Stability analysis of stochastic delay differential equations with Lévy noise
This paper is concerned with pth moment exponential stability problem for a class of stochastic delay differential equations driven by Lévy processes. Several new stability theorems are obtained by developing a method—proof by contradiction. Moreover, the results are applied to investigate the pth m...
Saved in:
Published in | Systems & control letters Vol. 118; pp. 62 - 68 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-6911 |
DOI | 10.1016/j.sysconle.2018.05.015 |
Cover
Loading…
Abstract | This paper is concerned with pth moment exponential stability problem for a class of stochastic delay differential equations driven by Lévy processes. Several new stability theorems are obtained by developing a method—proof by contradiction. Moreover, the results are applied to investigate the pth moment exponential stability of stochastic neural networks with Lévy noise. In particular, the time-varying delay in our results is not required to be differentiable, even not continuous. The obtained results improve greatly some previous works given in the literature. In particular, our method can easily correct the incorrect proofs appeared in two recent papers. Finally, two examples are provided to show the effectiveness of the theoretical results. |
---|---|
AbstractList | This paper is concerned with pth moment exponential stability problem for a class of stochastic delay differential equations driven by Lévy processes. Several new stability theorems are obtained by developing a method—proof by contradiction. Moreover, the results are applied to investigate the pth moment exponential stability of stochastic neural networks with Lévy noise. In particular, the time-varying delay in our results is not required to be differentiable, even not continuous. The obtained results improve greatly some previous works given in the literature. In particular, our method can easily correct the incorrect proofs appeared in two recent papers. Finally, two examples are provided to show the effectiveness of the theoretical results. |
Author | Zhu, Quanxin |
Author_xml | – sequence: 1 givenname: Quanxin orcidid: 0000-0003-3130-4923 surname: Zhu fullname: Zhu, Quanxin email: zqx22@126.com organization: Key Laboratory of HPC-SIP (MOE), College of Mathematics and Statistics, Hunan Normal University, Changsha 410081, Hunan, China |
BookMark | eNqFkE1OwzAQhb0oEi1wBeQLNIzz50RiAar4kypYAGvLccbqVCEG2xTlSJyDi5FS2LDpahZP39Obb8YmveuRsVMBiQBRnq2TMATj-g6TFESVQJGAKCZsOoZyXtZCHLJZCGsASCHLpuz-MeqGOooD173uhkCBO8tDdGalQyTDW-z0wFuyFj32kXTH8e1dR3J94B8UV3z59bkZeO8o4DE7sLoLePJ7j9jz9dXT4na-fLi5W1wu5yYTaZwXjcjTupRYprqSALVAC61sjBZFk0sURua2aMosb2SLuS015KKCylpbt6mW2RE73_Ua70LwaJWh-LMpek2dEqC2PtRa_flQWx8KCjX6GPHyH_7q6UX7YT94sQNxfG5D6FUwhL3BljyaqFpH-yq-AeKWhfg |
CitedBy_id | crossref_primary_10_1016_j_physa_2019_122300 crossref_primary_10_1142_S1793524519500104 crossref_primary_10_1080_00949655_2023_2290133 crossref_primary_10_1186_s13662_019_2371_2 crossref_primary_10_1080_00207179_2019_1568580 crossref_primary_10_1155_2019_8529053 crossref_primary_10_3390_math11051093 crossref_primary_10_1007_s12190_018_01234_x crossref_primary_10_1155_2020_7652648 crossref_primary_10_1016_j_sysconle_2021_105041 crossref_primary_10_1016_j_physa_2019_122827 crossref_primary_10_1016_j_chaos_2018_11_023 crossref_primary_10_1177_01423312221122550 crossref_primary_10_1109_TFUZZ_2021_3067797 crossref_primary_10_1002_mma_5664 crossref_primary_10_3934_dcdsb_2021207 crossref_primary_10_1016_j_cnsns_2022_106460 crossref_primary_10_1109_TCYB_2020_3025754 crossref_primary_10_1109_TFUZZ_2022_3193759 crossref_primary_10_1080_16583655_2019_1708540 crossref_primary_10_1109_TSMC_2020_2980034 crossref_primary_10_1016_j_sysconle_2020_104759 crossref_primary_10_1080_00207179_2020_1778793 crossref_primary_10_1016_j_amc_2020_125080 crossref_primary_10_1155_2020_7913050 crossref_primary_10_1016_j_nahs_2024_101525 crossref_primary_10_1016_j_chaos_2019_01_001 crossref_primary_10_1002_rnc_5009 crossref_primary_10_1049_cth2_12041 crossref_primary_10_1080_00207179_2022_2142853 crossref_primary_10_1007_s10440_022_00506_w crossref_primary_10_1080_23307706_2025_2452431 crossref_primary_10_1080_00207160_2020_1748187 crossref_primary_10_1016_j_jfranklin_2020_08_038 crossref_primary_10_1080_00207179_2022_2160824 crossref_primary_10_1080_00207721_2019_1615570 crossref_primary_10_1142_S0219876219500142 crossref_primary_10_1155_2020_8683521 crossref_primary_10_1002_rnc_4686 crossref_primary_10_1016_j_cnsns_2024_108092 crossref_primary_10_1093_imamci_dnad008 crossref_primary_10_1016_j_jfranklin_2019_06_005 crossref_primary_10_1016_j_sysconle_2021_104898 crossref_primary_10_3934_math_20241317 crossref_primary_10_1016_j_bspc_2022_104295 crossref_primary_10_1049_iet_cta_2019_0833 crossref_primary_10_1007_s12190_020_01343_6 crossref_primary_10_1080_00207179_2020_1748230 crossref_primary_10_1016_j_jfranklin_2018_11_035 crossref_primary_10_1155_2020_3096762 crossref_primary_10_1016_j_physa_2020_124167 crossref_primary_10_1016_j_amc_2018_11_063 crossref_primary_10_1016_j_jfranklin_2022_12_001 crossref_primary_10_1080_00207179_2020_1788728 crossref_primary_10_11948_2156_907X_20180257 crossref_primary_10_1002_mma_10815 crossref_primary_10_1007_s12346_023_00894_w crossref_primary_10_1016_j_jfranklin_2019_10_036 crossref_primary_10_1016_j_physa_2019_123496 crossref_primary_10_1016_j_jfranklin_2020_04_061 crossref_primary_10_1016_j_physa_2019_122057 crossref_primary_10_1016_j_amc_2021_126050 crossref_primary_10_1093_imamci_dnad028 crossref_primary_10_1016_j_jfranklin_2024_106803 crossref_primary_10_1002_acs_3153 crossref_primary_10_1016_j_jmaa_2018_10_072 crossref_primary_10_1080_00207721_2018_1536233 crossref_primary_10_1002_rnc_6240 crossref_primary_10_1155_2021_5577277 crossref_primary_10_1109_ACCESS_2019_2957500 crossref_primary_10_3934_math_2020396 crossref_primary_10_1016_j_amc_2021_126205 crossref_primary_10_1016_j_fss_2018_11_017 crossref_primary_10_1002_jnm_3231 crossref_primary_10_1016_j_jfranklin_2019_10_026 crossref_primary_10_1155_2021_5599206 crossref_primary_10_1016_j_jfranklin_2019_10_024 crossref_primary_10_1080_00207179_2021_2005259 crossref_primary_10_1109_TCSII_2022_3166776 crossref_primary_10_1007_s40314_024_02748_w crossref_primary_10_1016_j_physa_2019_123782 crossref_primary_10_1109_TSMC_2019_2956757 crossref_primary_10_1177_0142331220908987 crossref_primary_10_3390_axioms8010030 crossref_primary_10_1007_s11424_020_9131_y crossref_primary_10_1016_j_physa_2019_122221 crossref_primary_10_1080_00207721_2021_1885763 crossref_primary_10_1016_j_amc_2022_127573 crossref_primary_10_1155_2021_8879538 crossref_primary_10_1016_j_jfranklin_2020_11_025 crossref_primary_10_1016_j_amc_2019_124569 crossref_primary_10_1016_j_jfranklin_2023_09_051 crossref_primary_10_1080_07362994_2021_1893188 crossref_primary_10_1007_s10255_021_1031_y crossref_primary_10_1007_s12555_018_0107_9 crossref_primary_10_1016_j_cnsns_2023_107596 crossref_primary_10_1080_00207179_2019_1616823 crossref_primary_10_1155_2018_7814974 crossref_primary_10_1016_j_jfranklin_2019_09_035 crossref_primary_10_1155_2022_5549693 crossref_primary_10_1155_2022_5898922 crossref_primary_10_1109_ACCESS_2019_2897614 crossref_primary_10_1109_TNSE_2021_3052255 crossref_primary_10_1016_j_neucom_2019_09_117 crossref_primary_10_1109_TSMC_2021_3065114 crossref_primary_10_1016_j_neucom_2018_10_091 crossref_primary_10_1109_TSMC_2022_3193056 crossref_primary_10_1016_j_aml_2020_106358 crossref_primary_10_1049_cth2_12082 crossref_primary_10_1016_j_neunet_2019_02_011 crossref_primary_10_1109_TCYB_2021_3052042 crossref_primary_10_1109_TSMC_2019_2956263 crossref_primary_10_1016_j_automatica_2022_110405 crossref_primary_10_1016_j_nahs_2025_101585 crossref_primary_10_1186_s13660_020_02452_3 crossref_primary_10_1007_s12559_020_09782_w crossref_primary_10_1016_j_amc_2021_126902 crossref_primary_10_1016_j_sysconle_2023_105530 crossref_primary_10_1007_s11464_021_0246_9 crossref_primary_10_3934_math_2020250 crossref_primary_10_1016_j_spl_2023_109857 crossref_primary_10_1002_rnc_4761 crossref_primary_10_1049_cth2_12365 crossref_primary_10_1007_s12190_020_01453_1 crossref_primary_10_1007_s11424_020_9082_3 crossref_primary_10_1007_s40747_021_00389_8 crossref_primary_10_1007_s11424_021_0170_9 crossref_primary_10_1007_s12555_019_0276_1 crossref_primary_10_1016_j_fss_2020_10_018 crossref_primary_10_1016_j_jfranklin_2020_03_012 crossref_primary_10_1049_iet_cta_2018_5889 crossref_primary_10_1049_iet_rpg_2019_1180 crossref_primary_10_1080_00207179_2022_2141137 crossref_primary_10_1016_j_jfranklin_2019_06_043 crossref_primary_10_3934_math_2019_3_663 crossref_primary_10_1016_j_physa_2019_122649 crossref_primary_10_1016_j_nahs_2024_101550 crossref_primary_10_1007_s11424_020_9027_x crossref_primary_10_1016_j_jfranklin_2022_02_002 crossref_primary_10_1016_j_cjph_2019_09_016 crossref_primary_10_1142_S1793524520500850 crossref_primary_10_1016_j_isatra_2021_01_038 crossref_primary_10_1016_j_cnsns_2019_105013 crossref_primary_10_1016_j_cnsns_2022_106680 crossref_primary_10_1016_j_automatica_2019_01_016 crossref_primary_10_1016_j_neunet_2021_03_028 crossref_primary_10_1109_TAC_2024_3448128 crossref_primary_10_1016_j_chaos_2021_111338 crossref_primary_10_1016_j_jfranklin_2024_107425 crossref_primary_10_1016_j_automatica_2022_110394 crossref_primary_10_1016_j_matcom_2019_12_002 crossref_primary_10_1002_rnc_5904 crossref_primary_10_1016_j_jfranklin_2022_10_056 crossref_primary_10_1002_rnc_5747 crossref_primary_10_1016_j_amc_2022_126950 crossref_primary_10_1016_j_amc_2020_125143 crossref_primary_10_3934_math_2021038 crossref_primary_10_1007_s40435_024_01495_4 crossref_primary_10_1080_17442508_2021_1914622 crossref_primary_10_1002_rnc_6161 crossref_primary_10_1007_s11766_020_3664_1 crossref_primary_10_1080_00207160_2023_2187246 crossref_primary_10_1080_00207179_2019_1639077 crossref_primary_10_3390_math12213406 crossref_primary_10_1016_j_chaos_2024_115404 crossref_primary_10_1515_math_2021_0120 crossref_primary_10_1016_j_jfranklin_2018_12_030 |
Cites_doi | 10.1109/TCYB.2014.2317236 10.1109/TAC.2008.2007178 10.1049/iet-cta.2015.0923 10.1109/TNNLS.2011.2182659 10.1109/TSMCB.2010.2053354 10.1239/jap/1261670692 10.1016/j.sysconle.2016.09.005 10.1016/j.sysconle.2017.05.002 10.1109/TAC.2013.2256014 10.1109/TAC.2014.2305931 10.1080/00207179.2016.1219069 10.1016/j.automatica.2015.09.011 10.1016/j.automatica.2013.09.005 10.1109/TNNLS.2011.2179556 10.1137/130924652 10.1016/j.automatica.2014.08.006 10.1016/j.jmaa.2014.02.016 10.1109/TAC.2015.2438414 10.1007/s11071-008-9433-4 10.1016/j.automatica.2016.08.001 10.1080/00207179.2015.1014852 10.1137/15M1019465 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sysconle.2018.05.015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 68 |
ExternalDocumentID | 10_1016_j_sysconle_2018_05_015 S0167691118301105 |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20161552 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 61773217; 61374080; 11531006 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABTAH ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADIYS ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE J1W JJJVA KOM LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSH SST SSZ T5K TN5 WH7 WUQ XPP ZMT ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c312t-5b142967e62a870091ef0d7bca15b47e1c74f5b634b7de4f6a041808fff9d2a73 |
IEDL.DBID | .~1 |
ISSN | 0167-6911 |
IngestDate | Tue Jul 01 03:29:08 EDT 2025 Thu Apr 24 23:02:49 EDT 2025 Sun Apr 06 06:54:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | pth moment exponential stability Lévy noise Neural network Stochastic delay differential equation Time-varying delay |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-5b142967e62a870091ef0d7bca15b47e1c74f5b634b7de4f6a041808fff9d2a73 |
ORCID | 0000-0003-3130-4923 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sysconle_2018_05_015 crossref_primary_10_1016_j_sysconle_2018_05_015 elsevier_sciencedirect_doi_10_1016_j_sysconle_2018_05_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationTitle | Systems & control letters |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Deng (b6) 2016; 61 Zhu (b19) 2017; 90 Zhu, Cao (b24) 2011; 41 Ito, Nishimura (b7) 2015; 62 Ren, Xiong (b2) 2016; 97 Wang, Zhu (b1) 2017; 105 Yang, Zhou, Yang, Hu, Xie (b21) 2015; 88 Mao (b3) 2013; 49 Kang, Zhai, Liu, Zhao, Zhao (b12) 2014; 59 Mateos-Núñez, Cortés (b8) 2014; 52 Zhu, Cao (b15) 2012; 23 Mao, Yuan (b10) 2006 Guo, Mao, Yue (b16) 2016; 54 Zhou, Tong, Gao, Ji, Su (b17) 2012; 23 Applebaum, Siakalli (b20) 2009; 46 Teel, Subbaraman, Sferlazza (b11) 2014; 50 Hu, Mao, Zhang (b14) 2013; 58 Zhu (b18) 2014; 416 Briat (b4) 2016; 74 Zhou, Zhu, Shi, Su, Fang, Zhou (b25) 2014; 44 Wang, Cao, Liang (b23) 2009; 57 Huang, Mao (b13) 2009; 54 Applebaum (b22) 2004 Dragan, Mukaidani (b5) 2016; 10 Mao (b9) 1997 Wang (10.1016/j.sysconle.2018.05.015_b1) 2017; 105 Zhou (10.1016/j.sysconle.2018.05.015_b25) 2014; 44 Hu (10.1016/j.sysconle.2018.05.015_b14) 2013; 58 Teel (10.1016/j.sysconle.2018.05.015_b11) 2014; 50 Mao (10.1016/j.sysconle.2018.05.015_b10) 2006 Yang (10.1016/j.sysconle.2018.05.015_b21) 2015; 88 Dragan (10.1016/j.sysconle.2018.05.015_b5) 2016; 10 Kang (10.1016/j.sysconle.2018.05.015_b12) 2014; 59 Mateos-Núñez (10.1016/j.sysconle.2018.05.015_b8) 2014; 52 Applebaum (10.1016/j.sysconle.2018.05.015_b20) 2009; 46 Mao (10.1016/j.sysconle.2018.05.015_b9) 1997 Briat (10.1016/j.sysconle.2018.05.015_b4) 2016; 74 Huang (10.1016/j.sysconle.2018.05.015_b13) 2009; 54 Guo (10.1016/j.sysconle.2018.05.015_b16) 2016; 54 Ren (10.1016/j.sysconle.2018.05.015_b2) 2016; 97 Mao (10.1016/j.sysconle.2018.05.015_b3) 2013; 49 Ito (10.1016/j.sysconle.2018.05.015_b7) 2015; 62 Wang (10.1016/j.sysconle.2018.05.015_b23) 2009; 57 Zhu (10.1016/j.sysconle.2018.05.015_b19) 2017; 90 Zhu (10.1016/j.sysconle.2018.05.015_b24) 2011; 41 Applebaum (10.1016/j.sysconle.2018.05.015_b22) 2004 Zhu (10.1016/j.sysconle.2018.05.015_b15) 2012; 23 Zhou (10.1016/j.sysconle.2018.05.015_b17) 2012; 23 Zhao (10.1016/j.sysconle.2018.05.015_b6) 2016; 61 Zhu (10.1016/j.sysconle.2018.05.015_b18) 2014; 416 |
References_xml | – volume: 57 start-page: 209 year: 2009 end-page: 218 ident: b23 article-title: Exponential stability in the mean square for stochastic neural networks with mixed time-delays and Markovian jumping parameters publication-title: Nonlinear Dynam. – volume: 62 start-page: 51 year: 2015 end-page: 64 ident: b7 article-title: Stability of stochastic nonlinear systems in cascade with not necessarily unbounded decay rates publication-title: Automatica – volume: 90 start-page: 1703 year: 2017 end-page: 1712 ident: b19 article-title: Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching publication-title: Internat. J. Control – volume: 41 start-page: 341 year: 2011 end-page: 353 ident: b24 article-title: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. – volume: 54 start-page: 147 year: 2009 end-page: 152 ident: b13 article-title: Delay-dependent exponential stability of neutral stochastic delay systems publication-title: IEEE Trans. Automat. Control – volume: 50 start-page: 2435 year: 2014 end-page: 2456 ident: b11 article-title: Stability analysis for stochastic hybrid systems: A survey publication-title: Automatica – volume: 59 start-page: 1511 year: 2014 end-page: 1523 ident: b12 article-title: Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching publication-title: IEEE Trans. Automat. Control – year: 2006 ident: b10 article-title: Stochastic Differential Delay Equations with Markovian Switching – volume: 44 start-page: 2848 year: 2014 end-page: 2860 ident: b25 article-title: Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters publication-title: IEEE Trans. Cybern. – volume: 105 start-page: 55 year: 2017 end-page: 61 ident: b1 article-title: Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems publication-title: Systems Control Lett. – year: 1997 ident: b9 article-title: Stochastic Differential Equations and their Applications – volume: 54 start-page: 1919 year: 2016 end-page: 1933 ident: b16 article-title: Almost sure exponential stability of stochastic differential delay equations publication-title: SIAM J. Control Optim. – volume: 88 start-page: 1726 year: 2015 end-page: 1734 ident: b21 article-title: th moment asymptotic stability of stochastic delayed hybrid systems with Lévy noise publication-title: Internat. J. Control – volume: 23 start-page: 662 year: 2012 end-page: 668 ident: b17 article-title: Mode and delay-dependent adaptive exponential synchronization in publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2004 ident: b22 article-title: Lévy Processes and Stochastic Calculus – volume: 23 start-page: 467 year: 2012 end-page: 479 ident: b15 article-title: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 58 start-page: 2319 year: 2013 end-page: 2332 ident: b14 article-title: Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations publication-title: IEEE Trans. Automat. Control – volume: 74 start-page: 279 year: 2016 end-page: 287 ident: b4 article-title: Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints publication-title: Automatica – volume: 61 start-page: 240 year: 2016 end-page: 245 ident: b6 article-title: A new type of stability theorem for stochastic systems with application to stochastic stabilization publication-title: IEEE Trans. Automat. Control – volume: 46 start-page: 1116 year: 2009 end-page: 1129 ident: b20 article-title: Asymptotic stability of stochastic differential equations driven by Lévy noise publication-title: J. Appl. Probab. – volume: 10 start-page: 1040 year: 2016 end-page: 1051 ident: b5 article-title: Exponential stability in mean square of a singularly perturbed linear stochastic system with state-multiplicative white-noise perturbations and Markovian switching publication-title: IET Control Theory Appl. – volume: 49 start-page: 3677 year: 2013 end-page: 3681 ident: b3 article-title: Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control publication-title: Automatica – volume: 97 start-page: 184 year: 2016 end-page: 192 ident: b2 article-title: Stability and stabilization of switched stochastic systems under asynchronous switching publication-title: Systems Control Lett. – volume: 52 start-page: 2399 year: 2014 end-page: 2421 ident: b8 article-title: th moment noise-to-state stability of stochastic differential equations with persistent noise publication-title: SIAM J. Control Optim. – volume: 416 start-page: 126 year: 2014 end-page: 142 ident: b18 article-title: Asymptotic stability in the publication-title: J. Math. Anal. Appl. – year: 1997 ident: 10.1016/j.sysconle.2018.05.015_b9 – volume: 44 start-page: 2848 issue: 12 year: 2014 ident: 10.1016/j.sysconle.2018.05.015_b25 article-title: Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2317236 – volume: 54 start-page: 147 issue: 1 year: 2009 ident: 10.1016/j.sysconle.2018.05.015_b13 article-title: Delay-dependent exponential stability of neutral stochastic delay systems publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2008.2007178 – volume: 10 start-page: 1040 issue: 9 year: 2016 ident: 10.1016/j.sysconle.2018.05.015_b5 article-title: Exponential stability in mean square of a singularly perturbed linear stochastic system with state-multiplicative white-noise perturbations and Markovian switching publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2015.0923 – volume: 23 start-page: 467 issue: 3 year: 2012 ident: 10.1016/j.sysconle.2018.05.015_b15 article-title: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2011.2182659 – volume: 41 start-page: 341 year: 2011 ident: 10.1016/j.sysconle.2018.05.015_b24 article-title: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2010.2053354 – volume: 46 start-page: 1116 issue: 4 year: 2009 ident: 10.1016/j.sysconle.2018.05.015_b20 article-title: Asymptotic stability of stochastic differential equations driven by Lévy noise publication-title: J. Appl. Probab. doi: 10.1239/jap/1261670692 – volume: 97 start-page: 184 year: 2016 ident: 10.1016/j.sysconle.2018.05.015_b2 article-title: Stability and stabilization of switched stochastic systems under asynchronous switching publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2016.09.005 – volume: 105 start-page: 55 year: 2017 ident: 10.1016/j.sysconle.2018.05.015_b1 article-title: Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2017.05.002 – volume: 58 start-page: 2319 year: 2013 ident: 10.1016/j.sysconle.2018.05.015_b14 article-title: Robust stability and boundedness of nonlinear hybrid stochastic differential delay equations publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2013.2256014 – volume: 59 start-page: 1511 issue: 6 year: 2014 ident: 10.1016/j.sysconle.2018.05.015_b12 article-title: Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2014.2305931 – year: 2004 ident: 10.1016/j.sysconle.2018.05.015_b22 – year: 2006 ident: 10.1016/j.sysconle.2018.05.015_b10 – volume: 90 start-page: 1703 issue: 8 year: 2017 ident: 10.1016/j.sysconle.2018.05.015_b19 article-title: Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching publication-title: Internat. J. Control doi: 10.1080/00207179.2016.1219069 – volume: 62 start-page: 51 year: 2015 ident: 10.1016/j.sysconle.2018.05.015_b7 article-title: Stability of stochastic nonlinear systems in cascade with not necessarily unbounded decay rates publication-title: Automatica doi: 10.1016/j.automatica.2015.09.011 – volume: 49 start-page: 3677 issue: 12 year: 2013 ident: 10.1016/j.sysconle.2018.05.015_b3 article-title: Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control publication-title: Automatica doi: 10.1016/j.automatica.2013.09.005 – volume: 23 start-page: 662 issue: 4 year: 2012 ident: 10.1016/j.sysconle.2018.05.015_b17 article-title: Mode and delay-dependent adaptive exponential synchronization in pth moment for stochastic delayed neural networks with Markovian switching publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2011.2179556 – volume: 52 start-page: 2399 issue: 4 year: 2014 ident: 10.1016/j.sysconle.2018.05.015_b8 article-title: pth moment noise-to-state stability of stochastic differential equations with persistent noise publication-title: SIAM J. Control Optim. doi: 10.1137/130924652 – volume: 50 start-page: 2435 issue: 10 year: 2014 ident: 10.1016/j.sysconle.2018.05.015_b11 article-title: Stability analysis for stochastic hybrid systems: A survey publication-title: Automatica doi: 10.1016/j.automatica.2014.08.006 – volume: 416 start-page: 126 year: 2014 ident: 10.1016/j.sysconle.2018.05.015_b18 article-title: Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.02.016 – volume: 61 start-page: 240 issue: 1 year: 2016 ident: 10.1016/j.sysconle.2018.05.015_b6 article-title: A new type of stability theorem for stochastic systems with application to stochastic stabilization publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2015.2438414 – volume: 57 start-page: 209 year: 2009 ident: 10.1016/j.sysconle.2018.05.015_b23 article-title: Exponential stability in the mean square for stochastic neural networks with mixed time-delays and Markovian jumping parameters publication-title: Nonlinear Dynam. doi: 10.1007/s11071-008-9433-4 – volume: 74 start-page: 279 year: 2016 ident: 10.1016/j.sysconle.2018.05.015_b4 article-title: Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints publication-title: Automatica doi: 10.1016/j.automatica.2016.08.001 – volume: 88 start-page: 1726 year: 2015 ident: 10.1016/j.sysconle.2018.05.015_b21 article-title: pth moment asymptotic stability of stochastic delayed hybrid systems with Lévy noise publication-title: Internat. J. Control doi: 10.1080/00207179.2015.1014852 – volume: 54 start-page: 1919 issue: 4 year: 2016 ident: 10.1016/j.sysconle.2018.05.015_b16 article-title: Almost sure exponential stability of stochastic differential delay equations publication-title: SIAM J. Control Optim. doi: 10.1137/15M1019465 |
SSID | ssj0002033 |
Score | 2.6029875 |
Snippet | This paper is concerned with pth moment exponential stability problem for a class of stochastic delay differential equations driven by Lévy processes. Several... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 62 |
SubjectTerms | [formula omitted]th moment exponential stability Lévy noise Neural network Stochastic delay differential equation Time-varying delay |
Title | Stability analysis of stochastic delay differential equations with Lévy noise |
URI | https://dx.doi.org/10.1016/j.sysconle.2018.05.015 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEV5VB5Y0ziJHSdjVVEVCh2Aim6Wk9iiVZUWUpCy8H_4HfwxfHlAkZA6MFmJclL05Xx3sT9_h9BF7HFJqHYsR0liUS5DK-TKt6ROlMdCSpKCTXg79Psjej1m4wbq1mdhgFZZxf4yphfRurpjV2jai8nEvgcCvQ9zNQAnLXRMKeXg5e33H5qHS8p28qDvDU-vnBKetrM8M3-dM5DLdIJSwZP9naBWkk5vF-1U1SLulC-0hxoq3UfbKxqCB2hoysWC4JpjWQmM4LnGpqaLnySIMGPQgcxx3QnFzOgZVs-lwneGYR0W33x-vOU4nU8ydYhGvcuHbt-qmiRYsee4S4vBKk7oG3xdaeaeSf9Kk4RHsXRYRLlyYk41i3yPRjxRVPvm0zgBCbTWYeJK7h2hjXSeqmOEfSJJDMvErqNp4ClpkrkZ3Ah2S7WSTcRqZERcKYhDI4uZqKliU1EjKgBRQZgwiDaR_W23KDU01lqENfDilzcIE-jX2J78w_YUbcFVSfA7QxvLl1d1boqOZdQqvKqFNjtXg_4QxsHd4-ALOuba_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB1Ku1AX4hPrcxZuYybJTB7LUiypbbOxhe6GSTKDlZJWU4V8kt_hjzm3SUoFoQtXgYQLw8l9ZXLmXITuE8cThCrLsKQgBvVEYASedA2hUumwgJJ0zSYcRW44oU9TNm2gbn0WBmiVVe4vc_o6W1d3zApNczmbmc9AoHchVn1wUtAxbYE6FWuiVqc_CKNNQrZJOVEeJL7BYOug8OtDXuT6w3MOipmWX4p4sr9r1Fbd6R2hw6phxJ1yTceoIbMTdLAlI3iKIt0xrjmuBRaVxgheKKzbuuRFgA4zBinIAtfDUHRQz7F8K0W-cwxbsXj4_fVZ4Gwxy-UZmvQex93QqOYkGIlj2SuDwUZO4GqIbaHDT3cAUpHUixNhsZh60ko8qljsOjT2UkmVq9-O5RNfKRWktvCcc9TMFpm8QNglgiSwU2xbivqOFLqe64sdww9TJUUbsRoZnlQi4jDLYs5rttgrrxHlgCgnjGtE28jc2C1LGY2dFkENPP_lEFzn-h22l_-wvUN74Xg05MN-NLhC-_Ck5Ptdo-bq_UPe6B5kFd9WPvYD4qTcDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+analysis+of+stochastic+delay+differential+equations+with+L%C3%A9vy+noise&rft.jtitle=Systems+%26+control+letters&rft.au=Zhu%2C+Quanxin&rft.date=2018-08-01&rft.pub=Elsevier+B.V&rft.issn=0167-6911&rft.volume=118&rft.spage=62&rft.epage=68&rft_id=info:doi/10.1016%2Fj.sysconle.2018.05.015&rft.externalDocID=S0167691118301105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon |