Highly active and stable A-site Pr-doped LaSrCrMnO-based fuel electrode for direct CO2 solid oxide electrolyzer cells
Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted great attention as fuel electrode materials for solid oxide electrolyzer cells. However, the electrochemical catalytic activity of such oxide...
Saved in:
Published in | International journal of hydrogen energy Vol. 45; no. 29; pp. 14648 - 14659 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
26.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted great attention as fuel electrode materials for solid oxide electrolyzer cells. However, the electrochemical catalytic activity of such oxides is relatively low, and their stability has not been confirmed. In this study, Pr is doped into La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) and the applicability of the resulting fuel electrode to direct CO2 electrolysis is investigated. The polarization resistance of the resulting electrode at 800 °C is decreased by 25%. Distribution function of relaxation times analysis indicates that the observed improvements may be attributed to increased oxygen ion conductivity. A full cell of Pr-doped LSCM-gadolinium-doped ceria (GDC)|scandia-stabilized zirconia|La0.6Sr0.4Co0.2Fe0.8O3-δ-GDC achieves an electrolysis current of 0.5 A cm−2 at 1.36 V and a Faradaic efficiency close to 100%. Short-term (210 h) stability testing of the cell under an electrolysis current of 0.5 A cm−2 at 800 °C with pure CO2 as the feedstock reveals a decrease in applied voltage at a rate of 7 mV kh−1, thereby indicating excellent stability. Thus, given its satisfactory performance and stability, the Pr-doped LSCM electrode may be considered a promising candidate material for direct CO2 electrolysis.
•Pr was doped into LSCM to develop an effective fuel electrode for CO2 electrolysis.•Polarization resistance in CO2 at 800 °C was reduced by 25% by doping Pr into LSCM.•Full cell with Pr-doped LSCM cathode, ScSZ electrolyte, LSCF-GDC anode was tested.•Full cell showed 0.5 A cm−2 at 1.36 V at 800 °C and Faradaic efficiency nearly 100%.•Full cell showed excellent stability in short-term test with 0.5 A cm−2 at 800 °C. |
---|---|
AbstractList | Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted great attention as fuel electrode materials for solid oxide electrolyzer cells. However, the electrochemical catalytic activity of such oxides is relatively low, and their stability has not been confirmed. In this study, Pr is doped into La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) and the applicability of the resulting fuel electrode to direct CO2 electrolysis is investigated. The polarization resistance of the resulting electrode at 800 °C is decreased by 25%. Distribution function of relaxation times analysis indicates that the observed improvements may be attributed to increased oxygen ion conductivity. A full cell of Pr-doped LSCM-gadolinium-doped ceria (GDC)|scandia-stabilized zirconia|La0.6Sr0.4Co0.2Fe0.8O3-δ-GDC achieves an electrolysis current of 0.5 A cm−2 at 1.36 V and a Faradaic efficiency close to 100%. Short-term (210 h) stability testing of the cell under an electrolysis current of 0.5 A cm−2 at 800 °C with pure CO2 as the feedstock reveals a decrease in applied voltage at a rate of 7 mV kh−1, thereby indicating excellent stability. Thus, given its satisfactory performance and stability, the Pr-doped LSCM electrode may be considered a promising candidate material for direct CO2 electrolysis.
•Pr was doped into LSCM to develop an effective fuel electrode for CO2 electrolysis.•Polarization resistance in CO2 at 800 °C was reduced by 25% by doping Pr into LSCM.•Full cell with Pr-doped LSCM cathode, ScSZ electrolyte, LSCF-GDC anode was tested.•Full cell showed 0.5 A cm−2 at 1.36 V at 800 °C and Faradaic efficiency nearly 100%.•Full cell showed excellent stability in short-term test with 0.5 A cm−2 at 800 °C. |
Author | Wang, Shun Zheng, Yifeng Pan, Zehua Shi, Hongqi Jiang, Huaguo |
Author_xml | – sequence: 1 givenname: Zehua orcidid: 0000-0002-6697-6407 surname: Pan fullname: Pan, Zehua organization: Colorado Fuel Cell Center, Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA – sequence: 2 givenname: Hongqi surname: Shi fullname: Shi, Hongqi organization: College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, Jiangsu, China – sequence: 3 givenname: Shun surname: Wang fullname: Wang, Shun organization: College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, Jiangsu, China – sequence: 4 givenname: Huaguo surname: Jiang fullname: Jiang, Huaguo organization: College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, Jiangsu, China – sequence: 5 givenname: Yifeng orcidid: 0000-0003-2292-5314 surname: Zheng fullname: Zheng, Yifeng email: zhengyifeng@njtech.edu.cn organization: College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, Jiangsu, China |
BookMark | eNqFkN1KAzEQhYNUsK2-guQFdp0k-5c7S1ErVCqo1yG7mdiUuFuSbbE-vVtar70aDjPnMOebkFHbtUjILYOUASvuNqnbrA8GW0w5cEhBpJxnF2TMqlImIqvKERmDKCARTMorMolxA8BKyOSY7Bbuc-0PVDe92yPVraGx17VHOkui65G-hsR0WzR0qd_CPLy0q6TWcdB2h56ix6YPnUFqu0CNC4Ok8xWnsfPO0O7bDavzkT_8YKANeh-vyaXVPuLNeU7Jx-PD-3yRLFdPz_PZMmkE432SlVBkQlgr67wqKllb1uTWliavLDMMMsOl1Znk2taVFLnOAawsczDCmFxyMSXFKbcJXYwBrdoG96XDQTFQR3hqo_7gqSM8BUIN8Abj_cmIw3d7h0HFxmHb4KmiMp37L-IX8I9-TA |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_161573 crossref_primary_10_1016_j_jechem_2022_12_055 crossref_primary_10_1016_j_seppur_2022_121174 crossref_primary_10_1016_j_apenergy_2022_120268 crossref_primary_10_1021_acssuschemeng_1c07576 crossref_primary_10_1016_j_jclepro_2021_129424 crossref_primary_10_1016_j_materresbull_2022_111976 crossref_primary_10_1007_s11708_024_0945_5 crossref_primary_10_1016_j_apenergy_2024_122862 crossref_primary_10_1021_acsaem_1c03822 crossref_primary_10_1016_j_ijhydene_2023_01_071 crossref_primary_10_1016_j_ceramint_2020_08_239 crossref_primary_10_1021_acsami_1c03514 crossref_primary_10_1016_j_ijhydene_2022_09_008 crossref_primary_10_1016_j_jcou_2023_102395 crossref_primary_10_1016_j_cej_2024_148532 crossref_primary_10_1016_j_energy_2021_120579 |
Cites_doi | 10.1016/j.ijhydene.2009.09.009 10.1007/s10800-006-9215-y 10.1149/2.021203esl 10.1039/C6TA09151B 10.1149/2.0261611jes 10.1016/j.ijhydene.2016.06.088 10.1016/j.ijhydene.2019.09.141 10.1039/C9TA06676D 10.1149/1.2801372 10.1016/j.jpowsour.2012.12.068 10.1021/acsami.5b11979 10.1016/j.jallcom.2004.08.018 10.1016/j.enconman.2019.112160 10.1016/j.jpowsour.2012.07.126 10.1016/S1872-2067(16)62455-5 10.1016/j.ijhydene.2018.01.181 10.1016/j.jpowsour.2016.08.055 10.1016/j.electacta.2018.05.117 10.1016/j.ceramint.2013.05.022 10.1021/acsami.7b10673 10.1016/j.ssi.2012.06.015 10.1002/aenm.201803156 10.1149/2.040208jes 10.1016/j.ssi.2012.02.028 10.1016/j.jpowsour.2005.12.028 10.1016/j.jpowsour.2017.10.097 10.1038/nmat871 10.1016/j.ijhydene.2014.03.179 10.1016/j.renene.2015.07.066 10.1016/j.ceramint.2019.10.017 10.1016/j.ijhydene.2015.08.012 10.1016/j.jpowsour.2014.10.066 10.1021/ef900111f 10.1021/acsami.7b07039 10.1016/j.ijhydene.2016.05.192 10.1016/j.electacta.2016.05.058 10.1016/j.ijhydene.2017.08.089 10.1016/j.jpowsour.2018.08.017 10.1149/2.079403jes 10.1016/j.enpol.2014.04.046 10.1016/j.ijhydene.2014.10.053 10.1023/A:1020599525160 10.1016/j.materresbull.2012.08.072 10.1016/j.jpowsour.2018.01.002 10.1016/j.apenergy.2017.01.090 10.1149/1.1392015 10.1039/b800163d 10.1016/j.jcat.2017.12.027 10.1016/j.jeurceramsoc.2007.02.135 10.1016/j.ijhydene.2010.12.085 10.1016/j.ceramint.2019.11.066 10.1016/j.jpowsour.2012.02.062 10.1016/S1002-0721(10)60600-X 10.1039/C6TA09421J |
ContentType | Journal Article |
Copyright | 2020 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2020 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2020.03.224 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 14659 |
ExternalDocumentID | 10_1016_j_ijhydene_2020_03_224 S0360319920312593 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW T9H WUQ |
ID | FETCH-LOGICAL-c312t-4706433ff9b58689bf1c5ff7d58f1d104d29fa492afb8935a500f9750d3dd5923 |
IEDL.DBID | AIKHN |
ISSN | 0360-3199 |
IngestDate | Thu Sep 26 15:54:34 EDT 2024 Fri Feb 23 02:48:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | Solid oxide electrolysis cells Direct CO2 electrolysis Pr-doped La0.75Sr0.25Cr0.5Mn0.5O3-δ CO2 utilization and upgrade Short-term stability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-4706433ff9b58689bf1c5ff7d58f1d104d29fa492afb8935a500f9750d3dd5923 |
ORCID | 0000-0002-6697-6407 0000-0003-2292-5314 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2020_03_224 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_03_224 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-26 |
PublicationDateYYYYMMDD | 2020-05-26 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xing (bib24) 2012; 208 Pan (bib45) 2016; 209 Bebelis (bib43) 2007; 37 Liu, Liu, Luo (bib18) 2017; 5 Tao, Irvine (bib21) 2003; 2 Chengjun, Cuishan, Luomeng (bib37) 2011; 29 Zheng (bib8) 2018; 280 Ji (bib52) 2005; 389 Xing (bib26) 2015; 274 Tao, Ebbesen, Mogensen (bib12) 2016; 328 O'Brien (bib7) 2010; 35 Jung (bib42) 2013; 39 Leonide (bib49) 2008; 155 Li (bib20) 2019; 9 Ren (bib36) 2012; 212 Zhou (bib6) 2019; 44 Wu, Zhou (bib2) 2016; 37 Ye (bib19) 2017; 9 Kaur, Singh (bib14) 2020; 46 Zhang (bib15) 2016; 8 Chan (bib10) 2016; 41 Thommy (bib35) 2016; 41 Jin (bib25) 2011; 36 Ehteshami, Chan (bib1) 2014; 73 Song, Zhong, Tan (bib33) 2014; 39 Pan (bib40) 2018; 378 Zhang (bib32) 2018; 400 Yang, Irvine (bib23) 2008; 18 Xu (bib39) 2019; 7 Yoon (bib22) 2015; 40 Pan (bib4) 2019; 202 Zhan (bib5) 2009; 23 Yue, Irvine (bib27) 2012; 225 Pan (bib41) 2018; 43 Li (bib55) 2014; 39 Tao, Ebbesen, Mogensen (bib13) 2014; 161 Opitz (bib16) 2017; 9 Yue, Irvine (bib29) 2012; 159 Ding (bib17) 2017; 42 Yue, Irvine (bib31) 2017; 5 Lee (bib46) 2006; 157 Yue, Irvine (bib50) 2012; 15 Liu, Liu, Luo (bib44) 2017; 5 Xu (bib54) 2013; 230 Skafte (bib11) 2018; 373 Schichlein (bib47) 2002; 32 Ma (bib38) 2020; 46 Zhang (bib30) 2018; 359 Lay, Dessemond, Gauthier (bib34) 2013; 221 Pan (bib9) 2017; 191 Zheng, Gorzkowska-Sobaś, Świerczek (bib53) 2012; 47 Lillmaa (bib28) 2016; 163 Joo, Choi (bib51) 2007; 27 Primdahl, Mogensen (bib48) 1999; 146 Götz (bib3) 2016; 85 Yue (10.1016/j.ijhydene.2020.03.224_bib31) 2017; 5 Pan (10.1016/j.ijhydene.2020.03.224_bib41) 2018; 43 Pan (10.1016/j.ijhydene.2020.03.224_bib4) 2019; 202 Opitz (10.1016/j.ijhydene.2020.03.224_bib16) 2017; 9 Song (10.1016/j.ijhydene.2020.03.224_bib33) 2014; 39 Wu (10.1016/j.ijhydene.2020.03.224_bib2) 2016; 37 Zhang (10.1016/j.ijhydene.2020.03.224_bib30) 2018; 359 Li (10.1016/j.ijhydene.2020.03.224_bib20) 2019; 9 Chan (10.1016/j.ijhydene.2020.03.224_bib10) 2016; 41 Zhang (10.1016/j.ijhydene.2020.03.224_bib15) 2016; 8 Thommy (10.1016/j.ijhydene.2020.03.224_bib35) 2016; 41 Bebelis (10.1016/j.ijhydene.2020.03.224_bib43) 2007; 37 Pan (10.1016/j.ijhydene.2020.03.224_bib45) 2016; 209 Götz (10.1016/j.ijhydene.2020.03.224_bib3) 2016; 85 Tao (10.1016/j.ijhydene.2020.03.224_bib21) 2003; 2 Yue (10.1016/j.ijhydene.2020.03.224_bib50) 2012; 15 Lay (10.1016/j.ijhydene.2020.03.224_bib34) 2013; 221 Skafte (10.1016/j.ijhydene.2020.03.224_bib11) 2018; 373 Pan (10.1016/j.ijhydene.2020.03.224_bib9) 2017; 191 Xing (10.1016/j.ijhydene.2020.03.224_bib24) 2012; 208 Ren (10.1016/j.ijhydene.2020.03.224_bib36) 2012; 212 Xu (10.1016/j.ijhydene.2020.03.224_bib39) 2019; 7 Zhang (10.1016/j.ijhydene.2020.03.224_bib32) 2018; 400 Ji (10.1016/j.ijhydene.2020.03.224_bib52) 2005; 389 Pan (10.1016/j.ijhydene.2020.03.224_bib40) 2018; 378 Zheng (10.1016/j.ijhydene.2020.03.224_bib8) 2018; 280 Tao (10.1016/j.ijhydene.2020.03.224_bib12) 2016; 328 Primdahl (10.1016/j.ijhydene.2020.03.224_bib48) 1999; 146 Ehteshami (10.1016/j.ijhydene.2020.03.224_bib1) 2014; 73 Ye (10.1016/j.ijhydene.2020.03.224_bib19) 2017; 9 Yue (10.1016/j.ijhydene.2020.03.224_bib27) 2012; 225 Xing (10.1016/j.ijhydene.2020.03.224_bib26) 2015; 274 Zhou (10.1016/j.ijhydene.2020.03.224_bib6) 2019; 44 Jin (10.1016/j.ijhydene.2020.03.224_bib25) 2011; 36 Tao (10.1016/j.ijhydene.2020.03.224_bib13) 2014; 161 Chengjun (10.1016/j.ijhydene.2020.03.224_bib37) 2011; 29 Lee (10.1016/j.ijhydene.2020.03.224_bib46) 2006; 157 O'Brien (10.1016/j.ijhydene.2020.03.224_bib7) 2010; 35 Joo (10.1016/j.ijhydene.2020.03.224_bib51) 2007; 27 Ding (10.1016/j.ijhydene.2020.03.224_bib17) 2017; 42 Zheng (10.1016/j.ijhydene.2020.03.224_bib53) 2012; 47 Zhan (10.1016/j.ijhydene.2020.03.224_bib5) 2009; 23 Liu (10.1016/j.ijhydene.2020.03.224_bib18) 2017; 5 Jung (10.1016/j.ijhydene.2020.03.224_bib42) 2013; 39 Kaur (10.1016/j.ijhydene.2020.03.224_bib14) 2020; 46 Yue (10.1016/j.ijhydene.2020.03.224_bib29) 2012; 159 Ma (10.1016/j.ijhydene.2020.03.224_bib38) 2020; 46 Xu (10.1016/j.ijhydene.2020.03.224_bib54) 2013; 230 Yang (10.1016/j.ijhydene.2020.03.224_bib23) 2008; 18 Li (10.1016/j.ijhydene.2020.03.224_bib55) 2014; 39 Yoon (10.1016/j.ijhydene.2020.03.224_bib22) 2015; 40 Liu (10.1016/j.ijhydene.2020.03.224_bib44) 2017; 5 Schichlein (10.1016/j.ijhydene.2020.03.224_bib47) 2002; 32 Lillmaa (10.1016/j.ijhydene.2020.03.224_bib28) 2016; 163 Leonide (10.1016/j.ijhydene.2020.03.224_bib49) 2008; 155 |
References_xml | – volume: 23 start-page: 3089 year: 2009 end-page: 3096 ident: bib5 article-title: Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle publication-title: Energy Fuels contributor: fullname: Zhan – volume: 359 start-page: 8 year: 2018 end-page: 16 ident: bib30 article-title: Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2−δ nanoparticles-modified LSCM-GDC cathode publication-title: J Catal contributor: fullname: Zhang – volume: 39 start-page: 20888 year: 2014 end-page: 20897 ident: bib55 article-title: Chromate cathode decorated with in-situ growth of copper nanocatalyst for high temperature carbon dioxide electrolysis publication-title: Int J Hydrogen Energy contributor: fullname: Li – volume: 43 start-page: 5437 year: 2018 end-page: 5450 ident: bib41 article-title: Activation and failure mechanism of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ air electrode in solid oxide electrolyzer cells under high-current electrolysis publication-title: Int J Hydrogen Energy contributor: fullname: Pan – volume: 378 start-page: 571 year: 2018 end-page: 578 ident: bib40 article-title: Effect of La0.6Sr0.4Co0.2Fe0.8O3−δ air electrode–electrolyte interface on the short-term stability under high-current electrolysis in solid oxide electrolyzer cells publication-title: J Power Sources contributor: fullname: Pan – volume: 8 start-page: 6457 year: 2016 end-page: 6463 ident: bib15 article-title: Highly active and redox-stable Ce-doped LaSrCrFeO-based cathode catalyst for CO2 SOECs publication-title: ACS Appl Mater Interfaces contributor: fullname: Zhang – volume: 328 start-page: 452 year: 2016 end-page: 462 ident: bib12 article-title: Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities publication-title: J Power Sources contributor: fullname: Mogensen – volume: 39 start-page: 9753 year: 2013 end-page: 9758 ident: bib42 article-title: LSCM–YSZ nanocomposites for a high performance SOFC anode publication-title: Ceram Int contributor: fullname: Jung – volume: 5 start-page: 7081 year: 2017 end-page: 7090 ident: bib31 article-title: Modification of LSCM–GDC cathodes to enhance performance for high temperature CO 2 electrolysis using solid oxide electrolysis cells (SOECs) publication-title: J Mater Chem A contributor: fullname: Irvine – volume: 37 start-page: 999 year: 2016 end-page: 1015 ident: bib2 article-title: Catalytic conversion of CO2 to value added fuels: current status, challenges, and future directions publication-title: Chin J Catal contributor: fullname: Zhou – volume: 9 start-page: 1803156 year: 2019 ident: bib20 article-title: Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances publication-title: Adv Energy Mater contributor: fullname: Li – volume: 44 start-page: 28939 year: 2019 end-page: 28946 ident: bib6 article-title: Study of CO2 and H2O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell by aqueous tape casting technique publication-title: Int J Hydrogen Energy contributor: fullname: Zhou – volume: 202 start-page: 112160 year: 2019 ident: bib4 article-title: Thermodynamic analyses of synthetic natural gas production via municipal solid waste gasification, high-temperature water electrolysis and methanation publication-title: Energy Convers Manag contributor: fullname: Pan – volume: 46 start-page: 5521 year: 2020 end-page: 5535 ident: bib14 article-title: Review of perovskite-structure related cathode materials for solid oxide fuel cells publication-title: Ceram Int contributor: fullname: Singh – volume: 9 start-page: 25350 year: 2017 end-page: 25357 ident: bib19 article-title: Highly efficient CO2 electrolysis on cathodes with exsolved alkaline earth oxide nanostructures publication-title: ACS Appl Mater Interfaces contributor: fullname: Ye – volume: 5 start-page: 2673 year: 2017 end-page: 2680 ident: bib44 article-title: The excellence of La (Sr) Fe (Ni) O 3 as an active and efficient cathode for direct CO 2 electrochemical reduction at elevated temperatures publication-title: J Mater Chem A contributor: fullname: Luo – volume: 274 start-page: 260 year: 2015 end-page: 264 ident: bib26 article-title: Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3−δ –Cu ceramic composite electrode publication-title: J Power Sources contributor: fullname: Xing – volume: 163 start-page: F3190 year: 2016 end-page: F3196 ident: bib28 article-title: Electrochemical characteristics and gas composition generated by La0.8Sr0.2Cr0.5Mn0.5O3–δCathode at electrolysis and Co-electrolysis modes publication-title: J Electrochem Soc contributor: fullname: Lillmaa – volume: 15 start-page: B31 year: 2012 end-page: B34 ident: bib50 article-title: Impedance studies on LSCM/GDC cathode for high temperature CO2 electrolysis publication-title: Electrochem Solid State Lett contributor: fullname: Irvine – volume: 47 start-page: 4089 year: 2012 end-page: 4095 ident: bib53 article-title: Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs publication-title: Mater Res Bull contributor: fullname: Świerczek – volume: 212 start-page: 47 year: 2012 end-page: 54 ident: bib36 article-title: The effect of A-site cation (Ln= La, Pr, Sm) on the crystal structure, conductivity and oxygen reduction properties of Sr-doped ferrite perovskites publication-title: Solid State Ionics contributor: fullname: Ren – volume: 146 start-page: 2827 year: 1999 end-page: 2833 ident: bib48 article-title: Gas diffusion impedance in characterization of solid oxide fuel cell anodes publication-title: J Electrochem Soc contributor: fullname: Mogensen – volume: 39 start-page: 13694 year: 2014 end-page: 13700 ident: bib33 article-title: Synthesis and electrochemical behaviour of ceria-substitution LSCM as a possible symmetric solid oxide fuel cell electrode material exposed to H2 fuel containing H2S publication-title: Int J Hydrogen Energy contributor: fullname: Tan – volume: 221 start-page: 149 year: 2013 end-page: 156 ident: bib34 article-title: Ba-substituted LSCM anodes for solid oxide fuel cells publication-title: J Power Sources contributor: fullname: Gauthier – volume: 400 start-page: 104 year: 2018 end-page: 113 ident: bib32 article-title: (La0. 75Sr0. 25) 0.95 (Cr0. 5Mn0. 5) O3-δ-Ce0. 8Gd0. 2O1. 9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell publication-title: J Power Sources contributor: fullname: Zhang – volume: 155 start-page: B36 year: 2008 end-page: B41 ident: bib49 article-title: Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells publication-title: J Electrochem Soc contributor: fullname: Leonide – volume: 373 start-page: 54 year: 2018 end-page: 60 ident: bib11 article-title: Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes publication-title: J Power Sources contributor: fullname: Skafte – volume: 157 start-page: 848 year: 2006 end-page: 854 ident: bib46 article-title: Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs publication-title: J Power Sources contributor: fullname: Lee – volume: 191 start-page: 559 year: 2017 end-page: 567 ident: bib9 article-title: Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode publication-title: Appl Energy contributor: fullname: Pan – volume: 209 start-page: 56 year: 2016 end-page: 64 ident: bib45 article-title: Study of activation effect of anodic current on La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ air electrode in solid oxide electrolyzer cell publication-title: Electrochim Acta contributor: fullname: Pan – volume: 161 start-page: F337 year: 2014 ident: bib13 article-title: Carbon deposition in solid oxide cells during co-electrolysis of H2O and CO2 publication-title: J Electrochem Soc contributor: fullname: Mogensen – volume: 27 start-page: 4273 year: 2007 end-page: 4277 ident: bib51 article-title: Electrical conductivity of thin film ceria grown by pulsed laser deposition publication-title: J Eur Ceram Soc contributor: fullname: Choi – volume: 41 start-page: 13869 year: 2016 end-page: 13878 ident: bib10 article-title: Fuel cell and hydrogen technologies research, development and demonstration activities in Singapore–an update publication-title: Int J Hydrogen Energy contributor: fullname: Chan – volume: 41 start-page: 14207 year: 2016 end-page: 14216 ident: bib35 article-title: Impregnation versus exsolution: using metal catalysts to improve electrocatalytic properties of LSCM-based anodes operating at 600 C publication-title: Int J Hydrogen Energy contributor: fullname: Thommy – volume: 5 start-page: 2673 year: 2017 end-page: 2680 ident: bib18 article-title: The excellence of La(Sr)Fe(Ni)O3 as an active and efficient cathode for direct CO2 electrochemical reduction at elevated temperatures publication-title: J Mater Chem A contributor: fullname: Luo – volume: 46 start-page: 4000 year: 2020 end-page: 4005 ident: bib38 article-title: Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs publication-title: Ceram Int contributor: fullname: Ma – volume: 7 start-page: 18792 year: 2019 end-page: 18798 ident: bib39 article-title: Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations publication-title: J Mater Chem A contributor: fullname: Xu – volume: 85 start-page: 1371 year: 2016 end-page: 1390 ident: bib3 article-title: Renewable Power-to-Gas: a technological and economic review publication-title: Renew Energy contributor: fullname: Götz – volume: 225 start-page: 131 year: 2012 end-page: 135 ident: bib27 article-title: (La,Sr)(Cr,Mn)O3/GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis publication-title: Solid State Ionics contributor: fullname: Irvine – volume: 389 start-page: 317 year: 2005 end-page: 322 ident: bib52 article-title: The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte publication-title: J Alloys Compd contributor: fullname: Ji – volume: 35 start-page: 4808 year: 2010 end-page: 4819 ident: bib7 article-title: High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy–summary of system simulation and economic analyses publication-title: Int J Hydrogen Energy contributor: fullname: O'Brien – volume: 159 start-page: F442 year: 2012 end-page: F448 ident: bib29 article-title: Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells publication-title: J Electrochem Soc contributor: fullname: Irvine – volume: 36 start-page: 3340 year: 2011 end-page: 3346 ident: bib25 article-title: La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells publication-title: Int J Hydrogen Energy contributor: fullname: Jin – volume: 9 start-page: 35847 year: 2017 end-page: 35860 ident: bib16 article-title: Surface chemistry of perovskite-type electrodes during high temperature CO2 electrolysis investigated by operando photoelectron spectroscopy publication-title: ACS Appl Mater Interfaces contributor: fullname: Opitz – volume: 18 start-page: 2349 year: 2008 ident: bib23 article-title: La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam publication-title: J Mater Chem contributor: fullname: Irvine – volume: 32 start-page: 875 year: 2002 end-page: 882 ident: bib47 article-title: Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells publication-title: J Appl Electrochem contributor: fullname: Schichlein – volume: 42 start-page: 24968 year: 2017 end-page: 24977 ident: bib17 article-title: La0. 6Ca0. 4Fe0. 8Ni0. 2O3− δ–Sm0. 2Ce0. 8O1. 9 composites as symmetrical bi-electrodes for solid oxide fuel cells through infiltration and in-situ exsolution publication-title: Int J Hydrogen Energy contributor: fullname: Ding – volume: 40 start-page: 13558 year: 2015 end-page: 13565 ident: bib22 article-title: Improvements in co-electrolysis performance and long-term stability of solid oxide electrolysis cells based on ceramic composite cathodes publication-title: Int J Hydrogen Energy contributor: fullname: Yoon – volume: 73 start-page: 103 year: 2014 end-page: 109 ident: bib1 article-title: The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges publication-title: Energy Pol contributor: fullname: Chan – volume: 280 start-page: 206 year: 2018 end-page: 215 ident: bib8 article-title: High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells publication-title: Electrochim Acta contributor: fullname: Zheng – volume: 29 start-page: 1070 year: 2011 end-page: 1074 ident: bib37 article-title: Preparation and performance of Pr-doped Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for IT-SOFCs publication-title: J Rare Earths contributor: fullname: Luomeng – volume: 208 start-page: 276 year: 2012 end-page: 281 ident: bib24 article-title: Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3−δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation publication-title: J Power Sources contributor: fullname: Xing – volume: 2 start-page: 320 year: 2003 end-page: 323 ident: bib21 article-title: A redox-stable efficient anode for solid-oxide fuel cells publication-title: Nat Mater contributor: fullname: Irvine – volume: 37 start-page: 15 year: 2007 end-page: 20 ident: bib43 article-title: Electrochemical characterization of perovskite-based SOFC cathodes publication-title: J Appl Electrochem contributor: fullname: Bebelis – volume: 230 start-page: 115 year: 2013 end-page: 121 ident: bib54 article-title: Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ electrode publication-title: J Power Sources contributor: fullname: Xu – volume: 35 start-page: 4808 issue: 10 year: 2010 ident: 10.1016/j.ijhydene.2020.03.224_bib7 article-title: High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy–summary of system simulation and economic analyses publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.09.009 contributor: fullname: O'Brien – volume: 37 start-page: 15 issue: 1 year: 2007 ident: 10.1016/j.ijhydene.2020.03.224_bib43 article-title: Electrochemical characterization of perovskite-based SOFC cathodes publication-title: J Appl Electrochem doi: 10.1007/s10800-006-9215-y contributor: fullname: Bebelis – volume: 15 start-page: B31 issue: 3 year: 2012 ident: 10.1016/j.ijhydene.2020.03.224_bib50 article-title: Impedance studies on LSCM/GDC cathode for high temperature CO2 electrolysis publication-title: Electrochem Solid State Lett doi: 10.1149/2.021203esl contributor: fullname: Yue – volume: 5 start-page: 2673 issue: 6 year: 2017 ident: 10.1016/j.ijhydene.2020.03.224_bib18 article-title: The excellence of La(Sr)Fe(Ni)O3 as an active and efficient cathode for direct CO2 electrochemical reduction at elevated temperatures publication-title: J Mater Chem A doi: 10.1039/C6TA09151B contributor: fullname: Liu – volume: 163 start-page: F3190 issue: 11 year: 2016 ident: 10.1016/j.ijhydene.2020.03.224_bib28 article-title: Electrochemical characteristics and gas composition generated by La0.8Sr0.2Cr0.5Mn0.5O3–δCathode at electrolysis and Co-electrolysis modes publication-title: J Electrochem Soc doi: 10.1149/2.0261611jes contributor: fullname: Lillmaa – volume: 41 start-page: 14207 issue: 32 year: 2016 ident: 10.1016/j.ijhydene.2020.03.224_bib35 article-title: Impregnation versus exsolution: using metal catalysts to improve electrocatalytic properties of LSCM-based anodes operating at 600 C publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.06.088 contributor: fullname: Thommy – volume: 44 start-page: 28939 issue: 54 year: 2019 ident: 10.1016/j.ijhydene.2020.03.224_bib6 article-title: Study of CO2 and H2O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell by aqueous tape casting technique publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.141 contributor: fullname: Zhou – volume: 7 start-page: 18792 issue: 32 year: 2019 ident: 10.1016/j.ijhydene.2020.03.224_bib39 article-title: Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations publication-title: J Mater Chem A doi: 10.1039/C9TA06676D contributor: fullname: Xu – volume: 155 start-page: B36 issue: 1 year: 2008 ident: 10.1016/j.ijhydene.2020.03.224_bib49 article-title: Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells publication-title: J Electrochem Soc doi: 10.1149/1.2801372 contributor: fullname: Leonide – volume: 230 start-page: 115 year: 2013 ident: 10.1016/j.ijhydene.2020.03.224_bib54 article-title: Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ electrode publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.068 contributor: fullname: Xu – volume: 8 start-page: 6457 issue: 10 year: 2016 ident: 10.1016/j.ijhydene.2020.03.224_bib15 article-title: Highly active and redox-stable Ce-doped LaSrCrFeO-based cathode catalyst for CO2 SOECs publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b11979 contributor: fullname: Zhang – volume: 389 start-page: 317 issue: 1–2 year: 2005 ident: 10.1016/j.ijhydene.2020.03.224_bib52 article-title: The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2004.08.018 contributor: fullname: Ji – volume: 202 start-page: 112160 year: 2019 ident: 10.1016/j.ijhydene.2020.03.224_bib4 article-title: Thermodynamic analyses of synthetic natural gas production via municipal solid waste gasification, high-temperature water electrolysis and methanation publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112160 contributor: fullname: Pan – volume: 221 start-page: 149 year: 2013 ident: 10.1016/j.ijhydene.2020.03.224_bib34 article-title: Ba-substituted LSCM anodes for solid oxide fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.07.126 contributor: fullname: Lay – volume: 37 start-page: 999 issue: 7 year: 2016 ident: 10.1016/j.ijhydene.2020.03.224_bib2 article-title: Catalytic conversion of CO2 to value added fuels: current status, challenges, and future directions publication-title: Chin J Catal doi: 10.1016/S1872-2067(16)62455-5 contributor: fullname: Wu – volume: 43 start-page: 5437 issue: 11 year: 2018 ident: 10.1016/j.ijhydene.2020.03.224_bib41 article-title: Activation and failure mechanism of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ air electrode in solid oxide electrolyzer cells under high-current electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.181 contributor: fullname: Pan – volume: 328 start-page: 452 year: 2016 ident: 10.1016/j.ijhydene.2020.03.224_bib12 article-title: Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.08.055 contributor: fullname: Tao – volume: 280 start-page: 206 year: 2018 ident: 10.1016/j.ijhydene.2020.03.224_bib8 article-title: High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells publication-title: Electrochim Acta doi: 10.1016/j.electacta.2018.05.117 contributor: fullname: Zheng – volume: 39 start-page: 9753 issue: 8 year: 2013 ident: 10.1016/j.ijhydene.2020.03.224_bib42 article-title: LSCM–YSZ nanocomposites for a high performance SOFC anode publication-title: Ceram Int doi: 10.1016/j.ceramint.2013.05.022 contributor: fullname: Jung – volume: 5 start-page: 2673 issue: 6 year: 2017 ident: 10.1016/j.ijhydene.2020.03.224_bib44 article-title: The excellence of La (Sr) Fe (Ni) O 3 as an active and efficient cathode for direct CO 2 electrochemical reduction at elevated temperatures publication-title: J Mater Chem A doi: 10.1039/C6TA09151B contributor: fullname: Liu – volume: 9 start-page: 35847 issue: 41 year: 2017 ident: 10.1016/j.ijhydene.2020.03.224_bib16 article-title: Surface chemistry of perovskite-type electrodes during high temperature CO2 electrolysis investigated by operando photoelectron spectroscopy publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b10673 contributor: fullname: Opitz – volume: 225 start-page: 131 year: 2012 ident: 10.1016/j.ijhydene.2020.03.224_bib27 article-title: (La,Sr)(Cr,Mn)O3/GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis publication-title: Solid State Ionics doi: 10.1016/j.ssi.2012.06.015 contributor: fullname: Yue – volume: 9 start-page: 1803156 issue: 3 year: 2019 ident: 10.1016/j.ijhydene.2020.03.224_bib20 article-title: Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances publication-title: Adv Energy Mater doi: 10.1002/aenm.201803156 contributor: fullname: Li – volume: 159 start-page: F442 issue: 8 year: 2012 ident: 10.1016/j.ijhydene.2020.03.224_bib29 article-title: Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells publication-title: J Electrochem Soc doi: 10.1149/2.040208jes contributor: fullname: Yue – volume: 212 start-page: 47 year: 2012 ident: 10.1016/j.ijhydene.2020.03.224_bib36 article-title: The effect of A-site cation (Ln= La, Pr, Sm) on the crystal structure, conductivity and oxygen reduction properties of Sr-doped ferrite perovskites publication-title: Solid State Ionics doi: 10.1016/j.ssi.2012.02.028 contributor: fullname: Ren – volume: 157 start-page: 848 issue: 2 year: 2006 ident: 10.1016/j.ijhydene.2020.03.224_bib46 article-title: Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.12.028 contributor: fullname: Lee – volume: 373 start-page: 54 year: 2018 ident: 10.1016/j.ijhydene.2020.03.224_bib11 article-title: Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.10.097 contributor: fullname: Skafte – volume: 2 start-page: 320 issue: 5 year: 2003 ident: 10.1016/j.ijhydene.2020.03.224_bib21 article-title: A redox-stable efficient anode for solid-oxide fuel cells publication-title: Nat Mater doi: 10.1038/nmat871 contributor: fullname: Tao – volume: 39 start-page: 13694 issue: 25 year: 2014 ident: 10.1016/j.ijhydene.2020.03.224_bib33 article-title: Synthesis and electrochemical behaviour of ceria-substitution LSCM as a possible symmetric solid oxide fuel cell electrode material exposed to H2 fuel containing H2S publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.03.179 contributor: fullname: Song – volume: 85 start-page: 1371 year: 2016 ident: 10.1016/j.ijhydene.2020.03.224_bib3 article-title: Renewable Power-to-Gas: a technological and economic review publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.066 contributor: fullname: Götz – volume: 46 start-page: 4000 issue: 3 year: 2020 ident: 10.1016/j.ijhydene.2020.03.224_bib38 article-title: Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.10.017 contributor: fullname: Ma – volume: 40 start-page: 13558 issue: 39 year: 2015 ident: 10.1016/j.ijhydene.2020.03.224_bib22 article-title: Improvements in co-electrolysis performance and long-term stability of solid oxide electrolysis cells based on ceramic composite cathodes publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.08.012 contributor: fullname: Yoon – volume: 274 start-page: 260 year: 2015 ident: 10.1016/j.ijhydene.2020.03.224_bib26 article-title: Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3−δ –Cu ceramic composite electrode publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.10.066 contributor: fullname: Xing – volume: 23 start-page: 3089 issue: 6 year: 2009 ident: 10.1016/j.ijhydene.2020.03.224_bib5 article-title: Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle publication-title: Energy Fuels doi: 10.1021/ef900111f contributor: fullname: Zhan – volume: 9 start-page: 25350 issue: 30 year: 2017 ident: 10.1016/j.ijhydene.2020.03.224_bib19 article-title: Highly efficient CO2 electrolysis on cathodes with exsolved alkaline earth oxide nanostructures publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b07039 contributor: fullname: Ye – volume: 41 start-page: 13869 issue: 32 year: 2016 ident: 10.1016/j.ijhydene.2020.03.224_bib10 article-title: Fuel cell and hydrogen technologies research, development and demonstration activities in Singapore–an update publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.192 contributor: fullname: Chan – volume: 209 start-page: 56 year: 2016 ident: 10.1016/j.ijhydene.2020.03.224_bib45 article-title: Study of activation effect of anodic current on La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ air electrode in solid oxide electrolyzer cell publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.05.058 contributor: fullname: Pan – volume: 42 start-page: 24968 issue: 39 year: 2017 ident: 10.1016/j.ijhydene.2020.03.224_bib17 article-title: La0. 6Ca0. 4Fe0. 8Ni0. 2O3− δ–Sm0. 2Ce0. 8O1. 9 composites as symmetrical bi-electrodes for solid oxide fuel cells through infiltration and in-situ exsolution publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.08.089 contributor: fullname: Ding – volume: 400 start-page: 104 year: 2018 ident: 10.1016/j.ijhydene.2020.03.224_bib32 article-title: (La0. 75Sr0. 25) 0.95 (Cr0. 5Mn0. 5) O3-δ-Ce0. 8Gd0. 2O1. 9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.08.017 contributor: fullname: Zhang – volume: 161 start-page: F337 issue: 3 year: 2014 ident: 10.1016/j.ijhydene.2020.03.224_bib13 article-title: Carbon deposition in solid oxide cells during co-electrolysis of H2O and CO2 publication-title: J Electrochem Soc doi: 10.1149/2.079403jes contributor: fullname: Tao – volume: 73 start-page: 103 year: 2014 ident: 10.1016/j.ijhydene.2020.03.224_bib1 article-title: The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges publication-title: Energy Pol doi: 10.1016/j.enpol.2014.04.046 contributor: fullname: Ehteshami – volume: 39 start-page: 20888 issue: 36 year: 2014 ident: 10.1016/j.ijhydene.2020.03.224_bib55 article-title: Chromate cathode decorated with in-situ growth of copper nanocatalyst for high temperature carbon dioxide electrolysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.10.053 contributor: fullname: Li – volume: 32 start-page: 875 issue: 8 year: 2002 ident: 10.1016/j.ijhydene.2020.03.224_bib47 article-title: Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells publication-title: J Appl Electrochem doi: 10.1023/A:1020599525160 contributor: fullname: Schichlein – volume: 47 start-page: 4089 issue: 12 year: 2012 ident: 10.1016/j.ijhydene.2020.03.224_bib53 article-title: Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2012.08.072 contributor: fullname: Zheng – volume: 378 start-page: 571 year: 2018 ident: 10.1016/j.ijhydene.2020.03.224_bib40 article-title: Effect of La0.6Sr0.4Co0.2Fe0.8O3−δ air electrode–electrolyte interface on the short-term stability under high-current electrolysis in solid oxide electrolyzer cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.01.002 contributor: fullname: Pan – volume: 191 start-page: 559 year: 2017 ident: 10.1016/j.ijhydene.2020.03.224_bib9 article-title: Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.090 contributor: fullname: Pan – volume: 146 start-page: 2827 issue: 8 year: 1999 ident: 10.1016/j.ijhydene.2020.03.224_bib48 article-title: Gas diffusion impedance in characterization of solid oxide fuel cell anodes publication-title: J Electrochem Soc doi: 10.1149/1.1392015 contributor: fullname: Primdahl – volume: 18 start-page: 2349 issue: 20 year: 2008 ident: 10.1016/j.ijhydene.2020.03.224_bib23 article-title: La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam publication-title: J Mater Chem doi: 10.1039/b800163d contributor: fullname: Yang – volume: 359 start-page: 8 year: 2018 ident: 10.1016/j.ijhydene.2020.03.224_bib30 article-title: Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2−δ nanoparticles-modified LSCM-GDC cathode publication-title: J Catal doi: 10.1016/j.jcat.2017.12.027 contributor: fullname: Zhang – volume: 27 start-page: 4273 issue: 13–15 year: 2007 ident: 10.1016/j.ijhydene.2020.03.224_bib51 article-title: Electrical conductivity of thin film ceria grown by pulsed laser deposition publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2007.02.135 contributor: fullname: Joo – volume: 36 start-page: 3340 issue: 5 year: 2011 ident: 10.1016/j.ijhydene.2020.03.224_bib25 article-title: La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.085 contributor: fullname: Jin – volume: 46 start-page: 5521 issue: 5 year: 2020 ident: 10.1016/j.ijhydene.2020.03.224_bib14 article-title: Review of perovskite-structure related cathode materials for solid oxide fuel cells publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.11.066 contributor: fullname: Kaur – volume: 208 start-page: 276 year: 2012 ident: 10.1016/j.ijhydene.2020.03.224_bib24 article-title: Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3−δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.02.062 contributor: fullname: Xing – volume: 29 start-page: 1070 issue: 11 year: 2011 ident: 10.1016/j.ijhydene.2020.03.224_bib37 article-title: Preparation and performance of Pr-doped Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for IT-SOFCs publication-title: J Rare Earths doi: 10.1016/S1002-0721(10)60600-X contributor: fullname: Chengjun – volume: 5 start-page: 7081 issue: 15 year: 2017 ident: 10.1016/j.ijhydene.2020.03.224_bib31 article-title: Modification of LSCM–GDC cathodes to enhance performance for high temperature CO 2 electrolysis using solid oxide electrolysis cells (SOECs) publication-title: J Mater Chem A doi: 10.1039/C6TA09421J contributor: fullname: Yue |
SSID | ssj0017049 |
Score | 2.4591277 |
Snippet | Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 14648 |
SubjectTerms | CO2 utilization and upgrade Direct CO2 electrolysis Pr-doped La0.75Sr0.25Cr0.5Mn0.5O3-δ Short-term stability Solid oxide electrolysis cells |
Title | Highly active and stable A-site Pr-doped LaSrCrMnO-based fuel electrode for direct CO2 solid oxide electrolyzer cells |
URI | https://dx.doi.org/10.1016/j.ijhydene.2020.03.224 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JawIxFH5YvbSH0pXaRXLoNS6ZNUeRil3UghW8DRmT0JFhlKlC7aG_vS-aKRYKPfQyMJk8GL7JvPclbwO4lb7x3Tg-DaSLG5RpzKjgzZAGSrWEktrnyhzo9wd-b-w-TLxJCTpFLowJq7S6f6vTN9rajjQsmo1FkjRGqHtNCg5neEUS7-xBBc0RC8tQad8_9gbfzoTAsmCcT43ATqLwrJ7MXtf4h5uKmaxp6p0y5v5uo3bsTvcIDi1hJO3tOx1DSWUncLBTRvAUViZYI10TsdFdRGSSIOeLU0Xa1DiHyXNO5XyhJHkSo7yT97MhNdZLEr1SKbGdcKQiSGDJFg_SGTKCyzKRZP6e4CM7KV1_qJyY0_63Mxh37146PWrbKdApArSkbmDoh6M1j73QD3msW1NP60B6oW5J3JZJxrVwORM6RhbjmV4JmiOjkI6UHhLBcyhn80xdAOFc45gWTsimblPxUAeBdgULJdIhT3lVaBQARott1YyoCCebRQXkkYE8ajoRQl4FXuAc_fj-Ear2P2Qv_yF7BfvmzsQDMP8ayst8pW6QZizjGuzVP1s1u5i-AMmN0rw |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEA5WD20PpU9qnzn0mqrZZ44ilW19FVTwFrImoSuyylah9td34maLhUIPvewhycDyJZn5kpnMIPQgfeO7cXwSSBcOKNOYEsHqIQmUaggltc-UudDv9f1o7L5MvEkJtYq3MCas0ur-XKdvtbVtqVk0a8skqQ1B95onOIzCF0i8s4cqwAYY7M5K87kT9b-dCYFlwTCeGIGdh8Kzx2T2toEdbjJm0rrJd0qp-7uN2rE77WN0ZAkjbub_dIJKKj1FhztpBM_Q2gRrzDdYbHUXFqnEwPniucJNYpzD-DUjcrFUEnfFMGtlvXRAjPWSWK_VHNtKOFJhILA4xwO3BhTDskwkXnwk0GUHzTefKsPmtv_9HI3bT6NWRGw5BTIFgFbEDQz9cLRmsRf6IYt1Y-ppHUgv1A0JxzJJmRYuo0LHwGI8UytBM2AU0pHSAyJ4gcrpIlWXCDOmoU0LJ6RTt65YqINAu4KGEuiQp7wqqhUA8mWeNYMX4WQzXkDODeS87nCAvIpYgTP_Mf8cVPsfslf_kL1H-9Go1-Xd537nGh2YHhMbQP0bVF5la3ULlGMV39kl9QXmA9Sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+active+and+stable+A-site+Pr-doped+LaSrCrMnO-based+fuel+electrode+for+direct+CO2+solid+oxide+electrolyzer+cells&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Pan%2C+Zehua&rft.au=Shi%2C+Hongqi&rft.au=Wang%2C+Shun&rft.au=Jiang%2C+Huaguo&rft.date=2020-05-26&rft.issn=0360-3199&rft.volume=45&rft.issue=29&rft.spage=14648&rft.epage=14659&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.03.224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2020_03_224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |