ISTDet: An efficient end-to-end neural network for infrared small target detection

Infrared small target detection has made many breakthroughs in early warning, guidance and battlefield intelligence. However, infrared small target occupies less pixels and lacks color and texture features, which makes infrared small target detection a challenging subject. To achieve the infrared sm...

Full description

Saved in:
Bibliographic Details
Published inInfrared physics & technology Vol. 114; p. 103659
Main Authors Ju, Moran, Luo, Jiangning, Liu, Guangqi, Luo, Haibo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infrared small target detection has made many breakthroughs in early warning, guidance and battlefield intelligence. However, infrared small target occupies less pixels and lacks color and texture features, which makes infrared small target detection a challenging subject. To achieve the infrared small target detection, an efficient end-to-end network ISTDet is proposed in this paper. ISTDet mainly consists of two modules, including image filtering module and infrared small target detection module. The image filtering module is proposed to obtain the confidence map, aiming to enhance the response of infrared small targets and suppress the response of background. The infrared small target detection module takes the infrared image activated by the confidence map as input, aiming to speculate the category and position of the infrared small targets. Multi-task loss function is used to train the ISTDet in an end-to-end way. Finally, we do comparative experiments on five infrared small target sequences to demonstrate the detection performance of ISTDet. The results show ISTDet has better performance for infrared small target detection compared with other detectors.
AbstractList Infrared small target detection has made many breakthroughs in early warning, guidance and battlefield intelligence. However, infrared small target occupies less pixels and lacks color and texture features, which makes infrared small target detection a challenging subject. To achieve the infrared small target detection, an efficient end-to-end network ISTDet is proposed in this paper. ISTDet mainly consists of two modules, including image filtering module and infrared small target detection module. The image filtering module is proposed to obtain the confidence map, aiming to enhance the response of infrared small targets and suppress the response of background. The infrared small target detection module takes the infrared image activated by the confidence map as input, aiming to speculate the category and position of the infrared small targets. Multi-task loss function is used to train the ISTDet in an end-to-end way. Finally, we do comparative experiments on five infrared small target sequences to demonstrate the detection performance of ISTDet. The results show ISTDet has better performance for infrared small target detection compared with other detectors.
ArticleNumber 103659
Author Luo, Haibo
Luo, Jiangning
Ju, Moran
Liu, Guangqi
Author_xml – sequence: 1
  givenname: Moran
  surname: Ju
  fullname: Ju, Moran
  organization: Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
– sequence: 2
  givenname: Jiangning
  surname: Luo
  fullname: Luo, Jiangning
  organization: McGill University, Montreal, Quebec H3A 0G4, Canada
– sequence: 3
  givenname: Guangqi
  surname: Liu
  fullname: Liu, Guangqi
  organization: Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
– sequence: 4
  givenname: Haibo
  surname: Luo
  fullname: Luo, Haibo
  email: luohb@sia.cn
  organization: Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
BookMark eNqFkN9KwzAUh4NMcJu-guQFOpO0TVPxwjGnDgaCzuuQJieS2aWSRsW3N2Xuxptd_Q4HvvPnm6CR7zwgdEnJjBLKr7Yz521QAcyMEUZTM-dlfYLGVFR1RlhVjlKdlyQriro8Q5O-35IEFoSP0fPqZXMH8RrPPQZrnXbgIwZvsthlKbCHz6DaFPG7C-_YdgEf1uF-p9oWRxXeIGIDEXR0nT9Hp1a1PVz85RS93i83i8ds_fSwWszXmc4pi1lpoWJGVJyqQliSU1Nzoym1lgvILTOMCMGbCqA2VNdEk0YraxvFS90UQuRTdLOfq0PX9wGs1C6q4YIYlGslJXLwI7fycLAc_Mi9n4Tzf_hHcDsVfo6Dt3sQ0nNfDoLsB2sajAvJgDSdOzbiF0oNhyQ
CitedBy_id crossref_primary_10_1109_JSEN_2023_3269085
crossref_primary_10_1109_TGRS_2023_3304755
crossref_primary_10_1016_j_patcog_2023_109788
crossref_primary_10_1177_09544070231165627
crossref_primary_10_1016_j_infrared_2022_104182
crossref_primary_10_1088_1361_6501_ad28eb
crossref_primary_10_1109_JSTARS_2024_3386899
crossref_primary_10_1109_TGRS_2025_3540945
crossref_primary_10_3390_rs14153570
crossref_primary_10_1007_s00371_023_02892_0
crossref_primary_10_3390_rs14143258
crossref_primary_10_3390_rs16193729
crossref_primary_10_3390_rs15204985
crossref_primary_10_1109_ACCESS_2023_3343419
crossref_primary_10_1016_j_neunet_2024_107026
crossref_primary_10_1109_TIM_2024_3485456
crossref_primary_10_3390_rs15102523
crossref_primary_10_3390_rs16040643
crossref_primary_10_3390_app122211519
crossref_primary_10_3390_s23249880
crossref_primary_10_1016_j_infrared_2025_105727
crossref_primary_10_1371_journal_pone_0298677
crossref_primary_10_1109_TGRS_2024_3368059
crossref_primary_10_1109_JSTARS_2024_3509993
crossref_primary_10_3390_rs15143513
crossref_primary_10_1007_s11760_023_02629_5
crossref_primary_10_1016_j_engappai_2024_107924
crossref_primary_10_1371_journal_pone_0303451
crossref_primary_10_3390_rs16162878
crossref_primary_10_1016_j_eswa_2023_120996
crossref_primary_10_1016_j_jvcir_2022_103684
crossref_primary_10_3390_s23208608
crossref_primary_10_1016_j_neucom_2024_129289
crossref_primary_10_1007_s00521_022_08140_1
crossref_primary_10_1007_s11802_023_5444_5
crossref_primary_10_1109_TGRS_2024_3475742
crossref_primary_10_3390_electronics11142154
crossref_primary_10_1007_s10765_024_03448_7
crossref_primary_10_3390_s25061865
crossref_primary_10_1049_ipr2_13203
crossref_primary_10_1109_TGRS_2023_3271725
crossref_primary_10_3390_s22051707
crossref_primary_10_1007_s40747_024_01410_6
crossref_primary_10_1016_j_sigpro_2023_108962
crossref_primary_10_3390_electronics13071400
crossref_primary_10_1109_JSEN_2024_3515204
crossref_primary_10_1088_1361_6501_ad8254
crossref_primary_10_1109_TGRS_2023_3295932
crossref_primary_10_1007_s11082_022_04294_3
crossref_primary_10_3390_s23094240
crossref_primary_10_3390_electronics11060933
crossref_primary_10_3934_mbe_2023285
crossref_primary_10_3390_s22124600
crossref_primary_10_1016_j_patrec_2023_02_019
crossref_primary_10_1109_TIP_2023_3326396
crossref_primary_10_1109_JSTARS_2024_3382389
crossref_primary_10_3390_electronics13234820
crossref_primary_10_1016_j_dsp_2022_103844
crossref_primary_10_1016_j_infrared_2023_104614
crossref_primary_10_1088_1742_6596_2010_1_012189
crossref_primary_10_1109_TGRS_2023_3269092
crossref_primary_10_1007_s13369_021_06181_7
crossref_primary_10_1109_TGRS_2024_3365677
crossref_primary_10_1016_j_neucom_2024_127685
crossref_primary_10_1007_s11082_022_03672_1
crossref_primary_10_1109_TAES_2022_3159308
crossref_primary_10_1007_s11042_024_18585_2
Cites_doi 10.1109/TGRS.2013.2242477
10.1109/CVPR.2016.91
10.1109/LGRS.2016.2556218
10.1109/CVPR.2014.81
10.1016/j.infrared.2018.12.040
10.1109/CVPR.2018.00644
10.1109/ICCV.2015.169
10.1117/12.364049
10.1117/12.157758
10.1109/TIP.2013.2281420
10.1109/LGRS.2014.2323236
10.1007/s11036-019-01377-6
10.3788/IRLA201746.0726002
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2017.690
10.1016/j.infrared.2019.103184
10.1016/j.patcog.2009.12.023
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.infrared.2021.103659
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-0275
ExternalDocumentID 10_1016_j_infrared_2021_103659
S1350449521000311
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
VH1
VOH
WUQ
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c312t-5fe72d8761a48f031d96dc11ff68e3f2d20886b7ee9d1c90c0bcaffba65cb4883
IEDL.DBID .~1
ISSN 1350-4495
IngestDate Tue Jul 01 00:58:10 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Fri Feb 23 02:45:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Small target detection
Convolutional neural network
End-to-end
Infrared image
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-5fe72d8761a48f031d96dc11ff68e3f2d20886b7ee9d1c90c0bcaffba65cb4883
ParticipantIDs crossref_citationtrail_10_1016_j_infrared_2021_103659
crossref_primary_10_1016_j_infrared_2021_103659
elsevier_sciencedirect_doi_10_1016_j_infrared_2021_103659
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Infrared physics & technology
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bai, Zhou (b0015) 2010; 43
Chen, Xin (b0030) 2016; 13
Han, Ma, Zhou, Fan, Liang, Fang (b0035) 2014; 11
I. Loshchilov, F. Hutter, SGDR: stochastic gradient descent with warm restarts, [Online]. Available: https://arxiv.org/abs/1608.03983.
Zhang, Ding, Luo (b0005) 2017; 46
Shi, Wang (b0110) 2020; 25
Z. Cai, N. Vasconcelos, Cascade R-CNN: delving into high quality object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
Lin, Goyal, Girshick, He, Dollar (b0135) 2017
Chen, Chen, Xu, Yang, He (b0105) 2020; 105
Lin, Dollár, Girshick, He, Hariharan, Belongie (b0155) 2017
He, Zhang, Ren, Sun (b0115) 2016
Jiang, Ma, Lu, Li, Feng, Shi (b0100) 2019; 97
A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proc. NIPS, 2012, pp. 1097–1105.
Liu, Huang (b0090) 2018
Chen, Li, Wei, Xia, Tang (b0025) 2014; 52
H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-attention generative adversarial networks, in: International Conference on Machine Learning, 2019, pp. 7354–7363.
Hu, Ramanan (b0120) 2017
R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchiesfor accurate object detection and semantic segmentation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587.
Hui, Song, Fan (b0145) 2019
J. Redmon, A. Farhadi. “YOLOv3: An incremental improvement.” [Online]. Available: https://arxiv.org/abs/1804.02767.
Tom, Peli, Leung, Ondaryk (b0010) 1993; 1954
Ren, He, Girshick, Sun (b0060) 2017; 39
Deshpande, Er, Venkateswarlu, Chan (b0020) 1999; 3809
Gao, Meng, Yang, Wang, Zhou, Hauptmann (b0040) 2013; 22
Li, Chen, Wang, Zhang (b0125) 2019
R. Girshick, Fast R-CNN, in: Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1440–1448.
Liu (b0070) 2016
Zhang, Wen, Bian, Lei, Li (b0095) 2018
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 779–788.
Rezatofighi, Tsoi, Gwak, Sadeghian, Reid, Savarese (b0140) 2019
J. Redmon, A. Farhadi, YOLO 9000: Better, faster, stronger, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 6517–6525.
Li (10.1016/j.infrared.2021.103659_b0125) 2019
Gao (10.1016/j.infrared.2021.103659_b0040) 2013; 22
Hui (10.1016/j.infrared.2021.103659_b0145) 2019
Chen (10.1016/j.infrared.2021.103659_b0025) 2014; 52
Jiang (10.1016/j.infrared.2021.103659_b0100) 2019; 97
Zhang (10.1016/j.infrared.2021.103659_b0095) 2018
Ren (10.1016/j.infrared.2021.103659_b0060) 2017; 39
Shi (10.1016/j.infrared.2021.103659_b0110) 2020; 25
Liu (10.1016/j.infrared.2021.103659_b0070) 2016
Liu (10.1016/j.infrared.2021.103659_b0090) 2018
10.1016/j.infrared.2021.103659_b0085
Han (10.1016/j.infrared.2021.103659_b0035) 2014; 11
Bai (10.1016/j.infrared.2021.103659_b0015) 2010; 43
10.1016/j.infrared.2021.103659_b0045
10.1016/j.infrared.2021.103659_b0065
10.1016/j.infrared.2021.103659_b0080
He (10.1016/j.infrared.2021.103659_b0115) 2016
Rezatofighi (10.1016/j.infrared.2021.103659_b0140) 2019
Hu (10.1016/j.infrared.2021.103659_b0120) 2017
Lin (10.1016/j.infrared.2021.103659_b0135) 2017
Tom (10.1016/j.infrared.2021.103659_b0010) 1993; 1954
Lin (10.1016/j.infrared.2021.103659_b0155) 2017
Zhang (10.1016/j.infrared.2021.103659_b0005) 2017; 46
10.1016/j.infrared.2021.103659_b0075
10.1016/j.infrared.2021.103659_b0130
10.1016/j.infrared.2021.103659_b0150
10.1016/j.infrared.2021.103659_b0050
10.1016/j.infrared.2021.103659_b0055
Chen (10.1016/j.infrared.2021.103659_b0105) 2020; 105
Deshpande (10.1016/j.infrared.2021.103659_b0020) 1999; 3809
Chen (10.1016/j.infrared.2021.103659_b0030) 2016; 13
References_xml – volume: 43
  start-page: 2145
  year: 2010
  end-page: 2156
  ident: b0015
  article-title: Analysis of new top-hat transformation and the application for infrared dim small target detection
  publication-title: Pattern Recogn.
– volume: 11
  start-page: 2168
  year: 2014
  end-page: 2172
  ident: b0035
  article-title: A robust infrared small target detection algorithm based on human visual system
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 22
  start-page: 4996
  year: 2013
  end-page: 5009
  ident: b0040
  article-title: Infrared patch-image model for small target detection in a single image
  publication-title: IEEE Trans. Image Process.
– reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 779–788.
– reference: J. Redmon, A. Farhadi, YOLO 9000: Better, faster, stronger, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 6517–6525.
– start-page: 951
  year: 2017
  end-page: 959
  ident: b0120
  article-title: Finding tiny faces
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: b0060
  article-title: Faster R-CNN: towards real time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 4203
  year: 2018
  end-page: 4212
  ident: b0095
  article-title: Single-shot refinement neural network for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 97
  start-page: 229
  year: 2019
  end-page: 234
  ident: b0100
  article-title: Ship detection in spaceborne infrared images based on Convolutional Neural Networks and synthetic targets
  publication-title: Infrared Phys. Technol.
– volume: 13
  start-page: 962
  year: 2016
  end-page: 966
  ident: b0030
  article-title: An effcient infrared small target detection method based on visual contrast mechanism
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Z. Cai, N. Vasconcelos, Cascade R-CNN: delving into high quality object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
– start-page: 385
  year: 2018
  end-page: 400
  ident: b0090
  article-title: Receptive field block net for accurate and fast object detection
  publication-title: Proceedings of the European Conference on Computer Vision
– reference: R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchiesfor accurate object detection and semantic segmentation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587.
– volume: 1954
  start-page: 2
  year: 1993
  end-page: 11
  ident: b0010
  article-title: Morphology-based algorithm for point target detection in infrared backgrounds
  publication-title: Proc. SPIE
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0115
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2999
  year: 2017
  end-page: 3007
  ident: b0135
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intelligence
– reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Proc. NIPS, 2012, pp. 1097–1105.
– volume: 25
  start-page: 1469
  year: 2020
  end-page: 1483
  ident: b0110
  article-title: Infrared dim and small target detection based on denoising autoencoder network
  publication-title: Mobile Netw. Appl.
– year: 2019
  ident: b0145
  article-title: A dataset for dim-small target detection and tracking of aircraft in infrared image sequences
  publication-title: China Scientific Data
– reference: H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-attention generative adversarial networks, in: International Conference on Machine Learning, 2019, pp. 7354–7363.
– start-page: 2117
  year: 2017
  end-page: 2125
  ident: b0155
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: J. Redmon, A. Farhadi. “YOLOv3: An incremental improvement.” [Online]. Available: https://arxiv.org/abs/1804.02767.
– volume: 105
  year: 2020
  ident: b0105
  article-title: Nv-Net: efficient infrared image segmentation with convolutional neural networks in the low illumination environment
  publication-title: Infrared Phys. Technol.
– volume: 46
  start-page: 0726002
  year: 2017
  ident: b0005
  article-title: Infrared dim target detection algorithm based on improved LCM
  publication-title: Infrared Laser Eng.
– volume: 52
  start-page: 574
  year: 2014
  end-page: 581
  ident: b0025
  article-title: A local contrast method for small infrared target detection
  publication-title: IEEE Trans. Geosci. Remote Sensing
– reference: R. Girshick, Fast R-CNN, in: Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1440–1448.
– start-page: 658
  year: 2019
  end-page: 666
  ident: b0140
  article-title: Generalized intersection over union: A metric and a loss for bounding box regression
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 3809
  start-page: 74
  year: 1999
  end-page: 83
  ident: b0020
  article-title: Maxmean and max-median filters for detection of small targets
  publication-title: Proc. SPIE
– start-page: 6054
  year: 2019
  end-page: 6063
  ident: b0125
  article-title: Scale-aware trident networks for object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 21
  year: 2016
  end-page: 37
  ident: b0070
  article-title: SSD: Single shot multibox detector
  publication-title: Computer Vision ECCV
– reference: I. Loshchilov, F. Hutter, SGDR: stochastic gradient descent with warm restarts, [Online]. Available: https://arxiv.org/abs/1608.03983.
– volume: 52
  start-page: 574
  issue: 1
  year: 2014
  ident: 10.1016/j.infrared.2021.103659_b0025
  article-title: A local contrast method for small infrared target detection
  publication-title: IEEE Trans. Geosci. Remote Sensing
  doi: 10.1109/TGRS.2013.2242477
– ident: 10.1016/j.infrared.2021.103659_b0075
  doi: 10.1109/CVPR.2016.91
– start-page: 951
  year: 2017
  ident: 10.1016/j.infrared.2021.103659_b0120
  article-title: Finding tiny faces
– volume: 13
  start-page: 962
  issue: 7
  year: 2016
  ident: 10.1016/j.infrared.2021.103659_b0030
  article-title: An effcient infrared small target detection method based on visual contrast mechanism
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2556218
– ident: 10.1016/j.infrared.2021.103659_b0050
  doi: 10.1109/CVPR.2014.81
– start-page: 21
  year: 2016
  ident: 10.1016/j.infrared.2021.103659_b0070
  article-title: SSD: Single shot multibox detector
  publication-title: Computer Vision ECCV
– ident: 10.1016/j.infrared.2021.103659_b0130
– volume: 97
  start-page: 229
  year: 2019
  ident: 10.1016/j.infrared.2021.103659_b0100
  article-title: Ship detection in spaceborne infrared images based on Convolutional Neural Networks and synthetic targets
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.12.040
– start-page: 770
  year: 2016
  ident: 10.1016/j.infrared.2021.103659_b0115
  article-title: Deep residual learning for image recognition
– start-page: 658
  year: 2019
  ident: 10.1016/j.infrared.2021.103659_b0140
  article-title: Generalized intersection over union: A metric and a loss for bounding box regression
– ident: 10.1016/j.infrared.2021.103659_b0045
– start-page: 385
  year: 2018
  ident: 10.1016/j.infrared.2021.103659_b0090
  article-title: Receptive field block net for accurate and fast object detection
– ident: 10.1016/j.infrared.2021.103659_b0065
  doi: 10.1109/CVPR.2018.00644
– ident: 10.1016/j.infrared.2021.103659_b0055
  doi: 10.1109/ICCV.2015.169
– volume: 3809
  start-page: 74
  year: 1999
  ident: 10.1016/j.infrared.2021.103659_b0020
  article-title: Maxmean and max-median filters for detection of small targets
  publication-title: Proc. SPIE
  doi: 10.1117/12.364049
– volume: 1954
  start-page: 2
  issue: 10
  year: 1993
  ident: 10.1016/j.infrared.2021.103659_b0010
  article-title: Morphology-based algorithm for point target detection in infrared backgrounds
  publication-title: Proc. SPIE
  doi: 10.1117/12.157758
– start-page: 4203
  year: 2018
  ident: 10.1016/j.infrared.2021.103659_b0095
  article-title: Single-shot refinement neural network for object detection
– year: 2019
  ident: 10.1016/j.infrared.2021.103659_b0145
  article-title: A dataset for dim-small target detection and tracking of aircraft in infrared image sequences
  publication-title: China Scientific Data
– start-page: 2117
  year: 2017
  ident: 10.1016/j.infrared.2021.103659_b0155
  article-title: Feature pyramid networks for object detection
– ident: 10.1016/j.infrared.2021.103659_b0085
– start-page: 2999
  year: 2017
  ident: 10.1016/j.infrared.2021.103659_b0135
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intelligence
– ident: 10.1016/j.infrared.2021.103659_b0150
– volume: 22
  start-page: 4996
  issue: 12
  year: 2013
  ident: 10.1016/j.infrared.2021.103659_b0040
  article-title: Infrared patch-image model for small target detection in a single image
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2281420
– volume: 11
  start-page: 2168
  issue: 12
  year: 2014
  ident: 10.1016/j.infrared.2021.103659_b0035
  article-title: A robust infrared small target detection algorithm based on human visual system
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2323236
– volume: 25
  start-page: 1469
  issue: 4
  year: 2020
  ident: 10.1016/j.infrared.2021.103659_b0110
  article-title: Infrared dim and small target detection based on denoising autoencoder network
  publication-title: Mobile Netw. Appl.
  doi: 10.1007/s11036-019-01377-6
– start-page: 6054
  year: 2019
  ident: 10.1016/j.infrared.2021.103659_b0125
  article-title: Scale-aware trident networks for object detection
– volume: 46
  start-page: 0726002
  issue: 7
  year: 2017
  ident: 10.1016/j.infrared.2021.103659_b0005
  article-title: Infrared dim target detection algorithm based on improved LCM
  publication-title: Infrared Laser Eng.
  doi: 10.3788/IRLA201746.0726002
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.infrared.2021.103659_b0060
  article-title: Faster R-CNN: towards real time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: 10.1016/j.infrared.2021.103659_b0080
  doi: 10.1109/CVPR.2017.690
– volume: 105
  year: 2020
  ident: 10.1016/j.infrared.2021.103659_b0105
  article-title: Nv-Net: efficient infrared image segmentation with convolutional neural networks in the low illumination environment
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.103184
– volume: 43
  start-page: 2145
  issue: 6
  year: 2010
  ident: 10.1016/j.infrared.2021.103659_b0015
  article-title: Analysis of new top-hat transformation and the application for infrared dim small target detection
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2009.12.023
SSID ssj0016406
Score 2.5247254
Snippet Infrared small target detection has made many breakthroughs in early warning, guidance and battlefield intelligence. However, infrared small target occupies...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103659
SubjectTerms Convolutional neural network
End-to-end
Infrared image
Small target detection
Title ISTDet: An efficient end-to-end neural network for infrared small target detection
URI https://dx.doi.org/10.1016/j.infrared.2021.103659
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na8IwFA-yMdhl7JO5D8lh10zzWbObuIluzMNU8FbSJAXFVdHuur99SdqKg4GHnUpLHqQ_Xn_vvfJ7LwA8tK0LIzpiiBkpEVPaNytbV7XKhGNFWELCMJ33oehP2OuUT2ugW_XCeFllyf0Fpwe2Lp80SzSbq9msOcKUt5jL74n_RU1Dfy9jkffyx--tzMNVA-F8Tb8Y-dU7XcJzn9uuvc7b1YkE-_5z4WeW_hWgdoJO7xSclNki7BQbOgM1m52Do6Da1JsL8DEYjZ9t_gQ7GbRhFoQLIdBmBuVL5C7QT6t09lmh9YYuQYXVZuDmUy0WsFCCQ2PzoMnKLsGk9zLu9lF5SALSFJMc8dRGxDhOw4q1U4eDkcJojNNUtC1NiSGOR0QSWSsN1rKlW4lWaZoowXXivl56BQ6yZWavATRMa4mpEUxYZhhNNBFKacWppFbzqA54hUysywni_iCLRVxJxeZx9RKxRzQuEK2D5tZuVczQ2GshK-DjX94QO6LfY3vzD9tbcOzvCkHjHTjI11_23iUdedIIXtUAh53BW3_4AzJ61vQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba8IwGA2ijO1l7MrcNQ97LTXXmr2Jm9R5eZgKvpU0SUFxVbT7_0t6kQ0GPuyp0PZA-pGe70t7vhMAntvGphEVUI9qITwqlWtWNnbVKmKGJKYxzs10RmMezuj7nM1roFv1wjhZZcn9BafnbF2e8cto-pvFwp8gwlrU1vfYfaImrr-34dypWB00Ov1BON7_TOA032LT3e85wI9G4aUrb7dO6m2Xihi5FnTubEv_ylE_8k7vDJyWBSPsFGM6BzWTXoCjXLipdpfgoz-ZvprsBXZSaHI7CJtFoEm1l609e4DOsNLi00LuDW2NCqvBwN2nXK1gIQaH2mS5LCu9ArPe27QbeuU-CZ4iCGceS0yAtaU1JGk7saHQgmuFUJLwtiEJ1thSCY8DY4RGSrRUK1YySWLJmYrtC0yuQT1dp-YGQE2VEohoTrmhmpJYYS6lkowIYhQLmoBVkYlUaSLu9rJYRZVabBlVDxG5iEZFRJvA3-M2hY3GQYSoAh_9mhCR5foD2Nt_YJ_AcTgdDaNhfzy4AyfuSqFvvAf1bPtlHmwNksWP5Rz7BpsO2aU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ISTDet%3A+An+efficient+end-to-end+neural+network+for+infrared+small+target+detection&rft.jtitle=Infrared+physics+%26+technology&rft.au=Ju%2C+Moran&rft.au=Luo%2C+Jiangning&rft.au=Liu%2C+Guangqi&rft.au=Luo%2C+Haibo&rft.date=2021-05-01&rft.pub=Elsevier+B.V&rft.issn=1350-4495&rft.eissn=1879-0275&rft.volume=114&rft_id=info:doi/10.1016%2Fj.infrared.2021.103659&rft.externalDocID=S1350449521000311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4495&client=summon