Fractional backward Kolmogorov equations

This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solu...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 6; pp. 1 - 5
Main Author 张红 李国华 罗懋康
Format Journal Article
LanguageEnglish
Published 01.06.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/6/060201

Cover

Abstract This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solution is equal to the transfer probability density function of the subordinated process X(Sα (t)), the subordinator Sα (t) is termed as the inverse-time a-stable subordinator and the process X(τ) satisfies the corresponding time homogeneous Ito stochastic differential equation.
AbstractList This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solution is equal to the transfer probability density function of the subordinated process X(S sub( alpha ) (t)), the subordinator S sub( alpha )(t ) is termed as the inverse-time alpha -stable subordinator and the process X([tau]) satisfies the corresponding time homogeneous Ito stochastic differential equation.
This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solution is equal to the transfer probability density function of the subordinated process X(Sα (t)), the subordinator Sα (t) is termed as the inverse-time a-stable subordinator and the process X(τ) satisfies the corresponding time homogeneous Ito stochastic differential equation.
Author 张红 李国华 罗懋康
AuthorAffiliation College of Mathematics, Sichuan University, Chengdu 610064, China
Author_xml – sequence: 1
  fullname: 张红 李国华 罗懋康
BookMark eNqFkE9PwzAMxSM0JLbBR0AaNy5ldtL8qTihiQFiEhc4R2majkLXbEkH4tvTbtMOXDhZlt_P9nsjMmh84wi5RLhBUGqKQqYJAhdTilMxBQEU8IQMKXCVMMXSARkeNWdkFOMHgECgbEiu58HYtvKNqSe5sZ_fJhSTZ1-v_NIH_zVxm63px_GcnJamju7iUMfkbX7_OntMFi8PT7O7RWIZ0jbhNnVoEKVU0hXQNc5CmhfWZmkJZZ5xaqQCFGWOFoywKc8pqEKUGWRFKdi4e2m3dx38Zutiq1dVtK6uTeP8NmqUnHEQCtJOyvdSG3yMwZV6HaqVCT8aQffJ6N617l1rilrofTIdd_uHs1W7c9kGU9X_0lcH-t03y03VLI9nUyq5BMnYLzNydRk
CitedBy_id crossref_primary_10_1088_1674_1056_21_12_128901
crossref_primary_10_1007_s00707_013_0826_1
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/21/6/060201
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Fractional backward Kolmogorov equations
EISSN 2058-3834
1741-4199
EndPage 5
ExternalDocumentID 10_1088_1674_1056_21_6_060201
42757073
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c312t-5c4e1a117787ed04e1ec04bdcc94f0fb952a78016fb1c0a6c45b208d6f909df63
ISSN 1674-1056
IngestDate Thu Sep 04 23:18:13 EDT 2025
Thu Apr 24 23:03:09 EDT 2025
Tue Jul 01 04:00:00 EDT 2025
Wed Feb 14 10:45:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-5c4e1a117787ed04e1ec04bdcc94f0fb952a78016fb1c0a6c45b208d6f909df63
Notes Zhang Hong, Li Guo-Hua, and Luo Mao-Kang(College of Mathematics, Sichuan University, Chengdu 610064, China)
anomalous diffusive, fractional backward Kolmogorov equations, subordinated process
This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solution is equal to the transfer probability density function of the subordinated process X(Sα (t)), the subordinator Sα (t) is termed as the inverse-time a-stable subordinator and the process X(τ) satisfies the corresponding time homogeneous Ito stochastic differential equation.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1753506804
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1753506804
crossref_primary_10_1088_1674_1056_21_6_060201
crossref_citationtrail_10_1088_1674_1056_21_6_060201
chongqing_primary_42757073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2012
SSID ssj0061023
ssib054405859
ssib000804704
Score 1.9282534
Snippet This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Construction
Differential equations
Dynamics
Fractal analysis
Fractals
Kolmogorov
Mathematical analysis
Mathematical models
Probability density functions
Stochasticity
分形空间
分数
反时限
时间
柯尔莫哥洛夫
概率密度函数
随机微分方程
Title Fractional backward Kolmogorov equations
URI http://lib.cqvip.com/qk/85823A/201206/42757073.html
https://www.proquest.com/docview/1753506804
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtswTNg6DNhl2BNL90AGTMCAwo2l6Hm0Gwfdhj0OLdCbEMt2d-jiNU122NePVCzHBYq9Loai0JRDMiRNkRQhb_SUa-29TnitmkRIBn8pMLNJKbhnypSVCbvnHz-p41Px_kye7fJ0Q3XJujz0P2-sK_kfrsIc8BWrZP-Bsz1SmIAx8BeuwGG4_hWP56ttWQKQucQ4HIYEPrQX39rzdtX-OKgvN4N4XOeB0kLQ3NBsRgtJbU5zGGhqLM0sDmxKjcppMaf5EbUZLQw1AMRooahV1OgO2vQpsIgHYLMUv8kzmvGDADyjphisIanBmYMANaNWIxCgA-yIIKO5HkYgMJUjZkp1SlNpAepcdi2twxxPpUmmMVDZaVrOBhI1VJtsYH_ljYodlCHGGOJKWMeCmj5sPilwednOnvVZhoJrqUGF3SZ3QCDDJv67z1-inVbYtAJfxyPOWN9lzKSfm3A2UZPtCth942u7PL8En-K6F3PdiAfP5OQBud-9UoyzrXw8JLfq5SNyN6T2-qvH5O1OSsZRSsY7KRn3UvKEnM6Lk6PjpDsfI_FTxteJ9KJmC9x1N7quUvhQ-1SUlfdWNGlTWskXGjwQ1ZTMpwvlhSx5airV2NRWjZo-JXvLdlk_I2NwsjVW9BhRGeF5swBV71M_BVspS1WzEdnvf7v7vu2D4iJ9R0REYjjfdZbHA04uXMhwMMYhPR3S03HmlNvSc0QO-9siyj_c8DpS2oESxJ2txbJuN1cO281KPEVG7P_uQZ-Tezv5fUH21qtN_RJ8ynX5KojGLw1_Wag
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+backward+Kolmogorov+equations&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BC%A0%E7%BA%A2+%E6%9D%8E%E5%9B%BD%E5%8D%8E+%E7%BD%97%E6%87%8B%E5%BA%B7&rft.date=2012-06-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=21&rft.issue=6&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1088%2F1674-1056%2F21%2F6%2F060201&rft.externalDocID=42757073
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg