Efficient electrocatalysts refined from metal-dimer-anchored PC6 monolayers for NO reduction to ammonia
An electrochemical nitric oxide (NO) reduction reaction (NORR) can not only eliminate the harmful pollutant but also offer a green approach for ammonia synthesis under mild conditions. However, the activities and Faradaic efficiencies of present electrocatalysts are still not suitable for commercial...
Saved in:
Published in | International journal of hydrogen energy Vol. 48; no. 15; pp. 5961 - 5975 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
19.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An electrochemical nitric oxide (NO) reduction reaction (NORR) can not only eliminate the harmful pollutant but also offer a green approach for ammonia synthesis under mild conditions. However, the activities and Faradaic efficiencies of present electrocatalysts are still not suitable for commercial applications and the mechanism has been rarely studied in detail. Here, by means of first-principles calculations and microkinetic modeling, the potentials of a series of metal-dimer anchored on the PC6 monolayer (M2/PC6 BAC) as efficient NORR electrocatalysts were examined. Thirteen possible pathways are taken into consideration for the NORR process and a comprehensive reaction network is first constructed. Consequently, the Cr2/PC6, Mn2/PC6, Fe2/PC6 and Re2/PC6 BACs are screened out as promising candidates for NORR catalysis. Particularly, the Fe2/PC6BAC exhibits the best performance among the studied BACs and its NORR rate constant (2.73 × 107 s−1) at 298.15 K is several orders of magnitude larger than those of the other BACs. It can be known from the electronic calculations that the nature of the interaction between NO and the metal-dimer is ascribed to the donation-backdonation mechanism. This work not only provides eligible BACs for NH3 synthesis but also offers an atomic understanding on the NORR process.
[Display omitted]
•Eight metal-dimer-anchored PC6 monolayers were screened out as efficient NORR catalysts.•The Cr2/PC6, Mn2/PC6, Fe2/PC6 and Re2/PC6 BACs possess excellent high selectivity.•The Fe2/PC6 BAC exhibits the best catalytic performance for NORR.•The AIMD simulations showed that the Fe2/PC6 BAC exhibits good stability. |
---|---|
AbstractList | An electrochemical nitric oxide (NO) reduction reaction (NORR) can not only eliminate the harmful pollutant but also offer a green approach for ammonia synthesis under mild conditions. However, the activities and Faradaic efficiencies of present electrocatalysts are still not suitable for commercial applications and the mechanism has been rarely studied in detail. Here, by means of first-principles calculations and microkinetic modeling, the potentials of a series of metal-dimer anchored on the PC6 monolayer (M2/PC6 BAC) as efficient NORR electrocatalysts were examined. Thirteen possible pathways are taken into consideration for the NORR process and a comprehensive reaction network is first constructed. Consequently, the Cr2/PC6, Mn2/PC6, Fe2/PC6 and Re2/PC6 BACs are screened out as promising candidates for NORR catalysis. Particularly, the Fe2/PC6BAC exhibits the best performance among the studied BACs and its NORR rate constant (2.73 × 107 s−1) at 298.15 K is several orders of magnitude larger than those of the other BACs. It can be known from the electronic calculations that the nature of the interaction between NO and the metal-dimer is ascribed to the donation-backdonation mechanism. This work not only provides eligible BACs for NH3 synthesis but also offers an atomic understanding on the NORR process.
[Display omitted]
•Eight metal-dimer-anchored PC6 monolayers were screened out as efficient NORR catalysts.•The Cr2/PC6, Mn2/PC6, Fe2/PC6 and Re2/PC6 BACs possess excellent high selectivity.•The Fe2/PC6 BAC exhibits the best catalytic performance for NORR.•The AIMD simulations showed that the Fe2/PC6 BAC exhibits good stability. |
Author | Wu, Jie Yu, Yang-Xin |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0001-9909-1018 surname: Wu fullname: Wu, Jie – sequence: 2 givenname: Yang-Xin orcidid: 0000-0002-7677-3427 surname: Yu fullname: Yu, Yang-Xin email: yangxyu@mail.tsinghua.edu.cn |
BookMark | eNqFkMtKAzEUhoNUsK2-guQFZsyZSzoBF0qpFyjqQtchJieaMjORJArz9qZUN25cHc7lO_B_CzIb_YiEnAMrgQG_2JVu9z4ZHLGsWFWVACV07IjMoVuJom661YzMWc1ZUYMQJ2QR444xWLFGzMnbxlqnHY6JYo86Ba9VUv0UU6QBrRvRUBv8QAfM48K4AUOhRv3uQ948rTkd_Oh7NWGI1PpAHx4zZz51cn6kyVM15AOnTsmxVX3Es5-6JC83m-f1XbF9vL1fX28LXUOVipZz6PRri2jQKgWm6hqtutfW5KZtLQjgleJCt6phWghdW6i55UwJZnXD6yXhh786-BhzAvkR3KDCJIHJvS65k7-65F6XBJBZVwYv_4DaJbVPkYJy_f_41QHHHO7LYZBxb1WjcSFrlca7_158A4s5j-0 |
CitedBy_id | crossref_primary_10_1016_j_cej_2025_160160 crossref_primary_10_1016_j_jcis_2024_05_022 crossref_primary_10_1016_j_mcat_2024_113921 crossref_primary_10_1039_D4CC05433D crossref_primary_10_1016_j_jallcom_2024_177180 crossref_primary_10_1016_j_mtphys_2024_101613 crossref_primary_10_1002_ghg_2235 crossref_primary_10_1002_qua_27379 crossref_primary_10_1016_j_mtsust_2024_100903 crossref_primary_10_1039_D4NJ05105J crossref_primary_10_1016_j_cej_2025_159434 crossref_primary_10_1016_j_molliq_2024_124121 crossref_primary_10_1039_D4TA01961J crossref_primary_10_1016_j_seppur_2025_131524 crossref_primary_10_1016_j_apsusc_2024_161470 crossref_primary_10_1016_j_jcis_2024_06_231 crossref_primary_10_1039_D4CC03901G crossref_primary_10_1016_j_electacta_2024_144915 crossref_primary_10_1016_j_ijhydene_2024_06_024 crossref_primary_10_1016_j_mcat_2023_113391 crossref_primary_10_1021_acs_langmuir_3c02461 crossref_primary_10_1039_D4CP04355C crossref_primary_10_1016_j_susc_2023_122348 crossref_primary_10_1016_j_apsusc_2023_158625 crossref_primary_10_1039_D3CC02594B crossref_primary_10_1016_j_apsusc_2024_161439 crossref_primary_10_1016_j_ijhydene_2025_02_057 crossref_primary_10_1016_j_mtsust_2024_101045 crossref_primary_10_1007_s10311_023_01655_6 crossref_primary_10_1016_j_cej_2024_150048 crossref_primary_10_1016_j_fuel_2024_133219 crossref_primary_10_1016_j_apsusc_2023_159130 crossref_primary_10_1007_s12678_023_00855_6 crossref_primary_10_1016_j_matchemphys_2024_128914 crossref_primary_10_1016_j_scp_2025_101951 crossref_primary_10_1016_j_colsurfa_2024_135385 crossref_primary_10_1016_j_jcis_2024_07_109 crossref_primary_10_1016_j_seppur_2024_129422 crossref_primary_10_1016_j_jcis_2024_01_195 crossref_primary_10_1016_j_jcis_2024_04_115 crossref_primary_10_1021_acsanm_3c05958 crossref_primary_10_1039_D4CP03539A crossref_primary_10_1016_j_ijhydene_2024_04_265 crossref_primary_10_1002_cphc_202400473 crossref_primary_10_1016_j_mcat_2025_114991 crossref_primary_10_1016_j_seppur_2023_125129 |
Cites_doi | 10.1016/j.apsusc.2021.149062 10.1002/cplu.202100356 10.1007/s11426-020-9784-4 10.1002/jcc.20495 10.1039/C1CP22271F 10.1039/C9CS00159J 10.1007/s11426-021-1073-5 10.1063/1.1316015 10.1063/1.447334 10.1016/j.molcata.2011.05.007 10.1016/j.apcatb.2021.120054 10.1016/j.jece.2021.106770 10.1063/1.1749713 10.1021/ja203468v 10.1039/C5CS00108K 10.1021/acs.jpcc.8b10367 10.1016/j.apsusc.2021.149208 10.1007/BF00549096 10.1016/j.ijhydene.2011.10.004 10.1021/acsami.0c21429 10.1103/PhysRevB.66.155125 10.1126/science.aad4998 10.1039/C8TA00875B 10.1021/jacs.8b11350 10.1002/anie.200301553 10.1021/acs.chemrev.9b00659 10.1021/acs.jpcc.1c06464 10.1039/C7CY00760D 10.1002/anie.202110879 10.1016/j.ijhydene.2022.06.315 10.1016/0009-2614(77)80574-5 10.1103/PhysRevLett.77.3865 10.1039/D0CP03559A 10.1021/acs.jpclett.1c00855 10.1126/science.aar6611 10.1021/acs.chemrev.0c00576 10.1039/D0CP00224K 10.1039/C9SC05236D 10.1021/cr8003696 10.1039/D0TA11209G 10.1039/C8TA07683A 10.1021/cs500668k 10.1021/jp952713n 10.1039/P29930000799 10.1021/jacs.9b07712 10.1021/acscentsci.0c01466 10.1016/j.molstruc.2018.04.096 10.1021/acs.jpcc.9b08827 10.1021/jacs.9b13349 10.1002/anie.202002337 10.1016/j.ijhydene.2019.12.021 10.1021/acscatal.9b01318 10.1021/jp047349j 10.1002/smll.202102396 10.1016/j.apsusc.2021.150567 10.1021/acscatal.7b01069 10.1016/S0013-4686(00)00678-2 10.1039/C5CY01487E 10.1103/PhysRevA.31.1695 |
ContentType | Journal Article |
Copyright | 2022 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2022 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2022.11.180 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 5975 |
ExternalDocumentID | 10_1016_j_ijhydene_2022_11_180 S036031992205474X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW SSH T9H WUQ |
ID | FETCH-LOGICAL-c312t-56618cb5eedefaa1d284ca8b5daa155f19162a69c5a40c99c3f136f60a90fc463 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Tue Jul 01 02:02:29 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Fri Feb 23 02:38:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Biatom catalysts Electrocatalysis Nitric oxide reduction Density functional theory Ammonia synthesis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-56618cb5eedefaa1d284ca8b5daa155f19162a69c5a40c99c3f136f60a90fc463 |
ORCID | 0000-0002-7677-3427 0000-0001-9909-1018 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2022_11_180 crossref_citationtrail_10_1016_j_ijhydene_2022_11_180 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2022_11_180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-19 |
PublicationDateYYYYMMDD | 2023-02-19 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, Li, Yu (bib54) 2020; 22 Shi, Wang, Yang, Chen, Meng, Yu, Zhang (bib20) 2021; 64 Kaiser, Chen, Akl, Mitchell, Perez-Ramirez (bib21) 2020; 120 Guo, Gu, Lin, Zhang, Chen, Huang (bib31) 2020; 142 Xia, Zhang, Ran, Jaroniec, Qiao (bib24) 2021; 7 Qing, Ghazfar, Jackowski, Habibzadeh, Ashtiani, Chen, Smith, Hamann (bib5) 2020; 120 Mou, Long, Frauenheim, Xiao (bib7) 2021; 86 Wu, Wang, Shen, Huang, Dai, Ma (bib29) 2021; 9 Zhang, Liang, Wang, Mou, Lin, Yue, Li, Liu, Luo, Li, Tang, Liu, Gao, Alshehri, Guo, Ma, Sun (bib55) 2021; 60 Wu, Li, Yu (bib6) 2021; 13 Wang, Zhao, Wang, Cabrera, Chen (bib25) 2018; 6 Yu (bib46) 2019; 123 Liu, Wang, Zhang (bib14) 2020; 63 Guan, Liu, Lv, Wang, Che (bib11) 2021; 9 Chen, Yan, Jiang (bib30) 2019; 3 Delley (bib36) 2000; 113 Shang, Liu (bib59) 2011; 133 Liu, Ma, Li, Wang, Xiao, Li (bib60) 2018; 9 Sun, Wang, Zhao, Dang (bib57) 2020; 22 Tang, Zhang, Dong (bib12) 2016; 6 Long, Chen, Zhang, Guo, Fu, Deng, Xiao (bib15) 2020; 59 Kundu, Chakraborty (bib18) 2022; 47 Yu (bib43) 2021; 546 Jiang, Meng, Li, Wang, Wu (bib33) 2021; 547 Halgren, Lipscomb (bib48) 1977; 49 Schlogl (bib1) 2003; 42 Rosca, Duca, De Groot, Koper (bib13) 2009; 109 Guo, Zhang, Liang, Zou, Xu (bib3) 2019; 48 Skulason, Bligaard, Gudmundsdottir, Studt, Rossmeisl, Abild-Pedersen, Vegge, Jonsson, Norskov (bib58) 2012; 14 Niu, Zhang, Wang, Wan, Kuai, Guo (bib27) 2021; 17 Katsounaros, Figueiredo, Chen, Calle-Vallejo, Koper (bib56) 2017; 7 Wu, Yu (bib23) 2021; 125 Hong, Wang, Li (bib9) 2017; 7 Grimme (bib38) 2006; 27 Zhang, Chen, Zhang, Zhou (bib41) 2018; 6 Hirshfeld (bib42) 1977; 44 Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (bib4) 2018; 360 Farberow, Dumesic, Mavrikakis (bib61) 2014; 4 Benaka, Naveen, S A, Lokanath, Raghu, Daraghmeh, Reddy, Warad (bib34) 2018; 1167 Hoover (bib45) 1985; 31 Andana, Rappe, Gao, Szanyi, Pereira-Hernandez, Wang (bib10) 2021; 291 Delley (bib39) 2002; 66 Nose (bib44) 1984; 81 Yu, Zhao, Sun, Bergara, Lin, Zhang, Xu, Zhang, Yang, Liu (bib32) 2019; 141 Norskov, Rossmeisl, Logadottir, Lindqvist, Kitchin, Bligaard, Jonsson (bib47) 2004; 108 De Vooys, Koper, Van Santen, Van Veen (bib19) 2001; 46 Ouyang, Shi, Bai, Li, Wang (bib28) 2020; 11 Hodala, Moon, Reddy, Reddy, Kumar, Ahamed, Raghu (bib17) 2021; 46 Chang, Zhang, Chen, Lu, Cheng (bib49) 2019; 9 Delley (bib35) 1996; 100 Klamt, Schuurmann (bib51) 1993; 5 Wynne-Jones, Eyring (bib52) 1935; 3 Seh, Kibsgaard, Dickens, Chorkendorff, Norskov, Jaramillo (bib16) 2017; 355 Jiang, Guo, Li, Zhu, Zhao, Lu, Shan (bib53) 2011; 344 Wu, Wei, Lv, Wang, Huang, Dai (bib26) 2019; 123 Perdew, Burke, Ernzerhof (bib37) 1996; 77 Wu, Li, Yu (bib22) 2021; 12 Beale, Gao, Lezcano-Gonzalez, Peden, Szanyi (bib8) 2015; 44 Lan, Irvine, Tao (bib2) 2012; 37 Wu, Wen, Yu (bib40) 2021; 565 Wang, Tang, Zhou (bib50) 2019; 141 Grimme (10.1016/j.ijhydene.2022.11.180_bib38) 2006; 27 Wu (10.1016/j.ijhydene.2022.11.180_bib23) 2021; 125 Wu (10.1016/j.ijhydene.2022.11.180_bib26) 2019; 123 Lan (10.1016/j.ijhydene.2022.11.180_bib2) 2012; 37 Katsounaros (10.1016/j.ijhydene.2022.11.180_bib56) 2017; 7 Delley (10.1016/j.ijhydene.2022.11.180_bib39) 2002; 66 Mou (10.1016/j.ijhydene.2022.11.180_bib7) 2021; 86 Guan (10.1016/j.ijhydene.2022.11.180_bib11) 2021; 9 Farberow (10.1016/j.ijhydene.2022.11.180_bib61) 2014; 4 Jiang (10.1016/j.ijhydene.2022.11.180_bib53) 2011; 344 Ouyang (10.1016/j.ijhydene.2022.11.180_bib28) 2020; 11 Chen (10.1016/j.ijhydene.2022.11.180_bib4) 2018; 360 Liu (10.1016/j.ijhydene.2022.11.180_bib14) 2020; 63 Yu (10.1016/j.ijhydene.2022.11.180_bib32) 2019; 141 Niu (10.1016/j.ijhydene.2022.11.180_bib27) 2021; 17 Wu (10.1016/j.ijhydene.2022.11.180_bib29) 2021; 9 Wu (10.1016/j.ijhydene.2022.11.180_bib22) 2021; 12 Hoover (10.1016/j.ijhydene.2022.11.180_bib45) 1985; 31 Beale (10.1016/j.ijhydene.2022.11.180_bib8) 2015; 44 Shang (10.1016/j.ijhydene.2022.11.180_bib59) 2011; 133 Kundu (10.1016/j.ijhydene.2022.11.180_bib18) 2022; 47 Xia (10.1016/j.ijhydene.2022.11.180_bib24) 2021; 7 Tang (10.1016/j.ijhydene.2022.11.180_bib12) 2016; 6 Wu (10.1016/j.ijhydene.2022.11.180_bib54) 2020; 22 Wang (10.1016/j.ijhydene.2022.11.180_bib25) 2018; 6 Perdew (10.1016/j.ijhydene.2022.11.180_bib37) 1996; 77 Hong (10.1016/j.ijhydene.2022.11.180_bib9) 2017; 7 Hodala (10.1016/j.ijhydene.2022.11.180_bib17) 2021; 46 Zhang (10.1016/j.ijhydene.2022.11.180_bib55) 2021; 60 Delley (10.1016/j.ijhydene.2022.11.180_bib36) 2000; 113 Jiang (10.1016/j.ijhydene.2022.11.180_bib33) 2021; 547 Guo (10.1016/j.ijhydene.2022.11.180_bib3) 2019; 48 Wu (10.1016/j.ijhydene.2022.11.180_bib6) 2021; 13 Nose (10.1016/j.ijhydene.2022.11.180_bib44) 1984; 81 Chang (10.1016/j.ijhydene.2022.11.180_bib49) 2019; 9 Halgren (10.1016/j.ijhydene.2022.11.180_bib48) 1977; 49 Wynne-Jones (10.1016/j.ijhydene.2022.11.180_bib52) 1935; 3 Klamt (10.1016/j.ijhydene.2022.11.180_bib51) 1993; 5 Rosca (10.1016/j.ijhydene.2022.11.180_bib13) 2009; 109 Guo (10.1016/j.ijhydene.2022.11.180_bib31) 2020; 142 Hirshfeld (10.1016/j.ijhydene.2022.11.180_bib42) 1977; 44 Kaiser (10.1016/j.ijhydene.2022.11.180_bib21) 2020; 120 Delley (10.1016/j.ijhydene.2022.11.180_bib35) 1996; 100 Andana (10.1016/j.ijhydene.2022.11.180_bib10) 2021; 291 Norskov (10.1016/j.ijhydene.2022.11.180_bib47) 2004; 108 Schlogl (10.1016/j.ijhydene.2022.11.180_bib1) 2003; 42 Long (10.1016/j.ijhydene.2022.11.180_bib15) 2020; 59 Wang (10.1016/j.ijhydene.2022.11.180_bib50) 2019; 141 Benaka (10.1016/j.ijhydene.2022.11.180_bib34) 2018; 1167 Yu (10.1016/j.ijhydene.2022.11.180_bib46) 2019; 123 Qing (10.1016/j.ijhydene.2022.11.180_bib5) 2020; 120 Sun (10.1016/j.ijhydene.2022.11.180_bib57) 2020; 22 De Vooys (10.1016/j.ijhydene.2022.11.180_bib19) 2001; 46 Wu (10.1016/j.ijhydene.2022.11.180_bib40) 2021; 565 Yu (10.1016/j.ijhydene.2022.11.180_bib43) 2021; 546 Liu (10.1016/j.ijhydene.2022.11.180_bib60) 2018; 9 Shi (10.1016/j.ijhydene.2022.11.180_bib20) 2021; 64 Seh (10.1016/j.ijhydene.2022.11.180_bib16) 2017; 355 Chen (10.1016/j.ijhydene.2022.11.180_bib30) 2019; 3 Skulason (10.1016/j.ijhydene.2022.11.180_bib58) 2012; 14 Zhang (10.1016/j.ijhydene.2022.11.180_bib41) 2018; 6 |
References_xml | – volume: 9 start-page: 8197 year: 2019 end-page: 8207 ident: bib49 article-title: Constant electrode potential quantum mechanical study of CO publication-title: ACS Catal – volume: 37 start-page: 1482 year: 2012 end-page: 1494 ident: bib2 article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials publication-title: Int J Hydrogen Energy – volume: 123 start-page: 31043 year: 2019 end-page: 31049 ident: bib26 article-title: Cu@g-C publication-title: J Phys Chem C – volume: 44 start-page: 7371 year: 2015 end-page: 7405 ident: bib8 article-title: Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials publication-title: Chem Soc Rev – volume: 291 year: 2021 ident: bib10 article-title: Recent advances in hybrid metal oxide-zeolite catalysts for low-temperature selective catalytic reduction of NOx by ammonia publication-title: Appl Catal B Environ – volume: 4 start-page: 3307 year: 2014 end-page: 3319 ident: bib61 article-title: Density functional theory calculations and analysis of reaction pathways for reduction of nitric oxide by hydrogen on Pt(111) publication-title: ACS Catal – volume: 44 start-page: 129 year: 1977 end-page: 138 ident: bib42 article-title: Bonded-atom fragments for describing molecular charge-densities publication-title: Theor Chim Acta – volume: 47 start-page: 30567 year: 2022 end-page: 30579 ident: bib18 article-title: Yttrium doped covalent triazine frameworks as promising reversible hydrogen storage material: DFT investigations publication-title: Int J Hydrogen Energy – volume: 46 start-page: 3289 year: 2021 end-page: 3301 ident: bib17 article-title: Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis publication-title: Int J Hydrogen Energy – volume: 565 year: 2021 ident: bib40 article-title: Selective transformation of aqueous methanol to value-added formic acid and hydrogen on bifunctional Mo publication-title: Appl Surf Sci – volume: 344 start-page: 99 year: 2011 end-page: 110 ident: bib53 article-title: Methanol dehydrogenation on Rh(111): a density functional and microkinetic modeling study publication-title: J Mol Catal Chem – volume: 3 year: 2019 ident: bib30 article-title: Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction? publication-title: Samll Methods – volume: 9 start-page: 5434 year: 2021 end-page: 5441 ident: bib29 article-title: Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst publication-title: J Mater Chem – volume: 7 start-page: 39 year: 2021 end-page: 54 ident: bib24 article-title: Single-atom photocatalysts for emerging reactions publication-title: ACS Cent Sci – volume: 141 start-page: 1599 year: 2019 end-page: 1605 ident: bib32 article-title: Two-dimensional PC publication-title: J Am Chem Soc – volume: 113 start-page: 7756 year: 2000 end-page: 7764 ident: bib36 article-title: From molecules to solids with the DMol publication-title: J Chem Phys – volume: 120 start-page: 5437 year: 2020 end-page: 5516 ident: bib5 article-title: Recent advances and challenges of electrocatalytic N publication-title: Chem Rev – volume: 7 start-page: 3440 year: 2017 end-page: 3452 ident: bib9 article-title: Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview publication-title: Catal Sci Technol – volume: 125 start-page: 23699 year: 2021 end-page: 23708 ident: bib23 article-title: Electric-field controllable metal-free materials as efficient electrocatalysts for nitrogen fixation publication-title: J Phys Chem C – volume: 547 year: 2021 ident: bib33 article-title: Theoretical insights into bimetallic atoms supported on PC publication-title: Appl Surf Sci – volume: 100 start-page: 6107 year: 1996 end-page: 6110 ident: bib35 article-title: Fast calculation of electrostatics in crystals and large molecules publication-title: J Phys Chem A – volume: 14 start-page: 1235 year: 2012 end-page: 1245 ident: bib58 article-title: A theoretical evaluation of possible transition metal electro-catalysts for N publication-title: Phys Chem Chem Phys – volume: 12 start-page: 3968 year: 2021 end-page: 3975 ident: bib22 article-title: Theoretical exploration of electrochemical nitrate reduction reaction activities on transition-metal-doped h-BP publication-title: J Phys Chem Lett – volume: 6 start-page: 7547 year: 2018 end-page: 7556 ident: bib25 article-title: A Co-N publication-title: J Mater Chem – volume: 9 year: 2018 ident: bib60 article-title: Heterogeneous Fe publication-title: Nat Commun – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib37 article-title: Generalized gradient approximation made simple publication-title: Phys Rev Lett – volume: 7 start-page: 4660 year: 2017 end-page: 4667 ident: bib56 article-title: Structure- and coverage-sensitive mechanism of NO reduction on platinum electrodes publication-title: ACS Catal – volume: 48 start-page: 5658 year: 2019 end-page: 5716 ident: bib3 article-title: Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design publication-title: Chem Soc Rev – volume: 120 start-page: 11703 year: 2020 end-page: 11809 ident: bib21 article-title: Single-atom catalysts across the periodic table publication-title: Chem Rev – volume: 59 start-page: 9711 year: 2020 end-page: 9718 ident: bib15 article-title: Direct electrochemical ammonia synthesis from nitric oxide publication-title: Angew Chem Int Ed – volume: 17 year: 2021 ident: bib27 article-title: A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH publication-title: Small – volume: 13 start-page: 10026 year: 2021 end-page: 10036 ident: bib6 article-title: Single Nb or W atom-embedded BP monolayers as highly selective and stable electrocatalysts for nitrogen fixation with low-onset potentials publication-title: ACS Appl Mater Interfaces – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: bib47 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J Phys Chem B – volume: 60 start-page: 25263 year: 2021 end-page: 25268 ident: bib55 article-title: High-performance electrochemical NO reduction into NH publication-title: Angew Chem Int Ed – volume: 355 start-page: aad4998 year: 2017 ident: bib16 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 86 start-page: 1211 year: 2021 end-page: 1224 ident: bib7 article-title: Advances in electrochemical ammonia synthesis beyond the use of nitrogen gas as a source publication-title: ChemPlusChem – volume: 22 start-page: 22627 year: 2020 end-page: 22634 ident: bib57 article-title: Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH publication-title: Phys Chem Chem Phys – volume: 123 start-page: 205 year: 2019 end-page: 213 ident: bib46 article-title: Effect of defects and solvents on silicene cathode of nonaqueous lithium-oxygen batteries: a theoretical investigation publication-title: J Phys Chem C – volume: 46 start-page: 923 year: 2001 end-page: 930 ident: bib19 article-title: Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode publication-title: Electrochim Acta – volume: 22 start-page: 7633 year: 2020 end-page: 7642 ident: bib54 article-title: Stabilities of group-III phosphide (MP, M = B, Al, Ga and In) monolayers in oxygen and water environments publication-title: Phys Chem Chem Phys – volume: 9 year: 2021 ident: bib11 article-title: Review on the selective catalytic reduction of NOx with H publication-title: J Environ Chem Eng – volume: 1167 start-page: 215 year: 2018 end-page: 226 ident: bib34 article-title: Synthesis, structural exploration, spectral and combinatorial analysis of racemic-3-isobutyl-5-phenyl-5-(pyridin-4-yl)imida-zolidine-2,4-dione: comparison between experimental and DFT calculations publication-title: J Mol Struct – volume: 6 start-page: 1248 year: 2016 end-page: 1264 ident: bib12 article-title: Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH publication-title: Catal Sci Technol – volume: 142 start-page: 5709 year: 2020 end-page: 5721 ident: bib31 article-title: Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts publication-title: J Am Chem Soc – volume: 3 start-page: 492 year: 1935 end-page: 502 ident: bib52 article-title: The absolute rate of reactions in condensed phases publication-title: J Chem Phys – volume: 133 start-page: 9938 year: 2011 end-page: 9947 ident: bib59 article-title: Origin and activity of gold nanoparticles as aerobic oxidation catalysts in aqueous solution publication-title: J Am Chem Soc – volume: 63 start-page: 1173 year: 2020 end-page: 1174 ident: bib14 article-title: Synthesis of ammonia via an electroreduction removal of NO from exhausted gas: an upgrading to N publication-title: Sci China Chem – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: bib45 article-title: Canonical dynamics - equilibrium phase-space distributions publication-title: Phys Rev – volume: 546 year: 2021 ident: bib43 article-title: High storage capacity and small volume change of potassium-intercalation into novel vanadium oxychalcogenide monolayers V publication-title: Appl Surf Sci – volume: 49 start-page: 225 year: 1977 end-page: 232 ident: bib48 article-title: Synchronous-transit method for determining reaction pathways and locating molecular transition-states publication-title: Chem Phys Lett – volume: 109 start-page: 2209 year: 2009 end-page: 2244 ident: bib13 article-title: Nitrogen cycle electrocatalysis publication-title: Chem Rev – volume: 66 start-page: 9 year: 2002 ident: bib39 article-title: Hardness conserving semilocal pseudopotentials publication-title: Phys Rev B – volume: 11 start-page: 1807 year: 2020 end-page: 1813 ident: bib28 article-title: Breaking scaling relations for efficient CO publication-title: Chem Sci – volume: 42 start-page: 2004 year: 2003 end-page: 2008 ident: bib1 article-title: Catalytic synthesis of ammonia - a "never-ending story publication-title: Angew Chem Int Ed – volume: 64 start-page: 1493 year: 2021 end-page: 1497 ident: bib20 article-title: Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping publication-title: Sci China Chem – volume: 6 start-page: 18599 year: 2018 end-page: 18604 ident: bib41 article-title: Double-atom catalysts: transition metal dimer-anchored C publication-title: J Mater Chem – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: bib44 article-title: A unified formulation of the constant temperature molecular-dynamics methods publication-title: J Chem Phys – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: bib38 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J Comput Chem – volume: 5 start-page: 799 year: 1993 end-page: 805 ident: bib51 article-title: Cosmo - a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient publication-title: J Chem Soc, Perkin Trans 2 – volume: 360 start-page: aar6611 year: 2018 ident: bib4 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science – volume: 141 start-page: 14115 year: 2019 end-page: 14119 ident: bib50 article-title: Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts publication-title: J Am Chem Soc – volume: 546 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib43 article-title: High storage capacity and small volume change of potassium-intercalation into novel vanadium oxychalcogenide monolayers V2S2O, V2Se2O and V2Te2O: an ab initio DFT investigation publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.149062 – volume: 86 start-page: 1211 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib7 article-title: Advances in electrochemical ammonia synthesis beyond the use of nitrogen gas as a source publication-title: ChemPlusChem doi: 10.1002/cplu.202100356 – volume: 63 start-page: 1173 year: 2020 ident: 10.1016/j.ijhydene.2022.11.180_bib14 article-title: Synthesis of ammonia via an electroreduction removal of NO from exhausted gas: an upgrading to N2 fixation publication-title: Sci China Chem doi: 10.1007/s11426-020-9784-4 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.ijhydene.2022.11.180_bib38 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J Comput Chem doi: 10.1002/jcc.20495 – volume: 14 start-page: 1235 year: 2012 ident: 10.1016/j.ijhydene.2022.11.180_bib58 article-title: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction publication-title: Phys Chem Chem Phys doi: 10.1039/C1CP22271F – volume: 48 start-page: 5658 year: 2019 ident: 10.1016/j.ijhydene.2022.11.180_bib3 article-title: Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design publication-title: Chem Soc Rev doi: 10.1039/C9CS00159J – volume: 64 start-page: 1493 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib20 article-title: Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping publication-title: Sci China Chem doi: 10.1007/s11426-021-1073-5 – volume: 113 start-page: 7756 year: 2000 ident: 10.1016/j.ijhydene.2022.11.180_bib36 article-title: From molecules to solids with the DMol3 approach publication-title: J Chem Phys doi: 10.1063/1.1316015 – volume: 81 start-page: 511 year: 1984 ident: 10.1016/j.ijhydene.2022.11.180_bib44 article-title: A unified formulation of the constant temperature molecular-dynamics methods publication-title: J Chem Phys doi: 10.1063/1.447334 – volume: 344 start-page: 99 year: 2011 ident: 10.1016/j.ijhydene.2022.11.180_bib53 article-title: Methanol dehydrogenation on Rh(111): a density functional and microkinetic modeling study publication-title: J Mol Catal Chem doi: 10.1016/j.molcata.2011.05.007 – volume: 291 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib10 article-title: Recent advances in hybrid metal oxide-zeolite catalysts for low-temperature selective catalytic reduction of NOx by ammonia publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2021.120054 – volume: 9 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib11 article-title: Review on the selective catalytic reduction of NOx with H2 by using novel catalysts publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2021.106770 – volume: 3 start-page: 492 year: 1935 ident: 10.1016/j.ijhydene.2022.11.180_bib52 article-title: The absolute rate of reactions in condensed phases publication-title: J Chem Phys doi: 10.1063/1.1749713 – volume: 133 start-page: 9938 year: 2011 ident: 10.1016/j.ijhydene.2022.11.180_bib59 article-title: Origin and activity of gold nanoparticles as aerobic oxidation catalysts in aqueous solution publication-title: J Am Chem Soc doi: 10.1021/ja203468v – volume: 44 start-page: 7371 year: 2015 ident: 10.1016/j.ijhydene.2022.11.180_bib8 article-title: Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials publication-title: Chem Soc Rev doi: 10.1039/C5CS00108K – volume: 123 start-page: 205 year: 2019 ident: 10.1016/j.ijhydene.2022.11.180_bib46 article-title: Effect of defects and solvents on silicene cathode of nonaqueous lithium-oxygen batteries: a theoretical investigation publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.8b10367 – volume: 547 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib33 article-title: Theoretical insights into bimetallic atoms supported on PC6 as highly efficient electrocatalysts for N2 electroreduction to NH3 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.149208 – volume: 44 start-page: 129 year: 1977 ident: 10.1016/j.ijhydene.2022.11.180_bib42 article-title: Bonded-atom fragments for describing molecular charge-densities publication-title: Theor Chim Acta doi: 10.1007/BF00549096 – volume: 37 start-page: 1482 year: 2012 ident: 10.1016/j.ijhydene.2022.11.180_bib2 article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.10.004 – volume: 13 start-page: 10026 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib6 article-title: Single Nb or W atom-embedded BP monolayers as highly selective and stable electrocatalysts for nitrogen fixation with low-onset potentials publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c21429 – volume: 66 start-page: 9 year: 2002 ident: 10.1016/j.ijhydene.2022.11.180_bib39 article-title: Hardness conserving semilocal pseudopotentials publication-title: Phys Rev B doi: 10.1103/PhysRevB.66.155125 – volume: 9 year: 2018 ident: 10.1016/j.ijhydene.2022.11.180_bib60 article-title: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism publication-title: Nat Commun – volume: 355 start-page: aad4998 year: 2017 ident: 10.1016/j.ijhydene.2022.11.180_bib16 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 6 start-page: 7547 year: 2018 ident: 10.1016/j.ijhydene.2022.11.180_bib25 article-title: A Co-N4 moiety embedded into graphene as an efficient single-atom-catalyst for NO electrochemical reduction: a computational study publication-title: J Mater Chem doi: 10.1039/C8TA00875B – volume: 141 start-page: 1599 year: 2019 ident: 10.1016/j.ijhydene.2022.11.180_bib32 article-title: Two-dimensional PC6 with direct band gap and anisotropic carrier mobility publication-title: J Am Chem Soc doi: 10.1021/jacs.8b11350 – volume: 42 start-page: 2004 year: 2003 ident: 10.1016/j.ijhydene.2022.11.180_bib1 article-title: Catalytic synthesis of ammonia - a "never-ending story publication-title: Angew Chem Int Ed doi: 10.1002/anie.200301553 – volume: 120 start-page: 5437 year: 2020 ident: 10.1016/j.ijhydene.2022.11.180_bib5 article-title: Recent advances and challenges of electrocatalytic N2 reduction to ammonia publication-title: Chem Rev doi: 10.1021/acs.chemrev.9b00659 – volume: 125 start-page: 23699 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib23 article-title: Electric-field controllable metal-free materials as efficient electrocatalysts for nitrogen fixation publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.1c06464 – volume: 7 start-page: 3440 year: 2017 ident: 10.1016/j.ijhydene.2022.11.180_bib9 article-title: Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview publication-title: Catal Sci Technol doi: 10.1039/C7CY00760D – volume: 60 start-page: 25263 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib55 article-title: High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet publication-title: Angew Chem Int Ed doi: 10.1002/anie.202110879 – volume: 47 start-page: 30567 year: 2022 ident: 10.1016/j.ijhydene.2022.11.180_bib18 article-title: Yttrium doped covalent triazine frameworks as promising reversible hydrogen storage material: DFT investigations publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.315 – volume: 49 start-page: 225 year: 1977 ident: 10.1016/j.ijhydene.2022.11.180_bib48 article-title: Synchronous-transit method for determining reaction pathways and locating molecular transition-states publication-title: Chem Phys Lett doi: 10.1016/0009-2614(77)80574-5 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.ijhydene.2022.11.180_bib37 article-title: Generalized gradient approximation made simple publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.77.3865 – volume: 22 start-page: 22627 year: 2020 ident: 10.1016/j.ijhydene.2022.11.180_bib57 article-title: Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH3 fabrication via NO reduction publication-title: Phys Chem Chem Phys doi: 10.1039/D0CP03559A – volume: 12 start-page: 3968 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib22 article-title: Theoretical exploration of electrochemical nitrate reduction reaction activities on transition-metal-doped h-BP publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.1c00855 – volume: 360 start-page: aar6611 year: 2018 ident: 10.1016/j.ijhydene.2022.11.180_bib4 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science doi: 10.1126/science.aar6611 – volume: 120 start-page: 11703 year: 2020 ident: 10.1016/j.ijhydene.2022.11.180_bib21 article-title: Single-atom catalysts across the periodic table publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c00576 – volume: 22 start-page: 7633 year: 2020 ident: 10.1016/j.ijhydene.2022.11.180_bib54 article-title: Stabilities of group-III phosphide (MP, M = B, Al, Ga and In) monolayers in oxygen and water environments publication-title: Phys Chem Chem Phys doi: 10.1039/D0CP00224K – volume: 11 start-page: 1807 year: 2020 ident: 10.1016/j.ijhydene.2022.11.180_bib28 article-title: Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts publication-title: Chem Sci doi: 10.1039/C9SC05236D – volume: 109 start-page: 2209 year: 2009 ident: 10.1016/j.ijhydene.2022.11.180_bib13 article-title: Nitrogen cycle electrocatalysis publication-title: Chem Rev doi: 10.1021/cr8003696 – volume: 9 start-page: 5434 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib29 article-title: Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst publication-title: J Mater Chem doi: 10.1039/D0TA11209G – volume: 6 start-page: 18599 year: 2018 ident: 10.1016/j.ijhydene.2022.11.180_bib41 article-title: Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts publication-title: J Mater Chem doi: 10.1039/C8TA07683A – volume: 4 start-page: 3307 year: 2014 ident: 10.1016/j.ijhydene.2022.11.180_bib61 article-title: Density functional theory calculations and analysis of reaction pathways for reduction of nitric oxide by hydrogen on Pt(111) publication-title: ACS Catal doi: 10.1021/cs500668k – volume: 100 start-page: 6107 year: 1996 ident: 10.1016/j.ijhydene.2022.11.180_bib35 article-title: Fast calculation of electrostatics in crystals and large molecules publication-title: J Phys Chem A doi: 10.1021/jp952713n – volume: 5 start-page: 799 year: 1993 ident: 10.1016/j.ijhydene.2022.11.180_bib51 article-title: Cosmo - a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient publication-title: J Chem Soc, Perkin Trans 2 doi: 10.1039/P29930000799 – volume: 141 start-page: 14115 year: 2019 ident: 10.1016/j.ijhydene.2022.11.180_bib50 article-title: Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts publication-title: J Am Chem Soc doi: 10.1021/jacs.9b07712 – volume: 7 start-page: 39 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib24 article-title: Single-atom photocatalysts for emerging reactions publication-title: ACS Cent Sci doi: 10.1021/acscentsci.0c01466 – volume: 1167 start-page: 215 year: 2018 ident: 10.1016/j.ijhydene.2022.11.180_bib34 article-title: Synthesis, structural exploration, spectral and combinatorial analysis of racemic-3-isobutyl-5-phenyl-5-(pyridin-4-yl)imida-zolidine-2,4-dione: comparison between experimental and DFT calculations publication-title: J Mol Struct doi: 10.1016/j.molstruc.2018.04.096 – volume: 123 start-page: 31043 year: 2019 ident: 10.1016/j.ijhydene.2022.11.180_bib26 article-title: Cu@g-C3N4: an efficient single-atom electrocatalyst for NO electrochemical reduction with suppressed hydrogen evolution publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.9b08827 – volume: 142 start-page: 5709 year: 2020 ident: 10.1016/j.ijhydene.2022.11.180_bib31 article-title: Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts publication-title: J Am Chem Soc doi: 10.1021/jacs.9b13349 – volume: 59 start-page: 9711 year: 2020 ident: 10.1016/j.ijhydene.2022.11.180_bib15 article-title: Direct electrochemical ammonia synthesis from nitric oxide publication-title: Angew Chem Int Ed doi: 10.1002/anie.202002337 – volume: 46 start-page: 3289 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib17 article-title: Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.12.021 – volume: 9 start-page: 8197 year: 2019 ident: 10.1016/j.ijhydene.2022.11.180_bib49 article-title: Constant electrode potential quantum mechanical study of CO2 electrochemical reduction catalyzed by N-doped graphene publication-title: ACS Catal doi: 10.1021/acscatal.9b01318 – volume: 108 start-page: 17886 year: 2004 ident: 10.1016/j.ijhydene.2022.11.180_bib47 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J Phys Chem B doi: 10.1021/jp047349j – volume: 17 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib27 article-title: A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH3 conversion publication-title: Small doi: 10.1002/smll.202102396 – volume: 565 year: 2021 ident: 10.1016/j.ijhydene.2022.11.180_bib40 article-title: Selective transformation of aqueous methanol to value-added formic acid and hydrogen on bifunctional Mo2P monolayers in fuel cells publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.150567 – volume: 7 start-page: 4660 year: 2017 ident: 10.1016/j.ijhydene.2022.11.180_bib56 article-title: Structure- and coverage-sensitive mechanism of NO reduction on platinum electrodes publication-title: ACS Catal doi: 10.1021/acscatal.7b01069 – volume: 3 year: 2019 ident: 10.1016/j.ijhydene.2022.11.180_bib30 article-title: Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction? publication-title: Samll Methods – volume: 46 start-page: 923 year: 2001 ident: 10.1016/j.ijhydene.2022.11.180_bib19 article-title: Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode publication-title: Electrochim Acta doi: 10.1016/S0013-4686(00)00678-2 – volume: 6 start-page: 1248 year: 2016 ident: 10.1016/j.ijhydene.2022.11.180_bib12 article-title: Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3 publication-title: Catal Sci Technol doi: 10.1039/C5CY01487E – volume: 31 start-page: 1695 year: 1985 ident: 10.1016/j.ijhydene.2022.11.180_bib45 article-title: Canonical dynamics - equilibrium phase-space distributions publication-title: Phys Rev doi: 10.1103/PhysRevA.31.1695 |
SSID | ssj0017049 |
Score | 2.5876935 |
Snippet | An electrochemical nitric oxide (NO) reduction reaction (NORR) can not only eliminate the harmful pollutant but also offer a green approach for ammonia... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5961 |
SubjectTerms | Ammonia synthesis Biatom catalysts Density functional theory Electrocatalysis Nitric oxide reduction |
Title | Efficient electrocatalysts refined from metal-dimer-anchored PC6 monolayers for NO reduction to ammonia |
URI | https://dx.doi.org/10.1016/j.ijhydene.2022.11.180 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEA5iL-2h9EntQ3LoNbpxk6w5iii2BVtoBW9LXltX6gPdHrz0t3ey7oqFQg89bjYTlsnszJcw8w1C96GmxgWGkzAJAsKUcEQlPCARgHcVtBXjOs-2GIrBiD2O-biCumUtjE-rLHz_1qfn3roYaRbabC7TtPkKvteX4EhfKsoiNvYV7CzyVt742qV50KiAwDCZ-Nl7VcLTRjqdbOD39nSZrRZ4jwb19JC_Bai9oNM_QccFWsSd7Qedooqbn6GjPQ7Bc_Tey0kgIHbgoqVNfiOzWWdrDIvDRIt9DQmeORgmNp25FYGtnixW8OalKzAYIpxvPfTGgGDx8Bnk7JZUFmcLrLylpuoCjfq9t-6AFN0TiAlpKyOA02jbaA5B0CVKUQuByKi25hYeOE_goCZaSkjDFQuMlCZMaCgSESgZJIaJ8BJV54u5u0IY1lEOghhPmGZMWy2YoVY6G4ZSW65qiJcqi01BLe47XHzEZQ7ZNC5VHXtVw7kjBlXXUHMnt9ySa_wpIcsdiX-YSQwR4A_Z63_I3qBD32fep2tTeYuq2erT3QEayXQ9N7c6Oug8PA2G32ov4lI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FcgAOqLxESgt7gOMmXnt3kz30ULWNUloCEq2Um9mXqSOSVImrKhf-FH-ws866ChJSD6hHrz0r69vxNzPWPAA-ZoZZn1hBsyJJKNfSU12IhPbQeddJX3Nh6myLkRxe8M9jMW7Bn6YWJqRVRu5fc3rN1nGlG9HsXpVl9ztybyjBUaFUlPf4OGZWnvrVDcZty_2TIzzkT2k6OD4_HNI4WoDajKUVRSeG9a0RaCF8oTVzyNJW941weCFEgVGMTLVUVmieWKVsVrBMFjLRKikslxnu-wgec6SLMDah8_sur4T1os-Nb0fD622UJU865eRyhXwS-nOmKdJVh4V-lP-yiBtWbrANz6N7Sg7WCLyAlp-9hGcbTQtfwc_juusEGisSZ-jUv4BWy2pJcHN80JFQtEKmHpepK6d-QVG3LucLvPPtUBLUfAyog69P0GUmo68o59ZdbEk1Jzp8GqV-DRcPgukb2JrNZ_4tENxHe7SaouCGc-OM5JY55V2WKeOEboNoIMtt7GUeRmr8ypuktUneQJ0HqDHQyRHqNnTv5K7W3TzulVDNieR_6WWOJuce2Z3_kP0AT4bnX87ys5PR6Tt4Gobch1xxpnZhq1pc-z10hSrzvlY9Aj8eWtdvATBIHtE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+electrocatalysts+refined+from+metal-dimer-anchored+PC6+monolayers+for+NO+reduction+to+ammonia&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Wu%2C+Jie&rft.au=Yu%2C+Yang-Xin&rft.date=2023-02-19&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=48&rft.issue=15&rft.spage=5961&rft.epage=5975&rft_id=info:doi/10.1016%2Fj.ijhydene.2022.11.180&rft.externalDocID=S036031992205474X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |