Refined nonlinear micromechanical models using artificial neural networks for multiscale analysis of laminated composites subject to low-velocity impact

The parametric high fidelity generalized method of cells (PHFGMC) is an advanced micromechanical method that can be used for the nonlinear and failure analysis of several composite materials. The computational effort required for studying the nonlinear and damage multiaxial behavior is relatively sm...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of solids and structures Vol. 264; p. 112123
Main Authors Hochster, Hadas, Bernikov, Yevheniia, Meshi, Ido, Lin, Shiyao, Ranatunga, Vipul, Waas, Anthony M., Shemesh, Noam N.Y., Haj-Ali, Rami
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The parametric high fidelity generalized method of cells (PHFGMC) is an advanced micromechanical method that can be used for the nonlinear and failure analysis of several composite materials. The computational effort required for studying the nonlinear and damage multiaxial behavior is relatively small, depending on the size of the discretized repeating unit cell (RUC). However, it is computationally challenging, if not impossible, to integrate refined nonlinear micromechanical models within a multiscale analysis of composite structures. This is due to the thousands or more RUC models required at the integration points within a multiscale finite-element (FE) model of laminated structures. To that end, we propose a new artificial neural network (ANN) based micromechanical modeling framework, termed ANN-PHFGMC, for exploring the nonlinear behavior of fiber-reinforced polymeric (FRP) materials. Pre-simulated mechanical stress–strain responses and behaviors are determined using the PHFGMC to generate a multiaxial training database for the ANN micromodel. The simulated training data is founded on the PHFGMC-RUC results based on a hexagonal RUC. The PHFGMC effective stress–strain responses for different applied multiaxial strain paths are divided into two sets of data; one for the training and the other for verifying the trained ANN-PHFGMC model. The resulting trained ANN-PHFGMC is accurate, with less than 5% error in the verified predictions. The ANN-PHFGMC can be used as a stand-alone or embedded as a surrogate proxy model within a multiscale analysis of composite structures. Next, the ANN-PHFGMC model is integrated within a commercial explicit FE code for low-velocity impact (LVI) analysis of laminated composite plates. Multiscale LVI analyses are performed for two composite plates with different layups. Further, results are compared to experimental data to demonstrate the new model's ability to integrate refined nonlinear micromechanical models within a multiscale analysis.
AbstractList The parametric high fidelity generalized method of cells (PHFGMC) is an advanced micromechanical method that can be used for the nonlinear and failure analysis of several composite materials. The computational effort required for studying the nonlinear and damage multiaxial behavior is relatively small, depending on the size of the discretized repeating unit cell (RUC). However, it is computationally challenging, if not impossible, to integrate refined nonlinear micromechanical models within a multiscale analysis of composite structures. This is due to the thousands or more RUC models required at the integration points within a multiscale finite-element (FE) model of laminated structures. To that end, we propose a new artificial neural network (ANN) based micromechanical modeling framework, termed ANN-PHFGMC, for exploring the nonlinear behavior of fiber-reinforced polymeric (FRP) materials. Pre-simulated mechanical stress–strain responses and behaviors are determined using the PHFGMC to generate a multiaxial training database for the ANN micromodel. The simulated training data is founded on the PHFGMC-RUC results based on a hexagonal RUC. The PHFGMC effective stress–strain responses for different applied multiaxial strain paths are divided into two sets of data; one for the training and the other for verifying the trained ANN-PHFGMC model. The resulting trained ANN-PHFGMC is accurate, with less than 5% error in the verified predictions. The ANN-PHFGMC can be used as a stand-alone or embedded as a surrogate proxy model within a multiscale analysis of composite structures. Next, the ANN-PHFGMC model is integrated within a commercial explicit FE code for low-velocity impact (LVI) analysis of laminated composite plates. Multiscale LVI analyses are performed for two composite plates with different layups. Further, results are compared to experimental data to demonstrate the new model's ability to integrate refined nonlinear micromechanical models within a multiscale analysis.
ArticleNumber 112123
Author Haj-Ali, Rami
Bernikov, Yevheniia
Meshi, Ido
Lin, Shiyao
Shemesh, Noam N.Y.
Ranatunga, Vipul
Hochster, Hadas
Waas, Anthony M.
Author_xml – sequence: 1
  givenname: Hadas
  surname: Hochster
  fullname: Hochster, Hadas
  organization: School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
– sequence: 2
  givenname: Yevheniia
  surname: Bernikov
  fullname: Bernikov, Yevheniia
  organization: School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
– sequence: 3
  givenname: Ido
  surname: Meshi
  fullname: Meshi, Ido
  organization: School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
– sequence: 4
  givenname: Shiyao
  surname: Lin
  fullname: Lin, Shiyao
  organization: University of Michigan, Ann Arbor, MI, 48109, USA
– sequence: 5
  givenname: Vipul
  surname: Ranatunga
  fullname: Ranatunga, Vipul
  organization: Air Force Research Laboratory, Wright Patterson AFB, 45433, USA
– sequence: 6
  givenname: Anthony M.
  orcidid: 0000-0002-4916-2102
  surname: Waas
  fullname: Waas, Anthony M.
  organization: University of Michigan, Ann Arbor, MI, 48109, USA
– sequence: 7
  givenname: Noam N.Y.
  surname: Shemesh
  fullname: Shemesh, Noam N.Y.
  organization: IAF Aeronautical Engineering Branch, Tel-Aviv, Israel
– sequence: 8
  givenname: Rami
  orcidid: 0000-0002-1761-7344
  surname: Haj-Ali
  fullname: Haj-Ali, Rami
  email: rami98@tau.ac.il
  organization: School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
BookMark eNqFkEtqHDEQhrVwwI_4CkYX6IkePd3TkEWMsWODIRCStVCrS0511NKg0tjMTXzcaDzJJhuvqij4_qr6ztlJTBEYu5JiJYXsPs0rnCkFKnmlhNIrKZVU-oSdCaFE03cbfcrOiWYhRKsHccZev4PHCBOvQaE2NvMFXU4LuF82orOBL2mCQHxHGJ-4zQU9OqzzCLv8VspLyr-J-1TZXShIlQJuow17QuLJ82AXjLbUNS4t20RYgDjtxhlc4SXxkF6aZwjJYdlzXLbWlY_sg7eB4PJvvWA_725_3Nw3j9--PtxcPzZOS1WaTtlxGAa_6fS6652EsR02a90OUoBrhZxGP0g3-m5qJw9KAehejr1eD5PolZb6gnXH3Po0UQZvthkXm_dGCnNwambzz6k5ODVHpxX8_B9Yr7cFUyzZYngf_3LEq1t4RsiGHEJ0MGGuVsyU8L2IP6XcoU8
CitedBy_id crossref_primary_10_1177_00219983241292780
crossref_primary_10_1016_j_compscitech_2024_110910
crossref_primary_10_1016_j_engfracmech_2024_110120
crossref_primary_10_1080_15376494_2024_2358515
crossref_primary_10_1016_j_compositesb_2023_110663
crossref_primary_10_1016_j_ijsolstr_2023_112519
crossref_primary_10_1007_s40964_024_00686_x
crossref_primary_10_1108_IJSI_12_2024_0211
Cites_doi 10.2514/6.2021-1623
10.1177/0021998316658539
10.1016/j.compstruct.2017.11.089
10.1007/978-3-642-35289-8
10.1016/j.ijsolstr.2010.08.022
10.1007/s10443-021-09891-1
10.1007/s00466-018-1643-0
10.2514/6.2022-0409
10.1177/002199838802200103
10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
10.1002/nme.2082
10.1061/(ASCE)0733-9399(2001)127:7(730)
10.1016/B978-0-444-63578-5.50102-X
10.1016/j.cma.2019.02.016
10.1016/1359-835X(96)00074-7
10.1016/S1359-835X(01)00119-1
10.1016/j.compstruct.2020.112658
10.1002/nme.4953
10.1016/j.compscitech.2005.04.009
10.1016/j.compstruc.2008.12.003
10.1016/B978-0-12-397035-0.00013-6
10.1016/j.cma.2008.12.036
10.1016/j.compstruct.2022.115822
10.1016/j.compstruct.2013.02.020
10.2514/6.2020-1863
10.1016/j.mechmat.2007.05.004
10.1038/nbt1386
10.1016/j.compstruc.2006.02.015
10.1016/j.ijsolstr.2016.03.032
10.1016/j.compstruct.2012.04.024
10.1016/j.cma.2019.112587
10.1016/j.ijsolstr.2020.08.024
10.1061/(ASCE)0733-9399(1991)117:1(132)
10.1016/0893-6080(94)90052-3
10.1016/j.compositesb.2016.09.057
10.1007/s00466-019-01723-1
10.1016/j.ijplas.2007.02.001
10.1007/s40192-018-0117-8
10.1016/j.euromechsol.2020.103995
10.1016/S0045-7825(03)00350-5
10.1016/j.jcp.2016.10.070
10.1016/j.ijsolstr.2012.11.009
10.1007/s10237-020-01348-x
10.1177/0731684417740982
10.1016/j.ijsolstr.2008.01.015
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ijsolstr.2023.112123
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijsolstr_2023_112123
S0020768323000203
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEXQZ
AFJKZ
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
TR2
XPP
ZMT
~02
~G-
29J
6TJ
AAFWJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SET
SEW
SMS
SSH
VH1
WUQ
ZY4
ID FETCH-LOGICAL-c312t-62ab999f863567c1eb498534910ec401dbf91cbf6d4dfe22ee371b7359d072313
IEDL.DBID .~1
ISSN 0020-7683
IngestDate Thu Apr 24 23:11:57 EDT 2025
Thu Jul 03 08:18:04 EDT 2025
Sat Mar 08 15:43:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Micromechanics
Low-Velocity Impact
PHFGMC
Composite
Artificial Neural Network
Language English
License This article is made available under the Elsevier license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-62ab999f863567c1eb498534910ec401dbf91cbf6d4dfe22ee371b7359d072313
ORCID 0000-0002-4916-2102
0000-0002-1761-7344
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0020768323000203
ParticipantIDs crossref_primary_10_1016_j_ijsolstr_2023_112123
crossref_citationtrail_10_1016_j_ijsolstr_2023_112123
elsevier_sciencedirect_doi_10_1016_j_ijsolstr_2023_112123
PublicationCentury 2000
PublicationDate 2023-03-01
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of solids and structures
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Haj-Ali, Aboudi (b0075) 2010; 47
Unger, Könke (b0240) 2009; 87
Panettieri (b0185) 2016; 107
Malik, Arif (b0150) 2013; 101
Haj-Ali, Aboudi (b0090) 2018
Muliana, Haj-Ali (b0180) 2008; 45
Aboudi, J., Arnold, S.M., Bednarcyk, B.A., Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach, 2012.
Liu, Tao, Yu (b0140) 2020; 252
Yang (b0250) 2021; 28
Ghaboussi (b0050) 1998; 42
Aboudi, Haj-Ali (b0010) 2015; 80
Haj-Ali, Aboudi (b0085) 2016; 90
Lefik, Schrefler (b0125) 2003; 192
Breiman, Aboudi, Haj-Ali (b0025) 2017; 37
Haj-Ali (b0070) 2008; 24
Matouš (b0165) 2017; 330
Richardson, Wisheart (b0200) 1996; 27
Haj-Ali, R., The Sublaminate Model, in Multiscale modeling and simulation of composite materials and structures. 2008, Springer. p. 334-341.
Breiman (b0020) 2020; 19
Lin, Ranatunga, Waas (b0135) 2022; 296
Patrick van der Smagt (b0190) 1994; 7
Ghaboussi, Garrett, Wu (b0055) 1991; 117
Krogh (b0110) 2008; 26
Jung, Ghaboussi (b0105) 2006; 84
Haj-Ali, Kim (b0095) 2007; 39
de Moura, Marques (b0035) 2002; 33
Stuckner (b0225) 2021
Seamone, A., Waas, A.M., Davidson, P., Experimental Analysis of Low Velocity Impact on Carbon Fiber Reinforced Polymer (CFRP) Composite Panels, in AIAA SCITECH 2022 Forum.
Lefik, Boso, Schrefler (b0120) 2009; 198
Montavon, G., Orr, G., Mller, K.-R., Neural Networks: Tricks of the Trade. in Lecture Notes in Computer Science. 2012.
Eggersmann (b0045) 2019; 350
Haj-Ali (b0065) 2001; 127
Wang, Sun, Du (b0245) 2019; 64
Post (b0195) 2021
Sjoblom, Hartness, Cordell (b0220) 1988; 22
Sanchez-Saez (b0210) 2005; 65
Yun, Ghaboussi, Elnashai (b0255) 2008; 73
Lu (b0145) 2019; 64
Massarwa, Aboudi, Haj-Ali (b0160) 2018; 188
Meshi (b0170) 2020; 206
Rocha, Kerfriden, van der Meer (b0205) 2020; 82
Haj-Ali, Aboudi (b0080) 2013; 50
Dimiduk, Holm, Niezgoda (b0040) 2018; 7
Gustafson, P.A., et al., A Convolutional Neural Network for Enhancement of Multi-Scale Localization in Granular Metallic Representative Unit Cells, in AIAA SCITECH 2022 Forum. 2021, American Institute of Aeronautics and Astronautics.
Thombre, M.N., H.A. Preisig, and M.B. Addis, Developing Surrogate Models via Computer Based Experiments. 12th International Symposium on Process Systems Engineering (Pse) and 25th European Symposium on Computer Aided Process Engineering (Escape), Pt A, 2015. 37: p. 641-646.
Tang (b0230) 2019; 357
Clay, Knoth (b0030) 2016; 51
Lin, S., Ranatunga, V., Waas, A.M., A Comprehensive Experimental and Computational Study on LVI induced Damage of Laminated Composites, in AIAA Scitech 2021 Forum. 2021, American Institute of Aeronautics and Astronautics.
Le, Yvonnet, He (b0115) 2015; 104
Marín (b0155) 2012; 94
Arnold, S.M., et al., Multiscale Analysis of Composites Using Surrogate Modeling and Information Optimal Designs, in AIAA Scitech 2020 Forum. 2020, American Institute of Aeronautics and Astronautics.
Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0065) 2001; 127
Lu (10.1016/j.ijsolstr.2023.112123_b0145) 2019; 64
Clay (10.1016/j.ijsolstr.2023.112123_b0030) 2016; 51
Malik (10.1016/j.ijsolstr.2023.112123_b0150) 2013; 101
Lefik (10.1016/j.ijsolstr.2023.112123_b0125) 2003; 192
Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0090) 2018
10.1016/j.ijsolstr.2023.112123_b0130
Massarwa (10.1016/j.ijsolstr.2023.112123_b0160) 2018; 188
10.1016/j.ijsolstr.2023.112123_b0175
Liu (10.1016/j.ijsolstr.2023.112123_b0140) 2020; 252
Lin (10.1016/j.ijsolstr.2023.112123_b0135) 2022; 296
10.1016/j.ijsolstr.2023.112123_b0215
10.1016/j.ijsolstr.2023.112123_b0015
Yang (10.1016/j.ijsolstr.2023.112123_b0250) 2021; 28
Muliana (10.1016/j.ijsolstr.2023.112123_b0180) 2008; 45
Dimiduk (10.1016/j.ijsolstr.2023.112123_b0040) 2018; 7
Le (10.1016/j.ijsolstr.2023.112123_b0115) 2015; 104
Jung (10.1016/j.ijsolstr.2023.112123_b0105) 2006; 84
Ghaboussi (10.1016/j.ijsolstr.2023.112123_b0050) 1998; 42
Breiman (10.1016/j.ijsolstr.2023.112123_b0020) 2020; 19
Breiman (10.1016/j.ijsolstr.2023.112123_b0025) 2017; 37
Lefik (10.1016/j.ijsolstr.2023.112123_b0120) 2009; 198
Post (10.1016/j.ijsolstr.2023.112123_b0195) 2021
Wang (10.1016/j.ijsolstr.2023.112123_b0245) 2019; 64
10.1016/j.ijsolstr.2023.112123_b0005
Marín (10.1016/j.ijsolstr.2023.112123_b0155) 2012; 94
Richardson (10.1016/j.ijsolstr.2023.112123_b0200) 1996; 27
de Moura (10.1016/j.ijsolstr.2023.112123_b0035) 2002; 33
Stuckner (10.1016/j.ijsolstr.2023.112123_b0225) 2021
Yun (10.1016/j.ijsolstr.2023.112123_b0255) 2008; 73
Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0070) 2008; 24
Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0075) 2010; 47
Tang (10.1016/j.ijsolstr.2023.112123_b0230) 2019; 357
10.1016/j.ijsolstr.2023.112123_b0235
Aboudi (10.1016/j.ijsolstr.2023.112123_b0010) 2015; 80
Ghaboussi (10.1016/j.ijsolstr.2023.112123_b0055) 1991; 117
Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0085) 2016; 90
Patrick van der Smagt (10.1016/j.ijsolstr.2023.112123_b0190) 1994; 7
Matouš (10.1016/j.ijsolstr.2023.112123_b0165) 2017; 330
Sanchez-Saez (10.1016/j.ijsolstr.2023.112123_b0210) 2005; 65
Unger (10.1016/j.ijsolstr.2023.112123_b0240) 2009; 87
10.1016/j.ijsolstr.2023.112123_b0100
Rocha (10.1016/j.ijsolstr.2023.112123_b0205) 2020; 82
Sjoblom (10.1016/j.ijsolstr.2023.112123_b0220) 1988; 22
Eggersmann (10.1016/j.ijsolstr.2023.112123_b0045) 2019; 350
10.1016/j.ijsolstr.2023.112123_b0060
Meshi (10.1016/j.ijsolstr.2023.112123_b0170) 2020; 206
Krogh (10.1016/j.ijsolstr.2023.112123_b0110) 2008; 26
Panettieri (10.1016/j.ijsolstr.2023.112123_b0185) 2016; 107
Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0080) 2013; 50
Haj-Ali (10.1016/j.ijsolstr.2023.112123_b0095) 2007; 39
References_xml – volume: 64
  start-page: 307
  year: 2019
  end-page: 321
  ident: b0145
  article-title: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites
  publication-title: Comput. Mech.
– volume: 24
  start-page: 371
  year: 2008
  end-page: 396
  ident: b0070
  article-title: Nonlinear constitutive models from nanoindentation tests using artificial neural networks
  publication-title: Int. J. Plast
– reference: Montavon, G., Orr, G., Mller, K.-R., Neural Networks: Tricks of the Trade. in Lecture Notes in Computer Science. 2012.
– volume: 84
  start-page: 955
  year: 2006
  end-page: 963
  ident: b0105
  article-title: Neural network constitutive model for rate-dependent materials
  publication-title: Comput. Struct.
– volume: 80
  year: 2015
  ident: b0010
  article-title: A fully coupled thermal-electrical-mechanical micromodel for multi-phase periodic thermoelectrical composite materials and devices
  publication-title: Int. J. Solids Struct.
– reference: Haj-Ali, R., The Sublaminate Model, in Multiscale modeling and simulation of composite materials and structures. 2008, Springer. p. 334-341.
– volume: 101
  start-page: 290
  year: 2013
  end-page: 300
  ident: b0150
  article-title: ANN prediction model for composite plates against low velocity impact loads using finite element analysis
  publication-title: Compos. Struct.
– volume: 64
  start-page: 467
  year: 2019
  end-page: 499
  ident: b0245
  article-title: A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation
  publication-title: Comput. Mech.
– volume: 192
  start-page: 3265
  year: 2003
  end-page: 3283
  ident: b0125
  article-title: Artificial neural network as an incremental non-linear constitutive model for a finite element code
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 28
  start-page: 809
  year: 2021
  end-page: 833
  ident: b0250
  article-title: Artificial Neural Network (ANN)-based residual strength prediction of carbon fibre reinforced composites (CFRCs) after impact
  publication-title: Appl. Compos. Mater.
– volume: 107
  start-page: 9
  year: 2016
  end-page: 21
  ident: b0185
  article-title: Low-velocity impact tests on carbon/epoxy composite laminates: a benchmark study
  publication-title: Compos. B Eng.
– volume: 7
  start-page: 1
  year: 1994
  end-page: 11
  ident: b0190
  article-title: Minimisation methods for training feedforward neural networks
  publication-title: Neural Netw.
– volume: 33
  start-page: 361
  year: 2002
  end-page: 368
  ident: b0035
  article-title: Prediction of low velocity impact damage in carbon–epoxy laminates
  publication-title: Compos. A Appl. Sci. Manuf.
– volume: 47
  start-page: 3447
  year: 2010
  end-page: 3461
  ident: b0075
  article-title: Formulation of the high-fidelity generalized method of cells with arbitrary cell geometry for refined micromechanics and damage in composites
  publication-title: Int. J. Solids Struct.
– volume: 296
  year: 2022
  ident: b0135
  article-title: Experimental study on the panel size effects of the Low-Velocity Impact (LVI) and Compression After Impact (CAI) of laminated composites. Part I: LVI
  publication-title: Compos. Struct.
– volume: 26
  start-page: 195
  year: 2008
  end-page: 197
  ident: b0110
  article-title: What are artificial neural networks?
  publication-title: Nat. Biotechnol.
– volume: 188
  start-page: 159
  year: 2018
  end-page: 172
  ident: b0160
  article-title: A multiscale progressive damage analysis for laminated composite structures using the parametric HFGMC micromechanics
  publication-title: Compos. Struct.
– year: 2021
  ident: b0225
  article-title: Tractable multiscale modeling with an embedded microscale surrogate
  publication-title: AIAA Scitech 2021 Forum
– volume: 350
  start-page: 81
  year: 2019
  end-page: 99
  ident: b0045
  article-title: Model-Free Data-Driven inelasticity
  publication-title: Comput. Methods Appl. Mech. Eng.
– reference: Gustafson, P.A., et al., A Convolutional Neural Network for Enhancement of Multi-Scale Localization in Granular Metallic Representative Unit Cells, in AIAA SCITECH 2022 Forum. 2021, American Institute of Aeronautics and Astronautics.
– volume: 50
  start-page: 907
  year: 2013
  end-page: 919
  ident: b0080
  article-title: A new and general formulation of the parametric HFGMC micromechanical method for two and three-dimensional multi-phase composites
  publication-title: Int. J. Solids Struct.
– reference: Lin, S., Ranatunga, V., Waas, A.M., A Comprehensive Experimental and Computational Study on LVI induced Damage of Laminated Composites, in AIAA Scitech 2021 Forum. 2021, American Institute of Aeronautics and Astronautics.
– reference: Seamone, A., Waas, A.M., Davidson, P., Experimental Analysis of Low Velocity Impact on Carbon Fiber Reinforced Polymer (CFRP) Composite Panels, in AIAA SCITECH 2022 Forum.
– volume: 198
  start-page: 1785
  year: 2009
  end-page: 1804
  ident: b0120
  article-title: Artificial Neural Networks in numerical modelling of composites
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 206
  start-page: 183
  year: 2020
  end-page: 197
  ident: b0170
  article-title: The cohesive parametric high-fidelity-generalized-method-of-cells micromechanical model
  publication-title: Int. J. Solids Struct.
– start-page: 391
  year: 2018
  end-page: 424
  ident: b0090
  article-title: The parametric HFGMC micromechanics
  publication-title: Micromechanics and Nanomechanics of Composite Solids
– volume: 7
  start-page: 157
  year: 2018
  end-page: 172
  ident: b0040
  article-title: Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering
  publication-title: Integrating Mater. Manufacturing Innov.
– volume: 37
  start-page: 238
  year: 2017
  end-page: 246
  ident: b0025
  article-title: Semianalytical compressive strength criteria for unidirectional composites
  publication-title: J. Reinf. Plast. Compos.
– volume: 27
  start-page: 1123
  year: 1996
  end-page: 1131
  ident: b0200
  article-title: Review of low-velocity impact properties of composite materials
  publication-title: Compos. Part a-Appl. Sci. Manufacturing
– volume: 45
  start-page: 2937
  year: 2008
  end-page: 2963
  ident: b0180
  article-title: A multi-scale framework for layered composites with thermo-rheologically complex behaviors
  publication-title: Int. J. Solids Struct.
– reference: Thombre, M.N., H.A. Preisig, and M.B. Addis, Developing Surrogate Models via Computer Based Experiments. 12th International Symposium on Process Systems Engineering (Pse) and 25th European Symposium on Computer Aided Process Engineering (Escape), Pt A, 2015. 37: p. 641-646.
– volume: 104
  start-page: 1061
  year: 2015
  end-page: 1084
  ident: b0115
  article-title: Computational homogenization of nonlinear elastic materials using neural networks
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 330
  start-page: 192
  year: 2017
  end-page: 220
  ident: b0165
  article-title: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
  publication-title: J. Comput. Phys.
– volume: 73
  start-page: 447
  year: 2008
  end-page: 469
  ident: b0255
  article-title: A new neural network-based model for hysteretic behavior of materials
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 19
  start-page: 2443
  year: 2020
  end-page: 2453
  ident: b0020
  article-title: Finite strain parametric HFGMC micromechanics of soft tissues
  publication-title: Biomech. Model. Mechanobiol.
– volume: 94
  start-page: 3321
  year: 2012
  end-page: 3326
  ident: b0155
  article-title: Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms
  publication-title: Compos. Struct.
– volume: 65
  start-page: 1911
  year: 2005
  end-page: 1919
  ident: b0210
  article-title: Compression after impact of thin composite laminates
  publication-title: Compos. Sci. Technol.
– volume: 22
  start-page: 30
  year: 1988
  end-page: 52
  ident: b0220
  article-title: On low-velocity impact testing of composite materials
  publication-title: J. Compos. Mater.
– reference: Arnold, S.M., et al., Multiscale Analysis of Composites Using Surrogate Modeling and Information Optimal Designs, in AIAA Scitech 2020 Forum. 2020, American Institute of Aeronautics and Astronautics.
– year: 2021
  ident: b0195
  article-title: Data-Driven Damage Initiation Criteria for Carbon Fiber Reinforced Polymer Composites
  publication-title: AIAA SCITECH 2022 Forum
– reference: Aboudi, J., Arnold, S.M., Bednarcyk, B.A., Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach, 2012.
– volume: 42
  start-page: 105
  year: 1998
  end-page: 126
  ident: b0050
  article-title: Autoprogressive training of neural network constitutive models
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 117
  start-page: 132
  year: 1991
  end-page: 153
  ident: b0055
  article-title: Knowledge-based modeling of material behavior with neural networks
  publication-title: J. Eng. Mech-Asce.
– volume: 87
  start-page: 1177
  year: 2009
  end-page: 1186
  ident: b0240
  article-title: Neural networks as material models within a multiscale approach
  publication-title: Comput. Struct.
– volume: 51
  start-page: 1333
  year: 2016
  end-page: 1353
  ident: b0030
  article-title: Experimental results of quasi-static testing for calibration and validation of composite progressive damage analysis methods
  publication-title: J. Compos. Mater.
– volume: 82
  year: 2020
  ident: b0205
  article-title: Micromechanics-based surrogate models for the response of composites: a critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks
  publication-title: Eur. J. Mech. A. Solids
– volume: 39
  start-page: 1035
  year: 2007
  end-page: 1042
  ident: b0095
  article-title: Nonlinear constitutive models for FRP composites using artificial neural networks
  publication-title: Mech. Mater.
– volume: 127
  start-page: 730
  year: 2001
  end-page: 738
  ident: b0065
  article-title: Simulated micromechanical models using artificial neural networks
  publication-title: J. Eng. Mech.
– volume: 357
  year: 2019
  ident: b0230
  article-title: MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 90
  start-page: 129
  year: 2016
  end-page: 143
  ident: b0085
  article-title: Integrated microplane model with the HFGMC micromechanics for nonlinear analysis of composite materials with evolving damage
  publication-title: Int. J. Solids Struct.
– volume: 252
  year: 2020
  ident: b0140
  article-title: A neural network enhanced system for learning nonlinear constitutive law and failure initiation criterion of composites using indirectly measurable data
  publication-title: Compos. Struct.
– ident: 10.1016/j.ijsolstr.2023.112123_b0130
  doi: 10.2514/6.2021-1623
– volume: 51
  start-page: 1333
  issue: 10
  year: 2016
  ident: 10.1016/j.ijsolstr.2023.112123_b0030
  article-title: Experimental results of quasi-static testing for calibration and validation of composite progressive damage analysis methods
  publication-title: J. Compos. Mater.
  doi: 10.1177/0021998316658539
– volume: 188
  start-page: 159
  year: 2018
  ident: 10.1016/j.ijsolstr.2023.112123_b0160
  article-title: A multiscale progressive damage analysis for laminated composite structures using the parametric HFGMC micromechanics
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.11.089
– ident: 10.1016/j.ijsolstr.2023.112123_b0175
  doi: 10.1007/978-3-642-35289-8
– volume: 47
  start-page: 3447
  issue: 25
  year: 2010
  ident: 10.1016/j.ijsolstr.2023.112123_b0075
  article-title: Formulation of the high-fidelity generalized method of cells with arbitrary cell geometry for refined micromechanics and damage in composites
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2010.08.022
– year: 2021
  ident: 10.1016/j.ijsolstr.2023.112123_b0225
  article-title: Tractable multiscale modeling with an embedded microscale surrogate
– volume: 28
  start-page: 809
  issue: 3
  year: 2021
  ident: 10.1016/j.ijsolstr.2023.112123_b0250
  article-title: Artificial Neural Network (ANN)-based residual strength prediction of carbon fibre reinforced composites (CFRCs) after impact
  publication-title: Appl. Compos. Mater.
  doi: 10.1007/s10443-021-09891-1
– volume: 64
  start-page: 307
  issue: 2
  year: 2019
  ident: 10.1016/j.ijsolstr.2023.112123_b0145
  article-title: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1643-0
– ident: 10.1016/j.ijsolstr.2023.112123_b0215
  doi: 10.2514/6.2022-0409
– volume: 22
  start-page: 30
  issue: 1
  year: 1988
  ident: 10.1016/j.ijsolstr.2023.112123_b0220
  article-title: On low-velocity impact testing of composite materials
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199838802200103
– volume: 42
  start-page: 105
  year: 1998
  ident: 10.1016/j.ijsolstr.2023.112123_b0050
  article-title: Autoprogressive training of neural network constitutive models
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
– ident: 10.1016/j.ijsolstr.2023.112123_b0060
– volume: 73
  start-page: 447
  issue: 4
  year: 2008
  ident: 10.1016/j.ijsolstr.2023.112123_b0255
  article-title: A new neural network-based model for hysteretic behavior of materials
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.2082
– volume: 127
  start-page: 730
  issue: 7
  year: 2001
  ident: 10.1016/j.ijsolstr.2023.112123_b0065
  article-title: Simulated micromechanical models using artificial neural networks
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2001)127:7(730)
– ident: 10.1016/j.ijsolstr.2023.112123_b0235
  doi: 10.1016/B978-0-444-63578-5.50102-X
– start-page: 391
  year: 2018
  ident: 10.1016/j.ijsolstr.2023.112123_b0090
  article-title: The parametric HFGMC micromechanics
– volume: 350
  start-page: 81
  year: 2019
  ident: 10.1016/j.ijsolstr.2023.112123_b0045
  article-title: Model-Free Data-Driven inelasticity
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.02.016
– ident: 10.1016/j.ijsolstr.2023.112123_b0100
– volume: 27
  start-page: 1123
  issue: 12
  year: 1996
  ident: 10.1016/j.ijsolstr.2023.112123_b0200
  article-title: Review of low-velocity impact properties of composite materials
  publication-title: Compos. Part a-Appl. Sci. Manufacturing
  doi: 10.1016/1359-835X(96)00074-7
– volume: 33
  start-page: 361
  issue: 3
  year: 2002
  ident: 10.1016/j.ijsolstr.2023.112123_b0035
  article-title: Prediction of low velocity impact damage in carbon–epoxy laminates
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/S1359-835X(01)00119-1
– volume: 252
  year: 2020
  ident: 10.1016/j.ijsolstr.2023.112123_b0140
  article-title: A neural network enhanced system for learning nonlinear constitutive law and failure initiation criterion of composites using indirectly measurable data
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112658
– volume: 104
  start-page: 1061
  issue: 12
  year: 2015
  ident: 10.1016/j.ijsolstr.2023.112123_b0115
  article-title: Computational homogenization of nonlinear elastic materials using neural networks
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.4953
– volume: 80
  year: 2015
  ident: 10.1016/j.ijsolstr.2023.112123_b0010
  article-title: A fully coupled thermal-electrical-mechanical micromodel for multi-phase periodic thermoelectrical composite materials and devices
  publication-title: Int. J. Solids Struct.
– volume: 65
  start-page: 1911
  issue: 13
  year: 2005
  ident: 10.1016/j.ijsolstr.2023.112123_b0210
  article-title: Compression after impact of thin composite laminates
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2005.04.009
– volume: 87
  start-page: 1177
  issue: 19
  year: 2009
  ident: 10.1016/j.ijsolstr.2023.112123_b0240
  article-title: Neural networks as material models within a multiscale approach
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2008.12.003
– ident: 10.1016/j.ijsolstr.2023.112123_b0005
  doi: 10.1016/B978-0-12-397035-0.00013-6
– volume: 198
  start-page: 1785
  issue: 21
  year: 2009
  ident: 10.1016/j.ijsolstr.2023.112123_b0120
  article-title: Artificial Neural Networks in numerical modelling of composites
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.12.036
– volume: 296
  year: 2022
  ident: 10.1016/j.ijsolstr.2023.112123_b0135
  article-title: Experimental study on the panel size effects of the Low-Velocity Impact (LVI) and Compression After Impact (CAI) of laminated composites. Part I: LVI
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115822
– volume: 101
  start-page: 290
  year: 2013
  ident: 10.1016/j.ijsolstr.2023.112123_b0150
  article-title: ANN prediction model for composite plates against low velocity impact loads using finite element analysis
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2013.02.020
– ident: 10.1016/j.ijsolstr.2023.112123_b0015
  doi: 10.2514/6.2020-1863
– volume: 39
  start-page: 1035
  issue: 12
  year: 2007
  ident: 10.1016/j.ijsolstr.2023.112123_b0095
  article-title: Nonlinear constitutive models for FRP composites using artificial neural networks
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2007.05.004
– volume: 26
  start-page: 195
  issue: 2
  year: 2008
  ident: 10.1016/j.ijsolstr.2023.112123_b0110
  article-title: What are artificial neural networks?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1386
– volume: 84
  start-page: 955
  issue: 15
  year: 2006
  ident: 10.1016/j.ijsolstr.2023.112123_b0105
  article-title: Neural network constitutive model for rate-dependent materials
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.02.015
– volume: 90
  start-page: 129
  year: 2016
  ident: 10.1016/j.ijsolstr.2023.112123_b0085
  article-title: Integrated microplane model with the HFGMC micromechanics for nonlinear analysis of composite materials with evolving damage
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.03.032
– volume: 94
  start-page: 3321
  issue: 11
  year: 2012
  ident: 10.1016/j.ijsolstr.2023.112123_b0155
  article-title: Optimization of composite stiffened panels under mechanical and hygrothermal loads using neural networks and genetic algorithms
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2012.04.024
– volume: 357
  year: 2019
  ident: 10.1016/j.ijsolstr.2023.112123_b0230
  article-title: MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112587
– volume: 206
  start-page: 183
  year: 2020
  ident: 10.1016/j.ijsolstr.2023.112123_b0170
  article-title: The cohesive parametric high-fidelity-generalized-method-of-cells micromechanical model
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2020.08.024
– volume: 117
  start-page: 132
  issue: 1
  year: 1991
  ident: 10.1016/j.ijsolstr.2023.112123_b0055
  article-title: Knowledge-based modeling of material behavior with neural networks
  publication-title: J. Eng. Mech-Asce.
  doi: 10.1061/(ASCE)0733-9399(1991)117:1(132)
– volume: 7
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.ijsolstr.2023.112123_b0190
  article-title: Minimisation methods for training feedforward neural networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(94)90052-3
– year: 2021
  ident: 10.1016/j.ijsolstr.2023.112123_b0195
  article-title: Data-Driven Damage Initiation Criteria for Carbon Fiber Reinforced Polymer Composites
– volume: 107
  start-page: 9
  year: 2016
  ident: 10.1016/j.ijsolstr.2023.112123_b0185
  article-title: Low-velocity impact tests on carbon/epoxy composite laminates: a benchmark study
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2016.09.057
– volume: 64
  start-page: 467
  issue: 2
  year: 2019
  ident: 10.1016/j.ijsolstr.2023.112123_b0245
  article-title: A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01723-1
– volume: 24
  start-page: 371
  issue: 3
  year: 2008
  ident: 10.1016/j.ijsolstr.2023.112123_b0070
  article-title: Nonlinear constitutive models from nanoindentation tests using artificial neural networks
  publication-title: Int. J. Plast
  doi: 10.1016/j.ijplas.2007.02.001
– volume: 7
  start-page: 157
  issue: 3
  year: 2018
  ident: 10.1016/j.ijsolstr.2023.112123_b0040
  article-title: Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering
  publication-title: Integrating Mater. Manufacturing Innov.
  doi: 10.1007/s40192-018-0117-8
– volume: 82
  year: 2020
  ident: 10.1016/j.ijsolstr.2023.112123_b0205
  article-title: Micromechanics-based surrogate models for the response of composites: a critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks
  publication-title: Eur. J. Mech. A. Solids
  doi: 10.1016/j.euromechsol.2020.103995
– volume: 192
  start-page: 3265
  issue: 28
  year: 2003
  ident: 10.1016/j.ijsolstr.2023.112123_b0125
  article-title: Artificial neural network as an incremental non-linear constitutive model for a finite element code
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(03)00350-5
– volume: 330
  start-page: 192
  year: 2017
  ident: 10.1016/j.ijsolstr.2023.112123_b0165
  article-title: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.070
– volume: 50
  start-page: 907
  issue: 6
  year: 2013
  ident: 10.1016/j.ijsolstr.2023.112123_b0080
  article-title: A new and general formulation of the parametric HFGMC micromechanical method for two and three-dimensional multi-phase composites
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.11.009
– volume: 19
  start-page: 2443
  issue: 6
  year: 2020
  ident: 10.1016/j.ijsolstr.2023.112123_b0020
  article-title: Finite strain parametric HFGMC micromechanics of soft tissues
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-020-01348-x
– volume: 37
  start-page: 238
  issue: 4
  year: 2017
  ident: 10.1016/j.ijsolstr.2023.112123_b0025
  article-title: Semianalytical compressive strength criteria for unidirectional composites
  publication-title: J. Reinf. Plast. Compos.
  doi: 10.1177/0731684417740982
– volume: 45
  start-page: 2937
  issue: 10
  year: 2008
  ident: 10.1016/j.ijsolstr.2023.112123_b0180
  article-title: A multi-scale framework for layered composites with thermo-rheologically complex behaviors
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2008.01.015
SSID ssj0004390
Score 2.4441493
Snippet The parametric high fidelity generalized method of cells (PHFGMC) is an advanced micromechanical method that can be used for the nonlinear and failure analysis...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112123
SubjectTerms Artificial Neural Network
Composite
Low-Velocity Impact
Micromechanics
PHFGMC
Title Refined nonlinear micromechanical models using artificial neural networks for multiscale analysis of laminated composites subject to low-velocity impact
URI https://dx.doi.org/10.1016/j.ijsolstr.2023.112123
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2kXvQgfmL9Yg5e03Z308QcVSxV0YMo9BayX9JS29KkePN3-HOdySZaQejBU9iQgWRn2Xmbfe8tY-eio8SFIfaUkN0gdDYJMhO5QOpEOYXr5jAjofDDY9R_Ce8G3cEau661MESrrOZ-P6eXs3V1p131Zns2HJLGV9A2kkQQXe6nkYI9jGmUtz5-aB5YcL0MBZdJ9PSSSnjUGo4wwXlBvqBCkpqGC_l3gVoqOr1ttlWhRbj0L7TD1uxkl20ueQjusc8n67BlYOJNL7I5vJUkO0uaXkoBlKfd5EAU91egj_OuEUBeluWlZILngPgVSoJhjlEWssqvBKYOcNwMJwhLDRAHnYheNod8oegvDhRTGE_fA2IfaQT14JWX--yld_N83Q-q4xYCLbkogkhkCuGiuyDLulhzq8IEi3mIgMJqXIYZ5RKulYtMaJwVwloZcxXLbmI6McJEecAa-Kn2kIHmmmfckBkYD3XUyUSksamF4JiCWDRZt-7jVFde5HQkxjitSWejtM5NSrlJfW6arP0dN_NuHCsjkjqF6a9xlWLJWBF79I_YY7ZBLc9WO2GNYr6wpwhfCnVWjs8ztn55e99_xNbt4OoLGAz1YQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsABsYqyzoFraG2nCTkiBCrQckAgcYviDbUqbdWk4sZ38LnMxAkUCYkDpyjLSLHH8TzHb94wdipaSpwbYk8J2Q5CZ5MgM5ELpE6UU7huDjNKFO7dR52n8Pa5_bzALutcGKJVVnO_n9PL2bq60qx6sznp9ynHV9A2kkQQXe6nLbLlED9fKmNw9v7N88CI6_NQcJ1Ej8-lCQ_O-gP0cF6QMKiQlE7Dhfw9Qs1FnesNtl7BRbjwb7TJFuxoi63NiQhus48H6_DMwMirXmRTeC1ZdpaSeskHUJa7yYE47i9ArfOyEUBiluWhpILngAAWSoZhjlYWskqwBMYOcOD0R4hLDRAJnZheNod8pug3DhRjGI7fAqIfaUT14FMvd9jT9dXjZSeo6i0EWnJRBJHIFOJFd06adbHmVoUJRvMQEYXVuA4zyiVcKxeZ0DgrhLUy5iqW7cS0YsSJcpctYVPtHgPNNc-4ITUwHuqolYlI46kWgqMLYtFg7bqPU12JkVNNjGFas84Gae2blHyTet80WPPLbuLlOP60SGoXpj8GVoox4w_b_X_YnrCVzmOvm3Zv7u8O2Crd8dS1Q7ZUTGf2CLFMoY7LsfoJ7U_16w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refined+nonlinear+micromechanical+models+using+artificial+neural+networks+for+multiscale+analysis+of+laminated+composites+subject+to+low-velocity+impact&rft.jtitle=International+journal+of+solids+and+structures&rft.au=Hochster%2C+Hadas&rft.au=Bernikov%2C+Yevheniia&rft.au=Meshi%2C+Ido&rft.au=Lin%2C+Shiyao&rft.date=2023-03-01&rft.issn=0020-7683&rft.volume=264&rft.spage=112123&rft_id=info:doi/10.1016%2Fj.ijsolstr.2023.112123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijsolstr_2023_112123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7683&client=summon