Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol

•The efficacy of TSCI is very sensitive to injector spray angle and piston geometry.•A large injector included angle increases TSCI’s efficacy.•A small injector included angle does not increase thermal stratification.•A re-entrant bowl piston creates more thermal stratification than a wide bowl.•Ide...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 262; p. 114528
Main Authors Gainey, Brian, Gohn, James, Hariharan, Deivanayagam, Rahimi-Boldaji, Mozhgan, Lawler, Benjamin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The efficacy of TSCI is very sensitive to injector spray angle and piston geometry.•A large injector included angle increases TSCI’s efficacy.•A small injector included angle does not increase thermal stratification.•A re-entrant bowl piston creates more thermal stratification than a wide bowl.•Ideal hardware for TSCI is wide injector included angle with re-entrant bowl piston. Recent results have concluded that the efficacy of compression stroke injections in enhancing natural thermal stratification are dependent on the injector’s included angle. Therefore, there is a need to further understand how different hardware affects the efficacy of thermally stratified compression ignition. In this study, three injector included angles are considered: 150°, 118°, and 60°. Compression stroke injection timing sweeps are performed with these three injectors using two distinct piston geometries: a re-entrant bowl piston geometry found in a production, light-duty diesel engine, and a custom-made open, shallow bowl piston geometry, designed to reduce surface-to-volume ratio. Using an equivalence ratio of 0.5 and a split fraction of 80%, it was found that, with the re-entrant bowl piston geometry, the 150° injector displayed high controllability over the burn duration and was able to elongate the burn duration by a factor of 1.8×. The 118° injector displayed slight controllability over the burn duration, while the 60° injector displayed no controllability. With the open bowl piston geometry, the 150° maintained high controllability over the burn duration, albeit with less efficacy. The 60° injector still had no controllability and now the 118° injector had no controllability. The low surface-to-volume ratio of the shallow bowl piston led to less natural thermal stratification than the re-entrant bowl piston geometry, which impacted the compression stroke injection’s ability to control the burn rate. Therefore, the hardware setup that achieves the highest efficacy is a re-entrant bowl-like piston geometry with a wide spray angle injector.
AbstractList •The efficacy of TSCI is very sensitive to injector spray angle and piston geometry.•A large injector included angle increases TSCI’s efficacy.•A small injector included angle does not increase thermal stratification.•A re-entrant bowl piston creates more thermal stratification than a wide bowl.•Ideal hardware for TSCI is wide injector included angle with re-entrant bowl piston. Recent results have concluded that the efficacy of compression stroke injections in enhancing natural thermal stratification are dependent on the injector’s included angle. Therefore, there is a need to further understand how different hardware affects the efficacy of thermally stratified compression ignition. In this study, three injector included angles are considered: 150°, 118°, and 60°. Compression stroke injection timing sweeps are performed with these three injectors using two distinct piston geometries: a re-entrant bowl piston geometry found in a production, light-duty diesel engine, and a custom-made open, shallow bowl piston geometry, designed to reduce surface-to-volume ratio. Using an equivalence ratio of 0.5 and a split fraction of 80%, it was found that, with the re-entrant bowl piston geometry, the 150° injector displayed high controllability over the burn duration and was able to elongate the burn duration by a factor of 1.8×. The 118° injector displayed slight controllability over the burn duration, while the 60° injector displayed no controllability. With the open bowl piston geometry, the 150° maintained high controllability over the burn duration, albeit with less efficacy. The 60° injector still had no controllability and now the 118° injector had no controllability. The low surface-to-volume ratio of the shallow bowl piston led to less natural thermal stratification than the re-entrant bowl piston geometry, which impacted the compression stroke injection’s ability to control the burn rate. Therefore, the hardware setup that achieves the highest efficacy is a re-entrant bowl-like piston geometry with a wide spray angle injector.
ArticleNumber 114528
Author Hariharan, Deivanayagam
Gainey, Brian
Gohn, James
Rahimi-Boldaji, Mozhgan
Lawler, Benjamin
Author_xml – sequence: 1
  givenname: Brian
  orcidid: 0000-0002-4736-0316
  surname: Gainey
  fullname: Gainey, Brian
  email: bgaine2@g.clemson.edu
  organization: Clemson University, United States
– sequence: 2
  givenname: James
  surname: Gohn
  fullname: Gohn, James
  organization: Stony Brook University, United States
– sequence: 3
  givenname: Deivanayagam
  orcidid: 0000-0002-9885-528X
  surname: Hariharan
  fullname: Hariharan, Deivanayagam
  organization: Stony Brook University, United States
– sequence: 4
  givenname: Mozhgan
  surname: Rahimi-Boldaji
  fullname: Rahimi-Boldaji, Mozhgan
  organization: Clemson University, United States
– sequence: 5
  givenname: Benjamin
  surname: Lawler
  fullname: Lawler, Benjamin
  organization: Clemson University, United States
BookMark eNqFkMtKAzEUhoMo2FZfQfICU3NppjM7S_EGBTe6DmlyZpphJhmSaOnSNzdDde3mnJ-Q7-fwzdGl8w4QuqNkSQkt77ulGsFBaE9LRlh-pCvBqgs0o9WaFTWl1SWaEU7KgpW0vkbzGDtCCKOMzND3JkaI0boWpwNgO4xKJ-wbbF0HOvmQg-4_DRisXNtDngaPNibvcAt-gBROOOcMh0H1_QnHFFSyjc2E9sMYpvb8wbbOpikcbTrgIyQM6aCc72_QVaP6CLe_e4E-nh7fty_F7u35dbvZFZpTlooVZ_tqBbo2VQ3E7Buqa2Fqxdf7kpcVJXWlFOdls1qbmirKhTCGC1KVTIAQgi9Qee7VwccYoJFjsIMKJ0mJnETKTv6JlJNIeRaZwYczCPm6LwtBRm3BaTA2ZEXSePtfxQ-LEoSq
CitedBy_id crossref_primary_10_3390_en17123046
crossref_primary_10_1016_j_ecmx_2023_100377
crossref_primary_10_4271_2021_01_0511
crossref_primary_10_1016_j_fuel_2020_118915
crossref_primary_10_1016_j_rser_2021_111683
crossref_primary_10_1016_j_energy_2020_119706
crossref_primary_10_1016_j_renene_2022_05_132
Cites_doi 10.4271/2012-01-1111
10.4271/2012-01-0383
10.4271/03-12-05-0033
10.1016/j.apenergy.2018.11.009
10.1016/j.apenergy.2016.11.034
10.4271/2006-01-0629
10.4271/2015-01-0832
10.4271/2006-01-3412
10.1177/1468087411401548
10.4271/2019-01-1146
10.1115/ICEF2019-7164
10.4271/2013-01-0264
10.1016/j.fuel.2018.02.170
10.4271/2007-01-1867
10.1016/j.enconman.2015.08.039
10.1016/j.energy.2009.02.010
10.4271/2013-36-0202
10.1016/j.apenergy.2018.12.093
10.4271/2019-01-1164
10.4271/2019-01-0961
10.4271/2010-01-0338
10.1115/1.4002893
10.1115/1.4006703
10.4271/2018-01-0178
10.4271/2011-01-1760
10.4271/2015-01-1070
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apenergy.2020.114528
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_114528
S0306261920300404
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AAXKI
AAYOK
AAYXX
ABEFU
ABFNM
ABTAH
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
WUQ
ZY4
ID FETCH-LOGICAL-c312t-432b84ec9d89e0dbf1c95d9a37b63681098aa336f47d91a1355dd3508625e5553
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Thu Sep 26 17:31:22 EDT 2024
Fri Feb 23 02:49:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wet ethanol
CFD
HCCI
TSCI
PPC
CDC
IVO
O2
DI
NVO
CO2
MPRR
WE
IMEPg
deg aTDC
PFI
NOx
SI
CAx
PFS
Low temperature combustion
Injector spray angle
EI
CAD
Piston geometry
CO
GCI
ηig,th
SOI
EGR
RCCI
uHC
EVC
IVC
LTC
PM
EVO
ηcomb
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-432b84ec9d89e0dbf1c95d9a37b63681098aa336f47d91a1355dd3508625e5553
ORCID 0000-0002-9885-528X
0000-0002-4736-0316
ParticipantIDs crossref_primary_10_1016_j_apenergy_2020_114528
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114528
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mack, Aceves, Dibble (b0015) 2009; 34
Pinazzi, Hwang, Kim, Foucher, Bae (b0125) 2018
Splitter D, Wissink M, Kokjohn S, Reitz RD. Effect of compression ratio and piston geometry on RCCI load limits and efficiency (No. 2012-01-0383). SAE Technical Paper; 2012.
Rahimi-Boldaji, Gainey, O’Donnell, Lawler (b0130) 2019
Lanzanova, Nora, Martins, Machado, Pedrozo, Zhao (b0030) 2019; 252
Koupaue, Cairns, Vafamehr, Lanzanova (b0025) 2019; 237
Lanzanova T, Vielmo H, Sari R, Dornelles H, Tatsch G, Martins M, Michels L. Performance analysis of a spark ignited engine running on different water-in-ethanol mixtures. SAE Technical Paper 2013- 36-0202; 2013.
Gainey, Gohn, Yan, Rahimi-Boldaji, Lawler (b0050) 2019
Lopez Pintor D, Dec J, Gentz G. Φ-Sensitivity for LTGC engines: understanding the fundamentals and tailoring fuel blends to maximize this property. SAE Technical Paper 2019- 01-0961; 2019.
Lawler, Splitter, Szybist, Kaul (b0090) 2017; 189
Dec J, Hwang W. Characterizing the development of thermal stratification in an HCCI engine using planar-imaging thermometry.
Noehre C, Andersson M, Johansson B, Hultqvist A. Characterization of partially premixed combustion. SAE Technical Paper 2006-01-3412; 2006.
Flowers D, Aceves S, Frias J. Improving ethanol life cycle energy efficiency by direct utilization of wet ethanol in HCCI engines. SAE Technical Paper 2007-01-1867; 2007.
Gainey B, Yan Z, Gohn J, Rahimi Boldaji M, Lawler B. TSCI with wet ethanol: an investigation of the effects of injection strategy on a diesel engine architecture. SAE Technical Paper 2019-01-1146; 2019.
Moon S, Kim G, Chu S, Kang J, Min K, Choi H, et al. Numerical analysis on the effect of piston bowl geometry in gasoline-diesel dual-fuel combustion. SAE Technical Paper 2019-01-1164; 2019.
Dempsey, Walker, Reitz (b0140) 2013; 6
Wallner (b0145) 2011; 133
Kolodziej C, Kodavasal J, Ciatti S, Som S, Shidore N, Delhom J. Achieving stable engine operation of gasoline compression ignition using 87 AKI gasoline down to idle. SAE Technical Paper 2015-01-0832; 2015.
.
Dempsey, Das, Viswanathan, Reitz (b0045) 2012; 134
Gainey, Longtin, Lawler (b0150) 2019
Gainey B, Yan Z, Rahimi-Boldaji M, Lawler B. On the Effects of injection strategy, EGR, and intake boost on TSCI with wet ethanol. ASME ICEF 2019-7164.
Rahimi Boldaji, Gainey, Lawler (b0040) 2019
Dronniou, Dec (b0060) 2012; 5
Yu H, Guo Y, Li D, Liang X, Shu G, Wang Y et al. Numerical investigation of the effect of spray cone angle on mixture formation and CO/soot emissions in an early injection HCCI diesel engine. SAE Technical Paper 2015-01-1070; 2015.
Gainey B, Hariharan D, Yan Z, Lawler B. A split injection of wet ethanol to enable thermally stratified compression ignition. Int J Engine Res.
Rahimi Boldaji M, Sofianopoulos A, Mamalis S, Lawler B. Effects of mass, pressure, and timing of injection on the efficiency and emissions characteristics of TSCI combustion with direct water injection. SAE Technical Paper 2018-01-0178; 2018.
Sjoberg, Dec (b0105) 2010; 3
Saffy, Northrop, Kittelson, Boies (b0005) 2015; 105
Sjoberg M. Dec J. Smoothing HCCI heat-release rates using partial fuel stratification with two-stage ignition fuels. SAE technical paper 2006-01-0629; 2006.
Sjoberg, Dec (b0100) 2012; 5
Kokjohn, Hanson, Splitter, Reitz (b0065) 2011; 12
10.1016/j.apenergy.2020.114528_b0095
10.1016/j.apenergy.2020.114528_b0075
10.1016/j.apenergy.2020.114528_b0010
10.1016/j.apenergy.2020.114528_b0055
10.1016/j.apenergy.2020.114528_b0110
Pinazzi (10.1016/j.apenergy.2020.114528_b0125) 2018
10.1016/j.apenergy.2020.114528_b0155
10.1016/j.apenergy.2020.114528_b0035
10.1016/j.apenergy.2020.114528_b0135
Dempsey (10.1016/j.apenergy.2020.114528_b0045) 2012; 134
10.1016/j.apenergy.2020.114528_b0115
Dempsey (10.1016/j.apenergy.2020.114528_b0140) 2013; 6
Rahimi Boldaji (10.1016/j.apenergy.2020.114528_b0040) 2019
Gainey (10.1016/j.apenergy.2020.114528_b0150) 2019
Sjoberg (10.1016/j.apenergy.2020.114528_b0105) 2010; 3
10.1016/j.apenergy.2020.114528_b0080
Sjoberg (10.1016/j.apenergy.2020.114528_b0100) 2012; 5
Gainey (10.1016/j.apenergy.2020.114528_b0050) 2019
10.1016/j.apenergy.2020.114528_b0085
10.1016/j.apenergy.2020.114528_b0020
10.1016/j.apenergy.2020.114528_b0120
Saffy (10.1016/j.apenergy.2020.114528_b0005) 2015; 105
Koupaue (10.1016/j.apenergy.2020.114528_b0025) 2019; 237
Dronniou (10.1016/j.apenergy.2020.114528_b0060) 2012; 5
Lawler (10.1016/j.apenergy.2020.114528_b0090) 2017; 189
Rahimi-Boldaji (10.1016/j.apenergy.2020.114528_b0130) 2019
Wallner (10.1016/j.apenergy.2020.114528_b0145) 2011; 133
Lanzanova (10.1016/j.apenergy.2020.114528_b0030) 2019; 252
10.1016/j.apenergy.2020.114528_b0070
Mack (10.1016/j.apenergy.2020.114528_b0015) 2009; 34
Kokjohn (10.1016/j.apenergy.2020.114528_b0065) 2011; 12
References_xml – volume: 3
  start-page: 84
  year: 2010
  end-page: 106
  ident: b0105
  article-title: Ethanol autoignition characteristics and HCCI performance for wide ranges of engine speed, load and boost
  publication-title: SAE Int J Engines
  contributor:
    fullname: Dec
– volume: 189
  start-page: 122
  year: 2017
  end-page: 132
  ident: b0090
  article-title: Thermally Stratified Compression Ignition: a new advanced low temperature combustion mode with load flexibility
  publication-title: Appl Energy
  contributor:
    fullname: Kaul
– volume: 5
  start-page: 7
  year: 2012
  end-page: 27
  ident: b0100
  article-title: Smoothing HCCI heat release with vaporization-cooling-induced thermal stratification using ethanol
  publication-title: SAE Int J Fuels Lubr
  contributor:
    fullname: Dec
– volume: 6
  start-page: 78
  year: 2013
  end-page: 100
  ident: b0140
  article-title: Effect of piston bowl geometry on dual fuel reactivity controlled compression ignition (RCCI) in a light-duty engine operated with gasoline/diesel and methanol/diesel
  publication-title: SAE Int J Engines
  contributor:
    fullname: Reitz
– year: 2019
  ident: b0150
  article-title: A guide to uncertainty quantification for experimental engine research and heat release analysis
  publication-title: SAE J Engines
  contributor:
    fullname: Lawler
– volume: 12
  start-page: 209
  year: 2011
  end-page: 226
  ident: b0065
  article-title: Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion
  publication-title: Int J Engine Res
  contributor:
    fullname: Reitz
– year: 2018
  ident: b0125
  article-title: Influence of injector spray angle and gasoline-diesel blending ratio on the low load operation in a gasoline compression ignition (GCI) engine
  publication-title: Fuel
  contributor:
    fullname: Bae
– volume: 133
  year: 2011
  ident: b0145
  article-title: Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends
  publication-title: J Eng Gas Turbines Power.
  contributor:
    fullname: Wallner
– volume: 134
  start-page: 082806
  year: 2012
  end-page: 082806-11
  ident: b0045
  article-title: Reactivity controlled compression ignition using premixed hydrated ethanol and direct injection diesel
  publication-title: ASME J Eng Gas Turbines Power
  contributor:
    fullname: Reitz
– volume: 105
  start-page: 900
  year: 2015
  end-page: 907
  ident: b0005
  article-title: Energy, carbon dioxide and water use implications of hydrous ethanol production
  publication-title: Energy Convers Manage
  contributor:
    fullname: Boies
– year: 2019
  ident: b0040
  article-title: Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: a CFD simulation study
  publication-title: Appl Energy
  contributor:
    fullname: Lawler
– volume: 5
  start-page: 1046
  year: 2012
  end-page: 1074
  ident: b0060
  article-title: Investigating the development of thermal stratification from the near-wall regions to the bulk-gas in an HCCI engine with planar imaging thermometry
  publication-title: SAE Int J Engines
  contributor:
    fullname: Dec
– year: 2019
  ident: b0130
  article-title: Investigating the effect of spray included angle on thermally stratified compression ignition with wet ethanol using computational fluid dynamics
  publication-title: Appl Therm Eng
  contributor:
    fullname: Lawler
– volume: 252
  year: 2019
  ident: b0030
  article-title: The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fueled with wet ethanol
  publication-title: Appl Energy
  contributor:
    fullname: Zhao
– volume: 237
  start-page: 258
  year: 2019
  end-page: 269
  ident: b0025
  article-title: A study of hydrous ethanol combustion in an optical central direct injection spark ignition engine
  publication-title: Appl Energy
  contributor:
    fullname: Lanzanova
– volume: 34
  start-page: 782
  year: 2009
  end-page: 787
  ident: b0015
  article-title: Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine
  publication-title: Energy
  contributor:
    fullname: Dibble
– year: 2019
  ident: b0050
  article-title: HCCI with Wet ethanol: investigating the charge cooling effect of a high latent heat of vaporization fuel in LTC
  publication-title: SE Int
  contributor:
    fullname: Lawler
– volume: 5
  start-page: 1046
  issue: 3
  year: 2012
  ident: 10.1016/j.apenergy.2020.114528_b0060
  article-title: Investigating the development of thermal stratification from the near-wall regions to the bulk-gas in an HCCI engine with planar imaging thermometry
  publication-title: SAE Int J Engines
  doi: 10.4271/2012-01-1111
  contributor:
    fullname: Dronniou
– ident: 10.1016/j.apenergy.2020.114528_b0135
  doi: 10.4271/2012-01-0383
– year: 2019
  ident: 10.1016/j.apenergy.2020.114528_b0150
  article-title: A guide to uncertainty quantification for experimental engine research and heat release analysis
  publication-title: SAE J Engines
  doi: 10.4271/03-12-05-0033
  contributor:
    fullname: Gainey
– year: 2019
  ident: 10.1016/j.apenergy.2020.114528_b0040
  article-title: Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: a CFD simulation study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.11.009
  contributor:
    fullname: Rahimi Boldaji
– volume: 189
  start-page: 122
  year: 2017
  ident: 10.1016/j.apenergy.2020.114528_b0090
  article-title: Thermally Stratified Compression Ignition: a new advanced low temperature combustion mode with load flexibility
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.034
  contributor:
    fullname: Lawler
– ident: 10.1016/j.apenergy.2020.114528_b0075
  doi: 10.4271/2006-01-0629
– ident: 10.1016/j.apenergy.2020.114528_b0070
  doi: 10.4271/2015-01-0832
– ident: 10.1016/j.apenergy.2020.114528_b0035
– ident: 10.1016/j.apenergy.2020.114528_b0080
  doi: 10.4271/2006-01-3412
– volume: 12
  start-page: 209
  year: 2011
  ident: 10.1016/j.apenergy.2020.114528_b0065
  article-title: Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion
  publication-title: Int J Engine Res
  doi: 10.1177/1468087411401548
  contributor:
    fullname: Kokjohn
– ident: 10.1016/j.apenergy.2020.114528_b0115
  doi: 10.4271/2019-01-1146
– ident: 10.1016/j.apenergy.2020.114528_b0110
  doi: 10.1115/ICEF2019-7164
– volume: 6
  start-page: 78
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2020.114528_b0140
  article-title: Effect of piston bowl geometry on dual fuel reactivity controlled compression ignition (RCCI) in a light-duty engine operated with gasoline/diesel and methanol/diesel
  publication-title: SAE Int J Engines
  doi: 10.4271/2013-01-0264
  contributor:
    fullname: Dempsey
– year: 2018
  ident: 10.1016/j.apenergy.2020.114528_b0125
  article-title: Influence of injector spray angle and gasoline-diesel blending ratio on the low load operation in a gasoline compression ignition (GCI) engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.02.170
  contributor:
    fullname: Pinazzi
– ident: 10.1016/j.apenergy.2020.114528_b0010
  doi: 10.4271/2007-01-1867
– volume: 105
  start-page: 900
  year: 2015
  ident: 10.1016/j.apenergy.2020.114528_b0005
  article-title: Energy, carbon dioxide and water use implications of hydrous ethanol production
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.08.039
  contributor:
    fullname: Saffy
– volume: 34
  start-page: 782
  issue: 6
  year: 2009
  ident: 10.1016/j.apenergy.2020.114528_b0015
  article-title: Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine
  publication-title: Energy
  doi: 10.1016/j.energy.2009.02.010
  contributor:
    fullname: Mack
– volume: 252
  year: 2019
  ident: 10.1016/j.apenergy.2020.114528_b0030
  article-title: The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fueled with wet ethanol
  publication-title: Appl Energy
  contributor:
    fullname: Lanzanova
– ident: 10.1016/j.apenergy.2020.114528_b0020
  doi: 10.4271/2013-36-0202
– volume: 237
  start-page: 258
  year: 2019
  ident: 10.1016/j.apenergy.2020.114528_b0025
  article-title: A study of hydrous ethanol combustion in an optical central direct injection spark ignition engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.093
  contributor:
    fullname: Koupaue
– ident: 10.1016/j.apenergy.2020.114528_b0155
  doi: 10.4271/2019-01-1164
– ident: 10.1016/j.apenergy.2020.114528_b0085
  doi: 10.4271/2019-01-0961
– volume: 3
  start-page: 84
  issue: 1
  year: 2010
  ident: 10.1016/j.apenergy.2020.114528_b0105
  article-title: Ethanol autoignition characteristics and HCCI performance for wide ranges of engine speed, load and boost
  publication-title: SAE Int J Engines
  doi: 10.4271/2010-01-0338
  contributor:
    fullname: Sjoberg
– volume: 133
  issue: 8
  year: 2011
  ident: 10.1016/j.apenergy.2020.114528_b0145
  article-title: Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends
  publication-title: J Eng Gas Turbines Power.
  doi: 10.1115/1.4002893
  contributor:
    fullname: Wallner
– volume: 134
  start-page: 082806
  issue: 8
  year: 2012
  ident: 10.1016/j.apenergy.2020.114528_b0045
  article-title: Reactivity controlled compression ignition using premixed hydrated ethanol and direct injection diesel
  publication-title: ASME J Eng Gas Turbines Power
  doi: 10.1115/1.4006703
  contributor:
    fullname: Dempsey
– ident: 10.1016/j.apenergy.2020.114528_b0055
– ident: 10.1016/j.apenergy.2020.114528_b0095
  doi: 10.4271/2018-01-0178
– year: 2019
  ident: 10.1016/j.apenergy.2020.114528_b0130
  article-title: Investigating the effect of spray included angle on thermally stratified compression ignition with wet ethanol using computational fluid dynamics
  publication-title: Appl Therm Eng
  contributor:
    fullname: Rahimi-Boldaji
– volume: 5
  start-page: 7
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2020.114528_b0100
  article-title: Smoothing HCCI heat release with vaporization-cooling-induced thermal stratification using ethanol
  publication-title: SAE Int J Fuels Lubr
  doi: 10.4271/2011-01-1760
  contributor:
    fullname: Sjoberg
– ident: 10.1016/j.apenergy.2020.114528_b0120
  doi: 10.4271/2015-01-1070
– year: 2019
  ident: 10.1016/j.apenergy.2020.114528_b0050
  article-title: HCCI with Wet ethanol: investigating the charge cooling effect of a high latent heat of vaporization fuel in LTC
  publication-title: SE Int
  contributor:
    fullname: Gainey
SSID ssj0002120
Score 2.395266
Snippet •The efficacy of TSCI is very sensitive to injector spray angle and piston geometry.•A large injector included angle increases TSCI’s efficacy.•A small...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 114528
SubjectTerms Injector spray angle
Low temperature combustion
Piston geometry
TSCI
Wet ethanol
Title Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol
URI https://dx.doi.org/10.1016/j.apenergy.2020.114528
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EXtpDaW2lT9lDr9FkH4k5iii2pV5awVvYZCeixCg2UrwU-s-7kwdaKPTQS9iEWQg7m5lvN998S8gDSG0yqeaWckPPEi4wK_RsZTFgtmah4raNBc4vY3c0EU9TOa2RflULg7TKMvYXMT2P1uWTTjmanfV83nlFtJvjfxtVo3JNUGHSn5nT7c89zYOV0ozG2ELrgyrhRVutIa-wM-tElsvmSjyV_bcEdZB0hmfktESLtFe80DmpQdogJwcagg3SHOxL1Yxp-a2-X5Cv4n-uMaIG5NGiHJKuYjpPF_lWvWlEyVaDpiqdJWCumq5RaSClM1gtIdvsqGkjQlyqJNnRQmI3NqCVIhO9YNCmdJ4TkEwD93TpB2QUcD9-lVySyXDw1h9Z5YELVsQdllmCs7ArIPJ11wdbh7ET-VL7inuhy1G4zO8qxbkbC0_7jnIMVtGaS1wVSZBS8iapp6sUrgjVjhurkGnuRJHAZZ12lAaIgAnwYldck041ysG60NUIKsLZIqj8EqBfgsIv18SvnBH8mCGBCf5_9L35R99bcox3yDtz5B2pZ5st3BsgkoWtfKa1yFHv8Xk0_gZn0uGy
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KHtSDaLVYn3vwmjbZR9IcRZSqbS-20FvYZCelJU1LTREvgv_cnTxoBcGDl7AksxB2NrPfTr75lpBbkNqspJpbyg09S7jArNCzlcWA2ZqFits2Fjj3B253JJ7Hclwj91UtDNIqy9hfxPQ8Wpd32uVotpfTafsV0W6O_21UjUJN0F2B-NhM6tbnhufBSm1GY22h-VaZ8KyllpCX2JmNIst1cyUey_7bCrW16jwekcMSLtK74o2OSQ3SOjnYEhGsk8bDplbNmJYf69sJ-Sp-6BojalAeLeoh6SKm03SW5-pNI0rWGjRV6SQBc9V0iVIDKZ3AYg7Z6oOaNkLEuUqSD1po7MYGtVKkohcU2pROcwaSaWBSl75DRgET8ovklIweH4b3Xas8ccGKuMMyS3AWdgREvu74YOswdiJfal9xL3Q5Kpf5HaU4d2Phad9RjgErWnOJ2yIJUkreIDvpIoUzQrXjxipkmjtRJHBfpx2lASJgArzYFU3SrkY5WBbCGkHFOJsFlV8C9EtQ-KVJ_MoZwY8pEpjo_0ff83_0vSF73WG_F_SeBi8XZB-fIAnNkZdkJ1ut4cqgkiy8zmfdN8Am40s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+impact+of+injector+included+angle+and+piston+geometry+on+thermally+stratified+compression+ignition+with+wet+ethanol&rft.jtitle=Applied+energy&rft.au=Gainey%2C+Brian&rft.au=Gohn%2C+James&rft.au=Hariharan%2C+Deivanayagam&rft.au=Rahimi-Boldaji%2C+Mozhgan&rft.date=2020-03-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=262&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114528&rft.externalDocID=S0306261920300404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon