Refined nonlinear micromechanical models using artificial neural networks for multiscale analysis of laminated composites subject to low-velocity impact
The parametric high fidelity generalized method of cells (PHFGMC) is an advanced micromechanical method that can be used for the nonlinear and failure analysis of several composite materials. The computational effort required for studying the nonlinear and damage multiaxial behavior is relatively sm...
Saved in:
Published in | International journal of solids and structures Vol. 264; p. 112123 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The parametric high fidelity generalized method of cells (PHFGMC) is an advanced micromechanical method that can be used for the nonlinear and failure analysis of several composite materials. The computational effort required for studying the nonlinear and damage multiaxial behavior is relatively small, depending on the size of the discretized repeating unit cell (RUC). However, it is computationally challenging, if not impossible, to integrate refined nonlinear micromechanical models within a multiscale analysis of composite structures. This is due to the thousands or more RUC models required at the integration points within a multiscale finite-element (FE) model of laminated structures. To that end, we propose a new artificial neural network (ANN) based micromechanical modeling framework, termed ANN-PHFGMC, for exploring the nonlinear behavior of fiber-reinforced polymeric (FRP) materials. Pre-simulated mechanical stress–strain responses and behaviors are determined using the PHFGMC to generate a multiaxial training database for the ANN micromodel. The simulated training data is founded on the PHFGMC-RUC results based on a hexagonal RUC. The PHFGMC effective stress–strain responses for different applied multiaxial strain paths are divided into two sets of data; one for the training and the other for verifying the trained ANN-PHFGMC model. The resulting trained ANN-PHFGMC is accurate, with less than 5% error in the verified predictions. The ANN-PHFGMC can be used as a stand-alone or embedded as a surrogate proxy model within a multiscale analysis of composite structures. Next, the ANN-PHFGMC model is integrated within a commercial explicit FE code for low-velocity impact (LVI) analysis of laminated composite plates. Multiscale LVI analyses are performed for two composite plates with different layups. Further, results are compared to experimental data to demonstrate the new model's ability to integrate refined nonlinear micromechanical models within a multiscale analysis. |
---|---|
AbstractList | The parametric high fidelity generalized method of cells (PHFGMC) is an advanced micromechanical method that can be used for the nonlinear and failure analysis of several composite materials. The computational effort required for studying the nonlinear and damage multiaxial behavior is relatively small, depending on the size of the discretized repeating unit cell (RUC). However, it is computationally challenging, if not impossible, to integrate refined nonlinear micromechanical models within a multiscale analysis of composite structures. This is due to the thousands or more RUC models required at the integration points within a multiscale finite-element (FE) model of laminated structures. To that end, we propose a new artificial neural network (ANN) based micromechanical modeling framework, termed ANN-PHFGMC, for exploring the nonlinear behavior of fiber-reinforced polymeric (FRP) materials. Pre-simulated mechanical stress–strain responses and behaviors are determined using the PHFGMC to generate a multiaxial training database for the ANN micromodel. The simulated training data is founded on the PHFGMC-RUC results based on a hexagonal RUC. The PHFGMC effective stress–strain responses for different applied multiaxial strain paths are divided into two sets of data; one for the training and the other for verifying the trained ANN-PHFGMC model. The resulting trained ANN-PHFGMC is accurate, with less than 5% error in the verified predictions. The ANN-PHFGMC can be used as a stand-alone or embedded as a surrogate proxy model within a multiscale analysis of composite structures. Next, the ANN-PHFGMC model is integrated within a commercial explicit FE code for low-velocity impact (LVI) analysis of laminated composite plates. Multiscale LVI analyses are performed for two composite plates with different layups. Further, results are compared to experimental data to demonstrate the new model's ability to integrate refined nonlinear micromechanical models within a multiscale analysis. |
ArticleNumber | 112123 |
Author | Haj-Ali, Rami Bernikov, Yevheniia Meshi, Ido Lin, Shiyao Shemesh, Noam N.Y. Ranatunga, Vipul Hochster, Hadas Waas, Anthony M. |
Author_xml | – sequence: 1 givenname: Hadas surname: Hochster fullname: Hochster, Hadas organization: School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel – sequence: 2 givenname: Yevheniia surname: Bernikov fullname: Bernikov, Yevheniia organization: School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel – sequence: 3 givenname: Ido surname: Meshi fullname: Meshi, Ido organization: School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel – sequence: 4 givenname: Shiyao surname: Lin fullname: Lin, Shiyao organization: University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 5 givenname: Vipul surname: Ranatunga fullname: Ranatunga, Vipul organization: Air Force Research Laboratory, Wright Patterson AFB, 45433, USA – sequence: 6 givenname: Anthony M. orcidid: 0000-0002-4916-2102 surname: Waas fullname: Waas, Anthony M. organization: University of Michigan, Ann Arbor, MI, 48109, USA – sequence: 7 givenname: Noam N.Y. surname: Shemesh fullname: Shemesh, Noam N.Y. organization: IAF Aeronautical Engineering Branch, Tel-Aviv, Israel – sequence: 8 givenname: Rami orcidid: 0000-0002-1761-7344 surname: Haj-Ali fullname: Haj-Ali, Rami email: rami98@tau.ac.il organization: School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel |
BookMark | eNqFkEtqHDEQhrVwwI_4CkYX6IkePd3TkEWMsWODIRCStVCrS0511NKg0tjMTXzcaDzJJhuvqij4_qr6ztlJTBEYu5JiJYXsPs0rnCkFKnmlhNIrKZVU-oSdCaFE03cbfcrOiWYhRKsHccZev4PHCBOvQaE2NvMFXU4LuF82orOBL2mCQHxHGJ-4zQU9OqzzCLv8VspLyr-J-1TZXShIlQJuow17QuLJ82AXjLbUNS4t20RYgDjtxhlc4SXxkF6aZwjJYdlzXLbWlY_sg7eB4PJvvWA_725_3Nw3j9--PtxcPzZOS1WaTtlxGAa_6fS6652EsR02a90OUoBrhZxGP0g3-m5qJw9KAehejr1eD5PolZb6gnXH3Po0UQZvthkXm_dGCnNwambzz6k5ODVHpxX8_B9Yr7cFUyzZYngf_3LEq1t4RsiGHEJ0MGGuVsyU8L2IP6XcoU8 |
CitedBy_id | crossref_primary_10_1177_00219983241292780 crossref_primary_10_1016_j_compscitech_2024_110910 crossref_primary_10_1016_j_engfracmech_2024_110120 crossref_primary_10_1080_15376494_2024_2358515 crossref_primary_10_1016_j_compositesb_2023_110663 crossref_primary_10_1016_j_ijsolstr_2023_112519 crossref_primary_10_1007_s40964_024_00686_x crossref_primary_10_1108_IJSI_12_2024_0211 |
Cites_doi | 10.2514/6.2021-1623 10.1177/0021998316658539 10.1016/j.compstruct.2017.11.089 10.1007/978-3-642-35289-8 10.1016/j.ijsolstr.2010.08.022 10.1007/s10443-021-09891-1 10.1007/s00466-018-1643-0 10.2514/6.2022-0409 10.1177/002199838802200103 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V 10.1002/nme.2082 10.1061/(ASCE)0733-9399(2001)127:7(730) 10.1016/B978-0-444-63578-5.50102-X 10.1016/j.cma.2019.02.016 10.1016/1359-835X(96)00074-7 10.1016/S1359-835X(01)00119-1 10.1016/j.compstruct.2020.112658 10.1002/nme.4953 10.1016/j.compscitech.2005.04.009 10.1016/j.compstruc.2008.12.003 10.1016/B978-0-12-397035-0.00013-6 10.1016/j.cma.2008.12.036 10.1016/j.compstruct.2022.115822 10.1016/j.compstruct.2013.02.020 10.2514/6.2020-1863 10.1016/j.mechmat.2007.05.004 10.1038/nbt1386 10.1016/j.compstruc.2006.02.015 10.1016/j.ijsolstr.2016.03.032 10.1016/j.compstruct.2012.04.024 10.1016/j.cma.2019.112587 10.1016/j.ijsolstr.2020.08.024 10.1061/(ASCE)0733-9399(1991)117:1(132) 10.1016/0893-6080(94)90052-3 10.1016/j.compositesb.2016.09.057 10.1007/s00466-019-01723-1 10.1016/j.ijplas.2007.02.001 10.1007/s40192-018-0117-8 10.1016/j.euromechsol.2020.103995 10.1016/S0045-7825(03)00350-5 10.1016/j.jcp.2016.10.070 10.1016/j.ijsolstr.2012.11.009 10.1007/s10237-020-01348-x 10.1177/0731684417740982 10.1016/j.ijsolstr.2008.01.015 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ijsolstr.2023.112123 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ijsolstr_2023_112123 S0020768323000203 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ACBEA ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEXQZ AFJKZ AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM LY7 M24 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSZ T5K TN5 TR2 XPP ZMT ~02 ~G- 29J 6TJ AAFWJ AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEUPX AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SET SEW SMS SSH VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c312t-62ab999f863567c1eb498534910ec401dbf91cbf6d4dfe22ee371b7359d072313 |
IEDL.DBID | .~1 |
ISSN | 0020-7683 |
IngestDate | Thu Apr 24 23:11:57 EDT 2025 Thu Jul 03 08:18:04 EDT 2025 Sat Mar 08 15:43:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Micromechanics Low-Velocity Impact PHFGMC Composite Artificial Neural Network |
Language | English |
License | This article is made available under the Elsevier license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-62ab999f863567c1eb498534910ec401dbf91cbf6d4dfe22ee371b7359d072313 |
ORCID | 0000-0002-4916-2102 0000-0002-1761-7344 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0020768323000203 |
ParticipantIDs | crossref_primary_10_1016_j_ijsolstr_2023_112123 crossref_citationtrail_10_1016_j_ijsolstr_2023_112123 elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2023_112123 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of solids and structures |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Haj-Ali, Aboudi (b0075) 2010; 47 Unger, Könke (b0240) 2009; 87 Panettieri (b0185) 2016; 107 Malik, Arif (b0150) 2013; 101 Haj-Ali, Aboudi (b0090) 2018 Muliana, Haj-Ali (b0180) 2008; 45 Aboudi, J., Arnold, S.M., Bednarcyk, B.A., Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach, 2012. Liu, Tao, Yu (b0140) 2020; 252 Yang (b0250) 2021; 28 Ghaboussi (b0050) 1998; 42 Aboudi, Haj-Ali (b0010) 2015; 80 Haj-Ali, Aboudi (b0085) 2016; 90 Lefik, Schrefler (b0125) 2003; 192 Breiman, Aboudi, Haj-Ali (b0025) 2017; 37 Haj-Ali (b0070) 2008; 24 Matouš (b0165) 2017; 330 Richardson, Wisheart (b0200) 1996; 27 Haj-Ali, R., The Sublaminate Model, in Multiscale modeling and simulation of composite materials and structures. 2008, Springer. p. 334-341. Breiman (b0020) 2020; 19 Lin, Ranatunga, Waas (b0135) 2022; 296 Patrick van der Smagt (b0190) 1994; 7 Ghaboussi, Garrett, Wu (b0055) 1991; 117 Krogh (b0110) 2008; 26 Jung, Ghaboussi (b0105) 2006; 84 Haj-Ali, Kim (b0095) 2007; 39 de Moura, Marques (b0035) 2002; 33 Stuckner (b0225) 2021 Seamone, A., Waas, A.M., Davidson, P., Experimental Analysis of Low Velocity Impact on Carbon Fiber Reinforced Polymer (CFRP) Composite Panels, in AIAA SCITECH 2022 Forum. Lefik, Boso, Schrefler (b0120) 2009; 198 Montavon, G., Orr, G., Mller, K.-R., Neural Networks: Tricks of the Trade. in Lecture Notes in Computer Science. 2012. Eggersmann (b0045) 2019; 350 Haj-Ali (b0065) 2001; 127 Wang, Sun, Du (b0245) 2019; 64 Post (b0195) 2021 Sjoblom, Hartness, Cordell (b0220) 1988; 22 Sanchez-Saez (b0210) 2005; 65 Yun, Ghaboussi, Elnashai (b0255) 2008; 73 Lu (b0145) 2019; 64 Massarwa, Aboudi, Haj-Ali (b0160) 2018; 188 Meshi (b0170) 2020; 206 Rocha, Kerfriden, van der Meer (b0205) 2020; 82 Haj-Ali, Aboudi (b0080) 2013; 50 Dimiduk, Holm, Niezgoda (b0040) 2018; 7 Gustafson, P.A., et al., A Convolutional Neural Network for Enhancement of Multi-Scale Localization in Granular Metallic Representative Unit Cells, in AIAA SCITECH 2022 Forum. 2021, American Institute of Aeronautics and Astronautics. Thombre, M.N., H.A. Preisig, and M.B. Addis, Developing Surrogate Models via Computer Based Experiments. 12th International Symposium on Process Systems Engineering (Pse) and 25th European Symposium on Computer Aided Process Engineering (Escape), Pt A, 2015. 37: p. 641-646. Tang (b0230) 2019; 357 Clay, Knoth (b0030) 2016; 51 Lin, S., Ranatunga, V., Waas, A.M., A Comprehensive Experimental and Computational Study on LVI induced Damage of Laminated Composites, in AIAA Scitech 2021 Forum. 2021, American Institute of Aeronautics and Astronautics. Le, Yvonnet, He (b0115) 2015; 104 Marín (b0155) 2012; 94 Arnold, S.M., et al., Multiscale Analysis of Composites Using Surrogate Modeling and Information Optimal Designs, in AIAA Scitech 2020 Forum. 2020, American Institute of Aeronautics and Astronautics. Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0065) 2001; 127 Lu (10.1016/j.ijsolstr.2023.112123_b0145) 2019; 64 Clay (10.1016/j.ijsolstr.2023.112123_b0030) 2016; 51 Malik (10.1016/j.ijsolstr.2023.112123_b0150) 2013; 101 Lefik (10.1016/j.ijsolstr.2023.112123_b0125) 2003; 192 Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0090) 2018 10.1016/j.ijsolstr.2023.112123_b0130 Massarwa (10.1016/j.ijsolstr.2023.112123_b0160) 2018; 188 10.1016/j.ijsolstr.2023.112123_b0175 Liu (10.1016/j.ijsolstr.2023.112123_b0140) 2020; 252 Lin (10.1016/j.ijsolstr.2023.112123_b0135) 2022; 296 10.1016/j.ijsolstr.2023.112123_b0215 10.1016/j.ijsolstr.2023.112123_b0015 Yang (10.1016/j.ijsolstr.2023.112123_b0250) 2021; 28 Muliana (10.1016/j.ijsolstr.2023.112123_b0180) 2008; 45 Dimiduk (10.1016/j.ijsolstr.2023.112123_b0040) 2018; 7 Le (10.1016/j.ijsolstr.2023.112123_b0115) 2015; 104 Jung (10.1016/j.ijsolstr.2023.112123_b0105) 2006; 84 Ghaboussi (10.1016/j.ijsolstr.2023.112123_b0050) 1998; 42 Breiman (10.1016/j.ijsolstr.2023.112123_b0020) 2020; 19 Breiman (10.1016/j.ijsolstr.2023.112123_b0025) 2017; 37 Lefik (10.1016/j.ijsolstr.2023.112123_b0120) 2009; 198 Post (10.1016/j.ijsolstr.2023.112123_b0195) 2021 Wang (10.1016/j.ijsolstr.2023.112123_b0245) 2019; 64 10.1016/j.ijsolstr.2023.112123_b0005 Marín (10.1016/j.ijsolstr.2023.112123_b0155) 2012; 94 Richardson (10.1016/j.ijsolstr.2023.112123_b0200) 1996; 27 de Moura (10.1016/j.ijsolstr.2023.112123_b0035) 2002; 33 Stuckner (10.1016/j.ijsolstr.2023.112123_b0225) 2021 Yun (10.1016/j.ijsolstr.2023.112123_b0255) 2008; 73 Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0070) 2008; 24 Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0075) 2010; 47 Tang (10.1016/j.ijsolstr.2023.112123_b0230) 2019; 357 10.1016/j.ijsolstr.2023.112123_b0235 Aboudi (10.1016/j.ijsolstr.2023.112123_b0010) 2015; 80 Ghaboussi (10.1016/j.ijsolstr.2023.112123_b0055) 1991; 117 Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0085) 2016; 90 Patrick van der Smagt (10.1016/j.ijsolstr.2023.112123_b0190) 1994; 7 Matouš (10.1016/j.ijsolstr.2023.112123_b0165) 2017; 330 Sanchez-Saez (10.1016/j.ijsolstr.2023.112123_b0210) 2005; 65 Unger (10.1016/j.ijsolstr.2023.112123_b0240) 2009; 87 10.1016/j.ijsolstr.2023.112123_b0100 Rocha (10.1016/j.ijsolstr.2023.112123_b0205) 2020; 82 Sjoblom (10.1016/j.ijsolstr.2023.112123_b0220) 1988; 22 Eggersmann (10.1016/j.ijsolstr.2023.112123_b0045) 2019; 350 10.1016/j.ijsolstr.2023.112123_b0060 Meshi (10.1016/j.ijsolstr.2023.112123_b0170) 2020; 206 Krogh (10.1016/j.ijsolstr.2023.112123_b0110) 2008; 26 Panettieri (10.1016/j.ijsolstr.2023.112123_b0185) 2016; 107 Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0080) 2013; 50 Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0095) 2007; 39 |
References_xml | – volume: 64 start-page: 307 year: 2019 end-page: 321 ident: b0145 article-title: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites publication-title: Comput. Mech. – volume: 24 start-page: 371 year: 2008 end-page: 396 ident: b0070 article-title: Nonlinear constitutive models from nanoindentation tests using artificial neural networks publication-title: Int. J. Plast – reference: Montavon, G., Orr, G., Mller, K.-R., Neural Networks: Tricks of the Trade. in Lecture Notes in Computer Science. 2012. – volume: 84 start-page: 955 year: 2006 end-page: 963 ident: b0105 article-title: Neural network constitutive model for rate-dependent materials publication-title: Comput. Struct. – volume: 80 year: 2015 ident: b0010 article-title: A fully coupled thermal-electrical-mechanical micromodel for multi-phase periodic thermoelectrical composite materials and devices publication-title: Int. J. Solids Struct. – reference: Haj-Ali, R., The Sublaminate Model, in Multiscale modeling and simulation of composite materials and structures. 2008, Springer. p. 334-341. – volume: 101 start-page: 290 year: 2013 end-page: 300 ident: b0150 article-title: ANN prediction model for composite plates against low velocity impact loads using finite element analysis publication-title: Compos. Struct. – volume: 64 start-page: 467 year: 2019 end-page: 499 ident: b0245 article-title: A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation publication-title: Comput. Mech. – volume: 192 start-page: 3265 year: 2003 end-page: 3283 ident: b0125 article-title: Artificial neural network as an incremental non-linear constitutive model for a finite element code publication-title: Comput. Methods Appl. Mech. Eng. – volume: 28 start-page: 809 year: 2021 end-page: 833 ident: b0250 article-title: Artificial Neural Network (ANN)-based residual strength prediction of carbon fibre reinforced composites (CFRCs) after impact publication-title: Appl. Compos. Mater. – volume: 107 start-page: 9 year: 2016 end-page: 21 ident: b0185 article-title: Low-velocity impact tests on carbon/epoxy composite laminates: a benchmark study publication-title: Compos. B Eng. – volume: 7 start-page: 1 year: 1994 end-page: 11 ident: b0190 article-title: Minimisation methods for training feedforward neural networks publication-title: Neural Netw. – volume: 33 start-page: 361 year: 2002 end-page: 368 ident: b0035 article-title: Prediction of low velocity impact damage in carbon–epoxy laminates publication-title: Compos. A Appl. Sci. Manuf. – volume: 47 start-page: 3447 year: 2010 end-page: 3461 ident: b0075 article-title: Formulation of the high-fidelity generalized method of cells with arbitrary cell geometry for refined micromechanics and damage in composites publication-title: Int. J. Solids Struct. – volume: 296 year: 2022 ident: b0135 article-title: Experimental study on the panel size effects of the Low-Velocity Impact (LVI) and Compression After Impact (CAI) of laminated composites. Part I: LVI publication-title: Compos. Struct. – volume: 26 start-page: 195 year: 2008 end-page: 197 ident: b0110 article-title: What are artificial neural networks? publication-title: Nat. Biotechnol. – volume: 188 start-page: 159 year: 2018 end-page: 172 ident: b0160 article-title: A multiscale progressive damage analysis for laminated composite structures using the parametric HFGMC micromechanics publication-title: Compos. Struct. – year: 2021 ident: b0225 article-title: Tractable multiscale modeling with an embedded microscale surrogate publication-title: AIAA Scitech 2021 Forum – volume: 350 start-page: 81 year: 2019 end-page: 99 ident: b0045 article-title: Model-Free Data-Driven inelasticity publication-title: Comput. Methods Appl. Mech. Eng. – reference: Gustafson, P.A., et al., A Convolutional Neural Network for Enhancement of Multi-Scale Localization in Granular Metallic Representative Unit Cells, in AIAA SCITECH 2022 Forum. 2021, American Institute of Aeronautics and Astronautics. – volume: 50 start-page: 907 year: 2013 end-page: 919 ident: b0080 article-title: A new and general formulation of the parametric HFGMC micromechanical method for two and three-dimensional multi-phase composites publication-title: Int. J. Solids Struct. – reference: Lin, S., Ranatunga, V., Waas, A.M., A Comprehensive Experimental and Computational Study on LVI induced Damage of Laminated Composites, in AIAA Scitech 2021 Forum. 2021, American Institute of Aeronautics and Astronautics. – reference: Seamone, A., Waas, A.M., Davidson, P., Experimental Analysis of Low Velocity Impact on Carbon Fiber Reinforced Polymer (CFRP) Composite Panels, in AIAA SCITECH 2022 Forum. – volume: 198 start-page: 1785 year: 2009 end-page: 1804 ident: b0120 article-title: Artificial Neural Networks in numerical modelling of composites publication-title: Comput. Methods Appl. Mech. Eng. – volume: 206 start-page: 183 year: 2020 end-page: 197 ident: b0170 article-title: The cohesive parametric high-fidelity-generalized-method-of-cells micromechanical model publication-title: Int. J. Solids Struct. – start-page: 391 year: 2018 end-page: 424 ident: b0090 article-title: The parametric HFGMC micromechanics publication-title: Micromechanics and Nanomechanics of Composite Solids – volume: 7 start-page: 157 year: 2018 end-page: 172 ident: b0040 article-title: Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering publication-title: Integrating Mater. Manufacturing Innov. – volume: 37 start-page: 238 year: 2017 end-page: 246 ident: b0025 article-title: Semianalytical compressive strength criteria for unidirectional composites publication-title: J. Reinf. Plast. Compos. – volume: 27 start-page: 1123 year: 1996 end-page: 1131 ident: b0200 article-title: Review of low-velocity impact properties of composite materials publication-title: Compos. Part a-Appl. Sci. Manufacturing – volume: 45 start-page: 2937 year: 2008 end-page: 2963 ident: b0180 article-title: A multi-scale framework for layered composites with thermo-rheologically complex behaviors publication-title: Int. J. Solids Struct. – reference: Thombre, M.N., H.A. Preisig, and M.B. Addis, Developing Surrogate Models via Computer Based Experiments. 12th International Symposium on Process Systems Engineering (Pse) and 25th European Symposium on Computer Aided Process Engineering (Escape), Pt A, 2015. 37: p. 641-646. – volume: 104 start-page: 1061 year: 2015 end-page: 1084 ident: b0115 article-title: Computational homogenization of nonlinear elastic materials using neural networks publication-title: Int. J. Numer. Meth. Eng. – volume: 330 start-page: 192 year: 2017 end-page: 220 ident: b0165 article-title: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials publication-title: J. Comput. Phys. – volume: 73 start-page: 447 year: 2008 end-page: 469 ident: b0255 article-title: A new neural network-based model for hysteretic behavior of materials publication-title: Int. J. Numer. Meth. Eng. – volume: 19 start-page: 2443 year: 2020 end-page: 2453 ident: b0020 article-title: Finite strain parametric HFGMC micromechanics of soft tissues publication-title: Biomech. Model. Mechanobiol. – volume: 94 start-page: 3321 year: 2012 end-page: 3326 ident: b0155 article-title: Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms publication-title: Compos. Struct. – volume: 65 start-page: 1911 year: 2005 end-page: 1919 ident: b0210 article-title: Compression after impact of thin composite laminates publication-title: Compos. Sci. Technol. – volume: 22 start-page: 30 year: 1988 end-page: 52 ident: b0220 article-title: On low-velocity impact testing of composite materials publication-title: J. Compos. Mater. – reference: Arnold, S.M., et al., Multiscale Analysis of Composites Using Surrogate Modeling and Information Optimal Designs, in AIAA Scitech 2020 Forum. 2020, American Institute of Aeronautics and Astronautics. – year: 2021 ident: b0195 article-title: Data-Driven Damage Initiation Criteria for Carbon Fiber Reinforced Polymer Composites publication-title: AIAA SCITECH 2022 Forum – reference: Aboudi, J., Arnold, S.M., Bednarcyk, B.A., Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach, 2012. – volume: 42 start-page: 105 year: 1998 end-page: 126 ident: b0050 article-title: Autoprogressive training of neural network constitutive models publication-title: Int. J. Numer. Meth. Eng. – volume: 117 start-page: 132 year: 1991 end-page: 153 ident: b0055 article-title: Knowledge-based modeling of material behavior with neural networks publication-title: J. Eng. Mech-Asce. – volume: 87 start-page: 1177 year: 2009 end-page: 1186 ident: b0240 article-title: Neural networks as material models within a multiscale approach publication-title: Comput. Struct. – volume: 51 start-page: 1333 year: 2016 end-page: 1353 ident: b0030 article-title: Experimental results of quasi-static testing for calibration and validation of composite progressive damage analysis methods publication-title: J. Compos. Mater. – volume: 82 year: 2020 ident: b0205 article-title: Micromechanics-based surrogate models for the response of composites: a critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks publication-title: Eur. J. Mech. A. Solids – volume: 39 start-page: 1035 year: 2007 end-page: 1042 ident: b0095 article-title: Nonlinear constitutive models for FRP composites using artificial neural networks publication-title: Mech. Mater. – volume: 127 start-page: 730 year: 2001 end-page: 738 ident: b0065 article-title: Simulated micromechanical models using artificial neural networks publication-title: J. Eng. Mech. – volume: 357 year: 2019 ident: b0230 article-title: MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling publication-title: Comput. Methods Appl. Mech. Eng. – volume: 90 start-page: 129 year: 2016 end-page: 143 ident: b0085 article-title: Integrated microplane model with the HFGMC micromechanics for nonlinear analysis of composite materials with evolving damage publication-title: Int. J. Solids Struct. – volume: 252 year: 2020 ident: b0140 article-title: A neural network enhanced system for learning nonlinear constitutive law and failure initiation criterion of composites using indirectly measurable data publication-title: Compos. Struct. – ident: 10.1016/j.ijsolstr.2023.112123_b0130 doi: 10.2514/6.2021-1623 – volume: 51 start-page: 1333 issue: 10 year: 2016 ident: 10.1016/j.ijsolstr.2023.112123_b0030 article-title: Experimental results of quasi-static testing for calibration and validation of composite progressive damage analysis methods publication-title: J. Compos. Mater. doi: 10.1177/0021998316658539 – volume: 188 start-page: 159 year: 2018 ident: 10.1016/j.ijsolstr.2023.112123_b0160 article-title: A multiscale progressive damage analysis for laminated composite structures using the parametric HFGMC micromechanics publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.11.089 – ident: 10.1016/j.ijsolstr.2023.112123_b0175 doi: 10.1007/978-3-642-35289-8 – volume: 47 start-page: 3447 issue: 25 year: 2010 ident: 10.1016/j.ijsolstr.2023.112123_b0075 article-title: Formulation of the high-fidelity generalized method of cells with arbitrary cell geometry for refined micromechanics and damage in composites publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2010.08.022 – year: 2021 ident: 10.1016/j.ijsolstr.2023.112123_b0225 article-title: Tractable multiscale modeling with an embedded microscale surrogate – volume: 28 start-page: 809 issue: 3 year: 2021 ident: 10.1016/j.ijsolstr.2023.112123_b0250 article-title: Artificial Neural Network (ANN)-based residual strength prediction of carbon fibre reinforced composites (CFRCs) after impact publication-title: Appl. Compos. Mater. doi: 10.1007/s10443-021-09891-1 – volume: 64 start-page: 307 issue: 2 year: 2019 ident: 10.1016/j.ijsolstr.2023.112123_b0145 article-title: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites publication-title: Comput. Mech. doi: 10.1007/s00466-018-1643-0 – ident: 10.1016/j.ijsolstr.2023.112123_b0215 doi: 10.2514/6.2022-0409 – volume: 22 start-page: 30 issue: 1 year: 1988 ident: 10.1016/j.ijsolstr.2023.112123_b0220 article-title: On low-velocity impact testing of composite materials publication-title: J. Compos. Mater. doi: 10.1177/002199838802200103 – volume: 42 start-page: 105 year: 1998 ident: 10.1016/j.ijsolstr.2023.112123_b0050 article-title: Autoprogressive training of neural network constitutive models publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V – ident: 10.1016/j.ijsolstr.2023.112123_b0060 – volume: 73 start-page: 447 issue: 4 year: 2008 ident: 10.1016/j.ijsolstr.2023.112123_b0255 article-title: A new neural network-based model for hysteretic behavior of materials publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.2082 – volume: 127 start-page: 730 issue: 7 year: 2001 ident: 10.1016/j.ijsolstr.2023.112123_b0065 article-title: Simulated micromechanical models using artificial neural networks publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2001)127:7(730) – ident: 10.1016/j.ijsolstr.2023.112123_b0235 doi: 10.1016/B978-0-444-63578-5.50102-X – start-page: 391 year: 2018 ident: 10.1016/j.ijsolstr.2023.112123_b0090 article-title: The parametric HFGMC micromechanics – volume: 350 start-page: 81 year: 2019 ident: 10.1016/j.ijsolstr.2023.112123_b0045 article-title: Model-Free Data-Driven inelasticity publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.02.016 – ident: 10.1016/j.ijsolstr.2023.112123_b0100 – volume: 27 start-page: 1123 issue: 12 year: 1996 ident: 10.1016/j.ijsolstr.2023.112123_b0200 article-title: Review of low-velocity impact properties of composite materials publication-title: Compos. Part a-Appl. Sci. Manufacturing doi: 10.1016/1359-835X(96)00074-7 – volume: 33 start-page: 361 issue: 3 year: 2002 ident: 10.1016/j.ijsolstr.2023.112123_b0035 article-title: Prediction of low velocity impact damage in carbon–epoxy laminates publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/S1359-835X(01)00119-1 – volume: 252 year: 2020 ident: 10.1016/j.ijsolstr.2023.112123_b0140 article-title: A neural network enhanced system for learning nonlinear constitutive law and failure initiation criterion of composites using indirectly measurable data publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112658 – volume: 104 start-page: 1061 issue: 12 year: 2015 ident: 10.1016/j.ijsolstr.2023.112123_b0115 article-title: Computational homogenization of nonlinear elastic materials using neural networks publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.4953 – volume: 80 year: 2015 ident: 10.1016/j.ijsolstr.2023.112123_b0010 article-title: A fully coupled thermal-electrical-mechanical micromodel for multi-phase periodic thermoelectrical composite materials and devices publication-title: Int. J. Solids Struct. – volume: 65 start-page: 1911 issue: 13 year: 2005 ident: 10.1016/j.ijsolstr.2023.112123_b0210 article-title: Compression after impact of thin composite laminates publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2005.04.009 – volume: 87 start-page: 1177 issue: 19 year: 2009 ident: 10.1016/j.ijsolstr.2023.112123_b0240 article-title: Neural networks as material models within a multiscale approach publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2008.12.003 – ident: 10.1016/j.ijsolstr.2023.112123_b0005 doi: 10.1016/B978-0-12-397035-0.00013-6 – volume: 198 start-page: 1785 issue: 21 year: 2009 ident: 10.1016/j.ijsolstr.2023.112123_b0120 article-title: Artificial Neural Networks in numerical modelling of composites publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.12.036 – volume: 296 year: 2022 ident: 10.1016/j.ijsolstr.2023.112123_b0135 article-title: Experimental study on the panel size effects of the Low-Velocity Impact (LVI) and Compression After Impact (CAI) of laminated composites. Part I: LVI publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115822 – volume: 101 start-page: 290 year: 2013 ident: 10.1016/j.ijsolstr.2023.112123_b0150 article-title: ANN prediction model for composite plates against low velocity impact loads using finite element analysis publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2013.02.020 – ident: 10.1016/j.ijsolstr.2023.112123_b0015 doi: 10.2514/6.2020-1863 – volume: 39 start-page: 1035 issue: 12 year: 2007 ident: 10.1016/j.ijsolstr.2023.112123_b0095 article-title: Nonlinear constitutive models for FRP composites using artificial neural networks publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2007.05.004 – volume: 26 start-page: 195 issue: 2 year: 2008 ident: 10.1016/j.ijsolstr.2023.112123_b0110 article-title: What are artificial neural networks? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1386 – volume: 84 start-page: 955 issue: 15 year: 2006 ident: 10.1016/j.ijsolstr.2023.112123_b0105 article-title: Neural network constitutive model for rate-dependent materials publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.02.015 – volume: 90 start-page: 129 year: 2016 ident: 10.1016/j.ijsolstr.2023.112123_b0085 article-title: Integrated microplane model with the HFGMC micromechanics for nonlinear analysis of composite materials with evolving damage publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.03.032 – volume: 94 start-page: 3321 issue: 11 year: 2012 ident: 10.1016/j.ijsolstr.2023.112123_b0155 article-title: Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2012.04.024 – volume: 357 year: 2019 ident: 10.1016/j.ijsolstr.2023.112123_b0230 article-title: MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112587 – volume: 206 start-page: 183 year: 2020 ident: 10.1016/j.ijsolstr.2023.112123_b0170 article-title: The cohesive parametric high-fidelity-generalized-method-of-cells micromechanical model publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2020.08.024 – volume: 117 start-page: 132 issue: 1 year: 1991 ident: 10.1016/j.ijsolstr.2023.112123_b0055 article-title: Knowledge-based modeling of material behavior with neural networks publication-title: J. Eng. Mech-Asce. doi: 10.1061/(ASCE)0733-9399(1991)117:1(132) – volume: 7 start-page: 1 issue: 1 year: 1994 ident: 10.1016/j.ijsolstr.2023.112123_b0190 article-title: Minimisation methods for training feedforward neural networks publication-title: Neural Netw. doi: 10.1016/0893-6080(94)90052-3 – year: 2021 ident: 10.1016/j.ijsolstr.2023.112123_b0195 article-title: Data-Driven Damage Initiation Criteria for Carbon Fiber Reinforced Polymer Composites – volume: 107 start-page: 9 year: 2016 ident: 10.1016/j.ijsolstr.2023.112123_b0185 article-title: Low-velocity impact tests on carbon/epoxy composite laminates: a benchmark study publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2016.09.057 – volume: 64 start-page: 467 issue: 2 year: 2019 ident: 10.1016/j.ijsolstr.2023.112123_b0245 article-title: A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation publication-title: Comput. Mech. doi: 10.1007/s00466-019-01723-1 – volume: 24 start-page: 371 issue: 3 year: 2008 ident: 10.1016/j.ijsolstr.2023.112123_b0070 article-title: Nonlinear constitutive models from nanoindentation tests using artificial neural networks publication-title: Int. J. Plast doi: 10.1016/j.ijplas.2007.02.001 – volume: 7 start-page: 157 issue: 3 year: 2018 ident: 10.1016/j.ijsolstr.2023.112123_b0040 article-title: Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering publication-title: Integrating Mater. Manufacturing Innov. doi: 10.1007/s40192-018-0117-8 – volume: 82 year: 2020 ident: 10.1016/j.ijsolstr.2023.112123_b0205 article-title: Micromechanics-based surrogate models for the response of composites: a critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks publication-title: Eur. J. Mech. A. Solids doi: 10.1016/j.euromechsol.2020.103995 – volume: 192 start-page: 3265 issue: 28 year: 2003 ident: 10.1016/j.ijsolstr.2023.112123_b0125 article-title: Artificial neural network as an incremental non-linear constitutive model for a finite element code publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(03)00350-5 – volume: 330 start-page: 192 year: 2017 ident: 10.1016/j.ijsolstr.2023.112123_b0165 article-title: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.070 – volume: 50 start-page: 907 issue: 6 year: 2013 ident: 10.1016/j.ijsolstr.2023.112123_b0080 article-title: A new and general formulation of the parametric HFGMC micromechanical method for two and three-dimensional multi-phase composites publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.11.009 – volume: 19 start-page: 2443 issue: 6 year: 2020 ident: 10.1016/j.ijsolstr.2023.112123_b0020 article-title: Finite strain parametric HFGMC micromechanics of soft tissues publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-020-01348-x – volume: 37 start-page: 238 issue: 4 year: 2017 ident: 10.1016/j.ijsolstr.2023.112123_b0025 article-title: Semianalytical compressive strength criteria for unidirectional composites publication-title: J. Reinf. Plast. Compos. doi: 10.1177/0731684417740982 – volume: 45 start-page: 2937 issue: 10 year: 2008 ident: 10.1016/j.ijsolstr.2023.112123_b0180 article-title: A multi-scale framework for layered composites with thermo-rheologically complex behaviors publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2008.01.015 |
SSID | ssj0004390 |
Score | 2.4441493 |
Snippet | The parametric high fidelity generalized method of cells (PHFGMC) is an advanced micromechanical method that can be used for the nonlinear and failure analysis... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112123 |
SubjectTerms | Artificial Neural Network Composite Low-Velocity Impact Micromechanics PHFGMC |
Title | Refined nonlinear micromechanical models using artificial neural networks for multiscale analysis of laminated composites subject to low-velocity impact |
URI | https://dx.doi.org/10.1016/j.ijsolstr.2023.112123 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2kXvQgfmL9Yg5e03Z308QcVSxV0YMo9BayX9JS29KkePN3-HOdySZaQejBU9iQgWRn2Xmbfe8tY-eio8SFIfaUkN0gdDYJMhO5QOpEOYXr5jAjofDDY9R_Ce8G3cEau661MESrrOZ-P6eXs3V1p131Zns2HJLGV9A2kkQQXe6nkYI9jGmUtz5-aB5YcL0MBZdJ9PSSSnjUGo4wwXlBvqBCkpqGC_l3gVoqOr1ttlWhRbj0L7TD1uxkl20ueQjusc8n67BlYOJNL7I5vJUkO0uaXkoBlKfd5EAU91egj_OuEUBeluWlZILngPgVSoJhjlEWssqvBKYOcNwMJwhLDRAHnYheNod8oegvDhRTGE_fA2IfaQT14JWX--yld_N83Q-q4xYCLbkogkhkCuGiuyDLulhzq8IEi3mIgMJqXIYZ5RKulYtMaJwVwloZcxXLbmI6McJEecAa-Kn2kIHmmmfckBkYD3XUyUSksamF4JiCWDRZt-7jVFde5HQkxjitSWejtM5NSrlJfW6arP0dN_NuHCsjkjqF6a9xlWLJWBF79I_YY7ZBLc9WO2GNYr6wpwhfCnVWjs8ztn55e99_xNbt4OoLGAz1YQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsABsYqyzoFraG2nCTkiBCrQckAgcYviDbUqbdWk4sZ38LnMxAkUCYkDpyjLSLHH8TzHb94wdipaSpwbYk8J2Q5CZ5MgM5ELpE6UU7huDjNKFO7dR52n8Pa5_bzALutcGKJVVnO_n9PL2bq60qx6sznp9ynHV9A2kkQQXe6nLbLlED9fKmNw9v7N88CI6_NQcJ1Ej8-lCQ_O-gP0cF6QMKiQlE7Dhfw9Qs1FnesNtl7BRbjwb7TJFuxoi63NiQhus48H6_DMwMirXmRTeC1ZdpaSeskHUJa7yYE47i9ArfOyEUBiluWhpILngAAWSoZhjlYWskqwBMYOcOD0R4hLDRAJnZheNod8pug3DhRjGI7fAqIfaUT14FMvd9jT9dXjZSeo6i0EWnJRBJHIFOJFd06adbHmVoUJRvMQEYXVuA4zyiVcKxeZ0DgrhLUy5iqW7cS0YsSJcpctYVPtHgPNNc-4ITUwHuqolYlI46kWgqMLYtFg7bqPU12JkVNNjGFas84Gae2blHyTet80WPPLbuLlOP60SGoXpj8GVoox4w_b_X_YnrCVzmOvm3Zv7u8O2Crd8dS1Q7ZUTGf2CLFMoY7LsfoJ7U_16w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refined+nonlinear+micromechanical+models+using+artificial+neural+networks+for+multiscale+analysis+of+laminated+composites+subject+to+low-velocity+impact&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Hochster%2C+Hadas&rft.au=Bernikov%2C+Yevheniia&rft.au=Meshi%2C+Ido&rft.au=Lin%2C+Shiyao&rft.date=2023-03-01&rft.issn=0020-7683&rft.volume=264&rft.spage=112123&rft_id=info:doi/10.1016%2Fj.ijsolstr.2023.112123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijsolstr_2023_112123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon |