ISTDet: An efficient end-to-end neural network for infrared small target detection
Infrared small target detection has made many breakthroughs in early warning, guidance and battlefield intelligence. However, infrared small target occupies less pixels and lacks color and texture features, which makes infrared small target detection a challenging subject. To achieve the infrared sm...
Saved in:
Published in | Infrared physics & technology Vol. 114; p. 103659 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infrared small target detection has made many breakthroughs in early warning, guidance and battlefield intelligence. However, infrared small target occupies less pixels and lacks color and texture features, which makes infrared small target detection a challenging subject. To achieve the infrared small target detection, an efficient end-to-end network ISTDet is proposed in this paper. ISTDet mainly consists of two modules, including image filtering module and infrared small target detection module. The image filtering module is proposed to obtain the confidence map, aiming to enhance the response of infrared small targets and suppress the response of background. The infrared small target detection module takes the infrared image activated by the confidence map as input, aiming to speculate the category and position of the infrared small targets. Multi-task loss function is used to train the ISTDet in an end-to-end way. Finally, we do comparative experiments on five infrared small target sequences to demonstrate the detection performance of ISTDet. The results show ISTDet has better performance for infrared small target detection compared with other detectors. |
---|---|
AbstractList | Infrared small target detection has made many breakthroughs in early warning, guidance and battlefield intelligence. However, infrared small target occupies less pixels and lacks color and texture features, which makes infrared small target detection a challenging subject. To achieve the infrared small target detection, an efficient end-to-end network ISTDet is proposed in this paper. ISTDet mainly consists of two modules, including image filtering module and infrared small target detection module. The image filtering module is proposed to obtain the confidence map, aiming to enhance the response of infrared small targets and suppress the response of background. The infrared small target detection module takes the infrared image activated by the confidence map as input, aiming to speculate the category and position of the infrared small targets. Multi-task loss function is used to train the ISTDet in an end-to-end way. Finally, we do comparative experiments on five infrared small target sequences to demonstrate the detection performance of ISTDet. The results show ISTDet has better performance for infrared small target detection compared with other detectors. |
ArticleNumber | 103659 |
Author | Luo, Haibo Luo, Jiangning Ju, Moran Liu, Guangqi |
Author_xml | – sequence: 1 givenname: Moran surname: Ju fullname: Ju, Moran organization: Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China – sequence: 2 givenname: Jiangning surname: Luo fullname: Luo, Jiangning organization: McGill University, Montreal, Quebec H3A 0G4, Canada – sequence: 3 givenname: Guangqi surname: Liu fullname: Liu, Guangqi organization: Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China – sequence: 4 givenname: Haibo surname: Luo fullname: Luo, Haibo email: luohb@sia.cn organization: Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China |
BookMark | eNqFkN9KwzAUh4NMcJu-guQFOpO0TVPxwjGnDgaCzuuQJieS2aWSRsW3N2Xuxptd_Q4HvvPnm6CR7zwgdEnJjBLKr7Yz521QAcyMEUZTM-dlfYLGVFR1RlhVjlKdlyQriro8Q5O-35IEFoSP0fPqZXMH8RrPPQZrnXbgIwZvsthlKbCHz6DaFPG7C-_YdgEf1uF-p9oWRxXeIGIDEXR0nT9Hp1a1PVz85RS93i83i8ds_fSwWszXmc4pi1lpoWJGVJyqQliSU1Nzoym1lgvILTOMCMGbCqA2VNdEk0YraxvFS90UQuRTdLOfq0PX9wGs1C6q4YIYlGslJXLwI7fycLAc_Mi9n4Tzf_hHcDsVfo6Dt3sQ0nNfDoLsB2sajAvJgDSdOzbiF0oNhyQ |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3269085 crossref_primary_10_1109_TGRS_2023_3304755 crossref_primary_10_1016_j_patcog_2023_109788 crossref_primary_10_1177_09544070231165627 crossref_primary_10_1016_j_infrared_2022_104182 crossref_primary_10_1088_1361_6501_ad28eb crossref_primary_10_1109_JSTARS_2024_3386899 crossref_primary_10_1109_TGRS_2025_3540945 crossref_primary_10_3390_rs14153570 crossref_primary_10_1007_s00371_023_02892_0 crossref_primary_10_3390_rs14143258 crossref_primary_10_3390_rs16193729 crossref_primary_10_3390_rs15204985 crossref_primary_10_1109_ACCESS_2023_3343419 crossref_primary_10_1016_j_neunet_2024_107026 crossref_primary_10_1109_TIM_2024_3485456 crossref_primary_10_3390_rs15102523 crossref_primary_10_3390_rs16040643 crossref_primary_10_3390_app122211519 crossref_primary_10_3390_s23249880 crossref_primary_10_1016_j_infrared_2025_105727 crossref_primary_10_1371_journal_pone_0298677 crossref_primary_10_1109_TGRS_2024_3368059 crossref_primary_10_1109_JSTARS_2024_3509993 crossref_primary_10_3390_rs15143513 crossref_primary_10_1007_s11760_023_02629_5 crossref_primary_10_1016_j_engappai_2024_107924 crossref_primary_10_1371_journal_pone_0303451 crossref_primary_10_3390_rs16162878 crossref_primary_10_1016_j_eswa_2023_120996 crossref_primary_10_1016_j_jvcir_2022_103684 crossref_primary_10_3390_s23208608 crossref_primary_10_1016_j_neucom_2024_129289 crossref_primary_10_1007_s00521_022_08140_1 crossref_primary_10_1007_s11802_023_5444_5 crossref_primary_10_1109_TGRS_2024_3475742 crossref_primary_10_3390_electronics11142154 crossref_primary_10_1007_s10765_024_03448_7 crossref_primary_10_3390_s25061865 crossref_primary_10_1049_ipr2_13203 crossref_primary_10_1109_TGRS_2023_3271725 crossref_primary_10_3390_s22051707 crossref_primary_10_1007_s40747_024_01410_6 crossref_primary_10_1016_j_sigpro_2023_108962 crossref_primary_10_3390_electronics13071400 crossref_primary_10_1109_JSEN_2024_3515204 crossref_primary_10_1088_1361_6501_ad8254 crossref_primary_10_1109_TGRS_2023_3295932 crossref_primary_10_1007_s11082_022_04294_3 crossref_primary_10_3390_s23094240 crossref_primary_10_3390_electronics11060933 crossref_primary_10_3934_mbe_2023285 crossref_primary_10_3390_s22124600 crossref_primary_10_1016_j_patrec_2023_02_019 crossref_primary_10_1109_TIP_2023_3326396 crossref_primary_10_1109_JSTARS_2024_3382389 crossref_primary_10_3390_electronics13234820 crossref_primary_10_1016_j_dsp_2022_103844 crossref_primary_10_1016_j_infrared_2023_104614 crossref_primary_10_1088_1742_6596_2010_1_012189 crossref_primary_10_1109_TGRS_2023_3269092 crossref_primary_10_1007_s13369_021_06181_7 crossref_primary_10_1109_TGRS_2024_3365677 crossref_primary_10_1016_j_neucom_2024_127685 crossref_primary_10_1007_s11082_022_03672_1 crossref_primary_10_1109_TAES_2022_3159308 crossref_primary_10_1007_s11042_024_18585_2 |
Cites_doi | 10.1109/TGRS.2013.2242477 10.1109/CVPR.2016.91 10.1109/LGRS.2016.2556218 10.1109/CVPR.2014.81 10.1016/j.infrared.2018.12.040 10.1109/CVPR.2018.00644 10.1109/ICCV.2015.169 10.1117/12.364049 10.1117/12.157758 10.1109/TIP.2013.2281420 10.1109/LGRS.2014.2323236 10.1007/s11036-019-01377-6 10.3788/IRLA201746.0726002 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2017.690 10.1016/j.infrared.2019.103184 10.1016/j.patcog.2009.12.023 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.infrared.2021.103659 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-0275 |
ExternalDocumentID | 10_1016_j_infrared_2021_103659 S1350449521000311 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K VH1 VOH WUQ ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c312t-5fe72d8761a48f031d96dc11ff68e3f2d20886b7ee9d1c90c0bcaffba65cb4883 |
IEDL.DBID | .~1 |
ISSN | 1350-4495 |
IngestDate | Tue Jul 01 00:58:10 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Fri Feb 23 02:45:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Small target detection Convolutional neural network End-to-end Infrared image |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-5fe72d8761a48f031d96dc11ff68e3f2d20886b7ee9d1c90c0bcaffba65cb4883 |
ParticipantIDs | crossref_citationtrail_10_1016_j_infrared_2021_103659 crossref_primary_10_1016_j_infrared_2021_103659 elsevier_sciencedirect_doi_10_1016_j_infrared_2021_103659 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationTitle | Infrared physics & technology |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bai, Zhou (b0015) 2010; 43 Chen, Xin (b0030) 2016; 13 Han, Ma, Zhou, Fan, Liang, Fang (b0035) 2014; 11 I. Loshchilov, F. Hutter, SGDR: stochastic gradient descent with warm restarts, [Online]. Available: https://arxiv.org/abs/1608.03983. Zhang, Ding, Luo (b0005) 2017; 46 Shi, Wang (b0110) 2020; 25 Z. Cai, N. Vasconcelos, Cascade R-CNN: delving into high quality object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. Lin, Goyal, Girshick, He, Dollar (b0135) 2017 Chen, Chen, Xu, Yang, He (b0105) 2020; 105 Lin, Dollár, Girshick, He, Hariharan, Belongie (b0155) 2017 He, Zhang, Ren, Sun (b0115) 2016 Jiang, Ma, Lu, Li, Feng, Shi (b0100) 2019; 97 A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proc. NIPS, 2012, pp. 1097–1105. Liu, Huang (b0090) 2018 Chen, Li, Wei, Xia, Tang (b0025) 2014; 52 H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-attention generative adversarial networks, in: International Conference on Machine Learning, 2019, pp. 7354–7363. Hu, Ramanan (b0120) 2017 R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchiesfor accurate object detection and semantic segmentation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587. Hui, Song, Fan (b0145) 2019 J. Redmon, A. Farhadi. “YOLOv3: An incremental improvement.” [Online]. Available: https://arxiv.org/abs/1804.02767. Tom, Peli, Leung, Ondaryk (b0010) 1993; 1954 Ren, He, Girshick, Sun (b0060) 2017; 39 Deshpande, Er, Venkateswarlu, Chan (b0020) 1999; 3809 Gao, Meng, Yang, Wang, Zhou, Hauptmann (b0040) 2013; 22 Li, Chen, Wang, Zhang (b0125) 2019 R. Girshick, Fast R-CNN, in: Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1440–1448. Liu (b0070) 2016 Zhang, Wen, Bian, Lei, Li (b0095) 2018 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 779–788. Rezatofighi, Tsoi, Gwak, Sadeghian, Reid, Savarese (b0140) 2019 J. Redmon, A. Farhadi, YOLO 9000: Better, faster, stronger, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 6517–6525. Li (10.1016/j.infrared.2021.103659_b0125) 2019 Gao (10.1016/j.infrared.2021.103659_b0040) 2013; 22 Hui (10.1016/j.infrared.2021.103659_b0145) 2019 Chen (10.1016/j.infrared.2021.103659_b0025) 2014; 52 Jiang (10.1016/j.infrared.2021.103659_b0100) 2019; 97 Zhang (10.1016/j.infrared.2021.103659_b0095) 2018 Ren (10.1016/j.infrared.2021.103659_b0060) 2017; 39 Shi (10.1016/j.infrared.2021.103659_b0110) 2020; 25 Liu (10.1016/j.infrared.2021.103659_b0070) 2016 Liu (10.1016/j.infrared.2021.103659_b0090) 2018 10.1016/j.infrared.2021.103659_b0085 Han (10.1016/j.infrared.2021.103659_b0035) 2014; 11 Bai (10.1016/j.infrared.2021.103659_b0015) 2010; 43 10.1016/j.infrared.2021.103659_b0045 10.1016/j.infrared.2021.103659_b0065 10.1016/j.infrared.2021.103659_b0080 He (10.1016/j.infrared.2021.103659_b0115) 2016 Rezatofighi (10.1016/j.infrared.2021.103659_b0140) 2019 Hu (10.1016/j.infrared.2021.103659_b0120) 2017 Lin (10.1016/j.infrared.2021.103659_b0135) 2017 Tom (10.1016/j.infrared.2021.103659_b0010) 1993; 1954 Lin (10.1016/j.infrared.2021.103659_b0155) 2017 Zhang (10.1016/j.infrared.2021.103659_b0005) 2017; 46 10.1016/j.infrared.2021.103659_b0075 10.1016/j.infrared.2021.103659_b0130 10.1016/j.infrared.2021.103659_b0150 10.1016/j.infrared.2021.103659_b0050 10.1016/j.infrared.2021.103659_b0055 Chen (10.1016/j.infrared.2021.103659_b0105) 2020; 105 Deshpande (10.1016/j.infrared.2021.103659_b0020) 1999; 3809 Chen (10.1016/j.infrared.2021.103659_b0030) 2016; 13 |
References_xml | – volume: 43 start-page: 2145 year: 2010 end-page: 2156 ident: b0015 article-title: Analysis of new top-hat transformation and the application for infrared dim small target detection publication-title: Pattern Recogn. – volume: 11 start-page: 2168 year: 2014 end-page: 2172 ident: b0035 article-title: A robust infrared small target detection algorithm based on human visual system publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 22 start-page: 4996 year: 2013 end-page: 5009 ident: b0040 article-title: Infrared patch-image model for small target detection in a single image publication-title: IEEE Trans. Image Process. – reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 779–788. – reference: J. Redmon, A. Farhadi, YOLO 9000: Better, faster, stronger, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 6517–6525. – start-page: 951 year: 2017 end-page: 959 ident: b0120 article-title: Finding tiny faces publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: b0060 article-title: Faster R-CNN: towards real time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 4203 year: 2018 end-page: 4212 ident: b0095 article-title: Single-shot refinement neural network for object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 97 start-page: 229 year: 2019 end-page: 234 ident: b0100 article-title: Ship detection in spaceborne infrared images based on Convolutional Neural Networks and synthetic targets publication-title: Infrared Phys. Technol. – volume: 13 start-page: 962 year: 2016 end-page: 966 ident: b0030 article-title: An effcient infrared small target detection method based on visual contrast mechanism publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Z. Cai, N. Vasconcelos, Cascade R-CNN: delving into high quality object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. – start-page: 385 year: 2018 end-page: 400 ident: b0090 article-title: Receptive field block net for accurate and fast object detection publication-title: Proceedings of the European Conference on Computer Vision – reference: R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchiesfor accurate object detection and semantic segmentation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587. – volume: 1954 start-page: 2 year: 1993 end-page: 11 ident: b0010 article-title: Morphology-based algorithm for point target detection in infrared backgrounds publication-title: Proc. SPIE – start-page: 770 year: 2016 end-page: 778 ident: b0115 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2999 year: 2017 end-page: 3007 ident: b0135 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intelligence – reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proc. NIPS, 2012, pp. 1097–1105. – volume: 25 start-page: 1469 year: 2020 end-page: 1483 ident: b0110 article-title: Infrared dim and small target detection based on denoising autoencoder network publication-title: Mobile Netw. Appl. – year: 2019 ident: b0145 article-title: A dataset for dim-small target detection and tracking of aircraft in infrared image sequences publication-title: China Scientific Data – reference: H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-attention generative adversarial networks, in: International Conference on Machine Learning, 2019, pp. 7354–7363. – start-page: 2117 year: 2017 end-page: 2125 ident: b0155 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: J. Redmon, A. Farhadi. “YOLOv3: An incremental improvement.” [Online]. Available: https://arxiv.org/abs/1804.02767. – volume: 105 year: 2020 ident: b0105 article-title: Nv-Net: efficient infrared image segmentation with convolutional neural networks in the low illumination environment publication-title: Infrared Phys. Technol. – volume: 46 start-page: 0726002 year: 2017 ident: b0005 article-title: Infrared dim target detection algorithm based on improved LCM publication-title: Infrared Laser Eng. – volume: 52 start-page: 574 year: 2014 end-page: 581 ident: b0025 article-title: A local contrast method for small infrared target detection publication-title: IEEE Trans. Geosci. Remote Sensing – reference: R. Girshick, Fast R-CNN, in: Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1440–1448. – start-page: 658 year: 2019 end-page: 666 ident: b0140 article-title: Generalized intersection over union: A metric and a loss for bounding box regression publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 3809 start-page: 74 year: 1999 end-page: 83 ident: b0020 article-title: Maxmean and max-median filters for detection of small targets publication-title: Proc. SPIE – start-page: 6054 year: 2019 end-page: 6063 ident: b0125 article-title: Scale-aware trident networks for object detection publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 21 year: 2016 end-page: 37 ident: b0070 article-title: SSD: Single shot multibox detector publication-title: Computer Vision ECCV – reference: I. Loshchilov, F. Hutter, SGDR: stochastic gradient descent with warm restarts, [Online]. Available: https://arxiv.org/abs/1608.03983. – volume: 52 start-page: 574 issue: 1 year: 2014 ident: 10.1016/j.infrared.2021.103659_b0025 article-title: A local contrast method for small infrared target detection publication-title: IEEE Trans. Geosci. Remote Sensing doi: 10.1109/TGRS.2013.2242477 – ident: 10.1016/j.infrared.2021.103659_b0075 doi: 10.1109/CVPR.2016.91 – start-page: 951 year: 2017 ident: 10.1016/j.infrared.2021.103659_b0120 article-title: Finding tiny faces – volume: 13 start-page: 962 issue: 7 year: 2016 ident: 10.1016/j.infrared.2021.103659_b0030 article-title: An effcient infrared small target detection method based on visual contrast mechanism publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2556218 – ident: 10.1016/j.infrared.2021.103659_b0050 doi: 10.1109/CVPR.2014.81 – start-page: 21 year: 2016 ident: 10.1016/j.infrared.2021.103659_b0070 article-title: SSD: Single shot multibox detector publication-title: Computer Vision ECCV – ident: 10.1016/j.infrared.2021.103659_b0130 – volume: 97 start-page: 229 year: 2019 ident: 10.1016/j.infrared.2021.103659_b0100 article-title: Ship detection in spaceborne infrared images based on Convolutional Neural Networks and synthetic targets publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2018.12.040 – start-page: 770 year: 2016 ident: 10.1016/j.infrared.2021.103659_b0115 article-title: Deep residual learning for image recognition – start-page: 658 year: 2019 ident: 10.1016/j.infrared.2021.103659_b0140 article-title: Generalized intersection over union: A metric and a loss for bounding box regression – ident: 10.1016/j.infrared.2021.103659_b0045 – start-page: 385 year: 2018 ident: 10.1016/j.infrared.2021.103659_b0090 article-title: Receptive field block net for accurate and fast object detection – ident: 10.1016/j.infrared.2021.103659_b0065 doi: 10.1109/CVPR.2018.00644 – ident: 10.1016/j.infrared.2021.103659_b0055 doi: 10.1109/ICCV.2015.169 – volume: 3809 start-page: 74 year: 1999 ident: 10.1016/j.infrared.2021.103659_b0020 article-title: Maxmean and max-median filters for detection of small targets publication-title: Proc. SPIE doi: 10.1117/12.364049 – volume: 1954 start-page: 2 issue: 10 year: 1993 ident: 10.1016/j.infrared.2021.103659_b0010 article-title: Morphology-based algorithm for point target detection in infrared backgrounds publication-title: Proc. SPIE doi: 10.1117/12.157758 – start-page: 4203 year: 2018 ident: 10.1016/j.infrared.2021.103659_b0095 article-title: Single-shot refinement neural network for object detection – year: 2019 ident: 10.1016/j.infrared.2021.103659_b0145 article-title: A dataset for dim-small target detection and tracking of aircraft in infrared image sequences publication-title: China Scientific Data – start-page: 2117 year: 2017 ident: 10.1016/j.infrared.2021.103659_b0155 article-title: Feature pyramid networks for object detection – ident: 10.1016/j.infrared.2021.103659_b0085 – start-page: 2999 year: 2017 ident: 10.1016/j.infrared.2021.103659_b0135 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intelligence – ident: 10.1016/j.infrared.2021.103659_b0150 – volume: 22 start-page: 4996 issue: 12 year: 2013 ident: 10.1016/j.infrared.2021.103659_b0040 article-title: Infrared patch-image model for small target detection in a single image publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2281420 – volume: 11 start-page: 2168 issue: 12 year: 2014 ident: 10.1016/j.infrared.2021.103659_b0035 article-title: A robust infrared small target detection algorithm based on human visual system publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2323236 – volume: 25 start-page: 1469 issue: 4 year: 2020 ident: 10.1016/j.infrared.2021.103659_b0110 article-title: Infrared dim and small target detection based on denoising autoencoder network publication-title: Mobile Netw. Appl. doi: 10.1007/s11036-019-01377-6 – start-page: 6054 year: 2019 ident: 10.1016/j.infrared.2021.103659_b0125 article-title: Scale-aware trident networks for object detection – volume: 46 start-page: 0726002 issue: 7 year: 2017 ident: 10.1016/j.infrared.2021.103659_b0005 article-title: Infrared dim target detection algorithm based on improved LCM publication-title: Infrared Laser Eng. doi: 10.3788/IRLA201746.0726002 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.infrared.2021.103659_b0060 article-title: Faster R-CNN: towards real time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: 10.1016/j.infrared.2021.103659_b0080 doi: 10.1109/CVPR.2017.690 – volume: 105 year: 2020 ident: 10.1016/j.infrared.2021.103659_b0105 article-title: Nv-Net: efficient infrared image segmentation with convolutional neural networks in the low illumination environment publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.103184 – volume: 43 start-page: 2145 issue: 6 year: 2010 ident: 10.1016/j.infrared.2021.103659_b0015 article-title: Analysis of new top-hat transformation and the application for infrared dim small target detection publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2009.12.023 |
SSID | ssj0016406 |
Score | 2.5247254 |
Snippet | Infrared small target detection has made many breakthroughs in early warning, guidance and battlefield intelligence. However, infrared small target occupies... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103659 |
SubjectTerms | Convolutional neural network End-to-end Infrared image Small target detection |
Title | ISTDet: An efficient end-to-end neural network for infrared small target detection |
URI | https://dx.doi.org/10.1016/j.infrared.2021.103659 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na8IwFA-yMdhl7JO5D8lh10zzWbObuIluzMNU8FbSJAXFVdHuur99SdqKg4GHnUpLHqQ_Xn_vvfJ7LwA8tK0LIzpiiBkpEVPaNytbV7XKhGNFWELCMJ33oehP2OuUT2ugW_XCeFllyf0Fpwe2Lp80SzSbq9msOcKUt5jL74n_RU1Dfy9jkffyx--tzMNVA-F8Tb8Y-dU7XcJzn9uuvc7b1YkE-_5z4WeW_hWgdoJO7xSclNki7BQbOgM1m52Do6Da1JsL8DEYjZ9t_gQ7GbRhFoQLIdBmBuVL5C7QT6t09lmh9YYuQYXVZuDmUy0WsFCCQ2PzoMnKLsGk9zLu9lF5SALSFJMc8dRGxDhOw4q1U4eDkcJojNNUtC1NiSGOR0QSWSsN1rKlW4lWaZoowXXivl56BQ6yZWavATRMa4mpEUxYZhhNNBFKacWppFbzqA54hUysywni_iCLRVxJxeZx9RKxRzQuEK2D5tZuVczQ2GshK-DjX94QO6LfY3vzD9tbcOzvCkHjHTjI11_23iUdedIIXtUAh53BW3_4AzJ61vQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba8IwGA2ijO1l7MrcNQ97LTXXmr2Jm9R5eZgKvpU0SUFxVbT7_0t6kQ0GPuyp0PZA-pGe70t7vhMAntvGphEVUI9qITwqlWtWNnbVKmKGJKYxzs10RmMezuj7nM1roFv1wjhZZcn9BafnbF2e8cto-pvFwp8gwlrU1vfYfaImrr-34dypWB00Ov1BON7_TOA032LT3e85wI9G4aUrb7dO6m2Xihi5FnTubEv_ylE_8k7vDJyWBSPsFGM6BzWTXoCjXLipdpfgoz-ZvprsBXZSaHI7CJtFoEm1l609e4DOsNLi00LuDW2NCqvBwN2nXK1gIQaH2mS5LCu9ArPe27QbeuU-CZ4iCGceS0yAtaU1JGk7saHQgmuFUJLwtiEJ1thSCY8DY4RGSrRUK1YySWLJmYrtC0yuQT1dp-YGQE2VEohoTrmhmpJYYS6lkowIYhQLmoBVkYlUaSLu9rJYRZVabBlVDxG5iEZFRJvA3-M2hY3GQYSoAh_9mhCR5foD2Nt_YJ_AcTgdDaNhfzy4AyfuSqFvvAf1bPtlHmwNksWP5Rz7BpsO2aU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ISTDet%3A+An+efficient+end-to-end+neural+network+for+infrared+small+target+detection&rft.jtitle=Infrared+physics+%26+technology&rft.au=Ju%2C+Moran&rft.au=Luo%2C+Jiangning&rft.au=Liu%2C+Guangqi&rft.au=Luo%2C+Haibo&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=1350-4495&rft.eissn=1879-0275&rft.volume=114&rft_id=info:doi/10.1016%2Fj.infrared.2021.103659&rft.externalDocID=S1350449521000311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon |