Efficient electrocatalysts refined from metal-dimer-anchored PC6 monolayers for NO reduction to ammonia

An electrochemical nitric oxide (NO) reduction reaction (NORR) can not only eliminate the harmful pollutant but also offer a green approach for ammonia synthesis under mild conditions. However, the activities and Faradaic efficiencies of present electrocatalysts are still not suitable for commercial...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 48; no. 15; pp. 5961 - 5975
Main Authors Wu, Jie, Yu, Yang-Xin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 19.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An electrochemical nitric oxide (NO) reduction reaction (NORR) can not only eliminate the harmful pollutant but also offer a green approach for ammonia synthesis under mild conditions. However, the activities and Faradaic efficiencies of present electrocatalysts are still not suitable for commercial applications and the mechanism has been rarely studied in detail. Here, by means of first-principles calculations and microkinetic modeling, the potentials of a series of metal-dimer anchored on the PC6 monolayer (M2/PC6 BAC) as efficient NORR electrocatalysts were examined. Thirteen possible pathways are taken into consideration for the NORR process and a comprehensive reaction network is first constructed. Consequently, the Cr2/PC6, Mn2/PC6, Fe2/PC6 and Re2/PC6 BACs are screened out as promising candidates for NORR catalysis. Particularly, the Fe2/PC6BAC exhibits the best performance among the studied BACs and its NORR rate constant (2.73 × 107 s−1) at 298.15 K is several orders of magnitude larger than those of the other BACs. It can be known from the electronic calculations that the nature of the interaction between NO and the metal-dimer is ascribed to the donation-backdonation mechanism. This work not only provides eligible BACs for NH3 synthesis but also offers an atomic understanding on the NORR process. [Display omitted] •Eight metal-dimer-anchored PC6 monolayers were screened out as efficient NORR catalysts.•The Cr2/PC6, Mn2/PC6, Fe2/PC6 and Re2/PC6 BACs possess excellent high selectivity.•The Fe2/PC6 BAC exhibits the best catalytic performance for NORR.•The AIMD simulations showed that the Fe2/PC6 BAC exhibits good stability.
AbstractList An electrochemical nitric oxide (NO) reduction reaction (NORR) can not only eliminate the harmful pollutant but also offer a green approach for ammonia synthesis under mild conditions. However, the activities and Faradaic efficiencies of present electrocatalysts are still not suitable for commercial applications and the mechanism has been rarely studied in detail. Here, by means of first-principles calculations and microkinetic modeling, the potentials of a series of metal-dimer anchored on the PC6 monolayer (M2/PC6 BAC) as efficient NORR electrocatalysts were examined. Thirteen possible pathways are taken into consideration for the NORR process and a comprehensive reaction network is first constructed. Consequently, the Cr2/PC6, Mn2/PC6, Fe2/PC6 and Re2/PC6 BACs are screened out as promising candidates for NORR catalysis. Particularly, the Fe2/PC6BAC exhibits the best performance among the studied BACs and its NORR rate constant (2.73 × 107 s−1) at 298.15 K is several orders of magnitude larger than those of the other BACs. It can be known from the electronic calculations that the nature of the interaction between NO and the metal-dimer is ascribed to the donation-backdonation mechanism. This work not only provides eligible BACs for NH3 synthesis but also offers an atomic understanding on the NORR process. [Display omitted] •Eight metal-dimer-anchored PC6 monolayers were screened out as efficient NORR catalysts.•The Cr2/PC6, Mn2/PC6, Fe2/PC6 and Re2/PC6 BACs possess excellent high selectivity.•The Fe2/PC6 BAC exhibits the best catalytic performance for NORR.•The AIMD simulations showed that the Fe2/PC6 BAC exhibits good stability.
Author Wu, Jie
Yu, Yang-Xin
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0001-9909-1018
  surname: Wu
  fullname: Wu, Jie
– sequence: 2
  givenname: Yang-Xin
  orcidid: 0000-0002-7677-3427
  surname: Yu
  fullname: Yu, Yang-Xin
  email: yangxyu@mail.tsinghua.edu.cn
BookMark eNqFkMtKAzEUhoNUsK2-guQFZsyZSzoBF0qpFyjqQtchJieaMjORJArz9qZUN25cHc7lO_B_CzIb_YiEnAMrgQG_2JVu9z4ZHLGsWFWVACV07IjMoVuJom661YzMWc1ZUYMQJ2QR444xWLFGzMnbxlqnHY6JYo86Ba9VUv0UU6QBrRvRUBv8QAfM48K4AUOhRv3uQ948rTkd_Oh7NWGI1PpAHx4zZz51cn6kyVM15AOnTsmxVX3Es5-6JC83m-f1XbF9vL1fX28LXUOVipZz6PRri2jQKgWm6hqtutfW5KZtLQjgleJCt6phWghdW6i55UwJZnXD6yXhh786-BhzAvkR3KDCJIHJvS65k7-65F6XBJBZVwYv_4DaJbVPkYJy_f_41QHHHO7LYZBxb1WjcSFrlca7_158A4s5j-0
CitedBy_id crossref_primary_10_1016_j_cej_2025_160160
crossref_primary_10_1016_j_jcis_2024_05_022
crossref_primary_10_1016_j_mcat_2024_113921
crossref_primary_10_1039_D4CC05433D
crossref_primary_10_1016_j_jallcom_2024_177180
crossref_primary_10_1016_j_mtphys_2024_101613
crossref_primary_10_1002_ghg_2235
crossref_primary_10_1002_qua_27379
crossref_primary_10_1016_j_mtsust_2024_100903
crossref_primary_10_1039_D4NJ05105J
crossref_primary_10_1016_j_cej_2025_159434
crossref_primary_10_1016_j_molliq_2024_124121
crossref_primary_10_1039_D4TA01961J
crossref_primary_10_1016_j_seppur_2025_131524
crossref_primary_10_1016_j_apsusc_2024_161470
crossref_primary_10_1016_j_jcis_2024_06_231
crossref_primary_10_1039_D4CC03901G
crossref_primary_10_1016_j_electacta_2024_144915
crossref_primary_10_1016_j_ijhydene_2024_06_024
crossref_primary_10_1016_j_mcat_2023_113391
crossref_primary_10_1021_acs_langmuir_3c02461
crossref_primary_10_1039_D4CP04355C
crossref_primary_10_1016_j_susc_2023_122348
crossref_primary_10_1016_j_apsusc_2023_158625
crossref_primary_10_1039_D3CC02594B
crossref_primary_10_1016_j_apsusc_2024_161439
crossref_primary_10_1016_j_ijhydene_2025_02_057
crossref_primary_10_1016_j_mtsust_2024_101045
crossref_primary_10_1007_s10311_023_01655_6
crossref_primary_10_1016_j_cej_2024_150048
crossref_primary_10_1016_j_fuel_2024_133219
crossref_primary_10_1016_j_apsusc_2023_159130
crossref_primary_10_1007_s12678_023_00855_6
crossref_primary_10_1016_j_matchemphys_2024_128914
crossref_primary_10_1016_j_scp_2025_101951
crossref_primary_10_1016_j_colsurfa_2024_135385
crossref_primary_10_1016_j_jcis_2024_07_109
crossref_primary_10_1016_j_seppur_2024_129422
crossref_primary_10_1016_j_jcis_2024_01_195
crossref_primary_10_1016_j_jcis_2024_04_115
crossref_primary_10_1021_acsanm_3c05958
crossref_primary_10_1039_D4CP03539A
crossref_primary_10_1016_j_ijhydene_2024_04_265
crossref_primary_10_1002_cphc_202400473
crossref_primary_10_1016_j_mcat_2025_114991
crossref_primary_10_1016_j_seppur_2023_125129
Cites_doi 10.1016/j.apsusc.2021.149062
10.1002/cplu.202100356
10.1007/s11426-020-9784-4
10.1002/jcc.20495
10.1039/C1CP22271F
10.1039/C9CS00159J
10.1007/s11426-021-1073-5
10.1063/1.1316015
10.1063/1.447334
10.1016/j.molcata.2011.05.007
10.1016/j.apcatb.2021.120054
10.1016/j.jece.2021.106770
10.1063/1.1749713
10.1021/ja203468v
10.1039/C5CS00108K
10.1021/acs.jpcc.8b10367
10.1016/j.apsusc.2021.149208
10.1007/BF00549096
10.1016/j.ijhydene.2011.10.004
10.1021/acsami.0c21429
10.1103/PhysRevB.66.155125
10.1126/science.aad4998
10.1039/C8TA00875B
10.1021/jacs.8b11350
10.1002/anie.200301553
10.1021/acs.chemrev.9b00659
10.1021/acs.jpcc.1c06464
10.1039/C7CY00760D
10.1002/anie.202110879
10.1016/j.ijhydene.2022.06.315
10.1016/0009-2614(77)80574-5
10.1103/PhysRevLett.77.3865
10.1039/D0CP03559A
10.1021/acs.jpclett.1c00855
10.1126/science.aar6611
10.1021/acs.chemrev.0c00576
10.1039/D0CP00224K
10.1039/C9SC05236D
10.1021/cr8003696
10.1039/D0TA11209G
10.1039/C8TA07683A
10.1021/cs500668k
10.1021/jp952713n
10.1039/P29930000799
10.1021/jacs.9b07712
10.1021/acscentsci.0c01466
10.1016/j.molstruc.2018.04.096
10.1021/acs.jpcc.9b08827
10.1021/jacs.9b13349
10.1002/anie.202002337
10.1016/j.ijhydene.2019.12.021
10.1021/acscatal.9b01318
10.1021/jp047349j
10.1002/smll.202102396
10.1016/j.apsusc.2021.150567
10.1021/acscatal.7b01069
10.1016/S0013-4686(00)00678-2
10.1039/C5CY01487E
10.1103/PhysRevA.31.1695
ContentType Journal Article
Copyright 2022 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2022 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2022.11.180
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 5975
ExternalDocumentID 10_1016_j_ijhydene_2022_11_180
S036031992205474X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c312t-56618cb5eedefaa1d284ca8b5daa155f19162a69c5a40c99c3f136f60a90fc463
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Tue Jul 01 02:02:29 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Fri Feb 23 02:38:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Biatom catalysts
Electrocatalysis
Nitric oxide reduction
Density functional theory
Ammonia synthesis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-56618cb5eedefaa1d284ca8b5daa155f19162a69c5a40c99c3f136f60a90fc463
ORCID 0000-0002-7677-3427
0000-0001-9909-1018
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2022_11_180
crossref_citationtrail_10_1016_j_ijhydene_2022_11_180
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_11_180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-19
PublicationDateYYYYMMDD 2023-02-19
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-19
  day: 19
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Li, Yu (bib54) 2020; 22
Shi, Wang, Yang, Chen, Meng, Yu, Zhang (bib20) 2021; 64
Kaiser, Chen, Akl, Mitchell, Perez-Ramirez (bib21) 2020; 120
Guo, Gu, Lin, Zhang, Chen, Huang (bib31) 2020; 142
Xia, Zhang, Ran, Jaroniec, Qiao (bib24) 2021; 7
Qing, Ghazfar, Jackowski, Habibzadeh, Ashtiani, Chen, Smith, Hamann (bib5) 2020; 120
Mou, Long, Frauenheim, Xiao (bib7) 2021; 86
Wu, Wang, Shen, Huang, Dai, Ma (bib29) 2021; 9
Zhang, Liang, Wang, Mou, Lin, Yue, Li, Liu, Luo, Li, Tang, Liu, Gao, Alshehri, Guo, Ma, Sun (bib55) 2021; 60
Wu, Li, Yu (bib6) 2021; 13
Wang, Zhao, Wang, Cabrera, Chen (bib25) 2018; 6
Yu (bib46) 2019; 123
Liu, Wang, Zhang (bib14) 2020; 63
Guan, Liu, Lv, Wang, Che (bib11) 2021; 9
Chen, Yan, Jiang (bib30) 2019; 3
Delley (bib36) 2000; 113
Shang, Liu (bib59) 2011; 133
Liu, Ma, Li, Wang, Xiao, Li (bib60) 2018; 9
Sun, Wang, Zhao, Dang (bib57) 2020; 22
Tang, Zhang, Dong (bib12) 2016; 6
Long, Chen, Zhang, Guo, Fu, Deng, Xiao (bib15) 2020; 59
Kundu, Chakraborty (bib18) 2022; 47
Yu (bib43) 2021; 546
Jiang, Meng, Li, Wang, Wu (bib33) 2021; 547
Halgren, Lipscomb (bib48) 1977; 49
Schlogl (bib1) 2003; 42
Rosca, Duca, De Groot, Koper (bib13) 2009; 109
Guo, Zhang, Liang, Zou, Xu (bib3) 2019; 48
Skulason, Bligaard, Gudmundsdottir, Studt, Rossmeisl, Abild-Pedersen, Vegge, Jonsson, Norskov (bib58) 2012; 14
Niu, Zhang, Wang, Wan, Kuai, Guo (bib27) 2021; 17
Katsounaros, Figueiredo, Chen, Calle-Vallejo, Koper (bib56) 2017; 7
Wu, Yu (bib23) 2021; 125
Hong, Wang, Li (bib9) 2017; 7
Grimme (bib38) 2006; 27
Zhang, Chen, Zhang, Zhou (bib41) 2018; 6
Hirshfeld (bib42) 1977; 44
Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (bib4) 2018; 360
Farberow, Dumesic, Mavrikakis (bib61) 2014; 4
Benaka, Naveen, S A, Lokanath, Raghu, Daraghmeh, Reddy, Warad (bib34) 2018; 1167
Hoover (bib45) 1985; 31
Andana, Rappe, Gao, Szanyi, Pereira-Hernandez, Wang (bib10) 2021; 291
Delley (bib39) 2002; 66
Nose (bib44) 1984; 81
Yu, Zhao, Sun, Bergara, Lin, Zhang, Xu, Zhang, Yang, Liu (bib32) 2019; 141
Norskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jonsson (bib47) 2004; 108
De Vooys, Koper, Van Santen, Van Veen (bib19) 2001; 46
Ouyang, Shi, Bai, Li, Wang (bib28) 2020; 11
Hodala, Moon, Reddy, Reddy, Kumar, Ahamed, Raghu (bib17) 2021; 46
Chang, Zhang, Chen, Lu, Cheng (bib49) 2019; 9
Delley (bib35) 1996; 100
Klamt, Schuurmann (bib51) 1993; 5
Wynne-Jones, Eyring (bib52) 1935; 3
Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (bib16) 2017; 355
Jiang, Guo, Li, Zhu, Zhao, Lu, Shan (bib53) 2011; 344
Wu, Wei, Lv, Wang, Huang, Dai (bib26) 2019; 123
Perdew, Burke, Ernzerhof (bib37) 1996; 77
Wu, Li, Yu (bib22) 2021; 12
Beale, Gao, Lezcano-Gonzalez, Peden, Szanyi (bib8) 2015; 44
Lan, Irvine, Tao (bib2) 2012; 37
Wu, Wen, Yu (bib40) 2021; 565
Wang, Tang, Zhou (bib50) 2019; 141
Grimme (10.1016/j.ijhydene.2022.11.180_bib38) 2006; 27
Wu (10.1016/j.ijhydene.2022.11.180_bib23) 2021; 125
Wu (10.1016/j.ijhydene.2022.11.180_bib26) 2019; 123
Lan (10.1016/j.ijhydene.2022.11.180_bib2) 2012; 37
Katsounaros (10.1016/j.ijhydene.2022.11.180_bib56) 2017; 7
Delley (10.1016/j.ijhydene.2022.11.180_bib39) 2002; 66
Mou (10.1016/j.ijhydene.2022.11.180_bib7) 2021; 86
Guan (10.1016/j.ijhydene.2022.11.180_bib11) 2021; 9
Farberow (10.1016/j.ijhydene.2022.11.180_bib61) 2014; 4
Jiang (10.1016/j.ijhydene.2022.11.180_bib53) 2011; 344
Ouyang (10.1016/j.ijhydene.2022.11.180_bib28) 2020; 11
Chen (10.1016/j.ijhydene.2022.11.180_bib4) 2018; 360
Liu (10.1016/j.ijhydene.2022.11.180_bib14) 2020; 63
Yu (10.1016/j.ijhydene.2022.11.180_bib32) 2019; 141
Niu (10.1016/j.ijhydene.2022.11.180_bib27) 2021; 17
Wu (10.1016/j.ijhydene.2022.11.180_bib29) 2021; 9
Wu (10.1016/j.ijhydene.2022.11.180_bib22) 2021; 12
Hoover (10.1016/j.ijhydene.2022.11.180_bib45) 1985; 31
Beale (10.1016/j.ijhydene.2022.11.180_bib8) 2015; 44
Shang (10.1016/j.ijhydene.2022.11.180_bib59) 2011; 133
Kundu (10.1016/j.ijhydene.2022.11.180_bib18) 2022; 47
Xia (10.1016/j.ijhydene.2022.11.180_bib24) 2021; 7
Tang (10.1016/j.ijhydene.2022.11.180_bib12) 2016; 6
Wu (10.1016/j.ijhydene.2022.11.180_bib54) 2020; 22
Wang (10.1016/j.ijhydene.2022.11.180_bib25) 2018; 6
Perdew (10.1016/j.ijhydene.2022.11.180_bib37) 1996; 77
Hong (10.1016/j.ijhydene.2022.11.180_bib9) 2017; 7
Hodala (10.1016/j.ijhydene.2022.11.180_bib17) 2021; 46
Zhang (10.1016/j.ijhydene.2022.11.180_bib55) 2021; 60
Delley (10.1016/j.ijhydene.2022.11.180_bib36) 2000; 113
Jiang (10.1016/j.ijhydene.2022.11.180_bib33) 2021; 547
Guo (10.1016/j.ijhydene.2022.11.180_bib3) 2019; 48
Wu (10.1016/j.ijhydene.2022.11.180_bib6) 2021; 13
Nose (10.1016/j.ijhydene.2022.11.180_bib44) 1984; 81
Chang (10.1016/j.ijhydene.2022.11.180_bib49) 2019; 9
Halgren (10.1016/j.ijhydene.2022.11.180_bib48) 1977; 49
Wynne-Jones (10.1016/j.ijhydene.2022.11.180_bib52) 1935; 3
Klamt (10.1016/j.ijhydene.2022.11.180_bib51) 1993; 5
Rosca (10.1016/j.ijhydene.2022.11.180_bib13) 2009; 109
Guo (10.1016/j.ijhydene.2022.11.180_bib31) 2020; 142
Hirshfeld (10.1016/j.ijhydene.2022.11.180_bib42) 1977; 44
Kaiser (10.1016/j.ijhydene.2022.11.180_bib21) 2020; 120
Delley (10.1016/j.ijhydene.2022.11.180_bib35) 1996; 100
Andana (10.1016/j.ijhydene.2022.11.180_bib10) 2021; 291
Norskov (10.1016/j.ijhydene.2022.11.180_bib47) 2004; 108
Schlogl (10.1016/j.ijhydene.2022.11.180_bib1) 2003; 42
Long (10.1016/j.ijhydene.2022.11.180_bib15) 2020; 59
Wang (10.1016/j.ijhydene.2022.11.180_bib50) 2019; 141
Benaka (10.1016/j.ijhydene.2022.11.180_bib34) 2018; 1167
Yu (10.1016/j.ijhydene.2022.11.180_bib46) 2019; 123
Qing (10.1016/j.ijhydene.2022.11.180_bib5) 2020; 120
Sun (10.1016/j.ijhydene.2022.11.180_bib57) 2020; 22
De Vooys (10.1016/j.ijhydene.2022.11.180_bib19) 2001; 46
Wu (10.1016/j.ijhydene.2022.11.180_bib40) 2021; 565
Yu (10.1016/j.ijhydene.2022.11.180_bib43) 2021; 546
Liu (10.1016/j.ijhydene.2022.11.180_bib60) 2018; 9
Shi (10.1016/j.ijhydene.2022.11.180_bib20) 2021; 64
Seh (10.1016/j.ijhydene.2022.11.180_bib16) 2017; 355
Chen (10.1016/j.ijhydene.2022.11.180_bib30) 2019; 3
Skulason (10.1016/j.ijhydene.2022.11.180_bib58) 2012; 14
Zhang (10.1016/j.ijhydene.2022.11.180_bib41) 2018; 6
References_xml – volume: 9
  start-page: 8197
  year: 2019
  end-page: 8207
  ident: bib49
  article-title: Constant electrode potential quantum mechanical study of CO
  publication-title: ACS Catal
– volume: 37
  start-page: 1482
  year: 2012
  end-page: 1494
  ident: bib2
  article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials
  publication-title: Int J Hydrogen Energy
– volume: 123
  start-page: 31043
  year: 2019
  end-page: 31049
  ident: bib26
  article-title: Cu@g-C
  publication-title: J Phys Chem C
– volume: 44
  start-page: 7371
  year: 2015
  end-page: 7405
  ident: bib8
  article-title: Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials
  publication-title: Chem Soc Rev
– volume: 291
  year: 2021
  ident: bib10
  article-title: Recent advances in hybrid metal oxide-zeolite catalysts for low-temperature selective catalytic reduction of NOx by ammonia
  publication-title: Appl Catal B Environ
– volume: 4
  start-page: 3307
  year: 2014
  end-page: 3319
  ident: bib61
  article-title: Density functional theory calculations and analysis of reaction pathways for reduction of nitric oxide by hydrogen on Pt(111)
  publication-title: ACS Catal
– volume: 44
  start-page: 129
  year: 1977
  end-page: 138
  ident: bib42
  article-title: Bonded-atom fragments for describing molecular charge-densities
  publication-title: Theor Chim Acta
– volume: 47
  start-page: 30567
  year: 2022
  end-page: 30579
  ident: bib18
  article-title: Yttrium doped covalent triazine frameworks as promising reversible hydrogen storage material: DFT investigations
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 3289
  year: 2021
  end-page: 3301
  ident: bib17
  article-title: Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis
  publication-title: Int J Hydrogen Energy
– volume: 565
  year: 2021
  ident: bib40
  article-title: Selective transformation of aqueous methanol to value-added formic acid and hydrogen on bifunctional Mo
  publication-title: Appl Surf Sci
– volume: 344
  start-page: 99
  year: 2011
  end-page: 110
  ident: bib53
  article-title: Methanol dehydrogenation on Rh(111): a density functional and microkinetic modeling study
  publication-title: J Mol Catal Chem
– volume: 3
  year: 2019
  ident: bib30
  article-title: Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction?
  publication-title: Samll Methods
– volume: 9
  start-page: 5434
  year: 2021
  end-page: 5441
  ident: bib29
  article-title: Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst
  publication-title: J Mater Chem
– volume: 7
  start-page: 39
  year: 2021
  end-page: 54
  ident: bib24
  article-title: Single-atom photocatalysts for emerging reactions
  publication-title: ACS Cent Sci
– volume: 141
  start-page: 1599
  year: 2019
  end-page: 1605
  ident: bib32
  article-title: Two-dimensional PC
  publication-title: J Am Chem Soc
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  ident: bib36
  article-title: From molecules to solids with the DMol
  publication-title: J Chem Phys
– volume: 120
  start-page: 5437
  year: 2020
  end-page: 5516
  ident: bib5
  article-title: Recent advances and challenges of electrocatalytic N
  publication-title: Chem Rev
– volume: 7
  start-page: 3440
  year: 2017
  end-page: 3452
  ident: bib9
  article-title: Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview
  publication-title: Catal Sci Technol
– volume: 125
  start-page: 23699
  year: 2021
  end-page: 23708
  ident: bib23
  article-title: Electric-field controllable metal-free materials as efficient electrocatalysts for nitrogen fixation
  publication-title: J Phys Chem C
– volume: 547
  year: 2021
  ident: bib33
  article-title: Theoretical insights into bimetallic atoms supported on PC
  publication-title: Appl Surf Sci
– volume: 100
  start-page: 6107
  year: 1996
  end-page: 6110
  ident: bib35
  article-title: Fast calculation of electrostatics in crystals and large molecules
  publication-title: J Phys Chem A
– volume: 14
  start-page: 1235
  year: 2012
  end-page: 1245
  ident: bib58
  article-title: A theoretical evaluation of possible transition metal electro-catalysts for N
  publication-title: Phys Chem Chem Phys
– volume: 12
  start-page: 3968
  year: 2021
  end-page: 3975
  ident: bib22
  article-title: Theoretical exploration of electrochemical nitrate reduction reaction activities on transition-metal-doped h-BP
  publication-title: J Phys Chem Lett
– volume: 6
  start-page: 7547
  year: 2018
  end-page: 7556
  ident: bib25
  article-title: A Co-N
  publication-title: J Mater Chem
– volume: 9
  year: 2018
  ident: bib60
  article-title: Heterogeneous Fe
  publication-title: Nat Commun
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib37
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
– volume: 7
  start-page: 4660
  year: 2017
  end-page: 4667
  ident: bib56
  article-title: Structure- and coverage-sensitive mechanism of NO reduction on platinum electrodes
  publication-title: ACS Catal
– volume: 48
  start-page: 5658
  year: 2019
  end-page: 5716
  ident: bib3
  article-title: Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design
  publication-title: Chem Soc Rev
– volume: 120
  start-page: 11703
  year: 2020
  end-page: 11809
  ident: bib21
  article-title: Single-atom catalysts across the periodic table
  publication-title: Chem Rev
– volume: 59
  start-page: 9711
  year: 2020
  end-page: 9718
  ident: bib15
  article-title: Direct electrochemical ammonia synthesis from nitric oxide
  publication-title: Angew Chem Int Ed
– volume: 17
  year: 2021
  ident: bib27
  article-title: A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH
  publication-title: Small
– volume: 13
  start-page: 10026
  year: 2021
  end-page: 10036
  ident: bib6
  article-title: Single Nb or W atom-embedded BP monolayers as highly selective and stable electrocatalysts for nitrogen fixation with low-onset potentials
  publication-title: ACS Appl Mater Interfaces
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: bib47
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J Phys Chem B
– volume: 60
  start-page: 25263
  year: 2021
  end-page: 25268
  ident: bib55
  article-title: High-performance electrochemical NO reduction into NH
  publication-title: Angew Chem Int Ed
– volume: 355
  start-page: aad4998
  year: 2017
  ident: bib16
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 86
  start-page: 1211
  year: 2021
  end-page: 1224
  ident: bib7
  article-title: Advances in electrochemical ammonia synthesis beyond the use of nitrogen gas as a source
  publication-title: ChemPlusChem
– volume: 22
  start-page: 22627
  year: 2020
  end-page: 22634
  ident: bib57
  article-title: Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH
  publication-title: Phys Chem Chem Phys
– volume: 123
  start-page: 205
  year: 2019
  end-page: 213
  ident: bib46
  article-title: Effect of defects and solvents on silicene cathode of nonaqueous lithium-oxygen batteries: a theoretical investigation
  publication-title: J Phys Chem C
– volume: 46
  start-page: 923
  year: 2001
  end-page: 930
  ident: bib19
  article-title: Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode
  publication-title: Electrochim Acta
– volume: 22
  start-page: 7633
  year: 2020
  end-page: 7642
  ident: bib54
  article-title: Stabilities of group-III phosphide (MP, M = B, Al, Ga and In) monolayers in oxygen and water environments
  publication-title: Phys Chem Chem Phys
– volume: 9
  year: 2021
  ident: bib11
  article-title: Review on the selective catalytic reduction of NOx with H
  publication-title: J Environ Chem Eng
– volume: 1167
  start-page: 215
  year: 2018
  end-page: 226
  ident: bib34
  article-title: Synthesis, structural exploration, spectral and combinatorial analysis of racemic-3-isobutyl-5-phenyl-5-(pyridin-4-yl)imida-zolidine-2,4-dione: comparison between experimental and DFT calculations
  publication-title: J Mol Struct
– volume: 6
  start-page: 1248
  year: 2016
  end-page: 1264
  ident: bib12
  article-title: Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH
  publication-title: Catal Sci Technol
– volume: 142
  start-page: 5709
  year: 2020
  end-page: 5721
  ident: bib31
  article-title: Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts
  publication-title: J Am Chem Soc
– volume: 3
  start-page: 492
  year: 1935
  end-page: 502
  ident: bib52
  article-title: The absolute rate of reactions in condensed phases
  publication-title: J Chem Phys
– volume: 133
  start-page: 9938
  year: 2011
  end-page: 9947
  ident: bib59
  article-title: Origin and activity of gold nanoparticles as aerobic oxidation catalysts in aqueous solution
  publication-title: J Am Chem Soc
– volume: 63
  start-page: 1173
  year: 2020
  end-page: 1174
  ident: bib14
  article-title: Synthesis of ammonia via an electroreduction removal of NO from exhausted gas: an upgrading to N
  publication-title: Sci China Chem
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: bib45
  article-title: Canonical dynamics - equilibrium phase-space distributions
  publication-title: Phys Rev
– volume: 546
  year: 2021
  ident: bib43
  article-title: High storage capacity and small volume change of potassium-intercalation into novel vanadium oxychalcogenide monolayers V
  publication-title: Appl Surf Sci
– volume: 49
  start-page: 225
  year: 1977
  end-page: 232
  ident: bib48
  article-title: Synchronous-transit method for determining reaction pathways and locating molecular transition-states
  publication-title: Chem Phys Lett
– volume: 109
  start-page: 2209
  year: 2009
  end-page: 2244
  ident: bib13
  article-title: Nitrogen cycle electrocatalysis
  publication-title: Chem Rev
– volume: 66
  start-page: 9
  year: 2002
  ident: bib39
  article-title: Hardness conserving semilocal pseudopotentials
  publication-title: Phys Rev B
– volume: 11
  start-page: 1807
  year: 2020
  end-page: 1813
  ident: bib28
  article-title: Breaking scaling relations for efficient CO
  publication-title: Chem Sci
– volume: 42
  start-page: 2004
  year: 2003
  end-page: 2008
  ident: bib1
  article-title: Catalytic synthesis of ammonia - a "never-ending story
  publication-title: Angew Chem Int Ed
– volume: 64
  start-page: 1493
  year: 2021
  end-page: 1497
  ident: bib20
  article-title: Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping
  publication-title: Sci China Chem
– volume: 6
  start-page: 18599
  year: 2018
  end-page: 18604
  ident: bib41
  article-title: Double-atom catalysts: transition metal dimer-anchored C
  publication-title: J Mater Chem
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: bib44
  article-title: A unified formulation of the constant temperature molecular-dynamics methods
  publication-title: J Chem Phys
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: bib38
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J Comput Chem
– volume: 5
  start-page: 799
  year: 1993
  end-page: 805
  ident: bib51
  article-title: Cosmo - a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
  publication-title: J Chem Soc, Perkin Trans 2
– volume: 360
  start-page: aar6611
  year: 2018
  ident: bib4
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
– volume: 141
  start-page: 14115
  year: 2019
  end-page: 14119
  ident: bib50
  article-title: Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts
  publication-title: J Am Chem Soc
– volume: 546
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib43
  article-title: High storage capacity and small volume change of potassium-intercalation into novel vanadium oxychalcogenide monolayers V2S2O, V2Se2O and V2Te2O: an ab initio DFT investigation
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.149062
– volume: 86
  start-page: 1211
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib7
  article-title: Advances in electrochemical ammonia synthesis beyond the use of nitrogen gas as a source
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.202100356
– volume: 63
  start-page: 1173
  year: 2020
  ident: 10.1016/j.ijhydene.2022.11.180_bib14
  article-title: Synthesis of ammonia via an electroreduction removal of NO from exhausted gas: an upgrading to N2 fixation
  publication-title: Sci China Chem
  doi: 10.1007/s11426-020-9784-4
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.ijhydene.2022.11.180_bib38
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20495
– volume: 14
  start-page: 1235
  year: 2012
  ident: 10.1016/j.ijhydene.2022.11.180_bib58
  article-title: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C1CP22271F
– volume: 48
  start-page: 5658
  year: 2019
  ident: 10.1016/j.ijhydene.2022.11.180_bib3
  article-title: Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design
  publication-title: Chem Soc Rev
  doi: 10.1039/C9CS00159J
– volume: 64
  start-page: 1493
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib20
  article-title: Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping
  publication-title: Sci China Chem
  doi: 10.1007/s11426-021-1073-5
– volume: 113
  start-page: 7756
  year: 2000
  ident: 10.1016/j.ijhydene.2022.11.180_bib36
  article-title: From molecules to solids with the DMol3 approach
  publication-title: J Chem Phys
  doi: 10.1063/1.1316015
– volume: 81
  start-page: 511
  year: 1984
  ident: 10.1016/j.ijhydene.2022.11.180_bib44
  article-title: A unified formulation of the constant temperature molecular-dynamics methods
  publication-title: J Chem Phys
  doi: 10.1063/1.447334
– volume: 344
  start-page: 99
  year: 2011
  ident: 10.1016/j.ijhydene.2022.11.180_bib53
  article-title: Methanol dehydrogenation on Rh(111): a density functional and microkinetic modeling study
  publication-title: J Mol Catal Chem
  doi: 10.1016/j.molcata.2011.05.007
– volume: 291
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib10
  article-title: Recent advances in hybrid metal oxide-zeolite catalysts for low-temperature selective catalytic reduction of NOx by ammonia
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2021.120054
– volume: 9
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib11
  article-title: Review on the selective catalytic reduction of NOx with H2 by using novel catalysts
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2021.106770
– volume: 3
  start-page: 492
  year: 1935
  ident: 10.1016/j.ijhydene.2022.11.180_bib52
  article-title: The absolute rate of reactions in condensed phases
  publication-title: J Chem Phys
  doi: 10.1063/1.1749713
– volume: 133
  start-page: 9938
  year: 2011
  ident: 10.1016/j.ijhydene.2022.11.180_bib59
  article-title: Origin and activity of gold nanoparticles as aerobic oxidation catalysts in aqueous solution
  publication-title: J Am Chem Soc
  doi: 10.1021/ja203468v
– volume: 44
  start-page: 7371
  year: 2015
  ident: 10.1016/j.ijhydene.2022.11.180_bib8
  article-title: Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials
  publication-title: Chem Soc Rev
  doi: 10.1039/C5CS00108K
– volume: 123
  start-page: 205
  year: 2019
  ident: 10.1016/j.ijhydene.2022.11.180_bib46
  article-title: Effect of defects and solvents on silicene cathode of nonaqueous lithium-oxygen batteries: a theoretical investigation
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.8b10367
– volume: 547
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib33
  article-title: Theoretical insights into bimetallic atoms supported on PC6 as highly efficient electrocatalysts for N2 electroreduction to NH3
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.149208
– volume: 44
  start-page: 129
  year: 1977
  ident: 10.1016/j.ijhydene.2022.11.180_bib42
  article-title: Bonded-atom fragments for describing molecular charge-densities
  publication-title: Theor Chim Acta
  doi: 10.1007/BF00549096
– volume: 37
  start-page: 1482
  year: 2012
  ident: 10.1016/j.ijhydene.2022.11.180_bib2
  article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.10.004
– volume: 13
  start-page: 10026
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib6
  article-title: Single Nb or W atom-embedded BP monolayers as highly selective and stable electrocatalysts for nitrogen fixation with low-onset potentials
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c21429
– volume: 66
  start-page: 9
  year: 2002
  ident: 10.1016/j.ijhydene.2022.11.180_bib39
  article-title: Hardness conserving semilocal pseudopotentials
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.66.155125
– volume: 9
  year: 2018
  ident: 10.1016/j.ijhydene.2022.11.180_bib60
  article-title: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism
  publication-title: Nat Commun
– volume: 355
  start-page: aad4998
  year: 2017
  ident: 10.1016/j.ijhydene.2022.11.180_bib16
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 6
  start-page: 7547
  year: 2018
  ident: 10.1016/j.ijhydene.2022.11.180_bib25
  article-title: A Co-N4 moiety embedded into graphene as an efficient single-atom-catalyst for NO electrochemical reduction: a computational study
  publication-title: J Mater Chem
  doi: 10.1039/C8TA00875B
– volume: 141
  start-page: 1599
  year: 2019
  ident: 10.1016/j.ijhydene.2022.11.180_bib32
  article-title: Two-dimensional PC6 with direct band gap and anisotropic carrier mobility
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b11350
– volume: 42
  start-page: 2004
  year: 2003
  ident: 10.1016/j.ijhydene.2022.11.180_bib1
  article-title: Catalytic synthesis of ammonia - a "never-ending story
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200301553
– volume: 120
  start-page: 5437
  year: 2020
  ident: 10.1016/j.ijhydene.2022.11.180_bib5
  article-title: Recent advances and challenges of electrocatalytic N2 reduction to ammonia
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.9b00659
– volume: 125
  start-page: 23699
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib23
  article-title: Electric-field controllable metal-free materials as efficient electrocatalysts for nitrogen fixation
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.1c06464
– volume: 7
  start-page: 3440
  year: 2017
  ident: 10.1016/j.ijhydene.2022.11.180_bib9
  article-title: Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview
  publication-title: Catal Sci Technol
  doi: 10.1039/C7CY00760D
– volume: 60
  start-page: 25263
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib55
  article-title: High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202110879
– volume: 47
  start-page: 30567
  year: 2022
  ident: 10.1016/j.ijhydene.2022.11.180_bib18
  article-title: Yttrium doped covalent triazine frameworks as promising reversible hydrogen storage material: DFT investigations
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.315
– volume: 49
  start-page: 225
  year: 1977
  ident: 10.1016/j.ijhydene.2022.11.180_bib48
  article-title: Synchronous-transit method for determining reaction pathways and locating molecular transition-states
  publication-title: Chem Phys Lett
  doi: 10.1016/0009-2614(77)80574-5
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.ijhydene.2022.11.180_bib37
  article-title: Generalized gradient approximation made simple
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.3865
– volume: 22
  start-page: 22627
  year: 2020
  ident: 10.1016/j.ijhydene.2022.11.180_bib57
  article-title: Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH3 fabrication via NO reduction
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D0CP03559A
– volume: 12
  start-page: 3968
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib22
  article-title: Theoretical exploration of electrochemical nitrate reduction reaction activities on transition-metal-doped h-BP
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.1c00855
– volume: 360
  start-page: aar6611
  year: 2018
  ident: 10.1016/j.ijhydene.2022.11.180_bib4
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 120
  start-page: 11703
  year: 2020
  ident: 10.1016/j.ijhydene.2022.11.180_bib21
  article-title: Single-atom catalysts across the periodic table
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c00576
– volume: 22
  start-page: 7633
  year: 2020
  ident: 10.1016/j.ijhydene.2022.11.180_bib54
  article-title: Stabilities of group-III phosphide (MP, M = B, Al, Ga and In) monolayers in oxygen and water environments
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D0CP00224K
– volume: 11
  start-page: 1807
  year: 2020
  ident: 10.1016/j.ijhydene.2022.11.180_bib28
  article-title: Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts
  publication-title: Chem Sci
  doi: 10.1039/C9SC05236D
– volume: 109
  start-page: 2209
  year: 2009
  ident: 10.1016/j.ijhydene.2022.11.180_bib13
  article-title: Nitrogen cycle electrocatalysis
  publication-title: Chem Rev
  doi: 10.1021/cr8003696
– volume: 9
  start-page: 5434
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib29
  article-title: Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst
  publication-title: J Mater Chem
  doi: 10.1039/D0TA11209G
– volume: 6
  start-page: 18599
  year: 2018
  ident: 10.1016/j.ijhydene.2022.11.180_bib41
  article-title: Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts
  publication-title: J Mater Chem
  doi: 10.1039/C8TA07683A
– volume: 4
  start-page: 3307
  year: 2014
  ident: 10.1016/j.ijhydene.2022.11.180_bib61
  article-title: Density functional theory calculations and analysis of reaction pathways for reduction of nitric oxide by hydrogen on Pt(111)
  publication-title: ACS Catal
  doi: 10.1021/cs500668k
– volume: 100
  start-page: 6107
  year: 1996
  ident: 10.1016/j.ijhydene.2022.11.180_bib35
  article-title: Fast calculation of electrostatics in crystals and large molecules
  publication-title: J Phys Chem A
  doi: 10.1021/jp952713n
– volume: 5
  start-page: 799
  year: 1993
  ident: 10.1016/j.ijhydene.2022.11.180_bib51
  article-title: Cosmo - a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
  publication-title: J Chem Soc, Perkin Trans 2
  doi: 10.1039/P29930000799
– volume: 141
  start-page: 14115
  year: 2019
  ident: 10.1016/j.ijhydene.2022.11.180_bib50
  article-title: Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b07712
– volume: 7
  start-page: 39
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib24
  article-title: Single-atom photocatalysts for emerging reactions
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.0c01466
– volume: 1167
  start-page: 215
  year: 2018
  ident: 10.1016/j.ijhydene.2022.11.180_bib34
  article-title: Synthesis, structural exploration, spectral and combinatorial analysis of racemic-3-isobutyl-5-phenyl-5-(pyridin-4-yl)imida-zolidine-2,4-dione: comparison between experimental and DFT calculations
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2018.04.096
– volume: 123
  start-page: 31043
  year: 2019
  ident: 10.1016/j.ijhydene.2022.11.180_bib26
  article-title: Cu@g-C3N4: an efficient single-atom electrocatalyst for NO electrochemical reduction with suppressed hydrogen evolution
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.9b08827
– volume: 142
  start-page: 5709
  year: 2020
  ident: 10.1016/j.ijhydene.2022.11.180_bib31
  article-title: Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b13349
– volume: 59
  start-page: 9711
  year: 2020
  ident: 10.1016/j.ijhydene.2022.11.180_bib15
  article-title: Direct electrochemical ammonia synthesis from nitric oxide
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202002337
– volume: 46
  start-page: 3289
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib17
  article-title: Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.12.021
– volume: 9
  start-page: 8197
  year: 2019
  ident: 10.1016/j.ijhydene.2022.11.180_bib49
  article-title: Constant electrode potential quantum mechanical study of CO2 electrochemical reduction catalyzed by N-doped graphene
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b01318
– volume: 108
  start-page: 17886
  year: 2004
  ident: 10.1016/j.ijhydene.2022.11.180_bib47
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J Phys Chem B
  doi: 10.1021/jp047349j
– volume: 17
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib27
  article-title: A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH3 conversion
  publication-title: Small
  doi: 10.1002/smll.202102396
– volume: 565
  year: 2021
  ident: 10.1016/j.ijhydene.2022.11.180_bib40
  article-title: Selective transformation of aqueous methanol to value-added formic acid and hydrogen on bifunctional Mo2P monolayers in fuel cells
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.150567
– volume: 7
  start-page: 4660
  year: 2017
  ident: 10.1016/j.ijhydene.2022.11.180_bib56
  article-title: Structure- and coverage-sensitive mechanism of NO reduction on platinum electrodes
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b01069
– volume: 3
  year: 2019
  ident: 10.1016/j.ijhydene.2022.11.180_bib30
  article-title: Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction?
  publication-title: Samll Methods
– volume: 46
  start-page: 923
  year: 2001
  ident: 10.1016/j.ijhydene.2022.11.180_bib19
  article-title: Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(00)00678-2
– volume: 6
  start-page: 1248
  year: 2016
  ident: 10.1016/j.ijhydene.2022.11.180_bib12
  article-title: Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3
  publication-title: Catal Sci Technol
  doi: 10.1039/C5CY01487E
– volume: 31
  start-page: 1695
  year: 1985
  ident: 10.1016/j.ijhydene.2022.11.180_bib45
  article-title: Canonical dynamics - equilibrium phase-space distributions
  publication-title: Phys Rev
  doi: 10.1103/PhysRevA.31.1695
SSID ssj0017049
Score 2.5876935
Snippet An electrochemical nitric oxide (NO) reduction reaction (NORR) can not only eliminate the harmful pollutant but also offer a green approach for ammonia...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 5961
SubjectTerms Ammonia synthesis
Biatom catalysts
Density functional theory
Electrocatalysis
Nitric oxide reduction
Title Efficient electrocatalysts refined from metal-dimer-anchored PC6 monolayers for NO reduction to ammonia
URI https://dx.doi.org/10.1016/j.ijhydene.2022.11.180
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEA5iL-2h9EntQ3LoNbpxk6w5iii2BVtoBW9LXltX6gPdHrz0t3ey7oqFQg89bjYTlsnszJcw8w1C96GmxgWGkzAJAsKUcEQlPCARgHcVtBXjOs-2GIrBiD2O-biCumUtjE-rLHz_1qfn3roYaRbabC7TtPkKvteX4EhfKsoiNvYV7CzyVt742qV50KiAwDCZ-Nl7VcLTRjqdbOD39nSZrRZ4jwb19JC_Bai9oNM_QccFWsSd7Qedooqbn6GjPQ7Bc_Tey0kgIHbgoqVNfiOzWWdrDIvDRIt9DQmeORgmNp25FYGtnixW8OalKzAYIpxvPfTGgGDx8Bnk7JZUFmcLrLylpuoCjfq9t-6AFN0TiAlpKyOA02jbaA5B0CVKUQuByKi25hYeOE_goCZaSkjDFQuMlCZMaCgSESgZJIaJ8BJV54u5u0IY1lEOghhPmGZMWy2YoVY6G4ZSW65qiJcqi01BLe47XHzEZQ7ZNC5VHXtVw7kjBlXXUHMnt9ySa_wpIcsdiX-YSQwR4A_Z63_I3qBD32fep2tTeYuq2erT3QEayXQ9N7c6Oug8PA2G32ov4lI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FcgAOqLxESgt7gOMmXnt3kz30ULWNUloCEq2Um9mXqSOSVImrKhf-FH-ws866ChJSD6hHrz0r69vxNzPWPAA-ZoZZn1hBsyJJKNfSU12IhPbQeddJX3Nh6myLkRxe8M9jMW7Bn6YWJqRVRu5fc3rN1nGlG9HsXpVl9ztybyjBUaFUlPf4OGZWnvrVDcZty_2TIzzkT2k6OD4_HNI4WoDajKUVRSeG9a0RaCF8oTVzyNJW941weCFEgVGMTLVUVmieWKVsVrBMFjLRKikslxnu-wgec6SLMDah8_sur4T1os-Nb0fD622UJU865eRyhXwS-nOmKdJVh4V-lP-yiBtWbrANz6N7Sg7WCLyAlp-9hGcbTQtfwc_juusEGisSZ-jUv4BWy2pJcHN80JFQtEKmHpepK6d-QVG3LucLvPPtUBLUfAyog69P0GUmo68o59ZdbEk1Jzp8GqV-DRcPgukb2JrNZ_4tENxHe7SaouCGc-OM5JY55V2WKeOEboNoIMtt7GUeRmr8ypuktUneQJ0HqDHQyRHqNnTv5K7W3TzulVDNieR_6WWOJuce2Z3_kP0AT4bnX87ys5PR6Tt4Gobch1xxpnZhq1pc-z10hSrzvlY9Aj8eWtdvATBIHtE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+electrocatalysts+refined+from+metal-dimer-anchored+PC6+monolayers+for+NO+reduction+to+ammonia&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Wu%2C+Jie&rft.au=Yu%2C+Yang-Xin&rft.date=2023-02-19&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=48&rft.issue=15&rft.spage=5961&rft.epage=5975&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.11.180&rft.externalDocID=S036031992205474X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon