Stability analysis of stochastic delay differential equations with Lévy noise

This paper is concerned with pth moment exponential stability problem for a class of stochastic delay differential equations driven by Lévy processes. Several new stability theorems are obtained by developing a method—proof by contradiction. Moreover, the results are applied to investigate the pth m...

Full description

Saved in:
Bibliographic Details
Published inSystems & control letters Vol. 118; pp. 62 - 68
Main Author Zhu, Quanxin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2018
Subjects
Online AccessGet full text
ISSN0167-6911
DOI10.1016/j.sysconle.2018.05.015

Cover

Loading…
Abstract This paper is concerned with pth moment exponential stability problem for a class of stochastic delay differential equations driven by Lévy processes. Several new stability theorems are obtained by developing a method—proof by contradiction. Moreover, the results are applied to investigate the pth moment exponential stability of stochastic neural networks with Lévy noise. In particular, the time-varying delay in our results is not required to be differentiable, even not continuous. The obtained results improve greatly some previous works given in the literature. In particular, our method can easily correct the incorrect proofs appeared in two recent papers. Finally, two examples are provided to show the effectiveness of the theoretical results.
AbstractList This paper is concerned with pth moment exponential stability problem for a class of stochastic delay differential equations driven by Lévy processes. Several new stability theorems are obtained by developing a method—proof by contradiction. Moreover, the results are applied to investigate the pth moment exponential stability of stochastic neural networks with Lévy noise. In particular, the time-varying delay in our results is not required to be differentiable, even not continuous. The obtained results improve greatly some previous works given in the literature. In particular, our method can easily correct the incorrect proofs appeared in two recent papers. Finally, two examples are provided to show the effectiveness of the theoretical results.
Author Zhu, Quanxin
Author_xml – sequence: 1
  givenname: Quanxin
  orcidid: 0000-0003-3130-4923
  surname: Zhu
  fullname: Zhu, Quanxin
  email: zqx22@126.com
  organization: Key Laboratory of HPC-SIP (MOE), College of Mathematics and Statistics, Hunan Normal University, Changsha 410081, Hunan, China
BookMark eNqFkE1OwzAQhb0oEi1wBeQLNIzz50RiAar4kypYAGvLccbqVCEG2xTlSJyDi5FS2LDpahZP39Obb8YmveuRsVMBiQBRnq2TMATj-g6TFESVQJGAKCZsOoZyXtZCHLJZCGsASCHLpuz-MeqGOooD173uhkCBO8tDdGalQyTDW-z0wFuyFj32kXTH8e1dR3J94B8UV3z59bkZeO8o4DE7sLoLePJ7j9jz9dXT4na-fLi5W1wu5yYTaZwXjcjTupRYprqSALVAC61sjBZFk0sURua2aMosb2SLuS015KKCylpbt6mW2RE73_Ua70LwaJWh-LMpek2dEqC2PtRa_flQWx8KCjX6GPHyH_7q6UX7YT94sQNxfG5D6FUwhL3BljyaqFpH-yq-AeKWhfg
CitedBy_id crossref_primary_10_1016_j_physa_2019_122300
crossref_primary_10_1142_S1793524519500104
crossref_primary_10_1080_00949655_2023_2290133
crossref_primary_10_1186_s13662_019_2371_2
crossref_primary_10_1080_00207179_2019_1568580
crossref_primary_10_1155_2019_8529053
crossref_primary_10_3390_math11051093
crossref_primary_10_1007_s12190_018_01234_x
crossref_primary_10_1155_2020_7652648
crossref_primary_10_1016_j_sysconle_2021_105041
crossref_primary_10_1016_j_physa_2019_122827
crossref_primary_10_1016_j_chaos_2018_11_023
crossref_primary_10_1177_01423312221122550
crossref_primary_10_1109_TFUZZ_2021_3067797
crossref_primary_10_1002_mma_5664
crossref_primary_10_3934_dcdsb_2021207
crossref_primary_10_1016_j_cnsns_2022_106460
crossref_primary_10_1109_TCYB_2020_3025754
crossref_primary_10_1109_TFUZZ_2022_3193759
crossref_primary_10_1080_16583655_2019_1708540
crossref_primary_10_1109_TSMC_2020_2980034
crossref_primary_10_1016_j_sysconle_2020_104759
crossref_primary_10_1080_00207179_2020_1778793
crossref_primary_10_1016_j_amc_2020_125080
crossref_primary_10_1155_2020_7913050
crossref_primary_10_1016_j_nahs_2024_101525
crossref_primary_10_1016_j_chaos_2019_01_001
crossref_primary_10_1002_rnc_5009
crossref_primary_10_1049_cth2_12041
crossref_primary_10_1080_00207179_2022_2142853
crossref_primary_10_1007_s10440_022_00506_w
crossref_primary_10_1080_23307706_2025_2452431
crossref_primary_10_1080_00207160_2020_1748187
crossref_primary_10_1016_j_jfranklin_2020_08_038
crossref_primary_10_1080_00207179_2022_2160824
crossref_primary_10_1080_00207721_2019_1615570
crossref_primary_10_1142_S0219876219500142
crossref_primary_10_1155_2020_8683521
crossref_primary_10_1002_rnc_4686
crossref_primary_10_1016_j_cnsns_2024_108092
crossref_primary_10_1093_imamci_dnad008
crossref_primary_10_1016_j_jfranklin_2019_06_005
crossref_primary_10_1016_j_sysconle_2021_104898
crossref_primary_10_3934_math_20241317
crossref_primary_10_1016_j_bspc_2022_104295
crossref_primary_10_1049_iet_cta_2019_0833
crossref_primary_10_1007_s12190_020_01343_6
crossref_primary_10_1080_00207179_2020_1748230
crossref_primary_10_1016_j_jfranklin_2018_11_035
crossref_primary_10_1155_2020_3096762
crossref_primary_10_1016_j_physa_2020_124167
crossref_primary_10_1016_j_amc_2018_11_063
crossref_primary_10_1016_j_jfranklin_2022_12_001
crossref_primary_10_1080_00207179_2020_1788728
crossref_primary_10_11948_2156_907X_20180257
crossref_primary_10_1002_mma_10815
crossref_primary_10_1007_s12346_023_00894_w
crossref_primary_10_1016_j_jfranklin_2019_10_036
crossref_primary_10_1016_j_physa_2019_123496
crossref_primary_10_1016_j_jfranklin_2020_04_061
crossref_primary_10_1016_j_physa_2019_122057
crossref_primary_10_1016_j_amc_2021_126050
crossref_primary_10_1093_imamci_dnad028
crossref_primary_10_1016_j_jfranklin_2024_106803
crossref_primary_10_1002_acs_3153
crossref_primary_10_1016_j_jmaa_2018_10_072
crossref_primary_10_1080_00207721_2018_1536233
crossref_primary_10_1002_rnc_6240
crossref_primary_10_1155_2021_5577277
crossref_primary_10_1109_ACCESS_2019_2957500
crossref_primary_10_3934_math_2020396
crossref_primary_10_1016_j_amc_2021_126205
crossref_primary_10_1016_j_fss_2018_11_017
crossref_primary_10_1002_jnm_3231
crossref_primary_10_1016_j_jfranklin_2019_10_026
crossref_primary_10_1155_2021_5599206
crossref_primary_10_1016_j_jfranklin_2019_10_024
crossref_primary_10_1080_00207179_2021_2005259
crossref_primary_10_1109_TCSII_2022_3166776
crossref_primary_10_1007_s40314_024_02748_w
crossref_primary_10_1016_j_physa_2019_123782
crossref_primary_10_1109_TSMC_2019_2956757
crossref_primary_10_1177_0142331220908987
crossref_primary_10_3390_axioms8010030
crossref_primary_10_1007_s11424_020_9131_y
crossref_primary_10_1016_j_physa_2019_122221
crossref_primary_10_1080_00207721_2021_1885763
crossref_primary_10_1016_j_amc_2022_127573
crossref_primary_10_1155_2021_8879538
crossref_primary_10_1016_j_jfranklin_2020_11_025
crossref_primary_10_1016_j_amc_2019_124569
crossref_primary_10_1016_j_jfranklin_2023_09_051
crossref_primary_10_1080_07362994_2021_1893188
crossref_primary_10_1007_s10255_021_1031_y
crossref_primary_10_1007_s12555_018_0107_9
crossref_primary_10_1016_j_cnsns_2023_107596
crossref_primary_10_1080_00207179_2019_1616823
crossref_primary_10_1155_2018_7814974
crossref_primary_10_1016_j_jfranklin_2019_09_035
crossref_primary_10_1155_2022_5549693
crossref_primary_10_1155_2022_5898922
crossref_primary_10_1109_ACCESS_2019_2897614
crossref_primary_10_1109_TNSE_2021_3052255
crossref_primary_10_1016_j_neucom_2019_09_117
crossref_primary_10_1109_TSMC_2021_3065114
crossref_primary_10_1016_j_neucom_2018_10_091
crossref_primary_10_1109_TSMC_2022_3193056
crossref_primary_10_1016_j_aml_2020_106358
crossref_primary_10_1049_cth2_12082
crossref_primary_10_1016_j_neunet_2019_02_011
crossref_primary_10_1109_TCYB_2021_3052042
crossref_primary_10_1109_TSMC_2019_2956263
crossref_primary_10_1016_j_automatica_2022_110405
crossref_primary_10_1016_j_nahs_2025_101585
crossref_primary_10_1186_s13660_020_02452_3
crossref_primary_10_1007_s12559_020_09782_w
crossref_primary_10_1016_j_amc_2021_126902
crossref_primary_10_1016_j_sysconle_2023_105530
crossref_primary_10_1007_s11464_021_0246_9
crossref_primary_10_3934_math_2020250
crossref_primary_10_1016_j_spl_2023_109857
crossref_primary_10_1002_rnc_4761
crossref_primary_10_1049_cth2_12365
crossref_primary_10_1007_s12190_020_01453_1
crossref_primary_10_1007_s11424_020_9082_3
crossref_primary_10_1007_s40747_021_00389_8
crossref_primary_10_1007_s11424_021_0170_9
crossref_primary_10_1007_s12555_019_0276_1
crossref_primary_10_1016_j_fss_2020_10_018
crossref_primary_10_1016_j_jfranklin_2020_03_012
crossref_primary_10_1049_iet_cta_2018_5889
crossref_primary_10_1049_iet_rpg_2019_1180
crossref_primary_10_1080_00207179_2022_2141137
crossref_primary_10_1016_j_jfranklin_2019_06_043
crossref_primary_10_3934_math_2019_3_663
crossref_primary_10_1016_j_physa_2019_122649
crossref_primary_10_1016_j_nahs_2024_101550
crossref_primary_10_1007_s11424_020_9027_x
crossref_primary_10_1016_j_jfranklin_2022_02_002
crossref_primary_10_1016_j_cjph_2019_09_016
crossref_primary_10_1142_S1793524520500850
crossref_primary_10_1016_j_isatra_2021_01_038
crossref_primary_10_1016_j_cnsns_2019_105013
crossref_primary_10_1016_j_cnsns_2022_106680
crossref_primary_10_1016_j_automatica_2019_01_016
crossref_primary_10_1016_j_neunet_2021_03_028
crossref_primary_10_1109_TAC_2024_3448128
crossref_primary_10_1016_j_chaos_2021_111338
crossref_primary_10_1016_j_jfranklin_2024_107425
crossref_primary_10_1016_j_automatica_2022_110394
crossref_primary_10_1016_j_matcom_2019_12_002
crossref_primary_10_1002_rnc_5904
crossref_primary_10_1016_j_jfranklin_2022_10_056
crossref_primary_10_1002_rnc_5747
crossref_primary_10_1016_j_amc_2022_126950
crossref_primary_10_1016_j_amc_2020_125143
crossref_primary_10_3934_math_2021038
crossref_primary_10_1007_s40435_024_01495_4
crossref_primary_10_1080_17442508_2021_1914622
crossref_primary_10_1002_rnc_6161
crossref_primary_10_1007_s11766_020_3664_1
crossref_primary_10_1080_00207160_2023_2187246
crossref_primary_10_1080_00207179_2019_1639077
crossref_primary_10_3390_math12213406
crossref_primary_10_1016_j_chaos_2024_115404
crossref_primary_10_1515_math_2021_0120
crossref_primary_10_1016_j_jfranklin_2018_12_030
Cites_doi 10.1109/TCYB.2014.2317236
10.1109/TAC.2008.2007178
10.1049/iet-cta.2015.0923
10.1109/TNNLS.2011.2182659
10.1109/TSMCB.2010.2053354
10.1239/jap/1261670692
10.1016/j.sysconle.2016.09.005
10.1016/j.sysconle.2017.05.002
10.1109/TAC.2013.2256014
10.1109/TAC.2014.2305931
10.1080/00207179.2016.1219069
10.1016/j.automatica.2015.09.011
10.1016/j.automatica.2013.09.005
10.1109/TNNLS.2011.2179556
10.1137/130924652
10.1016/j.automatica.2014.08.006
10.1016/j.jmaa.2014.02.016
10.1109/TAC.2015.2438414
10.1007/s11071-008-9433-4
10.1016/j.automatica.2016.08.001
10.1080/00207179.2015.1014852
10.1137/15M1019465
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sysconle.2018.05.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 68
ExternalDocumentID 10_1016_j_sysconle_2018_05_015
S0167691118301105
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20161552
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61773217; 61374080; 11531006
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADIYS
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c312t-5b142967e62a870091ef0d7bca15b47e1c74f5b634b7de4f6a041808fff9d2a73
IEDL.DBID .~1
ISSN 0167-6911
IngestDate Tue Jul 01 03:29:08 EDT 2025
Thu Apr 24 23:02:49 EDT 2025
Sun Apr 06 06:54:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords pth moment exponential stability
Lévy noise
Neural network
Stochastic delay differential equation
Time-varying delay
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-5b142967e62a870091ef0d7bca15b47e1c74f5b634b7de4f6a041808fff9d2a73
ORCID 0000-0003-3130-4923
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_sysconle_2018_05_015
crossref_primary_10_1016_j_sysconle_2018_05_015
elsevier_sciencedirect_doi_10_1016_j_sysconle_2018_05_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationTitle Systems & control letters
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Deng (b6) 2016; 61
Zhu (b19) 2017; 90
Zhu, Cao (b24) 2011; 41
Ito, Nishimura (b7) 2015; 62
Ren, Xiong (b2) 2016; 97
Wang, Zhu (b1) 2017; 105
Yang, Zhou, Yang, Hu, Xie (b21) 2015; 88
Mao (b3) 2013; 49
Kang, Zhai, Liu, Zhao, Zhao (b12) 2014; 59
Mateos-Núñez, Cortés (b8) 2014; 52
Zhu, Cao (b15) 2012; 23
Mao, Yuan (b10) 2006
Guo, Mao, Yue (b16) 2016; 54
Zhou, Tong, Gao, Ji, Su (b17) 2012; 23
Applebaum, Siakalli (b20) 2009; 46
Teel, Subbaraman, Sferlazza (b11) 2014; 50
Hu, Mao, Zhang (b14) 2013; 58
Zhu (b18) 2014; 416
Briat (b4) 2016; 74
Zhou, Zhu, Shi, Su, Fang, Zhou (b25) 2014; 44
Wang, Cao, Liang (b23) 2009; 57
Huang, Mao (b13) 2009; 54
Applebaum (b22) 2004
Dragan, Mukaidani (b5) 2016; 10
Mao (b9) 1997
Wang (10.1016/j.sysconle.2018.05.015_b1) 2017; 105
Zhou (10.1016/j.sysconle.2018.05.015_b25) 2014; 44
Hu (10.1016/j.sysconle.2018.05.015_b14) 2013; 58
Teel (10.1016/j.sysconle.2018.05.015_b11) 2014; 50
Mao (10.1016/j.sysconle.2018.05.015_b10) 2006
Yang (10.1016/j.sysconle.2018.05.015_b21) 2015; 88
Dragan (10.1016/j.sysconle.2018.05.015_b5) 2016; 10
Kang (10.1016/j.sysconle.2018.05.015_b12) 2014; 59
Mateos-Núñez (10.1016/j.sysconle.2018.05.015_b8) 2014; 52
Applebaum (10.1016/j.sysconle.2018.05.015_b20) 2009; 46
Mao (10.1016/j.sysconle.2018.05.015_b9) 1997
Briat (10.1016/j.sysconle.2018.05.015_b4) 2016; 74
Huang (10.1016/j.sysconle.2018.05.015_b13) 2009; 54
Guo (10.1016/j.sysconle.2018.05.015_b16) 2016; 54
Ren (10.1016/j.sysconle.2018.05.015_b2) 2016; 97
Mao (10.1016/j.sysconle.2018.05.015_b3) 2013; 49
Ito (10.1016/j.sysconle.2018.05.015_b7) 2015; 62
Wang (10.1016/j.sysconle.2018.05.015_b23) 2009; 57
Zhu (10.1016/j.sysconle.2018.05.015_b19) 2017; 90
Zhu (10.1016/j.sysconle.2018.05.015_b24) 2011; 41
Applebaum (10.1016/j.sysconle.2018.05.015_b22) 2004
Zhu (10.1016/j.sysconle.2018.05.015_b15) 2012; 23
Zhou (10.1016/j.sysconle.2018.05.015_b17) 2012; 23
Zhao (10.1016/j.sysconle.2018.05.015_b6) 2016; 61
Zhu (10.1016/j.sysconle.2018.05.015_b18) 2014; 416
References_xml – volume: 57
  start-page: 209
  year: 2009
  end-page: 218
  ident: b23
  article-title: Exponential stability in the mean square for stochastic neural networks with mixed time-delays and Markovian jumping parameters
  publication-title: Nonlinear Dynam.
– volume: 62
  start-page: 51
  year: 2015
  end-page: 64
  ident: b7
  article-title: Stability of stochastic nonlinear systems in cascade with not necessarily unbounded decay rates
  publication-title: Automatica
– volume: 90
  start-page: 1703
  year: 2017
  end-page: 1712
  ident: b19
  article-title: Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching
  publication-title: Internat. J. Control
– volume: 41
  start-page: 341
  year: 2011
  end-page: 353
  ident: b24
  article-title: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
– volume: 54
  start-page: 147
  year: 2009
  end-page: 152
  ident: b13
  article-title: Delay-dependent exponential stability of neutral stochastic delay systems
  publication-title: IEEE Trans. Automat. Control
– volume: 50
  start-page: 2435
  year: 2014
  end-page: 2456
  ident: b11
  article-title: Stability analysis for stochastic hybrid systems: A survey
  publication-title: Automatica
– volume: 59
  start-page: 1511
  year: 2014
  end-page: 1523
  ident: b12
  article-title: Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching
  publication-title: IEEE Trans. Automat. Control
– year: 2006
  ident: b10
  article-title: Stochastic Differential Delay Equations with Markovian Switching
– volume: 44
  start-page: 2848
  year: 2014
  end-page: 2860
  ident: b25
  article-title: Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters
  publication-title: IEEE Trans. Cybern.
– volume: 105
  start-page: 55
  year: 2017
  end-page: 61
  ident: b1
  article-title: Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems
  publication-title: Systems Control Lett.
– year: 1997
  ident: b9
  article-title: Stochastic Differential Equations and their Applications
– volume: 54
  start-page: 1919
  year: 2016
  end-page: 1933
  ident: b16
  article-title: Almost sure exponential stability of stochastic differential delay equations
  publication-title: SIAM J. Control Optim.
– volume: 88
  start-page: 1726
  year: 2015
  end-page: 1734
  ident: b21
  article-title: th moment asymptotic stability of stochastic delayed hybrid systems with Lévy noise
  publication-title: Internat. J. Control
– volume: 23
  start-page: 662
  year: 2012
  end-page: 668
  ident: b17
  article-title: Mode and delay-dependent adaptive exponential synchronization in
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2004
  ident: b22
  article-title: Lévy Processes and Stochastic Calculus
– volume: 23
  start-page: 467
  year: 2012
  end-page: 479
  ident: b15
  article-title: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 58
  start-page: 2319
  year: 2013
  end-page: 2332
  ident: b14
  article-title: Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations
  publication-title: IEEE Trans. Automat. Control
– volume: 74
  start-page: 279
  year: 2016
  end-page: 287
  ident: b4
  article-title: Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints
  publication-title: Automatica
– volume: 61
  start-page: 240
  year: 2016
  end-page: 245
  ident: b6
  article-title: A new type of stability theorem for stochastic systems with application to stochastic stabilization
  publication-title: IEEE Trans. Automat. Control
– volume: 46
  start-page: 1116
  year: 2009
  end-page: 1129
  ident: b20
  article-title: Asymptotic stability of stochastic differential equations driven by Lévy noise
  publication-title: J. Appl. Probab.
– volume: 10
  start-page: 1040
  year: 2016
  end-page: 1051
  ident: b5
  article-title: Exponential stability in mean square of a singularly perturbed linear stochastic system with state-multiplicative white-noise perturbations and Markovian switching
  publication-title: IET Control Theory Appl.
– volume: 49
  start-page: 3677
  year: 2013
  end-page: 3681
  ident: b3
  article-title: Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control
  publication-title: Automatica
– volume: 97
  start-page: 184
  year: 2016
  end-page: 192
  ident: b2
  article-title: Stability and stabilization of switched stochastic systems under asynchronous switching
  publication-title: Systems Control Lett.
– volume: 52
  start-page: 2399
  year: 2014
  end-page: 2421
  ident: b8
  article-title: th moment noise-to-state stability of stochastic differential equations with persistent noise
  publication-title: SIAM J. Control Optim.
– volume: 416
  start-page: 126
  year: 2014
  end-page: 142
  ident: b18
  article-title: Asymptotic stability in the
  publication-title: J. Math. Anal. Appl.
– year: 1997
  ident: 10.1016/j.sysconle.2018.05.015_b9
– volume: 44
  start-page: 2848
  issue: 12
  year: 2014
  ident: 10.1016/j.sysconle.2018.05.015_b25
  article-title: Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2317236
– volume: 54
  start-page: 147
  issue: 1
  year: 2009
  ident: 10.1016/j.sysconle.2018.05.015_b13
  article-title: Delay-dependent exponential stability of neutral stochastic delay systems
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2008.2007178
– volume: 10
  start-page: 1040
  issue: 9
  year: 2016
  ident: 10.1016/j.sysconle.2018.05.015_b5
  article-title: Exponential stability in mean square of a singularly perturbed linear stochastic system with state-multiplicative white-noise perturbations and Markovian switching
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2015.0923
– volume: 23
  start-page: 467
  issue: 3
  year: 2012
  ident: 10.1016/j.sysconle.2018.05.015_b15
  article-title: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2182659
– volume: 41
  start-page: 341
  year: 2011
  ident: 10.1016/j.sysconle.2018.05.015_b24
  article-title: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2010.2053354
– volume: 46
  start-page: 1116
  issue: 4
  year: 2009
  ident: 10.1016/j.sysconle.2018.05.015_b20
  article-title: Asymptotic stability of stochastic differential equations driven by Lévy noise
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1261670692
– volume: 97
  start-page: 184
  year: 2016
  ident: 10.1016/j.sysconle.2018.05.015_b2
  article-title: Stability and stabilization of switched stochastic systems under asynchronous switching
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2016.09.005
– volume: 105
  start-page: 55
  year: 2017
  ident: 10.1016/j.sysconle.2018.05.015_b1
  article-title: Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2017.05.002
– volume: 58
  start-page: 2319
  year: 2013
  ident: 10.1016/j.sysconle.2018.05.015_b14
  article-title: Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2013.2256014
– volume: 59
  start-page: 1511
  issue: 6
  year: 2014
  ident: 10.1016/j.sysconle.2018.05.015_b12
  article-title: Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2014.2305931
– year: 2004
  ident: 10.1016/j.sysconle.2018.05.015_b22
– year: 2006
  ident: 10.1016/j.sysconle.2018.05.015_b10
– volume: 90
  start-page: 1703
  issue: 8
  year: 2017
  ident: 10.1016/j.sysconle.2018.05.015_b19
  article-title: Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching
  publication-title: Internat. J. Control
  doi: 10.1080/00207179.2016.1219069
– volume: 62
  start-page: 51
  year: 2015
  ident: 10.1016/j.sysconle.2018.05.015_b7
  article-title: Stability of stochastic nonlinear systems in cascade with not necessarily unbounded decay rates
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.09.011
– volume: 49
  start-page: 3677
  issue: 12
  year: 2013
  ident: 10.1016/j.sysconle.2018.05.015_b3
  article-title: Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.09.005
– volume: 23
  start-page: 662
  issue: 4
  year: 2012
  ident: 10.1016/j.sysconle.2018.05.015_b17
  article-title: Mode and delay-dependent adaptive exponential synchronization in pth moment for stochastic delayed neural networks with Markovian switching
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2179556
– volume: 52
  start-page: 2399
  issue: 4
  year: 2014
  ident: 10.1016/j.sysconle.2018.05.015_b8
  article-title: pth moment noise-to-state stability of stochastic differential equations with persistent noise
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/130924652
– volume: 50
  start-page: 2435
  issue: 10
  year: 2014
  ident: 10.1016/j.sysconle.2018.05.015_b11
  article-title: Stability analysis for stochastic hybrid systems: A survey
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.08.006
– volume: 416
  start-page: 126
  year: 2014
  ident: 10.1016/j.sysconle.2018.05.015_b18
  article-title: Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.02.016
– volume: 61
  start-page: 240
  issue: 1
  year: 2016
  ident: 10.1016/j.sysconle.2018.05.015_b6
  article-title: A new type of stability theorem for stochastic systems with application to stochastic stabilization
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2015.2438414
– volume: 57
  start-page: 209
  year: 2009
  ident: 10.1016/j.sysconle.2018.05.015_b23
  article-title: Exponential stability in the mean square for stochastic neural networks with mixed time-delays and Markovian jumping parameters
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-008-9433-4
– volume: 74
  start-page: 279
  year: 2016
  ident: 10.1016/j.sysconle.2018.05.015_b4
  article-title: Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.08.001
– volume: 88
  start-page: 1726
  year: 2015
  ident: 10.1016/j.sysconle.2018.05.015_b21
  article-title: pth moment asymptotic stability of stochastic delayed hybrid systems with Lévy noise
  publication-title: Internat. J. Control
  doi: 10.1080/00207179.2015.1014852
– volume: 54
  start-page: 1919
  issue: 4
  year: 2016
  ident: 10.1016/j.sysconle.2018.05.015_b16
  article-title: Almost sure exponential stability of stochastic differential delay equations
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/15M1019465
SSID ssj0002033
Score 2.6029875
Snippet This paper is concerned with pth moment exponential stability problem for a class of stochastic delay differential equations driven by Lévy processes. Several...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 62
SubjectTerms [formula omitted]th moment exponential stability
Lévy noise
Neural network
Stochastic delay differential equation
Time-varying delay
Title Stability analysis of stochastic delay differential equations with Lévy noise
URI https://dx.doi.org/10.1016/j.sysconle.2018.05.015
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEV5VB5Y0ziJHSdjVVEVCh2Aim6Wk9iiVZUWUpCy8H_4HfwxfHlAkZA6MFmJclL05Xx3sT9_h9BF7HFJqHYsR0liUS5DK-TKt6ROlMdCSpKCTXg79Psjej1m4wbq1mdhgFZZxf4yphfRurpjV2jai8nEvgcCvQ9zNQAnLXRMKeXg5e33H5qHS8p28qDvDU-vnBKetrM8M3-dM5DLdIJSwZP9naBWkk5vF-1U1SLulC-0hxoq3UfbKxqCB2hoysWC4JpjWQmM4LnGpqaLnySIMGPQgcxx3QnFzOgZVs-lwneGYR0W33x-vOU4nU8ydYhGvcuHbt-qmiRYsee4S4vBKk7oG3xdaeaeSf9Kk4RHsXRYRLlyYk41i3yPRjxRVPvm0zgBCbTWYeJK7h2hjXSeqmOEfSJJDMvErqNp4ClpkrkZ3Ah2S7WSTcRqZERcKYhDI4uZqKliU1EjKgBRQZgwiDaR_W23KDU01lqENfDilzcIE-jX2J78w_YUbcFVSfA7QxvLl1d1boqOZdQqvKqFNjtXg_4QxsHd4-ALOuba_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB1Ku1AX4hPrcxZuYybJTB7LUiypbbOxhe6GSTKDlZJWU4V8kt_hjzm3SUoFoQtXgYQLw8l9ZXLmXITuE8cThCrLsKQgBvVEYASedA2hUumwgJJ0zSYcRW44oU9TNm2gbn0WBmiVVe4vc_o6W1d3zApNczmbmc9AoHchVn1wUtAxbYE6FWuiVqc_CKNNQrZJOVEeJL7BYOug8OtDXuT6w3MOipmWX4p4sr9r1Fbd6R2hw6phxJ1yTceoIbMTdLAlI3iKIt0xrjmuBRaVxgheKKzbuuRFgA4zBinIAtfDUHRQz7F8K0W-cwxbsXj4_fVZ4Gwxy-UZmvQex93QqOYkGIlj2SuDwUZO4GqIbaHDT3cAUpHUixNhsZh60ko8qljsOjT2UkmVq9-O5RNfKRWktvCcc9TMFpm8QNglgiSwU2xbivqOFLqe64sdww9TJUUbsRoZnlQi4jDLYs5rttgrrxHlgCgnjGtE28jc2C1LGY2dFkENPP_lEFzn-h22l_-wvUN74Xg05MN-NLhC-_Ck5Ptdo-bq_UPe6B5kFd9WPvYD4qTcDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+analysis+of+stochastic+delay+differential+equations+with+L%C3%A9vy+noise&rft.jtitle=Systems+%26+control+letters&rft.au=Zhu%2C+Quanxin&rft.date=2018-08-01&rft.pub=Elsevier+B.V&rft.issn=0167-6911&rft.volume=118&rft.spage=62&rft.epage=68&rft_id=info:doi/10.1016%2Fj.sysconle.2018.05.015&rft.externalDocID=S0167691118301105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon