Research on motion inhibition method using an innovative type of mooring system for spar floating offshore wind turbine
Compared with the conventional floating offshore platforms, the FOWTs (floating offshore wind turbines) are subjected to larger wind heeling moments to cause significant pitch motions which bring challenges to the power generation efficiency and structure safety, due to the existence of wind turbine...
Saved in:
Published in | Ocean engineering Vol. 223; p. 108644 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compared with the conventional floating offshore platforms, the FOWTs (floating offshore wind turbines) are subjected to larger wind heeling moments to cause significant pitch motions which bring challenges to the power generation efficiency and structure safety, due to the existence of wind turbines. In addition, the dynamic cable connected with FOWT is subject to a load that is greatly affected by horizontal motions of FOWT. Therefore, the inhibitions of horizontal and pitch motions are vital to FOWT. However, conventional mooring systems mainly inhibit the horizontal motions of floating structures. In this paper, an innovative type of mooring system is proposed to inhibit both the horizontal and pitch motions of FOWT. The analytical results based on the innovative mooring system are compared with those of conventional mooring system. In addition, the mechanism of restoring forces and moments of mooring systems are analyzed and discussed.
•An innovative type of mooring system is proposed to inhibit the horizontal and pitch motions of FOWT.•The horizontal and pitch motions of FOWT with the innovative mooring system are significantly reduced.•The restoring stiffnesses of innovative mooring system in surge and pitch DOFs are significantly enlarged.•The damping contributions of innovative mooring system in surge and pitch DOFs are significantly enlarged.•The pitch motions will improve the horizontal motion inhibition performance of innovative mooring system. |
---|---|
AbstractList | Compared with the conventional floating offshore platforms, the FOWTs (floating offshore wind turbines) are subjected to larger wind heeling moments to cause significant pitch motions which bring challenges to the power generation efficiency and structure safety, due to the existence of wind turbines. In addition, the dynamic cable connected with FOWT is subject to a load that is greatly affected by horizontal motions of FOWT. Therefore, the inhibitions of horizontal and pitch motions are vital to FOWT. However, conventional mooring systems mainly inhibit the horizontal motions of floating structures. In this paper, an innovative type of mooring system is proposed to inhibit both the horizontal and pitch motions of FOWT. The analytical results based on the innovative mooring system are compared with those of conventional mooring system. In addition, the mechanism of restoring forces and moments of mooring systems are analyzed and discussed.
•An innovative type of mooring system is proposed to inhibit the horizontal and pitch motions of FOWT.•The horizontal and pitch motions of FOWT with the innovative mooring system are significantly reduced.•The restoring stiffnesses of innovative mooring system in surge and pitch DOFs are significantly enlarged.•The damping contributions of innovative mooring system in surge and pitch DOFs are significantly enlarged.•The pitch motions will improve the horizontal motion inhibition performance of innovative mooring system. |
ArticleNumber | 108644 |
Author | Ma, Yuan Yan, Xinkuan Chen, Chaohe Fan, Tianhui Lu, Hongchao |
Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0002-1108-8891 surname: Ma fullname: Ma, Yuan – sequence: 2 givenname: Chaohe surname: Chen fullname: Chen, Chaohe – sequence: 3 givenname: Tianhui surname: Fan fullname: Fan, Tianhui email: fantianhui.dlut@gmail.com, fanth@scut.edu.cn – sequence: 4 givenname: Xinkuan orcidid: 0000-0002-1377-9944 surname: Yan fullname: Yan, Xinkuan – sequence: 5 givenname: Hongchao surname: Lu fullname: Lu, Hongchao |
BookMark | eNqFkN1KAzEQhYNUsK2-guQFtk72NwUvlOIfFATR65DNTrop3aQkaUvf3l2rN970aoY58x04Z0JG1lkk5JbBjAEr79Yzp1BatKtZCinrj7zM8wsyZrzKkiIt-IiMAdJ5woHxKzIJYQ0AZQnZmBw-MKD0qqXO0s5F0w9jW1Obn7XD2LqG7oKxKyoHybq9jGaPNB63SJ3uIecHNRxDxI5q52nYSk_1xvWPveC0Dq3zSA_GNjTufG0sXpNLLTcBb37nlHw9P30uXpPl-8vb4nGZqIylMclVrjkvCkgznXGVNUwXrMwr4IWqUFW8SVWtdF0xqOZzBC1LzLECqRtZ53WTTcn9yVd5F4JHLZSJcsgWvTQbwUAMJYq1-CtRDCWKU4k9Xv7Dt9500h_Pgw8nEPtwe4NeBGXQKmyMRxVF48w5i2-NF5YB |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_112686 crossref_primary_10_1016_j_rser_2021_112036 crossref_primary_10_1016_j_oceaneng_2025_120877 crossref_primary_10_3390_jmse12040553 crossref_primary_10_1016_j_oceaneng_2024_117286 crossref_primary_10_1080_20464177_2023_2180832 crossref_primary_10_1007_s12206_023_0518_2 crossref_primary_10_1016_j_renene_2022_03_110 crossref_primary_10_1016_j_renene_2023_119625 crossref_primary_10_3390_jmse12010001 crossref_primary_10_1016_j_apor_2021_103020 crossref_primary_10_1016_j_prostr_2023_07_110 crossref_primary_10_1016_j_oceaneng_2022_111724 crossref_primary_10_1016_j_oceaneng_2024_118934 crossref_primary_10_3389_fenrg_2022_853448 crossref_primary_10_12716_1001_16_02_20 crossref_primary_10_1515_cls_2022_0213 |
Cites_doi | 10.1002/we.2482 10.3390/en12071246 10.1016/j.renene.2020.07.134 10.1016/j.oceaneng.2020.107103 10.1080/17445302.2013.867631 10.1016/j.renene.2016.08.044 10.1016/j.renene.2018.01.067 10.1016/j.renene.2013.09.009 10.1260/0309-524X.33.6.541 10.1177/0957650918766606 10.1177/0309524X17737336 10.1016/j.egypro.2012.06.081 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2021.108644 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2021_108644 S0029801821000792 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c312t-4c4f8855023f38c3d1f51647085c7ec78d2cbcfb710799e0fa6e4e70afdab4bd3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 02:14:43 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Fri Feb 23 02:45:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Floating wind turbine Restoring force and moment Mooring system Pitch motion Horizontal motion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-4c4f8855023f38c3d1f51647085c7ec78d2cbcfb710799e0fa6e4e70afdab4bd3 |
ORCID | 0000-0002-1377-9944 0000-0002-1108-8891 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2021_108644 crossref_primary_10_1016_j_oceaneng_2021_108644 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2021_108644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 2021-03-00 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jeon, Lee, Lee (bib7) 2014; 65 Lackner (bib15) 2009; 33 Jonkman, Buhl (bib10) 2005; vol. 365 Taninoki, Abe, Sukegawa (bib20) 2017; 84 Lee, Zhao (bib17) 2020 Jonkman, Musial (bib11) 2010 Jonkman, Butterfield, Musial (bib12) 2009 Kakuya, Shiraishi, Yoshida (bib13) 2018; 42 Larsen, Hanson (bib16) 2007; vol. 75 Li, Zhu, Liu (bib18) 2018; 122 Shen, Hu, Chen (bib19) 2018; 232 Fan, Qiao, Ou (bib4) 2014; 9 Cummins (bib3) 1962 Jonkman (bib9) 2010 Iino, Chujo, Iida (bib6) 2012; 24 Thies, Johanning, Dobral (bib21) 2017; vol. 57663 Karimian Aliabadi, Rasekh (bib14) 2020; 23 Bae, Kim, Kim (bib2) 2017; 101 Xiao, Yang (bib22) 2019; 12 Jochem (bib8) 2019-11-30 ANSYS (bib1) 2018 Yue, Liu, Li (bib24) 2020; 201 Guo, Lu, Qiu (bib5) 2012 Yang, Bashir, Michailides (bib23) 2020; 161 Cummins (10.1016/j.oceaneng.2021.108644_bib3) 1962 Lackner (10.1016/j.oceaneng.2021.108644_bib15) 2009; 33 Larsen (10.1016/j.oceaneng.2021.108644_bib16) 2007; vol. 75 Yue (10.1016/j.oceaneng.2021.108644_bib24) 2020; 201 Shen (10.1016/j.oceaneng.2021.108644_bib19) 2018; 232 Bae (10.1016/j.oceaneng.2021.108644_bib2) 2017; 101 Jeon (10.1016/j.oceaneng.2021.108644_bib7) 2014; 65 Lee (10.1016/j.oceaneng.2021.108644_bib17) 2020 Li (10.1016/j.oceaneng.2021.108644_bib18) 2018; 122 Jochem (10.1016/j.oceaneng.2021.108644_bib8) 2019 Xiao (10.1016/j.oceaneng.2021.108644_bib22) 2019; 12 Jonkman (10.1016/j.oceaneng.2021.108644_bib11) 2010 ANSYS (10.1016/j.oceaneng.2021.108644_bib1) 2018 Karimian Aliabadi (10.1016/j.oceaneng.2021.108644_bib14) 2020; 23 Taninoki (10.1016/j.oceaneng.2021.108644_bib20) 2017; 84 Thies (10.1016/j.oceaneng.2021.108644_bib21) 2017; vol. 57663 Fan (10.1016/j.oceaneng.2021.108644_bib4) 2014; 9 Kakuya (10.1016/j.oceaneng.2021.108644_bib13) 2018; 42 Guo (10.1016/j.oceaneng.2021.108644_bib5) 2012 Iino (10.1016/j.oceaneng.2021.108644_bib6) 2012; 24 Jonkman (10.1016/j.oceaneng.2021.108644_bib10) 2005; vol. 365 Jonkman (10.1016/j.oceaneng.2021.108644_bib9) 2010 Jonkman (10.1016/j.oceaneng.2021.108644_bib12) 2009 Yang (10.1016/j.oceaneng.2021.108644_bib23) 2020; 161 |
References_xml | – volume: 201 year: 2020 ident: bib24 article-title: Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effect of wind and wave publication-title: Ocean Eng. – year: 2018 ident: bib1 article-title: Aqwa Theory Manual – start-page: 2966 year: 2012 end-page: 2970 ident: bib5 article-title: Research on pitch control of floating offshore wind turbines[C] publication-title: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery – volume: 42 start-page: 230 year: 2018 end-page: 242 ident: bib13 article-title: Experimental results of floating platform vibration control with mode change function using full-scale spar-type floating offshore wind turbine publication-title: Wind Eng. – volume: 65 start-page: 207 year: 2014 end-page: 212 ident: bib7 article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method publication-title: Renew. Energy – volume: 232 start-page: 1019 year: 2018 end-page: 1036 ident: bib19 article-title: The unsteady aerodynamics of floating wind turbine under platform pitch motion publication-title: Proc. IME J. Power Energy – volume: 24 start-page: 11 year: 2012 end-page: 17 ident: bib6 article-title: Effect of forced excitation on wind turbine with dynamic analysis in deep offshore wind in addition to Japanese status of offshore projects publication-title: Energy Procedia – year: 2019-11-30 ident: bib8 article-title: Floating Wind Structures and Mooring Types – volume: 161 start-page: 606 year: 2020 end-page: 625 ident: bib23 article-title: Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines publication-title: Renew. Energy – year: 2010 ident: bib11 article-title: Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and deployment[R] – volume: 101 start-page: 364 year: 2017 end-page: 375 ident: bib2 article-title: Performance changes of a floating offshore wind turbine with broken mooring line publication-title: Renew. Energy – volume: vol. 75 year: 2007 ident: bib16 article-title: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine[C] publication-title: Journal of Physics: Conference Series – volume: 84 start-page: 146 year: 2017 ident: bib20 article-title: Dynamic cable system for floating offshore wind power generation publication-title: SEI Tech. Rev. – volume: vol. 57663 year: 2017 ident: bib21 article-title: Parametric sensitivity study of submarine power cable design for marine renewable energy applications publication-title: International Conference on Offshore Mechanics and Arctic Engineering – volume: 12 start-page: 1246 year: 2019 ident: bib22 article-title: Large-eddy simulation-based study of effect of swell-induced pitch motion on wake-flow statistics and power extraction of offshore wind turbines publication-title: Energies – volume: 9 start-page: 557 year: 2014 end-page: 568 ident: bib4 article-title: Innovative approach to design truncated mooring system based on static and damping equivalent publication-title: Ships Offshore Struct. – volume: 23 start-page: 1210 year: 2020 end-page: 1230 ident: bib14 article-title: Effect of platform disturbance on the performance of offshore wind turbine under pitch control publication-title: Wind Energy – volume: 33 start-page: 541 year: 2009 end-page: 553 ident: bib15 article-title: Controlling platform motions and reducing blade loads for floating wind turbines publication-title: Wind Eng. – volume: 122 start-page: 576 year: 2018 end-page: 588 ident: bib18 article-title: Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines publication-title: Renew. Energy – year: 2009 ident: bib12 article-title: Definition of a 5-MW Reference Wind Turbine for Offshore System development[R] – year: 1962 ident: bib3 article-title: The Impulse Response Function and Ship motions[R] – year: 2010 ident: bib9 article-title: Definition of the Floating System for Phase IV of OC3[R] – year: 2020 ident: bib17 article-title: Global Wind Report 2019 – volume: vol. 365 start-page: 366 year: 2005 ident: bib10 article-title: FAST User's Guide – start-page: 2966 year: 2012 ident: 10.1016/j.oceaneng.2021.108644_bib5 article-title: Research on pitch control of floating offshore wind turbines[C] – volume: 23 start-page: 1210 issue: 5 year: 2020 ident: 10.1016/j.oceaneng.2021.108644_bib14 article-title: Effect of platform disturbance on the performance of offshore wind turbine under pitch control publication-title: Wind Energy doi: 10.1002/we.2482 – year: 1962 ident: 10.1016/j.oceaneng.2021.108644_bib3 – year: 2010 ident: 10.1016/j.oceaneng.2021.108644_bib11 – volume: 12 start-page: 1246 issue: 7 year: 2019 ident: 10.1016/j.oceaneng.2021.108644_bib22 article-title: Large-eddy simulation-based study of effect of swell-induced pitch motion on wake-flow statistics and power extraction of offshore wind turbines publication-title: Energies doi: 10.3390/en12071246 – volume: 161 start-page: 606 year: 2020 ident: 10.1016/j.oceaneng.2021.108644_bib23 article-title: Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2020.07.134 – volume: vol. 75 year: 2007 ident: 10.1016/j.oceaneng.2021.108644_bib16 article-title: A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine[C] – year: 2009 ident: 10.1016/j.oceaneng.2021.108644_bib12 – volume: vol. 57663 year: 2017 ident: 10.1016/j.oceaneng.2021.108644_bib21 article-title: Parametric sensitivity study of submarine power cable design for marine renewable energy applications – volume: 201 year: 2020 ident: 10.1016/j.oceaneng.2021.108644_bib24 article-title: Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effect of wind and wave publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107103 – volume: 9 start-page: 557 issue: 6 year: 2014 ident: 10.1016/j.oceaneng.2021.108644_bib4 article-title: Innovative approach to design truncated mooring system based on static and damping equivalent publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2013.867631 – volume: 101 start-page: 364 year: 2017 ident: 10.1016/j.oceaneng.2021.108644_bib2 article-title: Performance changes of a floating offshore wind turbine with broken mooring line publication-title: Renew. Energy doi: 10.1016/j.renene.2016.08.044 – volume: 122 start-page: 576 year: 2018 ident: 10.1016/j.oceaneng.2021.108644_bib18 article-title: Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines publication-title: Renew. Energy doi: 10.1016/j.renene.2018.01.067 – volume: 65 start-page: 207 year: 2014 ident: 10.1016/j.oceaneng.2021.108644_bib7 article-title: Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method publication-title: Renew. Energy doi: 10.1016/j.renene.2013.09.009 – year: 2019 ident: 10.1016/j.oceaneng.2021.108644_bib8 – volume: 84 start-page: 146 issue: 53–58 year: 2017 ident: 10.1016/j.oceaneng.2021.108644_bib20 article-title: Dynamic cable system for floating offshore wind power generation publication-title: SEI Tech. Rev. – year: 2018 ident: 10.1016/j.oceaneng.2021.108644_bib1 – year: 2020 ident: 10.1016/j.oceaneng.2021.108644_bib17 – volume: vol. 365 start-page: 366 year: 2005 ident: 10.1016/j.oceaneng.2021.108644_bib10 – volume: 33 start-page: 541 issue: 6 year: 2009 ident: 10.1016/j.oceaneng.2021.108644_bib15 article-title: Controlling platform motions and reducing blade loads for floating wind turbines publication-title: Wind Eng. doi: 10.1260/0309-524X.33.6.541 – volume: 232 start-page: 1019 issue: 8 year: 2018 ident: 10.1016/j.oceaneng.2021.108644_bib19 article-title: The unsteady aerodynamics of floating wind turbine under platform pitch motion publication-title: Proc. IME J. Power Energy doi: 10.1177/0957650918766606 – volume: 42 start-page: 230 issue: 3 year: 2018 ident: 10.1016/j.oceaneng.2021.108644_bib13 article-title: Experimental results of floating platform vibration control with mode change function using full-scale spar-type floating offshore wind turbine publication-title: Wind Eng. doi: 10.1177/0309524X17737336 – volume: 24 start-page: 11 year: 2012 ident: 10.1016/j.oceaneng.2021.108644_bib6 article-title: Effect of forced excitation on wind turbine with dynamic analysis in deep offshore wind in addition to Japanese status of offshore projects publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.06.081 – year: 2010 ident: 10.1016/j.oceaneng.2021.108644_bib9 |
SSID | ssj0006603 |
Score | 2.3884614 |
Snippet | Compared with the conventional floating offshore platforms, the FOWTs (floating offshore wind turbines) are subjected to larger wind heeling moments to cause... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108644 |
SubjectTerms | Floating wind turbine Horizontal motion Mooring system Pitch motion Restoring force and moment |
Title | Research on motion inhibition method using an innovative type of mooring system for spar floating offshore wind turbine |
URI | https://dx.doi.org/10.1016/j.oceaneng.2021.108644 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ELyqIT6wv9uA1fWQ32eRYiqUq6kWht7DPPpCk1Gpv_nZnsolWEHrwmGQnhJ1lvpnwzTeEXIexsMwaFhgpVMABkgIplQ4iZlTCDSB0iL3DD4_x4IXfDaPhBunVvTBIq6xiv4_pZbSu7rSq3WzNJhPs8Q1TiK9JiL-oRYpxmHOBp7z5-UPziOM2q2keuHqlS3jaBIiQuc1HUCeGnXLoEOd_A9QK6PT3yV6VLdKu_6ADsmHzQ7KzoiF4SHaf8O2V8PQRWdZUOlrk1I_ooZN8PFElNYv6gdEU2e4jKvGRH4r6YSn-jKWFA6OSk0e9xjOFpJZC1JlT91pI5EjDGvc2LuaWLqGepwBZUFzbY_LSv3nuDYJquEKgWSdcBFxzl6CaWcgcSzQzHRehthikYFpYLRITaqWdggxEpKltOxlbbkVbOiMVV4adkM28yO0poUpBmi6FlDFsnwEfQ0lnlE4FS1xkjG6QqN7RTFfK4zgA4zWrKWbTrPZEhp7IvCcapPVtN_PaG2st0tph2a9TlAFArLE9-4ftOdnGK89NuyCbi_m7vYRkZaGuytN4Rba6t_eDxy9I0-2B |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHFgkBAVEWX3gmi6xEydHVFGV_VIkbpbXNhVKUCn0xrczjhMoElIPXGNPFM04s1hv5iF0EcbMEKNJoAWTAYWQFAghVRARLROqIUKHrnf4_iEePNGb5-h5BfXqXhgHq6x8v_fppbeunrQrbbZfs8z1-IYp-NckdFfULAU_vEbh93U0Bq3PH5xHHHdIjfNw2xfahCctiBEiN_kICsWwW7IOUfp3hFqIOv0dtF2li_jSf9EuWjF5A20uDBFsoK1H9_Zq8vQemtdYOlzk2HP04CwfZ7LEZmHPGI0d3H2EhVvyrKgfBrvbWFxYECpBedgPecaQ1WJwO1NsXwrhQNKwx76Ni6nBcyjoMcQsqK7NPnrqXw17g6BiVwgU6YazgCpqEzfOLCSWJIroro3ccDHIwRQziiU6VFJZCSkIS1PTsSI21LCOsFpIKjU5QKt5kZtDhKWEPF0wIWJQnwYjQ02npUoZSWyktWqiqNYoV9XocceA8cJrjNmE15bgzhLcW6KJ2t9yr374xlKJtDYY_3WMOESIJbJH_5A9R-uD4f0dv7t-uD1GG27FA9VO0Ops-m5OIXOZybPyZH4BvHzvDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+motion+inhibition+method+using+an+innovative+type+of+mooring+system+for+spar+floating+offshore+wind+turbine&rft.jtitle=Ocean+engineering&rft.au=Ma%2C+Yuan&rft.au=Chen%2C+Chaohe&rft.au=Fan%2C+Tianhui&rft.au=Yan%2C+Xinkuan&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=223&rft_id=info:doi/10.1016%2Fj.oceaneng.2021.108644&rft.externalDocID=S0029801821000792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |