Research on motion inhibition method using an innovative type of mooring system for spar floating offshore wind turbine

Compared with the conventional floating offshore platforms, the FOWTs (floating offshore wind turbines) are subjected to larger wind heeling moments to cause significant pitch motions which bring challenges to the power generation efficiency and structure safety, due to the existence of wind turbine...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 223; p. 108644
Main Authors Ma, Yuan, Chen, Chaohe, Fan, Tianhui, Yan, Xinkuan, Lu, Hongchao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compared with the conventional floating offshore platforms, the FOWTs (floating offshore wind turbines) are subjected to larger wind heeling moments to cause significant pitch motions which bring challenges to the power generation efficiency and structure safety, due to the existence of wind turbines. In addition, the dynamic cable connected with FOWT is subject to a load that is greatly affected by horizontal motions of FOWT. Therefore, the inhibitions of horizontal and pitch motions are vital to FOWT. However, conventional mooring systems mainly inhibit the horizontal motions of floating structures. In this paper, an innovative type of mooring system is proposed to inhibit both the horizontal and pitch motions of FOWT. The analytical results based on the innovative mooring system are compared with those of conventional mooring system. In addition, the mechanism of restoring forces and moments of mooring systems are analyzed and discussed. •An innovative type of mooring system is proposed to inhibit the horizontal and pitch motions of FOWT.•The horizontal and pitch motions of FOWT with the innovative mooring system are significantly reduced.•The restoring stiffnesses of innovative mooring system in surge and pitch DOFs are significantly enlarged.•The damping contributions of innovative mooring system in surge and pitch DOFs are significantly enlarged.•The pitch motions will improve the horizontal motion inhibition performance of innovative mooring system.
AbstractList Compared with the conventional floating offshore platforms, the FOWTs (floating offshore wind turbines) are subjected to larger wind heeling moments to cause significant pitch motions which bring challenges to the power generation efficiency and structure safety, due to the existence of wind turbines. In addition, the dynamic cable connected with FOWT is subject to a load that is greatly affected by horizontal motions of FOWT. Therefore, the inhibitions of horizontal and pitch motions are vital to FOWT. However, conventional mooring systems mainly inhibit the horizontal motions of floating structures. In this paper, an innovative type of mooring system is proposed to inhibit both the horizontal and pitch motions of FOWT. The analytical results based on the innovative mooring system are compared with those of conventional mooring system. In addition, the mechanism of restoring forces and moments of mooring systems are analyzed and discussed. •An innovative type of mooring system is proposed to inhibit the horizontal and pitch motions of FOWT.•The horizontal and pitch motions of FOWT with the innovative mooring system are significantly reduced.•The restoring stiffnesses of innovative mooring system in surge and pitch DOFs are significantly enlarged.•The damping contributions of innovative mooring system in surge and pitch DOFs are significantly enlarged.•The pitch motions will improve the horizontal motion inhibition performance of innovative mooring system.
ArticleNumber 108644
Author Ma, Yuan
Yan, Xinkuan
Chen, Chaohe
Fan, Tianhui
Lu, Hongchao
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0002-1108-8891
  surname: Ma
  fullname: Ma, Yuan
– sequence: 2
  givenname: Chaohe
  surname: Chen
  fullname: Chen, Chaohe
– sequence: 3
  givenname: Tianhui
  surname: Fan
  fullname: Fan, Tianhui
  email: fantianhui.dlut@gmail.com, fanth@scut.edu.cn
– sequence: 4
  givenname: Xinkuan
  orcidid: 0000-0002-1377-9944
  surname: Yan
  fullname: Yan, Xinkuan
– sequence: 5
  givenname: Hongchao
  surname: Lu
  fullname: Lu, Hongchao
BookMark eNqFkN1KAzEQhYNUsK2-guQFtk72NwUvlOIfFATR65DNTrop3aQkaUvf3l2rN970aoY58x04Z0JG1lkk5JbBjAEr79Yzp1BatKtZCinrj7zM8wsyZrzKkiIt-IiMAdJ5woHxKzIJYQ0AZQnZmBw-MKD0qqXO0s5F0w9jW1Obn7XD2LqG7oKxKyoHybq9jGaPNB63SJ3uIecHNRxDxI5q52nYSk_1xvWPveC0Dq3zSA_GNjTufG0sXpNLLTcBb37nlHw9P30uXpPl-8vb4nGZqIylMclVrjkvCkgznXGVNUwXrMwr4IWqUFW8SVWtdF0xqOZzBC1LzLECqRtZ53WTTcn9yVd5F4JHLZSJcsgWvTQbwUAMJYq1-CtRDCWKU4k9Xv7Dt9500h_Pgw8nEPtwe4NeBGXQKmyMRxVF48w5i2-NF5YB
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_112686
crossref_primary_10_1016_j_rser_2021_112036
crossref_primary_10_1016_j_oceaneng_2025_120877
crossref_primary_10_3390_jmse12040553
crossref_primary_10_1016_j_oceaneng_2024_117286
crossref_primary_10_1080_20464177_2023_2180832
crossref_primary_10_1007_s12206_023_0518_2
crossref_primary_10_1016_j_renene_2022_03_110
crossref_primary_10_1016_j_renene_2023_119625
crossref_primary_10_3390_jmse12010001
crossref_primary_10_1016_j_apor_2021_103020
crossref_primary_10_1016_j_prostr_2023_07_110
crossref_primary_10_1016_j_oceaneng_2022_111724
crossref_primary_10_1016_j_oceaneng_2024_118934
crossref_primary_10_3389_fenrg_2022_853448
crossref_primary_10_12716_1001_16_02_20
crossref_primary_10_1515_cls_2022_0213
Cites_doi 10.1002/we.2482
10.3390/en12071246
10.1016/j.renene.2020.07.134
10.1016/j.oceaneng.2020.107103
10.1080/17445302.2013.867631
10.1016/j.renene.2016.08.044
10.1016/j.renene.2018.01.067
10.1016/j.renene.2013.09.009
10.1260/0309-524X.33.6.541
10.1177/0957650918766606
10.1177/0309524X17737336
10.1016/j.egypro.2012.06.081
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2021.108644
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2021_108644
S0029801821000792
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c312t-4c4f8855023f38c3d1f51647085c7ec78d2cbcfb710799e0fa6e4e70afdab4bd3
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Tue Jul 01 02:14:43 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Fri Feb 23 02:45:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Floating wind turbine
Restoring force and moment
Mooring system
Pitch motion
Horizontal motion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-4c4f8855023f38c3d1f51647085c7ec78d2cbcfb710799e0fa6e4e70afdab4bd3
ORCID 0000-0002-1377-9944
0000-0002-1108-8891
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2021_108644
crossref_primary_10_1016_j_oceaneng_2021_108644
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2021_108644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jeon, Lee, Lee (bib7) 2014; 65
Lackner (bib15) 2009; 33
Jonkman, Buhl (bib10) 2005; vol. 365
Taninoki, Abe, Sukegawa (bib20) 2017; 84
Lee, Zhao (bib17) 2020
Jonkman, Musial (bib11) 2010
Jonkman, Butterfield, Musial (bib12) 2009
Kakuya, Shiraishi, Yoshida (bib13) 2018; 42
Larsen, Hanson (bib16) 2007; vol. 75
Li, Zhu, Liu (bib18) 2018; 122
Shen, Hu, Chen (bib19) 2018; 232
Fan, Qiao, Ou (bib4) 2014; 9
Cummins (bib3) 1962
Jonkman (bib9) 2010
Iino, Chujo, Iida (bib6) 2012; 24
Thies, Johanning, Dobral (bib21) 2017; vol. 57663
Karimian Aliabadi, Rasekh (bib14) 2020; 23
Bae, Kim, Kim (bib2) 2017; 101
Xiao, Yang (bib22) 2019; 12
Jochem (bib8) 2019-11-30
ANSYS (bib1) 2018
Yue, Liu, Li (bib24) 2020; 201
Guo, Lu, Qiu (bib5) 2012
Yang, Bashir, Michailides (bib23) 2020; 161
Cummins (10.1016/j.oceaneng.2021.108644_bib3) 1962
Lackner (10.1016/j.oceaneng.2021.108644_bib15) 2009; 33
Larsen (10.1016/j.oceaneng.2021.108644_bib16) 2007; vol. 75
Yue (10.1016/j.oceaneng.2021.108644_bib24) 2020; 201
Shen (10.1016/j.oceaneng.2021.108644_bib19) 2018; 232
Bae (10.1016/j.oceaneng.2021.108644_bib2) 2017; 101
Jeon (10.1016/j.oceaneng.2021.108644_bib7) 2014; 65
Lee (10.1016/j.oceaneng.2021.108644_bib17) 2020
Li (10.1016/j.oceaneng.2021.108644_bib18) 2018; 122
Jochem (10.1016/j.oceaneng.2021.108644_bib8) 2019
Xiao (10.1016/j.oceaneng.2021.108644_bib22) 2019; 12
Jonkman (10.1016/j.oceaneng.2021.108644_bib11) 2010
ANSYS (10.1016/j.oceaneng.2021.108644_bib1) 2018
Karimian Aliabadi (10.1016/j.oceaneng.2021.108644_bib14) 2020; 23
Taninoki (10.1016/j.oceaneng.2021.108644_bib20) 2017; 84
Thies (10.1016/j.oceaneng.2021.108644_bib21) 2017; vol. 57663
Fan (10.1016/j.oceaneng.2021.108644_bib4) 2014; 9
Kakuya (10.1016/j.oceaneng.2021.108644_bib13) 2018; 42
Guo (10.1016/j.oceaneng.2021.108644_bib5) 2012
Iino (10.1016/j.oceaneng.2021.108644_bib6) 2012; 24
Jonkman (10.1016/j.oceaneng.2021.108644_bib10) 2005; vol. 365
Jonkman (10.1016/j.oceaneng.2021.108644_bib9) 2010
Jonkman (10.1016/j.oceaneng.2021.108644_bib12) 2009
Yang (10.1016/j.oceaneng.2021.108644_bib23) 2020; 161
References_xml – volume: 201
  year: 2020
  ident: bib24
  article-title: Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effect of wind and wave
  publication-title: Ocean Eng.
– year: 2018
  ident: bib1
  article-title: Aqwa Theory Manual
– start-page: 2966
  year: 2012
  end-page: 2970
  ident: bib5
  article-title: Research on pitch control of floating offshore wind turbines[C]
  publication-title: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery
– volume: 42
  start-page: 230
  year: 2018
  end-page: 242
  ident: bib13
  article-title: Experimental results of floating platform vibration control with mode change function using full-scale spar-type floating offshore wind turbine
  publication-title: Wind Eng.
– volume: 65
  start-page: 207
  year: 2014
  end-page: 212
  ident: bib7
  article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method
  publication-title: Renew. Energy
– volume: 232
  start-page: 1019
  year: 2018
  end-page: 1036
  ident: bib19
  article-title: The unsteady aerodynamics of floating wind turbine under platform pitch motion
  publication-title: Proc. IME J. Power Energy
– volume: 24
  start-page: 11
  year: 2012
  end-page: 17
  ident: bib6
  article-title: Effect of forced excitation on wind turbine with dynamic analysis in deep offshore wind in addition to Japanese status of offshore projects
  publication-title: Energy Procedia
– year: 2019-11-30
  ident: bib8
  article-title: Floating Wind Structures and Mooring Types
– volume: 161
  start-page: 606
  year: 2020
  end-page: 625
  ident: bib23
  article-title: Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines
  publication-title: Renew. Energy
– year: 2010
  ident: bib11
  article-title: Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and deployment[R]
– volume: 101
  start-page: 364
  year: 2017
  end-page: 375
  ident: bib2
  article-title: Performance changes of a floating offshore wind turbine with broken mooring line
  publication-title: Renew. Energy
– volume: vol. 75
  year: 2007
  ident: bib16
  article-title: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine[C]
  publication-title: Journal of Physics: Conference Series
– volume: 84
  start-page: 146
  year: 2017
  ident: bib20
  article-title: Dynamic cable system for floating offshore wind power generation
  publication-title: SEI Tech. Rev.
– volume: vol. 57663
  year: 2017
  ident: bib21
  article-title: Parametric sensitivity study of submarine power cable design for marine renewable energy applications
  publication-title: International Conference on Offshore Mechanics and Arctic Engineering
– volume: 12
  start-page: 1246
  year: 2019
  ident: bib22
  article-title: Large-eddy simulation-based study of effect of swell-induced pitch motion on wake-flow statistics and power extraction of offshore wind turbines
  publication-title: Energies
– volume: 9
  start-page: 557
  year: 2014
  end-page: 568
  ident: bib4
  article-title: Innovative approach to design truncated mooring system based on static and damping equivalent
  publication-title: Ships Offshore Struct.
– volume: 23
  start-page: 1210
  year: 2020
  end-page: 1230
  ident: bib14
  article-title: Effect of platform disturbance on the performance of offshore wind turbine under pitch control
  publication-title: Wind Energy
– volume: 33
  start-page: 541
  year: 2009
  end-page: 553
  ident: bib15
  article-title: Controlling platform motions and reducing blade loads for floating wind turbines
  publication-title: Wind Eng.
– volume: 122
  start-page: 576
  year: 2018
  end-page: 588
  ident: bib18
  article-title: Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines
  publication-title: Renew. Energy
– year: 2009
  ident: bib12
  article-title: Definition of a 5-MW Reference Wind Turbine for Offshore System development[R]
– year: 1962
  ident: bib3
  article-title: The Impulse Response Function and Ship motions[R]
– year: 2010
  ident: bib9
  article-title: Definition of the Floating System for Phase IV of OC3[R]
– year: 2020
  ident: bib17
  article-title: Global Wind Report 2019
– volume: vol. 365
  start-page: 366
  year: 2005
  ident: bib10
  article-title: FAST User's Guide
– start-page: 2966
  year: 2012
  ident: 10.1016/j.oceaneng.2021.108644_bib5
  article-title: Research on pitch control of floating offshore wind turbines[C]
– volume: 23
  start-page: 1210
  issue: 5
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108644_bib14
  article-title: Effect of platform disturbance on the performance of offshore wind turbine under pitch control
  publication-title: Wind Energy
  doi: 10.1002/we.2482
– year: 1962
  ident: 10.1016/j.oceaneng.2021.108644_bib3
– year: 2010
  ident: 10.1016/j.oceaneng.2021.108644_bib11
– volume: 12
  start-page: 1246
  issue: 7
  year: 2019
  ident: 10.1016/j.oceaneng.2021.108644_bib22
  article-title: Large-eddy simulation-based study of effect of swell-induced pitch motion on wake-flow statistics and power extraction of offshore wind turbines
  publication-title: Energies
  doi: 10.3390/en12071246
– volume: 161
  start-page: 606
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108644_bib23
  article-title: Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.07.134
– volume: vol. 75
  year: 2007
  ident: 10.1016/j.oceaneng.2021.108644_bib16
  article-title: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine[C]
– year: 2009
  ident: 10.1016/j.oceaneng.2021.108644_bib12
– volume: vol. 57663
  year: 2017
  ident: 10.1016/j.oceaneng.2021.108644_bib21
  article-title: Parametric sensitivity study of submarine power cable design for marine renewable energy applications
– volume: 201
  year: 2020
  ident: 10.1016/j.oceaneng.2021.108644_bib24
  article-title: Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effect of wind and wave
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107103
– volume: 9
  start-page: 557
  issue: 6
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108644_bib4
  article-title: Innovative approach to design truncated mooring system based on static and damping equivalent
  publication-title: Ships Offshore Struct.
  doi: 10.1080/17445302.2013.867631
– volume: 101
  start-page: 364
  year: 2017
  ident: 10.1016/j.oceaneng.2021.108644_bib2
  article-title: Performance changes of a floating offshore wind turbine with broken mooring line
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.08.044
– volume: 122
  start-page: 576
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108644_bib18
  article-title: Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.01.067
– volume: 65
  start-page: 207
  year: 2014
  ident: 10.1016/j.oceaneng.2021.108644_bib7
  article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.09.009
– year: 2019
  ident: 10.1016/j.oceaneng.2021.108644_bib8
– volume: 84
  start-page: 146
  issue: 53–58
  year: 2017
  ident: 10.1016/j.oceaneng.2021.108644_bib20
  article-title: Dynamic cable system for floating offshore wind power generation
  publication-title: SEI Tech. Rev.
– year: 2018
  ident: 10.1016/j.oceaneng.2021.108644_bib1
– year: 2020
  ident: 10.1016/j.oceaneng.2021.108644_bib17
– volume: vol. 365
  start-page: 366
  year: 2005
  ident: 10.1016/j.oceaneng.2021.108644_bib10
– volume: 33
  start-page: 541
  issue: 6
  year: 2009
  ident: 10.1016/j.oceaneng.2021.108644_bib15
  article-title: Controlling platform motions and reducing blade loads for floating wind turbines
  publication-title: Wind Eng.
  doi: 10.1260/0309-524X.33.6.541
– volume: 232
  start-page: 1019
  issue: 8
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108644_bib19
  article-title: The unsteady aerodynamics of floating wind turbine under platform pitch motion
  publication-title: Proc. IME J. Power Energy
  doi: 10.1177/0957650918766606
– volume: 42
  start-page: 230
  issue: 3
  year: 2018
  ident: 10.1016/j.oceaneng.2021.108644_bib13
  article-title: Experimental results of floating platform vibration control with mode change function using full-scale spar-type floating offshore wind turbine
  publication-title: Wind Eng.
  doi: 10.1177/0309524X17737336
– volume: 24
  start-page: 11
  year: 2012
  ident: 10.1016/j.oceaneng.2021.108644_bib6
  article-title: Effect of forced excitation on wind turbine with dynamic analysis in deep offshore wind in addition to Japanese status of offshore projects
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.06.081
– year: 2010
  ident: 10.1016/j.oceaneng.2021.108644_bib9
SSID ssj0006603
Score 2.3884614
Snippet Compared with the conventional floating offshore platforms, the FOWTs (floating offshore wind turbines) are subjected to larger wind heeling moments to cause...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108644
SubjectTerms Floating wind turbine
Horizontal motion
Mooring system
Pitch motion
Restoring force and moment
Title Research on motion inhibition method using an innovative type of mooring system for spar floating offshore wind turbine
URI https://dx.doi.org/10.1016/j.oceaneng.2021.108644
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ELyqIT6wv9uA1fWQ32eRYiqUq6kWht7DPPpCk1Gpv_nZnsolWEHrwmGQnhJ1lvpnwzTeEXIexsMwaFhgpVMABkgIplQ4iZlTCDSB0iL3DD4_x4IXfDaPhBunVvTBIq6xiv4_pZbSu7rSq3WzNJhPs8Q1TiK9JiL-oRYpxmHOBp7z5-UPziOM2q2keuHqlS3jaBIiQuc1HUCeGnXLoEOd_A9QK6PT3yV6VLdKu_6ADsmHzQ7KzoiF4SHaf8O2V8PQRWdZUOlrk1I_ooZN8PFElNYv6gdEU2e4jKvGRH4r6YSn-jKWFA6OSk0e9xjOFpJZC1JlT91pI5EjDGvc2LuaWLqGepwBZUFzbY_LSv3nuDYJquEKgWSdcBFxzl6CaWcgcSzQzHRehthikYFpYLRITaqWdggxEpKltOxlbbkVbOiMVV4adkM28yO0poUpBmi6FlDFsnwEfQ0lnlE4FS1xkjG6QqN7RTFfK4zgA4zWrKWbTrPZEhp7IvCcapPVtN_PaG2st0tph2a9TlAFArLE9-4ftOdnGK89NuyCbi_m7vYRkZaGuytN4Rba6t_eDxy9I0-2B
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHFgkBAVEWX3gmi6xEydHVFGV_VIkbpbXNhVKUCn0xrczjhMoElIPXGNPFM04s1hv5iF0EcbMEKNJoAWTAYWQFAghVRARLROqIUKHrnf4_iEePNGb5-h5BfXqXhgHq6x8v_fppbeunrQrbbZfs8z1-IYp-NckdFfULAU_vEbh93U0Bq3PH5xHHHdIjfNw2xfahCctiBEiN_kICsWwW7IOUfp3hFqIOv0dtF2li_jSf9EuWjF5A20uDBFsoK1H9_Zq8vQemtdYOlzk2HP04CwfZ7LEZmHPGI0d3H2EhVvyrKgfBrvbWFxYECpBedgPecaQ1WJwO1NsXwrhQNKwx76Ni6nBcyjoMcQsqK7NPnrqXw17g6BiVwgU6YazgCpqEzfOLCSWJIroro3ccDHIwRQziiU6VFJZCSkIS1PTsSI21LCOsFpIKjU5QKt5kZtDhKWEPF0wIWJQnwYjQ02npUoZSWyktWqiqNYoV9XocceA8cJrjNmE15bgzhLcW6KJ2t9yr374xlKJtDYY_3WMOESIJbJH_5A9R-uD4f0dv7t-uD1GG27FA9VO0Ops-m5OIXOZybPyZH4BvHzvDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+motion+inhibition+method+using+an+innovative+type+of+mooring+system+for+spar+floating+offshore+wind+turbine&rft.jtitle=Ocean+engineering&rft.au=Ma%2C+Yuan&rft.au=Chen%2C+Chaohe&rft.au=Fan%2C+Tianhui&rft.au=Yan%2C+Xinkuan&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=223&rft_id=info:doi/10.1016%2Fj.oceaneng.2021.108644&rft.externalDocID=S0029801821000792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon