Highly active and stable A-site Pr-doped LaSrCrMnO-based fuel electrode for direct CO2 solid oxide electrolyzer cells

Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted great attention as fuel electrode materials for solid oxide electrolyzer cells. However, the electrochemical catalytic activity of such oxide...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 45; no. 29; pp. 14648 - 14659
Main Authors Pan, Zehua, Shi, Hongqi, Wang, Shun, Jiang, Huaguo, Zheng, Yifeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 26.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted great attention as fuel electrode materials for solid oxide electrolyzer cells. However, the electrochemical catalytic activity of such oxides is relatively low, and their stability has not been confirmed. In this study, Pr is doped into La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) and the applicability of the resulting fuel electrode to direct CO2 electrolysis is investigated. The polarization resistance of the resulting electrode at 800 °C is decreased by 25%. Distribution function of relaxation times analysis indicates that the observed improvements may be attributed to increased oxygen ion conductivity. A full cell of Pr-doped LSCM-gadolinium-doped ceria (GDC)|scandia-stabilized zirconia|La0.6Sr0.4Co0.2Fe0.8O3-δ-GDC achieves an electrolysis current of 0.5 A cm−2 at 1.36 V and a Faradaic efficiency close to 100%. Short-term (210 h) stability testing of the cell under an electrolysis current of 0.5 A cm−2 at 800 °C with pure CO2 as the feedstock reveals a decrease in applied voltage at a rate of 7 mV kh−1, thereby indicating excellent stability. Thus, given its satisfactory performance and stability, the Pr-doped LSCM electrode may be considered a promising candidate material for direct CO2 electrolysis. •Pr was doped into LSCM to develop an effective fuel electrode for CO2 electrolysis.•Polarization resistance in CO2 at 800 °C was reduced by 25% by doping Pr into LSCM.•Full cell with Pr-doped LSCM cathode, ScSZ electrolyte, LSCF-GDC anode was tested.•Full cell showed 0.5 A cm−2 at 1.36 V at 800 °C and Faradaic efficiency nearly 100%.•Full cell showed excellent stability in short-term test with 0.5 A cm−2 at 800 °C.
AbstractList Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted great attention as fuel electrode materials for solid oxide electrolyzer cells. However, the electrochemical catalytic activity of such oxides is relatively low, and their stability has not been confirmed. In this study, Pr is doped into La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) and the applicability of the resulting fuel electrode to direct CO2 electrolysis is investigated. The polarization resistance of the resulting electrode at 800 °C is decreased by 25%. Distribution function of relaxation times analysis indicates that the observed improvements may be attributed to increased oxygen ion conductivity. A full cell of Pr-doped LSCM-gadolinium-doped ceria (GDC)|scandia-stabilized zirconia|La0.6Sr0.4Co0.2Fe0.8O3-δ-GDC achieves an electrolysis current of 0.5 A cm−2 at 1.36 V and a Faradaic efficiency close to 100%. Short-term (210 h) stability testing of the cell under an electrolysis current of 0.5 A cm−2 at 800 °C with pure CO2 as the feedstock reveals a decrease in applied voltage at a rate of 7 mV kh−1, thereby indicating excellent stability. Thus, given its satisfactory performance and stability, the Pr-doped LSCM electrode may be considered a promising candidate material for direct CO2 electrolysis. •Pr was doped into LSCM to develop an effective fuel electrode for CO2 electrolysis.•Polarization resistance in CO2 at 800 °C was reduced by 25% by doping Pr into LSCM.•Full cell with Pr-doped LSCM cathode, ScSZ electrolyte, LSCF-GDC anode was tested.•Full cell showed 0.5 A cm−2 at 1.36 V at 800 °C and Faradaic efficiency nearly 100%.•Full cell showed excellent stability in short-term test with 0.5 A cm−2 at 800 °C.
Author Wang, Shun
Zheng, Yifeng
Pan, Zehua
Shi, Hongqi
Jiang, Huaguo
Author_xml – sequence: 1
  givenname: Zehua
  orcidid: 0000-0002-6697-6407
  surname: Pan
  fullname: Pan, Zehua
  organization: Colorado Fuel Cell Center, Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA
– sequence: 2
  givenname: Hongqi
  surname: Shi
  fullname: Shi, Hongqi
  organization: College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, Jiangsu, China
– sequence: 3
  givenname: Shun
  surname: Wang
  fullname: Wang, Shun
  organization: College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, Jiangsu, China
– sequence: 4
  givenname: Huaguo
  surname: Jiang
  fullname: Jiang, Huaguo
  organization: College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, Jiangsu, China
– sequence: 5
  givenname: Yifeng
  orcidid: 0000-0003-2292-5314
  surname: Zheng
  fullname: Zheng, Yifeng
  email: zhengyifeng@njtech.edu.cn
  organization: College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing 211816, Jiangsu, China
BookMark eNqFkN1KAzEQhYNUsK2-guQFdp0k-5c7S1ErVCqo1yG7mdiUuFuSbbE-vVtar70aDjPnMOebkFHbtUjILYOUASvuNqnbrA8GW0w5cEhBpJxnF2TMqlImIqvKERmDKCARTMorMolxA8BKyOSY7Bbuc-0PVDe92yPVraGx17VHOkui65G-hsR0WzR0qd_CPLy0q6TWcdB2h56ix6YPnUFqu0CNC4Ok8xWnsfPO0O7bDavzkT_8YKANeh-vyaXVPuLNeU7Jx-PD-3yRLFdPz_PZMmkE432SlVBkQlgr67wqKllb1uTWliavLDMMMsOl1Znk2taVFLnOAawsczDCmFxyMSXFKbcJXYwBrdoG96XDQTFQR3hqo_7gqSM8BUIN8Abj_cmIw3d7h0HFxmHb4KmiMp37L-IX8I9-TA
CitedBy_id crossref_primary_10_1016_j_jallcom_2021_161573
crossref_primary_10_1016_j_jechem_2022_12_055
crossref_primary_10_1016_j_seppur_2022_121174
crossref_primary_10_1016_j_apenergy_2022_120268
crossref_primary_10_1021_acssuschemeng_1c07576
crossref_primary_10_1016_j_jclepro_2021_129424
crossref_primary_10_1016_j_materresbull_2022_111976
crossref_primary_10_1007_s11708_024_0945_5
crossref_primary_10_1016_j_apenergy_2024_122862
crossref_primary_10_1021_acsaem_1c03822
crossref_primary_10_1016_j_ijhydene_2023_01_071
crossref_primary_10_1016_j_ceramint_2020_08_239
crossref_primary_10_1021_acsami_1c03514
crossref_primary_10_1016_j_ijhydene_2022_09_008
crossref_primary_10_1016_j_jcou_2023_102395
crossref_primary_10_1016_j_cej_2024_148532
crossref_primary_10_1016_j_energy_2021_120579
Cites_doi 10.1016/j.ijhydene.2009.09.009
10.1007/s10800-006-9215-y
10.1149/2.021203esl
10.1039/C6TA09151B
10.1149/2.0261611jes
10.1016/j.ijhydene.2016.06.088
10.1016/j.ijhydene.2019.09.141
10.1039/C9TA06676D
10.1149/1.2801372
10.1016/j.jpowsour.2012.12.068
10.1021/acsami.5b11979
10.1016/j.jallcom.2004.08.018
10.1016/j.enconman.2019.112160
10.1016/j.jpowsour.2012.07.126
10.1016/S1872-2067(16)62455-5
10.1016/j.ijhydene.2018.01.181
10.1016/j.jpowsour.2016.08.055
10.1016/j.electacta.2018.05.117
10.1016/j.ceramint.2013.05.022
10.1021/acsami.7b10673
10.1016/j.ssi.2012.06.015
10.1002/aenm.201803156
10.1149/2.040208jes
10.1016/j.ssi.2012.02.028
10.1016/j.jpowsour.2005.12.028
10.1016/j.jpowsour.2017.10.097
10.1038/nmat871
10.1016/j.ijhydene.2014.03.179
10.1016/j.renene.2015.07.066
10.1016/j.ceramint.2019.10.017
10.1016/j.ijhydene.2015.08.012
10.1016/j.jpowsour.2014.10.066
10.1021/ef900111f
10.1021/acsami.7b07039
10.1016/j.ijhydene.2016.05.192
10.1016/j.electacta.2016.05.058
10.1016/j.ijhydene.2017.08.089
10.1016/j.jpowsour.2018.08.017
10.1149/2.079403jes
10.1016/j.enpol.2014.04.046
10.1016/j.ijhydene.2014.10.053
10.1023/A:1020599525160
10.1016/j.materresbull.2012.08.072
10.1016/j.jpowsour.2018.01.002
10.1016/j.apenergy.2017.01.090
10.1149/1.1392015
10.1039/b800163d
10.1016/j.jcat.2017.12.027
10.1016/j.jeurceramsoc.2007.02.135
10.1016/j.ijhydene.2010.12.085
10.1016/j.ceramint.2019.11.066
10.1016/j.jpowsour.2012.02.062
10.1016/S1002-0721(10)60600-X
10.1039/C6TA09421J
ContentType Journal Article
Copyright 2020 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2020 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2020.03.224
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 14659
ExternalDocumentID 10_1016_j_ijhydene_2020_03_224
S0360319920312593
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
T9H
WUQ
ID FETCH-LOGICAL-c312t-4706433ff9b58689bf1c5ff7d58f1d104d29fa492afb8935a500f9750d3dd5923
IEDL.DBID AIKHN
ISSN 0360-3199
IngestDate Thu Sep 26 15:54:34 EDT 2024
Fri Feb 23 02:48:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Solid oxide electrolysis cells
Direct CO2 electrolysis
Pr-doped La0.75Sr0.25Cr0.5Mn0.5O3-δ
CO2 utilization and upgrade
Short-term stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-4706433ff9b58689bf1c5ff7d58f1d104d29fa492afb8935a500f9750d3dd5923
ORCID 0000-0002-6697-6407
0000-0003-2292-5314
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2020_03_224
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2020_03_224
PublicationCentury 2000
PublicationDate 2020-05-26
PublicationDateYYYYMMDD 2020-05-26
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-26
  day: 26
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xing (bib24) 2012; 208
Pan (bib45) 2016; 209
Bebelis (bib43) 2007; 37
Liu, Liu, Luo (bib18) 2017; 5
Tao, Irvine (bib21) 2003; 2
Chengjun, Cuishan, Luomeng (bib37) 2011; 29
Zheng (bib8) 2018; 280
Ji (bib52) 2005; 389
Xing (bib26) 2015; 274
Tao, Ebbesen, Mogensen (bib12) 2016; 328
O'Brien (bib7) 2010; 35
Jung (bib42) 2013; 39
Leonide (bib49) 2008; 155
Li (bib20) 2019; 9
Ren (bib36) 2012; 212
Zhou (bib6) 2019; 44
Wu, Zhou (bib2) 2016; 37
Ye (bib19) 2017; 9
Kaur, Singh (bib14) 2020; 46
Zhang (bib15) 2016; 8
Chan (bib10) 2016; 41
Thommy (bib35) 2016; 41
Jin (bib25) 2011; 36
Ehteshami, Chan (bib1) 2014; 73
Song, Zhong, Tan (bib33) 2014; 39
Pan (bib40) 2018; 378
Zhang (bib32) 2018; 400
Yang, Irvine (bib23) 2008; 18
Xu (bib39) 2019; 7
Yoon (bib22) 2015; 40
Pan (bib4) 2019; 202
Zhan (bib5) 2009; 23
Yue, Irvine (bib27) 2012; 225
Pan (bib41) 2018; 43
Li (bib55) 2014; 39
Tao, Ebbesen, Mogensen (bib13) 2014; 161
Opitz (bib16) 2017; 9
Yue, Irvine (bib29) 2012; 159
Ding (bib17) 2017; 42
Yue, Irvine (bib31) 2017; 5
Lee (bib46) 2006; 157
Yue, Irvine (bib50) 2012; 15
Liu, Liu, Luo (bib44) 2017; 5
Xu (bib54) 2013; 230
Skafte (bib11) 2018; 373
Schichlein (bib47) 2002; 32
Ma (bib38) 2020; 46
Zhang (bib30) 2018; 359
Lay, Dessemond, Gauthier (bib34) 2013; 221
Pan (bib9) 2017; 191
Zheng, Gorzkowska-Sobaś, Świerczek (bib53) 2012; 47
Lillmaa (bib28) 2016; 163
Joo, Choi (bib51) 2007; 27
Primdahl, Mogensen (bib48) 1999; 146
Götz (bib3) 2016; 85
Yue (10.1016/j.ijhydene.2020.03.224_bib31) 2017; 5
Pan (10.1016/j.ijhydene.2020.03.224_bib41) 2018; 43
Pan (10.1016/j.ijhydene.2020.03.224_bib4) 2019; 202
Opitz (10.1016/j.ijhydene.2020.03.224_bib16) 2017; 9
Song (10.1016/j.ijhydene.2020.03.224_bib33) 2014; 39
Wu (10.1016/j.ijhydene.2020.03.224_bib2) 2016; 37
Zhang (10.1016/j.ijhydene.2020.03.224_bib30) 2018; 359
Li (10.1016/j.ijhydene.2020.03.224_bib20) 2019; 9
Chan (10.1016/j.ijhydene.2020.03.224_bib10) 2016; 41
Zhang (10.1016/j.ijhydene.2020.03.224_bib15) 2016; 8
Thommy (10.1016/j.ijhydene.2020.03.224_bib35) 2016; 41
Bebelis (10.1016/j.ijhydene.2020.03.224_bib43) 2007; 37
Pan (10.1016/j.ijhydene.2020.03.224_bib45) 2016; 209
Götz (10.1016/j.ijhydene.2020.03.224_bib3) 2016; 85
Tao (10.1016/j.ijhydene.2020.03.224_bib21) 2003; 2
Yue (10.1016/j.ijhydene.2020.03.224_bib50) 2012; 15
Lay (10.1016/j.ijhydene.2020.03.224_bib34) 2013; 221
Skafte (10.1016/j.ijhydene.2020.03.224_bib11) 2018; 373
Pan (10.1016/j.ijhydene.2020.03.224_bib9) 2017; 191
Xing (10.1016/j.ijhydene.2020.03.224_bib24) 2012; 208
Ren (10.1016/j.ijhydene.2020.03.224_bib36) 2012; 212
Xu (10.1016/j.ijhydene.2020.03.224_bib39) 2019; 7
Zhang (10.1016/j.ijhydene.2020.03.224_bib32) 2018; 400
Ji (10.1016/j.ijhydene.2020.03.224_bib52) 2005; 389
Pan (10.1016/j.ijhydene.2020.03.224_bib40) 2018; 378
Zheng (10.1016/j.ijhydene.2020.03.224_bib8) 2018; 280
Tao (10.1016/j.ijhydene.2020.03.224_bib12) 2016; 328
Primdahl (10.1016/j.ijhydene.2020.03.224_bib48) 1999; 146
Ehteshami (10.1016/j.ijhydene.2020.03.224_bib1) 2014; 73
Ye (10.1016/j.ijhydene.2020.03.224_bib19) 2017; 9
Yue (10.1016/j.ijhydene.2020.03.224_bib27) 2012; 225
Xing (10.1016/j.ijhydene.2020.03.224_bib26) 2015; 274
Zhou (10.1016/j.ijhydene.2020.03.224_bib6) 2019; 44
Jin (10.1016/j.ijhydene.2020.03.224_bib25) 2011; 36
Tao (10.1016/j.ijhydene.2020.03.224_bib13) 2014; 161
Chengjun (10.1016/j.ijhydene.2020.03.224_bib37) 2011; 29
Lee (10.1016/j.ijhydene.2020.03.224_bib46) 2006; 157
O'Brien (10.1016/j.ijhydene.2020.03.224_bib7) 2010; 35
Joo (10.1016/j.ijhydene.2020.03.224_bib51) 2007; 27
Ding (10.1016/j.ijhydene.2020.03.224_bib17) 2017; 42
Zheng (10.1016/j.ijhydene.2020.03.224_bib53) 2012; 47
Zhan (10.1016/j.ijhydene.2020.03.224_bib5) 2009; 23
Liu (10.1016/j.ijhydene.2020.03.224_bib18) 2017; 5
Jung (10.1016/j.ijhydene.2020.03.224_bib42) 2013; 39
Kaur (10.1016/j.ijhydene.2020.03.224_bib14) 2020; 46
Yue (10.1016/j.ijhydene.2020.03.224_bib29) 2012; 159
Ma (10.1016/j.ijhydene.2020.03.224_bib38) 2020; 46
Xu (10.1016/j.ijhydene.2020.03.224_bib54) 2013; 230
Yang (10.1016/j.ijhydene.2020.03.224_bib23) 2008; 18
Li (10.1016/j.ijhydene.2020.03.224_bib55) 2014; 39
Yoon (10.1016/j.ijhydene.2020.03.224_bib22) 2015; 40
Liu (10.1016/j.ijhydene.2020.03.224_bib44) 2017; 5
Schichlein (10.1016/j.ijhydene.2020.03.224_bib47) 2002; 32
Lillmaa (10.1016/j.ijhydene.2020.03.224_bib28) 2016; 163
Leonide (10.1016/j.ijhydene.2020.03.224_bib49) 2008; 155
References_xml – volume: 23
  start-page: 3089
  year: 2009
  end-page: 3096
  ident: bib5
  article-title: Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle
  publication-title: Energy Fuels
  contributor:
    fullname: Zhan
– volume: 359
  start-page: 8
  year: 2018
  end-page: 16
  ident: bib30
  article-title: Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2−δ nanoparticles-modified LSCM-GDC cathode
  publication-title: J Catal
  contributor:
    fullname: Zhang
– volume: 39
  start-page: 20888
  year: 2014
  end-page: 20897
  ident: bib55
  article-title: Chromate cathode decorated with in-situ growth of copper nanocatalyst for high temperature carbon dioxide electrolysis
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Li
– volume: 43
  start-page: 5437
  year: 2018
  end-page: 5450
  ident: bib41
  article-title: Activation and failure mechanism of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ air electrode in solid oxide electrolyzer cells under high-current electrolysis
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Pan
– volume: 378
  start-page: 571
  year: 2018
  end-page: 578
  ident: bib40
  article-title: Effect of La0.6Sr0.4Co0.2Fe0.8O3−δ air electrode–electrolyte interface on the short-term stability under high-current electrolysis in solid oxide electrolyzer cells
  publication-title: J Power Sources
  contributor:
    fullname: Pan
– volume: 8
  start-page: 6457
  year: 2016
  end-page: 6463
  ident: bib15
  article-title: Highly active and redox-stable Ce-doped LaSrCrFeO-based cathode catalyst for CO2 SOECs
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Zhang
– volume: 328
  start-page: 452
  year: 2016
  end-page: 462
  ident: bib12
  article-title: Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities
  publication-title: J Power Sources
  contributor:
    fullname: Mogensen
– volume: 39
  start-page: 9753
  year: 2013
  end-page: 9758
  ident: bib42
  article-title: LSCM–YSZ nanocomposites for a high performance SOFC anode
  publication-title: Ceram Int
  contributor:
    fullname: Jung
– volume: 5
  start-page: 7081
  year: 2017
  end-page: 7090
  ident: bib31
  article-title: Modification of LSCM–GDC cathodes to enhance performance for high temperature CO 2 electrolysis using solid oxide electrolysis cells (SOECs)
  publication-title: J Mater Chem A
  contributor:
    fullname: Irvine
– volume: 37
  start-page: 999
  year: 2016
  end-page: 1015
  ident: bib2
  article-title: Catalytic conversion of CO2 to value added fuels: current status, challenges, and future directions
  publication-title: Chin J Catal
  contributor:
    fullname: Zhou
– volume: 9
  start-page: 1803156
  year: 2019
  ident: bib20
  article-title: Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances
  publication-title: Adv Energy Mater
  contributor:
    fullname: Li
– volume: 44
  start-page: 28939
  year: 2019
  end-page: 28946
  ident: bib6
  article-title: Study of CO2 and H2O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell by aqueous tape casting technique
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Zhou
– volume: 202
  start-page: 112160
  year: 2019
  ident: bib4
  article-title: Thermodynamic analyses of synthetic natural gas production via municipal solid waste gasification, high-temperature water electrolysis and methanation
  publication-title: Energy Convers Manag
  contributor:
    fullname: Pan
– volume: 46
  start-page: 5521
  year: 2020
  end-page: 5535
  ident: bib14
  article-title: Review of perovskite-structure related cathode materials for solid oxide fuel cells
  publication-title: Ceram Int
  contributor:
    fullname: Singh
– volume: 9
  start-page: 25350
  year: 2017
  end-page: 25357
  ident: bib19
  article-title: Highly efficient CO2 electrolysis on cathodes with exsolved alkaline earth oxide nanostructures
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Ye
– volume: 5
  start-page: 2673
  year: 2017
  end-page: 2680
  ident: bib44
  article-title: The excellence of La (Sr) Fe (Ni) O 3 as an active and efficient cathode for direct CO 2 electrochemical reduction at elevated temperatures
  publication-title: J Mater Chem A
  contributor:
    fullname: Luo
– volume: 274
  start-page: 260
  year: 2015
  end-page: 264
  ident: bib26
  article-title: Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3−δ –Cu ceramic composite electrode
  publication-title: J Power Sources
  contributor:
    fullname: Xing
– volume: 163
  start-page: F3190
  year: 2016
  end-page: F3196
  ident: bib28
  article-title: Electrochemical characteristics and gas composition generated by La0.8Sr0.2Cr0.5Mn0.5O3–δCathode at electrolysis and Co-electrolysis modes
  publication-title: J Electrochem Soc
  contributor:
    fullname: Lillmaa
– volume: 15
  start-page: B31
  year: 2012
  end-page: B34
  ident: bib50
  article-title: Impedance studies on LSCM/GDC cathode for high temperature CO2 electrolysis
  publication-title: Electrochem Solid State Lett
  contributor:
    fullname: Irvine
– volume: 47
  start-page: 4089
  year: 2012
  end-page: 4095
  ident: bib53
  article-title: Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs
  publication-title: Mater Res Bull
  contributor:
    fullname: Świerczek
– volume: 212
  start-page: 47
  year: 2012
  end-page: 54
  ident: bib36
  article-title: The effect of A-site cation (Ln= La, Pr, Sm) on the crystal structure, conductivity and oxygen reduction properties of Sr-doped ferrite perovskites
  publication-title: Solid State Ionics
  contributor:
    fullname: Ren
– volume: 146
  start-page: 2827
  year: 1999
  end-page: 2833
  ident: bib48
  article-title: Gas diffusion impedance in characterization of solid oxide fuel cell anodes
  publication-title: J Electrochem Soc
  contributor:
    fullname: Mogensen
– volume: 39
  start-page: 13694
  year: 2014
  end-page: 13700
  ident: bib33
  article-title: Synthesis and electrochemical behaviour of ceria-substitution LSCM as a possible symmetric solid oxide fuel cell electrode material exposed to H2 fuel containing H2S
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Tan
– volume: 221
  start-page: 149
  year: 2013
  end-page: 156
  ident: bib34
  article-title: Ba-substituted LSCM anodes for solid oxide fuel cells
  publication-title: J Power Sources
  contributor:
    fullname: Gauthier
– volume: 400
  start-page: 104
  year: 2018
  end-page: 113
  ident: bib32
  article-title: (La0. 75Sr0. 25) 0.95 (Cr0. 5Mn0. 5) O3-δ-Ce0. 8Gd0. 2O1. 9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell
  publication-title: J Power Sources
  contributor:
    fullname: Zhang
– volume: 155
  start-page: B36
  year: 2008
  end-page: B41
  ident: bib49
  article-title: Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells
  publication-title: J Electrochem Soc
  contributor:
    fullname: Leonide
– volume: 373
  start-page: 54
  year: 2018
  end-page: 60
  ident: bib11
  article-title: Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes
  publication-title: J Power Sources
  contributor:
    fullname: Skafte
– volume: 157
  start-page: 848
  year: 2006
  end-page: 854
  ident: bib46
  article-title: Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs
  publication-title: J Power Sources
  contributor:
    fullname: Lee
– volume: 191
  start-page: 559
  year: 2017
  end-page: 567
  ident: bib9
  article-title: Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode
  publication-title: Appl Energy
  contributor:
    fullname: Pan
– volume: 209
  start-page: 56
  year: 2016
  end-page: 64
  ident: bib45
  article-title: Study of activation effect of anodic current on La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ air electrode in solid oxide electrolyzer cell
  publication-title: Electrochim Acta
  contributor:
    fullname: Pan
– volume: 161
  start-page: F337
  year: 2014
  ident: bib13
  article-title: Carbon deposition in solid oxide cells during co-electrolysis of H2O and CO2
  publication-title: J Electrochem Soc
  contributor:
    fullname: Mogensen
– volume: 27
  start-page: 4273
  year: 2007
  end-page: 4277
  ident: bib51
  article-title: Electrical conductivity of thin film ceria grown by pulsed laser deposition
  publication-title: J Eur Ceram Soc
  contributor:
    fullname: Choi
– volume: 41
  start-page: 13869
  year: 2016
  end-page: 13878
  ident: bib10
  article-title: Fuel cell and hydrogen technologies research, development and demonstration activities in Singapore–an update
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Chan
– volume: 41
  start-page: 14207
  year: 2016
  end-page: 14216
  ident: bib35
  article-title: Impregnation versus exsolution: using metal catalysts to improve electrocatalytic properties of LSCM-based anodes operating at 600 C
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Thommy
– volume: 5
  start-page: 2673
  year: 2017
  end-page: 2680
  ident: bib18
  article-title: The excellence of La(Sr)Fe(Ni)O3 as an active and efficient cathode for direct CO2 electrochemical reduction at elevated temperatures
  publication-title: J Mater Chem A
  contributor:
    fullname: Luo
– volume: 46
  start-page: 4000
  year: 2020
  end-page: 4005
  ident: bib38
  article-title: Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs
  publication-title: Ceram Int
  contributor:
    fullname: Ma
– volume: 7
  start-page: 18792
  year: 2019
  end-page: 18798
  ident: bib39
  article-title: Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations
  publication-title: J Mater Chem A
  contributor:
    fullname: Xu
– volume: 85
  start-page: 1371
  year: 2016
  end-page: 1390
  ident: bib3
  article-title: Renewable Power-to-Gas: a technological and economic review
  publication-title: Renew Energy
  contributor:
    fullname: Götz
– volume: 225
  start-page: 131
  year: 2012
  end-page: 135
  ident: bib27
  article-title: (La,Sr)(Cr,Mn)O3/GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis
  publication-title: Solid State Ionics
  contributor:
    fullname: Irvine
– volume: 389
  start-page: 317
  year: 2005
  end-page: 322
  ident: bib52
  article-title: The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte
  publication-title: J Alloys Compd
  contributor:
    fullname: Ji
– volume: 35
  start-page: 4808
  year: 2010
  end-page: 4819
  ident: bib7
  article-title: High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy–summary of system simulation and economic analyses
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: O'Brien
– volume: 159
  start-page: F442
  year: 2012
  end-page: F448
  ident: bib29
  article-title: Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells
  publication-title: J Electrochem Soc
  contributor:
    fullname: Irvine
– volume: 36
  start-page: 3340
  year: 2011
  end-page: 3346
  ident: bib25
  article-title: La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Jin
– volume: 9
  start-page: 35847
  year: 2017
  end-page: 35860
  ident: bib16
  article-title: Surface chemistry of perovskite-type electrodes during high temperature CO2 electrolysis investigated by operando photoelectron spectroscopy
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Opitz
– volume: 18
  start-page: 2349
  year: 2008
  ident: bib23
  article-title: La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam
  publication-title: J Mater Chem
  contributor:
    fullname: Irvine
– volume: 32
  start-page: 875
  year: 2002
  end-page: 882
  ident: bib47
  article-title: Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells
  publication-title: J Appl Electrochem
  contributor:
    fullname: Schichlein
– volume: 42
  start-page: 24968
  year: 2017
  end-page: 24977
  ident: bib17
  article-title: La0. 6Ca0. 4Fe0. 8Ni0. 2O3− δ–Sm0. 2Ce0. 8O1. 9 composites as symmetrical bi-electrodes for solid oxide fuel cells through infiltration and in-situ exsolution
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Ding
– volume: 40
  start-page: 13558
  year: 2015
  end-page: 13565
  ident: bib22
  article-title: Improvements in co-electrolysis performance and long-term stability of solid oxide electrolysis cells based on ceramic composite cathodes
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Yoon
– volume: 73
  start-page: 103
  year: 2014
  end-page: 109
  ident: bib1
  article-title: The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges
  publication-title: Energy Pol
  contributor:
    fullname: Chan
– volume: 280
  start-page: 206
  year: 2018
  end-page: 215
  ident: bib8
  article-title: High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells
  publication-title: Electrochim Acta
  contributor:
    fullname: Zheng
– volume: 29
  start-page: 1070
  year: 2011
  end-page: 1074
  ident: bib37
  article-title: Preparation and performance of Pr-doped Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for IT-SOFCs
  publication-title: J Rare Earths
  contributor:
    fullname: Luomeng
– volume: 208
  start-page: 276
  year: 2012
  end-page: 281
  ident: bib24
  article-title: Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3−δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation
  publication-title: J Power Sources
  contributor:
    fullname: Xing
– volume: 2
  start-page: 320
  year: 2003
  end-page: 323
  ident: bib21
  article-title: A redox-stable efficient anode for solid-oxide fuel cells
  publication-title: Nat Mater
  contributor:
    fullname: Irvine
– volume: 37
  start-page: 15
  year: 2007
  end-page: 20
  ident: bib43
  article-title: Electrochemical characterization of perovskite-based SOFC cathodes
  publication-title: J Appl Electrochem
  contributor:
    fullname: Bebelis
– volume: 230
  start-page: 115
  year: 2013
  end-page: 121
  ident: bib54
  article-title: Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ electrode
  publication-title: J Power Sources
  contributor:
    fullname: Xu
– volume: 35
  start-page: 4808
  issue: 10
  year: 2010
  ident: 10.1016/j.ijhydene.2020.03.224_bib7
  article-title: High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy–summary of system simulation and economic analyses
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.009
  contributor:
    fullname: O'Brien
– volume: 37
  start-page: 15
  issue: 1
  year: 2007
  ident: 10.1016/j.ijhydene.2020.03.224_bib43
  article-title: Electrochemical characterization of perovskite-based SOFC cathodes
  publication-title: J Appl Electrochem
  doi: 10.1007/s10800-006-9215-y
  contributor:
    fullname: Bebelis
– volume: 15
  start-page: B31
  issue: 3
  year: 2012
  ident: 10.1016/j.ijhydene.2020.03.224_bib50
  article-title: Impedance studies on LSCM/GDC cathode for high temperature CO2 electrolysis
  publication-title: Electrochem Solid State Lett
  doi: 10.1149/2.021203esl
  contributor:
    fullname: Yue
– volume: 5
  start-page: 2673
  issue: 6
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.224_bib18
  article-title: The excellence of La(Sr)Fe(Ni)O3 as an active and efficient cathode for direct CO2 electrochemical reduction at elevated temperatures
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA09151B
  contributor:
    fullname: Liu
– volume: 163
  start-page: F3190
  issue: 11
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.224_bib28
  article-title: Electrochemical characteristics and gas composition generated by La0.8Sr0.2Cr0.5Mn0.5O3–δCathode at electrolysis and Co-electrolysis modes
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0261611jes
  contributor:
    fullname: Lillmaa
– volume: 41
  start-page: 14207
  issue: 32
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.224_bib35
  article-title: Impregnation versus exsolution: using metal catalysts to improve electrocatalytic properties of LSCM-based anodes operating at 600 C
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.06.088
  contributor:
    fullname: Thommy
– volume: 44
  start-page: 28939
  issue: 54
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.224_bib6
  article-title: Study of CO2 and H2O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell by aqueous tape casting technique
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.141
  contributor:
    fullname: Zhou
– volume: 7
  start-page: 18792
  issue: 32
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.224_bib39
  article-title: Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA06676D
  contributor:
    fullname: Xu
– volume: 155
  start-page: B36
  issue: 1
  year: 2008
  ident: 10.1016/j.ijhydene.2020.03.224_bib49
  article-title: Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2801372
  contributor:
    fullname: Leonide
– volume: 230
  start-page: 115
  year: 2013
  ident: 10.1016/j.ijhydene.2020.03.224_bib54
  article-title: Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ electrode
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.068
  contributor:
    fullname: Xu
– volume: 8
  start-page: 6457
  issue: 10
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.224_bib15
  article-title: Highly active and redox-stable Ce-doped LaSrCrFeO-based cathode catalyst for CO2 SOECs
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b11979
  contributor:
    fullname: Zhang
– volume: 389
  start-page: 317
  issue: 1–2
  year: 2005
  ident: 10.1016/j.ijhydene.2020.03.224_bib52
  article-title: The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2004.08.018
  contributor:
    fullname: Ji
– volume: 202
  start-page: 112160
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.224_bib4
  article-title: Thermodynamic analyses of synthetic natural gas production via municipal solid waste gasification, high-temperature water electrolysis and methanation
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112160
  contributor:
    fullname: Pan
– volume: 221
  start-page: 149
  year: 2013
  ident: 10.1016/j.ijhydene.2020.03.224_bib34
  article-title: Ba-substituted LSCM anodes for solid oxide fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.07.126
  contributor:
    fullname: Lay
– volume: 37
  start-page: 999
  issue: 7
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.224_bib2
  article-title: Catalytic conversion of CO2 to value added fuels: current status, challenges, and future directions
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(16)62455-5
  contributor:
    fullname: Wu
– volume: 43
  start-page: 5437
  issue: 11
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.224_bib41
  article-title: Activation and failure mechanism of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ air electrode in solid oxide electrolyzer cells under high-current electrolysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.181
  contributor:
    fullname: Pan
– volume: 328
  start-page: 452
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.224_bib12
  article-title: Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.08.055
  contributor:
    fullname: Tao
– volume: 280
  start-page: 206
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.224_bib8
  article-title: High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.05.117
  contributor:
    fullname: Zheng
– volume: 39
  start-page: 9753
  issue: 8
  year: 2013
  ident: 10.1016/j.ijhydene.2020.03.224_bib42
  article-title: LSCM–YSZ nanocomposites for a high performance SOFC anode
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2013.05.022
  contributor:
    fullname: Jung
– volume: 5
  start-page: 2673
  issue: 6
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.224_bib44
  article-title: The excellence of La (Sr) Fe (Ni) O 3 as an active and efficient cathode for direct CO 2 electrochemical reduction at elevated temperatures
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA09151B
  contributor:
    fullname: Liu
– volume: 9
  start-page: 35847
  issue: 41
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.224_bib16
  article-title: Surface chemistry of perovskite-type electrodes during high temperature CO2 electrolysis investigated by operando photoelectron spectroscopy
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b10673
  contributor:
    fullname: Opitz
– volume: 225
  start-page: 131
  year: 2012
  ident: 10.1016/j.ijhydene.2020.03.224_bib27
  article-title: (La,Sr)(Cr,Mn)O3/GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.06.015
  contributor:
    fullname: Yue
– volume: 9
  start-page: 1803156
  issue: 3
  year: 2019
  ident: 10.1016/j.ijhydene.2020.03.224_bib20
  article-title: Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201803156
  contributor:
    fullname: Li
– volume: 159
  start-page: F442
  issue: 8
  year: 2012
  ident: 10.1016/j.ijhydene.2020.03.224_bib29
  article-title: Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells
  publication-title: J Electrochem Soc
  doi: 10.1149/2.040208jes
  contributor:
    fullname: Yue
– volume: 212
  start-page: 47
  year: 2012
  ident: 10.1016/j.ijhydene.2020.03.224_bib36
  article-title: The effect of A-site cation (Ln= La, Pr, Sm) on the crystal structure, conductivity and oxygen reduction properties of Sr-doped ferrite perovskites
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.02.028
  contributor:
    fullname: Ren
– volume: 157
  start-page: 848
  issue: 2
  year: 2006
  ident: 10.1016/j.ijhydene.2020.03.224_bib46
  article-title: Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.12.028
  contributor:
    fullname: Lee
– volume: 373
  start-page: 54
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.224_bib11
  article-title: Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.10.097
  contributor:
    fullname: Skafte
– volume: 2
  start-page: 320
  issue: 5
  year: 2003
  ident: 10.1016/j.ijhydene.2020.03.224_bib21
  article-title: A redox-stable efficient anode for solid-oxide fuel cells
  publication-title: Nat Mater
  doi: 10.1038/nmat871
  contributor:
    fullname: Tao
– volume: 39
  start-page: 13694
  issue: 25
  year: 2014
  ident: 10.1016/j.ijhydene.2020.03.224_bib33
  article-title: Synthesis and electrochemical behaviour of ceria-substitution LSCM as a possible symmetric solid oxide fuel cell electrode material exposed to H2 fuel containing H2S
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.03.179
  contributor:
    fullname: Song
– volume: 85
  start-page: 1371
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.224_bib3
  article-title: Renewable Power-to-Gas: a technological and economic review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.066
  contributor:
    fullname: Götz
– volume: 46
  start-page: 4000
  issue: 3
  year: 2020
  ident: 10.1016/j.ijhydene.2020.03.224_bib38
  article-title: Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.10.017
  contributor:
    fullname: Ma
– volume: 40
  start-page: 13558
  issue: 39
  year: 2015
  ident: 10.1016/j.ijhydene.2020.03.224_bib22
  article-title: Improvements in co-electrolysis performance and long-term stability of solid oxide electrolysis cells based on ceramic composite cathodes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.08.012
  contributor:
    fullname: Yoon
– volume: 274
  start-page: 260
  year: 2015
  ident: 10.1016/j.ijhydene.2020.03.224_bib26
  article-title: Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3−δ –Cu ceramic composite electrode
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.10.066
  contributor:
    fullname: Xing
– volume: 23
  start-page: 3089
  issue: 6
  year: 2009
  ident: 10.1016/j.ijhydene.2020.03.224_bib5
  article-title: Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle
  publication-title: Energy Fuels
  doi: 10.1021/ef900111f
  contributor:
    fullname: Zhan
– volume: 9
  start-page: 25350
  issue: 30
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.224_bib19
  article-title: Highly efficient CO2 electrolysis on cathodes with exsolved alkaline earth oxide nanostructures
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b07039
  contributor:
    fullname: Ye
– volume: 41
  start-page: 13869
  issue: 32
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.224_bib10
  article-title: Fuel cell and hydrogen technologies research, development and demonstration activities in Singapore–an update
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.192
  contributor:
    fullname: Chan
– volume: 209
  start-page: 56
  year: 2016
  ident: 10.1016/j.ijhydene.2020.03.224_bib45
  article-title: Study of activation effect of anodic current on La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ air electrode in solid oxide electrolyzer cell
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.05.058
  contributor:
    fullname: Pan
– volume: 42
  start-page: 24968
  issue: 39
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.224_bib17
  article-title: La0. 6Ca0. 4Fe0. 8Ni0. 2O3− δ–Sm0. 2Ce0. 8O1. 9 composites as symmetrical bi-electrodes for solid oxide fuel cells through infiltration and in-situ exsolution
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.08.089
  contributor:
    fullname: Ding
– volume: 400
  start-page: 104
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.224_bib32
  article-title: (La0. 75Sr0. 25) 0.95 (Cr0. 5Mn0. 5) O3-δ-Ce0. 8Gd0. 2O1. 9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.08.017
  contributor:
    fullname: Zhang
– volume: 161
  start-page: F337
  issue: 3
  year: 2014
  ident: 10.1016/j.ijhydene.2020.03.224_bib13
  article-title: Carbon deposition in solid oxide cells during co-electrolysis of H2O and CO2
  publication-title: J Electrochem Soc
  doi: 10.1149/2.079403jes
  contributor:
    fullname: Tao
– volume: 73
  start-page: 103
  year: 2014
  ident: 10.1016/j.ijhydene.2020.03.224_bib1
  article-title: The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges
  publication-title: Energy Pol
  doi: 10.1016/j.enpol.2014.04.046
  contributor:
    fullname: Ehteshami
– volume: 39
  start-page: 20888
  issue: 36
  year: 2014
  ident: 10.1016/j.ijhydene.2020.03.224_bib55
  article-title: Chromate cathode decorated with in-situ growth of copper nanocatalyst for high temperature carbon dioxide electrolysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.10.053
  contributor:
    fullname: Li
– volume: 32
  start-page: 875
  issue: 8
  year: 2002
  ident: 10.1016/j.ijhydene.2020.03.224_bib47
  article-title: Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells
  publication-title: J Appl Electrochem
  doi: 10.1023/A:1020599525160
  contributor:
    fullname: Schichlein
– volume: 47
  start-page: 4089
  issue: 12
  year: 2012
  ident: 10.1016/j.ijhydene.2020.03.224_bib53
  article-title: Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2012.08.072
  contributor:
    fullname: Zheng
– volume: 378
  start-page: 571
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.224_bib40
  article-title: Effect of La0.6Sr0.4Co0.2Fe0.8O3−δ air electrode–electrolyte interface on the short-term stability under high-current electrolysis in solid oxide electrolyzer cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.01.002
  contributor:
    fullname: Pan
– volume: 191
  start-page: 559
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.224_bib9
  article-title: Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.090
  contributor:
    fullname: Pan
– volume: 146
  start-page: 2827
  issue: 8
  year: 1999
  ident: 10.1016/j.ijhydene.2020.03.224_bib48
  article-title: Gas diffusion impedance in characterization of solid oxide fuel cell anodes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1392015
  contributor:
    fullname: Primdahl
– volume: 18
  start-page: 2349
  issue: 20
  year: 2008
  ident: 10.1016/j.ijhydene.2020.03.224_bib23
  article-title: La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam
  publication-title: J Mater Chem
  doi: 10.1039/b800163d
  contributor:
    fullname: Yang
– volume: 359
  start-page: 8
  year: 2018
  ident: 10.1016/j.ijhydene.2020.03.224_bib30
  article-title: Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2−δ nanoparticles-modified LSCM-GDC cathode
  publication-title: J Catal
  doi: 10.1016/j.jcat.2017.12.027
  contributor:
    fullname: Zhang
– volume: 27
  start-page: 4273
  issue: 13–15
  year: 2007
  ident: 10.1016/j.ijhydene.2020.03.224_bib51
  article-title: Electrical conductivity of thin film ceria grown by pulsed laser deposition
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2007.02.135
  contributor:
    fullname: Joo
– volume: 36
  start-page: 3340
  issue: 5
  year: 2011
  ident: 10.1016/j.ijhydene.2020.03.224_bib25
  article-title: La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.12.085
  contributor:
    fullname: Jin
– volume: 46
  start-page: 5521
  issue: 5
  year: 2020
  ident: 10.1016/j.ijhydene.2020.03.224_bib14
  article-title: Review of perovskite-structure related cathode materials for solid oxide fuel cells
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.11.066
  contributor:
    fullname: Kaur
– volume: 208
  start-page: 276
  year: 2012
  ident: 10.1016/j.ijhydene.2020.03.224_bib24
  article-title: Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3−δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.02.062
  contributor:
    fullname: Xing
– volume: 29
  start-page: 1070
  issue: 11
  year: 2011
  ident: 10.1016/j.ijhydene.2020.03.224_bib37
  article-title: Preparation and performance of Pr-doped Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for IT-SOFCs
  publication-title: J Rare Earths
  doi: 10.1016/S1002-0721(10)60600-X
  contributor:
    fullname: Chengjun
– volume: 5
  start-page: 7081
  issue: 15
  year: 2017
  ident: 10.1016/j.ijhydene.2020.03.224_bib31
  article-title: Modification of LSCM–GDC cathodes to enhance performance for high temperature CO 2 electrolysis using solid oxide electrolysis cells (SOECs)
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA09421J
  contributor:
    fullname: Yue
SSID ssj0017049
Score 2.4591277
Snippet Direct CO2 electrolysis has been explored as a means to store renewable energy and produce renewable fuels. La chromate-based perovskite oxides have attracted...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 14648
SubjectTerms CO2 utilization and upgrade
Direct CO2 electrolysis
Pr-doped La0.75Sr0.25Cr0.5Mn0.5O3-δ
Short-term stability
Solid oxide electrolysis cells
Title Highly active and stable A-site Pr-doped LaSrCrMnO-based fuel electrode for direct CO2 solid oxide electrolyzer cells
URI https://dx.doi.org/10.1016/j.ijhydene.2020.03.224
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JawIxFH5YvbSH0pXaRXLoNS6ZNUeRil3UghW8DRmT0JFhlKlC7aG_vS-aKRYKPfQyMJk8GL7JvPclbwO4lb7x3Tg-DaSLG5RpzKjgzZAGSrWEktrnyhzo9wd-b-w-TLxJCTpFLowJq7S6f6vTN9rajjQsmo1FkjRGqHtNCg5neEUS7-xBBc0RC8tQad8_9gbfzoTAsmCcT43ATqLwrJ7MXtf4h5uKmaxp6p0y5v5uo3bsTvcIDi1hJO3tOx1DSWUncLBTRvAUViZYI10TsdFdRGSSIOeLU0Xa1DiHyXNO5XyhJHkSo7yT97MhNdZLEr1SKbGdcKQiSGDJFg_SGTKCyzKRZP6e4CM7KV1_qJyY0_63Mxh37146PWrbKdApArSkbmDoh6M1j73QD3msW1NP60B6oW5J3JZJxrVwORM6RhbjmV4JmiOjkI6UHhLBcyhn80xdAOFc45gWTsimblPxUAeBdgULJdIhT3lVaBQARott1YyoCCebRQXkkYE8ajoRQl4FXuAc_fj-Ear2P2Qv_yF7BfvmzsQDMP8ayst8pW6QZizjGuzVP1s1u5i-AMmN0rw
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LawIxEA5WD20PpU9qnzn0mqrZZ44ilW19FVTwFrImoSuyylah9td34maLhUIPvewhycDyJZn5kpnMIPQgfeO7cXwSSBcOKNOYEsHqIQmUaggltc-UudDv9f1o7L5MvEkJtYq3MCas0ur-XKdvtbVtqVk0a8skqQ1B95onOIzCF0i8s4cqwAYY7M5K87kT9b-dCYFlwTCeGIGdh8Kzx2T2toEdbjJm0rrJd0qp-7uN2rE77WN0ZAkjbub_dIJKKj1FhztpBM_Q2gRrzDdYbHUXFqnEwPniucJNYpzD-DUjcrFUEnfFMGtlvXRAjPWSWK_VHNtKOFJhILA4xwO3BhTDskwkXnwk0GUHzTefKsPmtv_9HI3bT6NWRGw5BTIFgFbEDQz9cLRmsRf6IYt1Y-ppHUgv1A0JxzJJmRYuo0LHwGI8UytBM2AU0pHSAyJ4gcrpIlWXCDOmoU0LJ6RTt65YqINAu4KGEuiQp7wqqhUA8mWeNYMX4WQzXkDODeS87nCAvIpYgTP_Mf8cVPsfslf_kL1H-9Go1-Xd537nGh2YHhMbQP0bVF5la3ULlGMV39kl9QXmA9Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+active+and+stable+A-site+Pr-doped+LaSrCrMnO-based+fuel+electrode+for+direct+CO2+solid+oxide+electrolyzer+cells&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Pan%2C+Zehua&rft.au=Shi%2C+Hongqi&rft.au=Wang%2C+Shun&rft.au=Jiang%2C+Huaguo&rft.date=2020-05-26&rft.issn=0360-3199&rft.volume=45&rft.issue=29&rft.spage=14648&rft.epage=14659&rft_id=info:doi/10.1016%2Fj.ijhydene.2020.03.224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2020_03_224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon