXNt_ieL8xDspKo6pK2iSSpkHzCsBC0WA_BWradIN1Z3NZQoA5p2wbg9Jdt2tdEt9L4nvp-b7Bdp9qjDzExzu0OzidZdjn43foeFhAz7T3vbtBiX-dJChmdbT5n01tsc9Ux4enfWfzk9up3UZDaFL9cAv-EYBcAVw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoEagX3ohCAR_gwMHJ7tre9R5RIWp5lByo1NviHXtDRLqJmkSV-mv4qZ2xHV5CFRI3azVjr1_zsMffMPYi8xnk2tNG0uigqNoKA8qL2vm6sLo2ENL5fDwqD47VuxN9kvKchrcw80US_QMsRqDgOIQpIM4MKW5eUML4oQV0J4rhwnVb7LqWpSTw_MNP440oLgmXgDyuDUe6p_xbLb_ppS1sO7zi6TvbT35ROKPb7MvmV2OcybfBetUO4OIPFMf_6MsddisZo_x1JL_Lrvn-HrsRgkJheZ99HxNIUz_hFHc-71E98RDZnlJkLbntHZ_GI8UZX5CTnF514le-nM5wlfUiQGKjYRtroctq5Js7z9Fc5ugEfJ2uTwXxtAHqEz13TofDSMRTjh5IoAbi1NM7ZSrykMHnATsevf28fyBSRgcBMi9Woiwz18oW0EmrLHo-Ve6kLiuXd8bnCvK6yzVYpRSKnUpKp4w3xle601kGtXLyIdvusb-PGAftldVtq3yRKduhmQXgoe6wnRo1rtxlw818NpDgzinrxqwJ1-7GNDT2DY19E8d-l736wbGIUB9X0L7EKW3Sfl9eQcfTIvpJezE5nzX410WB4tZkj_-xqufs5vjNqPlwePT-Cdsh9hixtse2V2dr_xRto1X7LKz_S_lDBsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+component+contributions+and+internal+polarization+in+silicon-graphite+composite+anode+for+lithium-ion+batteries+with+an+electrochemical-mechanical+model&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yue+Chen&rft.au=Fuliang+Guo&rft.au=Lufeng+Yang&rft.au=Jiaze+Lu&rft.date=2022-06-01&rft.pub=School+of+Physical+Sciences%2CUniversity+of+Chinese+Academy+of+Sciences%2CBeijing+100049%2CChina%25Beijing+Advanced+Innovation+Center+for+Materials+Genome+Engineering%2CKey+Laboratory+for+Renewable+Energy%2CBeijing+Key+Laboratory+for+New+Energy+Materials+and+Devices%2CInstitute+of+Physics%2CChinese+Academy+of+Sciences%2CBeijing+100190%2CChina%25Beijing+WeLion+New+Energy+Technology+Co.%2CLtd.%2CBeijing+100176%2CChina%25Li+Auto+Inc.%2CBeijing+101399%2CChina&rft.issn=1674-1056&rft.volume=31&rft.issue=7&rft.spage=674&rft.epage=684&rft_id=info:doi/10.1088%2F1674-1056%2Fac6012&rft.externalDocID=zgwl_e202207080 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |