Numerical simulation study on spin resonant depolarization due to spin-orbit coupling
The spin polarization phenomenon in lepton circular accelerators had been known for many years. It provides a new approach for physicists to study the spin feature of fundamental particles and the dynamics of spin-orbit coupling, such as spin resonances. We use numerical simulation to study the feat...
Saved in:
Published in | Chinese physics B Vol. 21; no. 8; pp. 295 - 301 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/21/8/084501 |
Cover
Loading…
Summary: | The spin polarization phenomenon in lepton circular accelerators had been known for many years. It provides a new approach for physicists to study the spin feature of fundamental particles and the dynamics of spin-orbit coupling, such as spin resonances. We use numerical simulation to study the features of spin under the modulation of orbital motion in an electron storage ring. The various cases of depolarization due to spin-orbit coupling through an emitting photon and misalignment of magnets in the ring are discussed. |
---|---|
Bibliography: | 11-5639/O4 spin polarization and resonant depolarization, spin orbit coupling, spin flip, numericalsimulation The spin polarization phenomenon in lepton circular accelerators had been known for many years. It provides a new approach for physicists to study the spin feature of fundamental particles and the dynamics of spin-orbit coupling, such as spin resonances. We use numerical simulation to study the features of spin under the modulation of orbital motion in an electron storage ring. The various cases of depolarization due to spin-orbit coupling through an emitting photon and misalignment of magnets in the ring are discussed. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/8/084501 |