Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol
•The efficacy of TSCI is very sensitive to injector spray angle and piston geometry.•A large injector included angle increases TSCI’s efficacy.•A small injector included angle does not increase thermal stratification.•A re-entrant bowl piston creates more thermal stratification than a wide bowl.•Ide...
Saved in:
Published in | Applied energy Vol. 262; p. 114528 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The efficacy of TSCI is very sensitive to injector spray angle and piston geometry.•A large injector included angle increases TSCI’s efficacy.•A small injector included angle does not increase thermal stratification.•A re-entrant bowl piston creates more thermal stratification than a wide bowl.•Ideal hardware for TSCI is wide injector included angle with re-entrant bowl piston.
Recent results have concluded that the efficacy of compression stroke injections in enhancing natural thermal stratification are dependent on the injector’s included angle. Therefore, there is a need to further understand how different hardware affects the efficacy of thermally stratified compression ignition. In this study, three injector included angles are considered: 150°, 118°, and 60°. Compression stroke injection timing sweeps are performed with these three injectors using two distinct piston geometries: a re-entrant bowl piston geometry found in a production, light-duty diesel engine, and a custom-made open, shallow bowl piston geometry, designed to reduce surface-to-volume ratio. Using an equivalence ratio of 0.5 and a split fraction of 80%, it was found that, with the re-entrant bowl piston geometry, the 150° injector displayed high controllability over the burn duration and was able to elongate the burn duration by a factor of 1.8×. The 118° injector displayed slight controllability over the burn duration, while the 60° injector displayed no controllability. With the open bowl piston geometry, the 150° maintained high controllability over the burn duration, albeit with less efficacy. The 60° injector still had no controllability and now the 118° injector had no controllability. The low surface-to-volume ratio of the shallow bowl piston led to less natural thermal stratification than the re-entrant bowl piston geometry, which impacted the compression stroke injection’s ability to control the burn rate. Therefore, the hardware setup that achieves the highest efficacy is a re-entrant bowl-like piston geometry with a wide spray angle injector. |
---|---|
AbstractList | •The efficacy of TSCI is very sensitive to injector spray angle and piston geometry.•A large injector included angle increases TSCI’s efficacy.•A small injector included angle does not increase thermal stratification.•A re-entrant bowl piston creates more thermal stratification than a wide bowl.•Ideal hardware for TSCI is wide injector included angle with re-entrant bowl piston.
Recent results have concluded that the efficacy of compression stroke injections in enhancing natural thermal stratification are dependent on the injector’s included angle. Therefore, there is a need to further understand how different hardware affects the efficacy of thermally stratified compression ignition. In this study, three injector included angles are considered: 150°, 118°, and 60°. Compression stroke injection timing sweeps are performed with these three injectors using two distinct piston geometries: a re-entrant bowl piston geometry found in a production, light-duty diesel engine, and a custom-made open, shallow bowl piston geometry, designed to reduce surface-to-volume ratio. Using an equivalence ratio of 0.5 and a split fraction of 80%, it was found that, with the re-entrant bowl piston geometry, the 150° injector displayed high controllability over the burn duration and was able to elongate the burn duration by a factor of 1.8×. The 118° injector displayed slight controllability over the burn duration, while the 60° injector displayed no controllability. With the open bowl piston geometry, the 150° maintained high controllability over the burn duration, albeit with less efficacy. The 60° injector still had no controllability and now the 118° injector had no controllability. The low surface-to-volume ratio of the shallow bowl piston led to less natural thermal stratification than the re-entrant bowl piston geometry, which impacted the compression stroke injection’s ability to control the burn rate. Therefore, the hardware setup that achieves the highest efficacy is a re-entrant bowl-like piston geometry with a wide spray angle injector. |
ArticleNumber | 114528 |
Author | Hariharan, Deivanayagam Gainey, Brian Gohn, James Rahimi-Boldaji, Mozhgan Lawler, Benjamin |
Author_xml | – sequence: 1 givenname: Brian orcidid: 0000-0002-4736-0316 surname: Gainey fullname: Gainey, Brian email: bgaine2@g.clemson.edu organization: Clemson University, United States – sequence: 2 givenname: James surname: Gohn fullname: Gohn, James organization: Stony Brook University, United States – sequence: 3 givenname: Deivanayagam orcidid: 0000-0002-9885-528X surname: Hariharan fullname: Hariharan, Deivanayagam organization: Stony Brook University, United States – sequence: 4 givenname: Mozhgan surname: Rahimi-Boldaji fullname: Rahimi-Boldaji, Mozhgan organization: Clemson University, United States – sequence: 5 givenname: Benjamin surname: Lawler fullname: Lawler, Benjamin organization: Clemson University, United States |
BookMark | eNqFkMtKAzEUhoMo2FZfQfICU3NppjM7S_EGBTe6DmlyZpphJhmSaOnSNzdDde3mnJ-Q7-fwzdGl8w4QuqNkSQkt77ulGsFBaE9LRlh-pCvBqgs0o9WaFTWl1SWaEU7KgpW0vkbzGDtCCKOMzND3JkaI0boWpwNgO4xKJ-wbbF0HOvmQg-4_DRisXNtDngaPNibvcAt-gBROOOcMh0H1_QnHFFSyjc2E9sMYpvb8wbbOpikcbTrgIyQM6aCc72_QVaP6CLe_e4E-nh7fty_F7u35dbvZFZpTlooVZ_tqBbo2VQ3E7Buqa2Fqxdf7kpcVJXWlFOdls1qbmirKhTCGC1KVTIAQgi9Qee7VwccYoJFjsIMKJ0mJnETKTv6JlJNIeRaZwYczCPm6LwtBRm3BaTA2ZEXSePtfxQ-LEoSq |
CitedBy_id | crossref_primary_10_3390_en17123046 crossref_primary_10_1016_j_ecmx_2023_100377 crossref_primary_10_4271_2021_01_0511 crossref_primary_10_1016_j_fuel_2020_118915 crossref_primary_10_1016_j_rser_2021_111683 crossref_primary_10_1016_j_energy_2020_119706 crossref_primary_10_1016_j_renene_2022_05_132 |
Cites_doi | 10.4271/2012-01-1111 10.4271/2012-01-0383 10.4271/03-12-05-0033 10.1016/j.apenergy.2018.11.009 10.1016/j.apenergy.2016.11.034 10.4271/2006-01-0629 10.4271/2015-01-0832 10.4271/2006-01-3412 10.1177/1468087411401548 10.4271/2019-01-1146 10.1115/ICEF2019-7164 10.4271/2013-01-0264 10.1016/j.fuel.2018.02.170 10.4271/2007-01-1867 10.1016/j.enconman.2015.08.039 10.1016/j.energy.2009.02.010 10.4271/2013-36-0202 10.1016/j.apenergy.2018.12.093 10.4271/2019-01-1164 10.4271/2019-01-0961 10.4271/2010-01-0338 10.1115/1.4002893 10.1115/1.4006703 10.4271/2018-01-0178 10.4271/2011-01-1760 10.4271/2015-01-1070 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apenergy.2020.114528 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
ExternalDocumentID | 10_1016_j_apenergy_2020_114528 S0306261920300404 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AAXKI AAYOK AAYXX ABEFU ABFNM ABTAH ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW WUQ ZY4 |
ID | FETCH-LOGICAL-c312t-432b84ec9d89e0dbf1c95d9a37b63681098aa336f47d91a1355dd3508625e5553 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Thu Sep 26 17:31:22 EDT 2024 Fri Feb 23 02:49:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wet ethanol CFD HCCI TSCI PPC CDC IVO O2 DI NVO CO2 MPRR WE IMEPg deg aTDC PFI NOx SI CAx PFS Low temperature combustion Injector spray angle EI CAD Piston geometry CO GCI ηig,th SOI EGR RCCI uHC EVC IVC LTC PM EVO ηcomb |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-432b84ec9d89e0dbf1c95d9a37b63681098aa336f47d91a1355dd3508625e5553 |
ORCID | 0000-0002-9885-528X 0000-0002-4736-0316 |
ParticipantIDs | crossref_primary_10_1016_j_apenergy_2020_114528 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114528 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-15 |
PublicationDateYYYYMMDD | 2020-03-15 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mack, Aceves, Dibble (b0015) 2009; 34 Pinazzi, Hwang, Kim, Foucher, Bae (b0125) 2018 Splitter D, Wissink M, Kokjohn S, Reitz RD. Effect of compression ratio and piston geometry on RCCI load limits and efficiency (No. 2012-01-0383). SAE Technical Paper; 2012. Rahimi-Boldaji, Gainey, O’Donnell, Lawler (b0130) 2019 Lanzanova, Nora, Martins, Machado, Pedrozo, Zhao (b0030) 2019; 252 Koupaue, Cairns, Vafamehr, Lanzanova (b0025) 2019; 237 Lanzanova T, Vielmo H, Sari R, Dornelles H, Tatsch G, Martins M, Michels L. Performance analysis of a spark ignited engine running on different water-in-ethanol mixtures. SAE Technical Paper 2013- 36-0202; 2013. Gainey, Gohn, Yan, Rahimi-Boldaji, Lawler (b0050) 2019 Lopez Pintor D, Dec J, Gentz G. Φ-Sensitivity for LTGC engines: understanding the fundamentals and tailoring fuel blends to maximize this property. SAE Technical Paper 2019- 01-0961; 2019. Lawler, Splitter, Szybist, Kaul (b0090) 2017; 189 Dec J, Hwang W. Characterizing the development of thermal stratification in an HCCI engine using planar-imaging thermometry. Noehre C, Andersson M, Johansson B, Hultqvist A. Characterization of partially premixed combustion. SAE Technical Paper 2006-01-3412; 2006. Flowers D, Aceves S, Frias J. Improving ethanol life cycle energy efficiency by direct utilization of wet ethanol in HCCI engines. SAE Technical Paper 2007-01-1867; 2007. Gainey B, Yan Z, Gohn J, Rahimi Boldaji M, Lawler B. TSCI with wet ethanol: an investigation of the effects of injection strategy on a diesel engine architecture. SAE Technical Paper 2019-01-1146; 2019. Moon S, Kim G, Chu S, Kang J, Min K, Choi H, et al. Numerical analysis on the effect of piston bowl geometry in gasoline-diesel dual-fuel combustion. SAE Technical Paper 2019-01-1164; 2019. Dempsey, Walker, Reitz (b0140) 2013; 6 Wallner (b0145) 2011; 133 Kolodziej C, Kodavasal J, Ciatti S, Som S, Shidore N, Delhom J. Achieving stable engine operation of gasoline compression ignition using 87 AKI gasoline down to idle. SAE Technical Paper 2015-01-0832; 2015. . Dempsey, Das, Viswanathan, Reitz (b0045) 2012; 134 Gainey, Longtin, Lawler (b0150) 2019 Gainey B, Yan Z, Rahimi-Boldaji M, Lawler B. On the Effects of injection strategy, EGR, and intake boost on TSCI with wet ethanol. ASME ICEF 2019-7164. Rahimi Boldaji, Gainey, Lawler (b0040) 2019 Dronniou, Dec (b0060) 2012; 5 Yu H, Guo Y, Li D, Liang X, Shu G, Wang Y et al. Numerical investigation of the effect of spray cone angle on mixture formation and CO/soot emissions in an early injection HCCI diesel engine. SAE Technical Paper 2015-01-1070; 2015. Gainey B, Hariharan D, Yan Z, Lawler B. A split injection of wet ethanol to enable thermally stratified compression ignition. Int J Engine Res. Rahimi Boldaji M, Sofianopoulos A, Mamalis S, Lawler B. Effects of mass, pressure, and timing of injection on the efficiency and emissions characteristics of TSCI combustion with direct water injection. SAE Technical Paper 2018-01-0178; 2018. Sjoberg, Dec (b0105) 2010; 3 Saffy, Northrop, Kittelson, Boies (b0005) 2015; 105 Sjoberg M. Dec J. Smoothing HCCI heat-release rates using partial fuel stratification with two-stage ignition fuels. SAE technical paper 2006-01-0629; 2006. Sjoberg, Dec (b0100) 2012; 5 Kokjohn, Hanson, Splitter, Reitz (b0065) 2011; 12 10.1016/j.apenergy.2020.114528_b0095 10.1016/j.apenergy.2020.114528_b0075 10.1016/j.apenergy.2020.114528_b0010 10.1016/j.apenergy.2020.114528_b0055 10.1016/j.apenergy.2020.114528_b0110 Pinazzi (10.1016/j.apenergy.2020.114528_b0125) 2018 10.1016/j.apenergy.2020.114528_b0155 10.1016/j.apenergy.2020.114528_b0035 10.1016/j.apenergy.2020.114528_b0135 Dempsey (10.1016/j.apenergy.2020.114528_b0045) 2012; 134 10.1016/j.apenergy.2020.114528_b0115 Dempsey (10.1016/j.apenergy.2020.114528_b0140) 2013; 6 Rahimi Boldaji (10.1016/j.apenergy.2020.114528_b0040) 2019 Gainey (10.1016/j.apenergy.2020.114528_b0150) 2019 Sjoberg (10.1016/j.apenergy.2020.114528_b0105) 2010; 3 10.1016/j.apenergy.2020.114528_b0080 Sjoberg (10.1016/j.apenergy.2020.114528_b0100) 2012; 5 Gainey (10.1016/j.apenergy.2020.114528_b0050) 2019 10.1016/j.apenergy.2020.114528_b0085 10.1016/j.apenergy.2020.114528_b0020 10.1016/j.apenergy.2020.114528_b0120 Saffy (10.1016/j.apenergy.2020.114528_b0005) 2015; 105 Koupaue (10.1016/j.apenergy.2020.114528_b0025) 2019; 237 Dronniou (10.1016/j.apenergy.2020.114528_b0060) 2012; 5 Lawler (10.1016/j.apenergy.2020.114528_b0090) 2017; 189 Rahimi-Boldaji (10.1016/j.apenergy.2020.114528_b0130) 2019 Wallner (10.1016/j.apenergy.2020.114528_b0145) 2011; 133 Lanzanova (10.1016/j.apenergy.2020.114528_b0030) 2019; 252 10.1016/j.apenergy.2020.114528_b0070 Mack (10.1016/j.apenergy.2020.114528_b0015) 2009; 34 Kokjohn (10.1016/j.apenergy.2020.114528_b0065) 2011; 12 |
References_xml | – volume: 3 start-page: 84 year: 2010 end-page: 106 ident: b0105 article-title: Ethanol autoignition characteristics and HCCI performance for wide ranges of engine speed, load and boost publication-title: SAE Int J Engines contributor: fullname: Dec – volume: 189 start-page: 122 year: 2017 end-page: 132 ident: b0090 article-title: Thermally Stratified Compression Ignition: a new advanced low temperature combustion mode with load flexibility publication-title: Appl Energy contributor: fullname: Kaul – volume: 5 start-page: 7 year: 2012 end-page: 27 ident: b0100 article-title: Smoothing HCCI heat release with vaporization-cooling-induced thermal stratification using ethanol publication-title: SAE Int J Fuels Lubr contributor: fullname: Dec – volume: 6 start-page: 78 year: 2013 end-page: 100 ident: b0140 article-title: Effect of piston bowl geometry on dual fuel reactivity controlled compression ignition (RCCI) in a light-duty engine operated with gasoline/diesel and methanol/diesel publication-title: SAE Int J Engines contributor: fullname: Reitz – year: 2019 ident: b0150 article-title: A guide to uncertainty quantification for experimental engine research and heat release analysis publication-title: SAE J Engines contributor: fullname: Lawler – volume: 12 start-page: 209 year: 2011 end-page: 226 ident: b0065 article-title: Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion publication-title: Int J Engine Res contributor: fullname: Reitz – year: 2018 ident: b0125 article-title: Influence of injector spray angle and gasoline-diesel blending ratio on the low load operation in a gasoline compression ignition (GCI) engine publication-title: Fuel contributor: fullname: Bae – volume: 133 year: 2011 ident: b0145 article-title: Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends publication-title: J Eng Gas Turbines Power. contributor: fullname: Wallner – volume: 134 start-page: 082806 year: 2012 end-page: 082806-11 ident: b0045 article-title: Reactivity controlled compression ignition using premixed hydrated ethanol and direct injection diesel publication-title: ASME J Eng Gas Turbines Power contributor: fullname: Reitz – volume: 105 start-page: 900 year: 2015 end-page: 907 ident: b0005 article-title: Energy, carbon dioxide and water use implications of hydrous ethanol production publication-title: Energy Convers Manage contributor: fullname: Boies – year: 2019 ident: b0040 article-title: Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: a CFD simulation study publication-title: Appl Energy contributor: fullname: Lawler – volume: 5 start-page: 1046 year: 2012 end-page: 1074 ident: b0060 article-title: Investigating the development of thermal stratification from the near-wall regions to the bulk-gas in an HCCI engine with planar imaging thermometry publication-title: SAE Int J Engines contributor: fullname: Dec – year: 2019 ident: b0130 article-title: Investigating the effect of spray included angle on thermally stratified compression ignition with wet ethanol using computational fluid dynamics publication-title: Appl Therm Eng contributor: fullname: Lawler – volume: 252 year: 2019 ident: b0030 article-title: The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fueled with wet ethanol publication-title: Appl Energy contributor: fullname: Zhao – volume: 237 start-page: 258 year: 2019 end-page: 269 ident: b0025 article-title: A study of hydrous ethanol combustion in an optical central direct injection spark ignition engine publication-title: Appl Energy contributor: fullname: Lanzanova – volume: 34 start-page: 782 year: 2009 end-page: 787 ident: b0015 article-title: Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine publication-title: Energy contributor: fullname: Dibble – year: 2019 ident: b0050 article-title: HCCI with Wet ethanol: investigating the charge cooling effect of a high latent heat of vaporization fuel in LTC publication-title: SE Int contributor: fullname: Lawler – volume: 5 start-page: 1046 issue: 3 year: 2012 ident: 10.1016/j.apenergy.2020.114528_b0060 article-title: Investigating the development of thermal stratification from the near-wall regions to the bulk-gas in an HCCI engine with planar imaging thermometry publication-title: SAE Int J Engines doi: 10.4271/2012-01-1111 contributor: fullname: Dronniou – ident: 10.1016/j.apenergy.2020.114528_b0135 doi: 10.4271/2012-01-0383 – year: 2019 ident: 10.1016/j.apenergy.2020.114528_b0150 article-title: A guide to uncertainty quantification for experimental engine research and heat release analysis publication-title: SAE J Engines doi: 10.4271/03-12-05-0033 contributor: fullname: Gainey – year: 2019 ident: 10.1016/j.apenergy.2020.114528_b0040 article-title: Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: a CFD simulation study publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.11.009 contributor: fullname: Rahimi Boldaji – volume: 189 start-page: 122 year: 2017 ident: 10.1016/j.apenergy.2020.114528_b0090 article-title: Thermally Stratified Compression Ignition: a new advanced low temperature combustion mode with load flexibility publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.034 contributor: fullname: Lawler – ident: 10.1016/j.apenergy.2020.114528_b0075 doi: 10.4271/2006-01-0629 – ident: 10.1016/j.apenergy.2020.114528_b0070 doi: 10.4271/2015-01-0832 – ident: 10.1016/j.apenergy.2020.114528_b0035 – ident: 10.1016/j.apenergy.2020.114528_b0080 doi: 10.4271/2006-01-3412 – volume: 12 start-page: 209 year: 2011 ident: 10.1016/j.apenergy.2020.114528_b0065 article-title: Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion publication-title: Int J Engine Res doi: 10.1177/1468087411401548 contributor: fullname: Kokjohn – ident: 10.1016/j.apenergy.2020.114528_b0115 doi: 10.4271/2019-01-1146 – ident: 10.1016/j.apenergy.2020.114528_b0110 doi: 10.1115/ICEF2019-7164 – volume: 6 start-page: 78 issue: 1 year: 2013 ident: 10.1016/j.apenergy.2020.114528_b0140 article-title: Effect of piston bowl geometry on dual fuel reactivity controlled compression ignition (RCCI) in a light-duty engine operated with gasoline/diesel and methanol/diesel publication-title: SAE Int J Engines doi: 10.4271/2013-01-0264 contributor: fullname: Dempsey – year: 2018 ident: 10.1016/j.apenergy.2020.114528_b0125 article-title: Influence of injector spray angle and gasoline-diesel blending ratio on the low load operation in a gasoline compression ignition (GCI) engine publication-title: Fuel doi: 10.1016/j.fuel.2018.02.170 contributor: fullname: Pinazzi – ident: 10.1016/j.apenergy.2020.114528_b0010 doi: 10.4271/2007-01-1867 – volume: 105 start-page: 900 year: 2015 ident: 10.1016/j.apenergy.2020.114528_b0005 article-title: Energy, carbon dioxide and water use implications of hydrous ethanol production publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.08.039 contributor: fullname: Saffy – volume: 34 start-page: 782 issue: 6 year: 2009 ident: 10.1016/j.apenergy.2020.114528_b0015 article-title: Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine publication-title: Energy doi: 10.1016/j.energy.2009.02.010 contributor: fullname: Mack – volume: 252 year: 2019 ident: 10.1016/j.apenergy.2020.114528_b0030 article-title: The effects of residual gas trapping on part load performance and emissions of a spark ignition direct injection engine fueled with wet ethanol publication-title: Appl Energy contributor: fullname: Lanzanova – ident: 10.1016/j.apenergy.2020.114528_b0020 doi: 10.4271/2013-36-0202 – volume: 237 start-page: 258 year: 2019 ident: 10.1016/j.apenergy.2020.114528_b0025 article-title: A study of hydrous ethanol combustion in an optical central direct injection spark ignition engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.12.093 contributor: fullname: Koupaue – ident: 10.1016/j.apenergy.2020.114528_b0155 doi: 10.4271/2019-01-1164 – ident: 10.1016/j.apenergy.2020.114528_b0085 doi: 10.4271/2019-01-0961 – volume: 3 start-page: 84 issue: 1 year: 2010 ident: 10.1016/j.apenergy.2020.114528_b0105 article-title: Ethanol autoignition characteristics and HCCI performance for wide ranges of engine speed, load and boost publication-title: SAE Int J Engines doi: 10.4271/2010-01-0338 contributor: fullname: Sjoberg – volume: 133 issue: 8 year: 2011 ident: 10.1016/j.apenergy.2020.114528_b0145 article-title: Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends publication-title: J Eng Gas Turbines Power. doi: 10.1115/1.4002893 contributor: fullname: Wallner – volume: 134 start-page: 082806 issue: 8 year: 2012 ident: 10.1016/j.apenergy.2020.114528_b0045 article-title: Reactivity controlled compression ignition using premixed hydrated ethanol and direct injection diesel publication-title: ASME J Eng Gas Turbines Power doi: 10.1115/1.4006703 contributor: fullname: Dempsey – ident: 10.1016/j.apenergy.2020.114528_b0055 – ident: 10.1016/j.apenergy.2020.114528_b0095 doi: 10.4271/2018-01-0178 – year: 2019 ident: 10.1016/j.apenergy.2020.114528_b0130 article-title: Investigating the effect of spray included angle on thermally stratified compression ignition with wet ethanol using computational fluid dynamics publication-title: Appl Therm Eng contributor: fullname: Rahimi-Boldaji – volume: 5 start-page: 7 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2020.114528_b0100 article-title: Smoothing HCCI heat release with vaporization-cooling-induced thermal stratification using ethanol publication-title: SAE Int J Fuels Lubr doi: 10.4271/2011-01-1760 contributor: fullname: Sjoberg – ident: 10.1016/j.apenergy.2020.114528_b0120 doi: 10.4271/2015-01-1070 – year: 2019 ident: 10.1016/j.apenergy.2020.114528_b0050 article-title: HCCI with Wet ethanol: investigating the charge cooling effect of a high latent heat of vaporization fuel in LTC publication-title: SE Int contributor: fullname: Gainey |
SSID | ssj0002120 |
Score | 2.395266 |
Snippet | •The efficacy of TSCI is very sensitive to injector spray angle and piston geometry.•A large injector included angle increases TSCI’s efficacy.•A small... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 114528 |
SubjectTerms | Injector spray angle Low temperature combustion Piston geometry TSCI Wet ethanol |
Title | Assessing the impact of injector included angle and piston geometry on thermally stratified compression ignition with wet ethanol |
URI | https://dx.doi.org/10.1016/j.apenergy.2020.114528 |
Volume | 262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EXtpDaW2lT9lDr9FkH4k5iii2pV5awVvYZCeixCg2UrwU-s-7kwdaKPTQS9iEWQg7m5lvN998S8gDSG0yqeaWckPPEi4wK_RsZTFgtmah4raNBc4vY3c0EU9TOa2RflULg7TKMvYXMT2P1uWTTjmanfV83nlFtJvjfxtVo3JNUGHSn5nT7c89zYOV0ozG2ELrgyrhRVutIa-wM-tElsvmSjyV_bcEdZB0hmfktESLtFe80DmpQdogJwcagg3SHOxL1Yxp-a2-X5Cv4n-uMaIG5NGiHJKuYjpPF_lWvWlEyVaDpiqdJWCumq5RaSClM1gtIdvsqGkjQlyqJNnRQmI3NqCVIhO9YNCmdJ4TkEwD93TpB2QUcD9-lVySyXDw1h9Z5YELVsQdllmCs7ArIPJ11wdbh7ET-VL7inuhy1G4zO8qxbkbC0_7jnIMVtGaS1wVSZBS8iapp6sUrgjVjhurkGnuRJHAZZ12lAaIgAnwYldck041ysG60NUIKsLZIqj8EqBfgsIv18SvnBH8mCGBCf5_9L35R99bcox3yDtz5B2pZ5st3BsgkoWtfKa1yFHv8Xk0_gZn0uGy |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KHtSDaLVYn3vwmjbZR9IcRZSqbS-20FvYZCelJU1LTREvgv_cnTxoBcGDl7AksxB2NrPfTr75lpBbkNqspJpbyg09S7jArNCzlcWA2ZqFits2Fjj3B253JJ7Hclwj91UtDNIqy9hfxPQ8Wpd32uVotpfTafsV0W6O_21UjUJN0F2B-NhM6tbnhufBSm1GY22h-VaZ8KyllpCX2JmNIst1cyUey_7bCrW16jwekcMSLtK74o2OSQ3SOjnYEhGsk8bDplbNmJYf69sJ-Sp-6BojalAeLeoh6SKm03SW5-pNI0rWGjRV6SQBc9V0iVIDKZ3AYg7Z6oOaNkLEuUqSD1po7MYGtVKkohcU2pROcwaSaWBSl75DRgET8ovklIweH4b3Xas8ccGKuMMyS3AWdgREvu74YOswdiJfal9xL3Q5Kpf5HaU4d2Phad9RjgErWnOJ2yIJUkreIDvpIoUzQrXjxipkmjtRJHBfpx2lASJgArzYFU3SrkY5WBbCGkHFOJsFlV8C9EtQ-KVJ_MoZwY8pEpjo_0ff83_0vSF73WG_F_SeBi8XZB-fIAnNkZdkJ1ut4cqgkiy8zmfdN8Am40s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+impact+of+injector+included+angle+and+piston+geometry+on+thermally+stratified+compression+ignition+with+wet+ethanol&rft.jtitle=Applied+energy&rft.au=Gainey%2C+Brian&rft.au=Gohn%2C+James&rft.au=Hariharan%2C+Deivanayagam&rft.au=Rahimi-Boldaji%2C+Mozhgan&rft.date=2020-03-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=262&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114528&rft.externalDocID=S0306261920300404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |