Seasonal variation of particle hygroscopicity and its impact on cloud-condensation nucleus activation in the Beijing urban area

Hygroscopicity is a key parameter for characterizing the ability of particles to be activated as cloud-condensation nuclei (CCN). In this study, we present a 10-month size-resolved measurement of the hygroscopicity of particles with diameters of 50, 100 and 200 nm in the Beijing urban area using a H...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 302; p. 119728
Main Authors Zhang, Sinan, Shen, Xiaojing, Sun, Junying, Che, Huizheng, Zhang, Yangmei, Liu, Quan, Xia, Can, Hu, Xinyao, Zhong, Junting, Wang, Jialing, Liu, Shuo, Lu, Jiayuan, Yu, Aoyuan, Zhang, Xiaoye
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hygroscopicity is a key parameter for characterizing the ability of particles to be activated as cloud-condensation nuclei (CCN). In this study, we present a 10-month size-resolved measurement of the hygroscopicity of particles with diameters of 50, 100 and 200 nm in the Beijing urban area using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). Compared with that in other studies conducted in China, the hygroscopicity parameter (κ) in this study was relatively higher than that in the Pearl River Delta region but lower than that in the Yangtze River Delta region. As the mass fraction of inorganic matter (especially nitrate) increased, the particles became more hygroscopic during spring and summer, as influenced by the chemical composition. Polluted southerly air masses also enhanced particle hygroscopicity. The CCN concentration was calculated based on κ-Köhler theory, with a moderate supersaturation of 0.4%. The critical diameter of particles as potential CCNs was smaller in spring than that in the other seasons. The critical diameters of aerosols in autumn, winter and spring were 142, 123 and 114 nm, respectively, with calculated CCN concentrations of 1683, 1909 and 1765 cm−3, respectively. Activation ratios, calculated as CCN divided by condensation nuclei (CN), were 0.13, 0.15 and 0.18 in autumn, spring and summer, respectively. During episodes of heavy pollution, the CCN concentration highly depended on the particle mass loading, as the accumulation mode dominated the particle number size distribution and the chemical composition was quasi-homogeneous. However, under other conditions, both particle size and chemical composition were important. This study revealed the relationship between particle hygroscopicity, CCN and air pollution level, and it will be useful for evaluating the environmental and climatic effects of aerosols. •10-month size-resolved particle hygroscopicity was measured in urban Beijing.•Increased mass fraction of nitrate strengthened particle hygroscopicity.•CCN concentration highly depended on particle mass loading under heavy pollution.
AbstractList Hygroscopicity is a key parameter for characterizing the ability of particles to be activated as cloud-condensation nuclei (CCN). In this study, we present a 10-month size-resolved measurement of the hygroscopicity of particles with diameters of 50, 100 and 200 nm in the Beijing urban area using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). Compared with that in other studies conducted in China, the hygroscopicity parameter (κ) in this study was relatively higher than that in the Pearl River Delta region but lower than that in the Yangtze River Delta region. As the mass fraction of inorganic matter (especially nitrate) increased, the particles became more hygroscopic during spring and summer, as influenced by the chemical composition. Polluted southerly air masses also enhanced particle hygroscopicity. The CCN concentration was calculated based on κ-Köhler theory, with a moderate supersaturation of 0.4%. The critical diameter of particles as potential CCNs was smaller in spring than that in the other seasons. The critical diameters of aerosols in autumn, winter and spring were 142, 123 and 114 nm, respectively, with calculated CCN concentrations of 1683, 1909 and 1765 cm−3, respectively. Activation ratios, calculated as CCN divided by condensation nuclei (CN), were 0.13, 0.15 and 0.18 in autumn, spring and summer, respectively. During episodes of heavy pollution, the CCN concentration highly depended on the particle mass loading, as the accumulation mode dominated the particle number size distribution and the chemical composition was quasi-homogeneous. However, under other conditions, both particle size and chemical composition were important. This study revealed the relationship between particle hygroscopicity, CCN and air pollution level, and it will be useful for evaluating the environmental and climatic effects of aerosols. •10-month size-resolved particle hygroscopicity was measured in urban Beijing.•Increased mass fraction of nitrate strengthened particle hygroscopicity.•CCN concentration highly depended on particle mass loading under heavy pollution.
ArticleNumber 119728
Author Zhang, Sinan
Hu, Xinyao
Lu, Jiayuan
Che, Huizheng
Yu, Aoyuan
Zhong, Junting
Wang, Jialing
Liu, Quan
Xia, Can
Shen, Xiaojing
Sun, Junying
Zhang, Yangmei
Zhang, Xiaoye
Liu, Shuo
Author_xml – sequence: 1
  givenname: Sinan
  surname: Zhang
  fullname: Zhang, Sinan
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 2
  givenname: Xiaojing
  orcidid: 0000-0002-3001-2905
  surname: Shen
  fullname: Shen, Xiaojing
  email: shenxj@cma.gov.cn
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 3
  givenname: Junying
  orcidid: 0000-0003-1064-9017
  surname: Sun
  fullname: Sun, Junying
  email: jysun@cma.gov.cn
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 4
  givenname: Huizheng
  orcidid: 0000-0002-9458-3387
  surname: Che
  fullname: Che, Huizheng
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 5
  givenname: Yangmei
  surname: Zhang
  fullname: Zhang, Yangmei
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 6
  givenname: Quan
  surname: Liu
  fullname: Liu, Quan
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 7
  givenname: Can
  surname: Xia
  fullname: Xia, Can
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 8
  givenname: Xinyao
  surname: Hu
  fullname: Hu, Xinyao
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 9
  givenname: Junting
  surname: Zhong
  fullname: Zhong, Junting
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 10
  givenname: Jialing
  surname: Wang
  fullname: Wang, Jialing
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 11
  givenname: Shuo
  surname: Liu
  fullname: Liu, Shuo
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 12
  givenname: Jiayuan
  surname: Lu
  fullname: Lu, Jiayuan
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 13
  givenname: Aoyuan
  surname: Yu
  fullname: Yu, Aoyuan
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
– sequence: 14
  givenname: Xiaoye
  surname: Zhang
  fullname: Zhang, Xiaoye
  organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
BookMark eNqFkE1PGzEQhq0KpIbAX0D-A5v6Yz-8Ug9toxaQkDgAZ8vrHcNEGzuynUg59a9juuXCJacZzbzPaN73gpz54IGQa85WnPH222Zl8jYk8IeVYEKuOO87ob6QBVedrISq67PSy0ZUQnL2lVyktGGMya7vFuTvI5gUvJnowUQ0GYOnwdGdiRntBPT1-BJDsmGHFvORGj9SzInidmdspkVsp7AfKxv8CD7NvN8Xcp9oUeBhHqGn-RXoL8AN-he6j4Px1EQwl-TcmSnB1f-6JM9_fj-tb6v7h5u79c_7ykouclXzHppeuboZpJF8tLVVvRGsVY7LQVrRSNc5y1sYatWqsWG1kI1kzpXFoJRcku_zXVvspAhOFz__fsvR4KQ50-9h6o3-CFO_h6nnMAvefsJ3EbcmHk-DP2YQirkDQtTJIngLI0awWY8BT514A5dDmIw
CitedBy_id crossref_primary_10_5194_acp_23_8241_2023
crossref_primary_10_1080_10095020_2024_2447445
crossref_primary_10_5194_acp_23_14271_2023
crossref_primary_10_1088_1402_4896_ad75d4
crossref_primary_10_1016_j_scitotenv_2024_173650
crossref_primary_10_5194_acp_25_3389_2025
crossref_primary_10_1016_j_atmosenv_2025_121129
Cites_doi 10.1029/2017JD027292
10.5194/acp-22-4599-2022
10.1016/j.atmosenv.2015.05.006
10.5194/acp-12-779-2012
10.1002/2015JD024020
10.1080/16000889.2018.1513291
10.1016/j.atmosenv.2017.01.034
10.1016/j.atmosenv.2013.08.062
10.5194/acp-15-11999-2015
10.1007/s11430-019-9343-3
10.1016/j.apr.2020.11.008
10.1007/s13351-018-7051-8
10.1029/2019GL084047
10.1126/science.1180353
10.1016/j.jaerosci.2008.07.013
10.5194/acp-7-1961-2007
10.1016/j.atmosenv.2015.11.003
10.5194/acp-7-5785-2007
10.5194/acp-18-247-2018
10.1016/j.scitotenv.2016.10.149
10.5194/acp-16-1123-2016
10.1016/j.envsoft.2009.01.004
10.1021/acs.est.9b04678
10.5194/acp-7-3249-2007
10.1016/j.atmosenv.2013.05.049
10.1016/0960-1686(91)90159-5
10.5194/acp-20-3777-2020
10.5194/acp-13-5049-2013
10.1111/j.1600-0889.2008.00350.x
10.1007/s13351-018-7060-7
10.5194/acp-20-2591-2020
10.1016/j.jes.2021.11.019
10.1016/j.atmosenv.2016.10.013
10.1016/j.atmosenv.2018.01.004
10.5194/acp-14-9537-2014
10.1007/s40726-020-00164-2
10.1016/j.atmosenv.2018.09.041
10.5194/acp-20-915-2020
10.1016/j.atmosenv.2012.09.064
10.1016/j.scitotenv.2019.07.327
10.1016/j.atmosenv.2017.12.003
10.1002/2013JD021146
10.5194/acp-18-6907-2018
10.5194/acp-17-11779-2017
10.1016/j.atmosres.2015.09.031
10.5194/acp-18-16419-2018
10.1016/j.atmosenv.2019.05.065
10.1002/2017JD027058
10.1002/2015JD024636
10.1007/s10874-012-9229-2
10.1016/j.atmosenv.2010.10.021
10.5194/acp-14-13423-2014
10.1021/jp807531n
10.1029/2019JD031457
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.atmosenv.2023.119728
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2844
ExternalDocumentID 10_1016_j_atmosenv_2023_119728
S1352231023001541
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
~02
~G-
.HR
186
3O-
53G
AAFWJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
R2-
RIG
SEP
SSH
T9H
VH1
WUQ
ID FETCH-LOGICAL-c312t-419e598f45b3a31dc4c89a2068f13b3c253f7fc16eb4868d50423530ff53fb883
IEDL.DBID .~1
ISSN 1352-2310
IngestDate Thu Apr 24 23:09:00 EDT 2025
Tue Jul 01 03:39:03 EDT 2025
Fri Feb 23 02:37:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Particle hygroscopicity
Cloud-condensation nucleus
Chemical composition
Heavy polluted episode
H-TDMA
North China Plain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-419e598f45b3a31dc4c89a2068f13b3c253f7fc16eb4868d50423530ff53fb883
ORCID 0000-0003-1064-9017
0000-0002-3001-2905
0000-0002-9458-3387
ParticipantIDs crossref_citationtrail_10_1016_j_atmosenv_2023_119728
crossref_primary_10_1016_j_atmosenv_2023_119728
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2023_119728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Atmospheric environment (1994)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Draxler, Hess (bib5) 1998; 47
Liu, Jing, Peng, Tong, Wang, Ge (bib63) 2016; 125
Miao, Zhang, Li, Qin, Xu, Yuan, Gao (bib26) 2015; 113
Wang, Shen, Sun, Zhang, Wang, Zhang, Wang, Xia, Qi, Zhong (bib43) 2018; 194
Zhang, Vu, Sun, He, Shen, Lin, Zhang, Zhong, Gao, Wang, Fu, Ma, Li, Shi (bib58) 2020; 54
Jung, Yoon, Kang, Gim, Lee, Strom, Krejci, Tunved (bib16) 2018; 70
Pathak, Wang, Ho, Lee (bib28) 2011; 45
Fan, Liu, Zhang, Chen, Collins, Xu, Jin, Ren, Wang, Wu, Li, Sun, Li (bib9) 2020; 20
Yan, Fu, Jing, Peng, Boreddy, Yang, Wei, Sun, Wang, Ge (bib47) 2017; 578
Kuang, Zhao, Tao, Bian, Ma (bib21) 2016; 147
Ye, Tang, Yin, Chen, Ma, Kong, Yang, Gao, Geng (bib48) 2013; 64
Engler, Rose, Wehner, Wiedensohler, Brueggemann, Gnauk, Spindler, Tuch, Birmili (bib7) 2007; 7
Yu, Luo, Nair, Schwab, Sherman, Zhang (bib50) 2020; 20
Zhang, Wang, Zhang, Shen, Sun, Wu, Zhang, Che (bib59) 2018; 32
Yeung, Lee, Li, Chan (bib49) 2014; 119
Jimenez, Canagaratna, Donahue, Prevot, Zhang, Kroll, DeCarlo, Allan, Coe, Ng, Aiken, Docherty, Ulbrich, Grieshop, Robinson, Duplissy, Smith, Wilson, Lanz, Hueglin, Sun, Tian, Laaksonen, Raatikainen, Rautiainen, Vaattovaara, Ehn, Kulmala, Tomlinson, Collins, Cubison, Dunlea, Huffman, Onasch, Alfarra, Williams, Bower, Kondo, Schneider, Drewnick, Borrmann, Weimer, Demerjian, Salcedo, Cottrell, Griffin, Takami, Miyoshi, Hatakeyama, Shimono, Sun, Zhang, Dzepina, Kimmel, Sueper, Jayne, Herndon, Trimborn, Williams, Wood, Middlebrook, Kolb, Baltensperger, Worsnop (bib61) 2009; 326
Ren, Zhang, Wang, Collins, Fan, Jin, Xu, Sun, Cribb, Li (bib31) 2018; 18
Lance, Raatikainen, Onasch, Worsnop, Yu, Alexander, Stolzenburg, McMurry, Smith, Nenes (bib22) 2013; 13
Levy, Zhang, Zheng, Tan, Wang, Molina, Takahama, Russell, Li (bib23) 2014; 88
Thalman, de Sa, Palm, Barbosa, Pohlker, Alexander, Brito, Carbone, Castillo, Day, Kuang, Manzi, Ng, Sedlacek, Souza, Springston, Watson, Pohlker, Poschl, Andreae, Artaxo, Jimenez, Martin, Wang (bib39) 2017; 17
Cai, Tan, Chan, Qin, Xu, Li, Schurman, Liu, Zhao (bib3) 2018; 18
Alonso-Blanco, Gomez-Moreno, Artinano (bib1) 2019; 213
Psichoudaki, Nenes, Florou, Kaltsonoudis, Pandis (bib30) 2018; 178
Mandariya, Tripathi, Gupta, Mishra (bib24) 2020
Seinfeld, Pandis (bib32) 2016
Wang, Zhang, Draxler (bib44) 2009; 24
Gysel, McFiggans, Coe (bib62) 2009; 40
Zhang, Wang, Peng, Ren, Collins, Zhang, Sun, Yang, Li (bib53) 2017; 122
Shen, Sun, Zhang, Zhang, Zhong, Wang, Wang, Xia (bib34) 2019; 693
Khalizov, Xue, Wang, Zheng, Zhang (bib18) 2009; 113
Massling, Leinert, Wiedensohler, Covert (bib25) 2007; 7
Wu, Zheng, Shang, Du, Wu, Zeng, Wiedensohler, Hu (bib45) 2016; 16
Zhang, Che, Gong, Wang, Wang, Yang (bib55) 2021; 12
Zhang, Xu, Ding, Liu, Zhang, Wang, Zhong (bib57) 2019; 62
Wang, Li, Zhang, Jin, Xu, Fan, Wu, Zhang, Sun, Wang, Cribb, Hu (bib41) 2019; 46
Wang, Wu, Ma, Wu, Zeng, Zhao, Wiedensohler (bib42) 2018; 175
Deng, Kagami, Ogawa, Kawana, Nakayama, Kubodera, Adachi, Hussein, Miyazaki, Mochida (bib4) 2018; 123
Twomey (bib40) 1991; 25
Zhong, Zhang, Dong, Wang, Liu, Wang, Zhang, Che (bib60) 2018; 18
Petters, Kreidenweis (bib29) 2007; 7
Jiang, Tan, Tang, Cai, Yin, Li, Liu, Xu, Chan, Deng, Wu (bib15) 2016; 169
Shi, Hong, Ma, Luo, He, Xu, Tan, Wang, Tao, Zhou, Han, Peng, Xie, Zhou, Xu, Sun, Cheng, Su (bib35) 2022; 22
Shen, Sun, Zhang, Zhang, Wang, Tan, Wang, Zhang, Qi, Che, Zhang, Zhong, Zhao, Ren (bib33) 2018; 32
Zhang, Ren, Fan, Chen, Xu, Sun, Zhang, Liu, Jiang, Jin, Wu, Li, Cribb, Li (bib52) 2019; 124
Zhang, Wang, Niu, Zhang, Gong, Zhang, Sun (bib56) 2012; 12
Kim, Park, Yum, Park, Song, Shin, Ahn, Kwak, Kim, Bae, Lee (bib19) 2017; 153
Kuang, Xu, Tao, Ma, Zhao, Shao (bib20) 2020; 6
Xu, Ovadnevaite, Fossum, Lin, Ce Burnis (bib46) 2020; 20
Hu, Hu, Hu, Jimenez, Yuan, Chen, Wang, Wu, Chen, Wang, Peng, Zeng, Shao (bib14) 2016; 121
Zhang, Shen, Sun, Zhang, Zhang, Xia, Hu, Zhong, Wang, Liu (bib54) 2023; 124
Enroth, Mikkilä, Németh, Kulmala, Salma (bib8) 2017; 1–18
Hong, Kim, Nieminen, Duplissy, Ehn, Aijala, Hao, Nie, Sarnela, Prisle, Kulmala, Virtanen, Petaja, Kerminen (bib13) 2015; 15
Bourcier, Sellegri, Chausse, Pichon, Laj (bib2) 2012; 69
Holmgren, Sellegri, Hervo, Rose, Freney, Villani, Laj (bib12) 2014; 14
Ogawa, Setoguchi, Kawana, Nakayama, Ikeda, Sawada, Matsumi, Mochida (bib27) 2016; 121
Zhang, Li, Li, Sun, Li, Zhao, Wang, Sun, Liu, Li, Li, Ren, Fan (bib51) 2014; 14
Tan, Yin, Gu, Li, Chan, Xu, Deng, Wan (bib38) 2013; 77
Swietlicki, Hansson, Hämeri, Svenningsson, Massling, McFiggans, McMurry, Petäjä, Tunved, Gysel (bib37) 2008; 60
Lance (10.1016/j.atmosenv.2023.119728_bib22) 2013; 13
Khalizov (10.1016/j.atmosenv.2023.119728_bib18) 2009; 113
Shen (10.1016/j.atmosenv.2023.119728_bib34) 2019; 693
Enroth (10.1016/j.atmosenv.2023.119728_bib8) 2017; 1–18
Zhang (10.1016/j.atmosenv.2023.119728_bib58) 2020; 54
Shi (10.1016/j.atmosenv.2023.119728_bib35) 2022; 22
Zhong (10.1016/j.atmosenv.2023.119728_bib60) 2018; 18
Seinfeld (10.1016/j.atmosenv.2023.119728_bib32) 2016
Liu (10.1016/j.atmosenv.2023.119728_bib63) 2016; 125
Ren (10.1016/j.atmosenv.2023.119728_bib31) 2018; 18
Holmgren (10.1016/j.atmosenv.2023.119728_bib12) 2014; 14
Kuang (10.1016/j.atmosenv.2023.119728_bib20) 2020; 6
Xu (10.1016/j.atmosenv.2023.119728_bib46) 2020; 20
Miao (10.1016/j.atmosenv.2023.119728_bib26) 2015; 113
Ogawa (10.1016/j.atmosenv.2023.119728_bib27) 2016; 121
Tan (10.1016/j.atmosenv.2023.119728_bib38) 2013; 77
Zhang (10.1016/j.atmosenv.2023.119728_bib52) 2019; 124
Alonso-Blanco (10.1016/j.atmosenv.2023.119728_bib1) 2019; 213
Zhang (10.1016/j.atmosenv.2023.119728_bib51) 2014; 14
Yu (10.1016/j.atmosenv.2023.119728_bib50) 2020; 20
Hu (10.1016/j.atmosenv.2023.119728_bib14) 2016; 121
Zhang (10.1016/j.atmosenv.2023.119728_bib55) 2021; 12
Ye (10.1016/j.atmosenv.2023.119728_bib48) 2013; 64
Deng (10.1016/j.atmosenv.2023.119728_bib4) 2018; 123
Mandariya (10.1016/j.atmosenv.2023.119728_bib24) 2020
Levy (10.1016/j.atmosenv.2023.119728_bib23) 2014; 88
Zhang (10.1016/j.atmosenv.2023.119728_bib59) 2018; 32
Thalman (10.1016/j.atmosenv.2023.119728_bib39) 2017; 17
Pathak (10.1016/j.atmosenv.2023.119728_bib28) 2011; 45
Zhang (10.1016/j.atmosenv.2023.119728_bib56) 2012; 12
Bourcier (10.1016/j.atmosenv.2023.119728_bib2) 2012; 69
Jimenez (10.1016/j.atmosenv.2023.119728_bib61) 2009; 326
Zhang (10.1016/j.atmosenv.2023.119728_bib53) 2017; 122
Engler (10.1016/j.atmosenv.2023.119728_bib7) 2007; 7
Wang (10.1016/j.atmosenv.2023.119728_bib43) 2018; 194
Zhang (10.1016/j.atmosenv.2023.119728_bib54) 2023; 124
Psichoudaki (10.1016/j.atmosenv.2023.119728_bib30) 2018; 178
Kuang (10.1016/j.atmosenv.2023.119728_bib21) 2016; 147
Yeung (10.1016/j.atmosenv.2023.119728_bib49) 2014; 119
Twomey (10.1016/j.atmosenv.2023.119728_bib40) 1991; 25
Hong (10.1016/j.atmosenv.2023.119728_bib13) 2015; 15
Yan (10.1016/j.atmosenv.2023.119728_bib47) 2017; 578
Cai (10.1016/j.atmosenv.2023.119728_bib3) 2018; 18
Kim (10.1016/j.atmosenv.2023.119728_bib19) 2017; 153
Draxler (10.1016/j.atmosenv.2023.119728_bib5) 1998; 47
Gysel (10.1016/j.atmosenv.2023.119728_bib62) 2009; 40
Wang (10.1016/j.atmosenv.2023.119728_bib42) 2018; 175
Massling (10.1016/j.atmosenv.2023.119728_bib25) 2007; 7
Wu (10.1016/j.atmosenv.2023.119728_bib45) 2016; 16
Fan (10.1016/j.atmosenv.2023.119728_bib9) 2020; 20
Zhang (10.1016/j.atmosenv.2023.119728_bib57) 2019; 62
Wang (10.1016/j.atmosenv.2023.119728_bib44) 2009; 24
Jiang (10.1016/j.atmosenv.2023.119728_bib15) 2016; 169
Petters (10.1016/j.atmosenv.2023.119728_bib29) 2007; 7
Wang (10.1016/j.atmosenv.2023.119728_bib41) 2019; 46
Shen (10.1016/j.atmosenv.2023.119728_bib33) 2018; 32
Jung (10.1016/j.atmosenv.2023.119728_bib16) 2018; 70
Swietlicki (10.1016/j.atmosenv.2023.119728_bib37) 2008; 60
References_xml – volume: 62
  start-page: 1885
  year: 2019
  end-page: 1902
  ident: bib57
  article-title: The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China
  publication-title: Sci. China Earth Sci.
– volume: 18
  start-page: 247
  year: 2018
  end-page: 258
  ident: bib60
  article-title: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016
  publication-title: Atmos. Chem. Phys.
– volume: 24
  start-page: 938
  year: 2009
  end-page: 939
  ident: bib44
  article-title: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data
  publication-title: Environ. Model. Software
– volume: 175
  start-page: 184
  year: 2018
  end-page: 191
  ident: bib42
  article-title: Statistical analysis and parameterization of the hygroscopic growth of the sub-micrometer urban background aerosol in Beijing
  publication-title: Atmos. Environ.
– volume: 121
  start-page: 1955
  year: 2016
  end-page: 1977
  ident: bib14
  article-title: Chemical composition, sources, and aging process of submicron aerosols in Beijing: contrast between summer and winter
  publication-title: J. Geophys. Res. Atmos.
– volume: 153
  start-page: 217
  year: 2017
  end-page: 232
  ident: bib19
  article-title: Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign
  publication-title: Atmos. Environ.
– volume: 119
  start-page: 9864
  year: 2014
  end-page: 9883
  ident: bib49
  article-title: Simultaneous HTDMA and HR-ToF-AMS measurements at the HKUST supersite in Hong Kong in 2011
  publication-title: J. Geophys. Res. Atmos.
– volume: 124
  start-page: 544
  year: 2023
  end-page: 556
  ident: bib54
  article-title: Atmospheric particle hygroscopicity and the influence by oxidation state of organic aerosols in urban Beijing
  publication-title: J. Environ. Sci.
– volume: 12
  start-page: 272
  year: 2021
  end-page: 281
  ident: bib55
  article-title: The dominant mechanism of the explosive rise of PM2.5 after significant pollution emissions reduction in Beijing from 2017 to the COVID-19 pandemic in 2020
  publication-title: Atmos. Pollut. Res.
– volume: 194
  start-page: 188
  year: 2018
  end-page: 197
  ident: bib43
  article-title: Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016
  publication-title: Atmos. Environ.
– year: 2016
  ident: bib32
  article-title: Atmospheric Chemistry and Physics: from Air Pollution to Climate Change
– start-page: 704
  year: 2020
  ident: bib24
  article-title: Wintertime hygroscopic growth factors (HGFs) of accumulation mode particles and their linkage to chemical composition in a heavily polluted urban atmosphere of Kanpur at the Centre of IGP, India: impact of ambient relative humidity
  publication-title: Sci. Total Environ.
– volume: 22
  start-page: 4599
  year: 2022
  end-page: 4613
  ident: bib35
  article-title: Measurement report: on the difference in aerosol hygroscopicity between high and low relative humidity conditions in the North China Plain
  publication-title: Atmos. Chem. Phys.
– volume: 46
  start-page: 10918
  year: 2019
  end-page: 10925
  ident: bib41
  article-title: Distinct ultrafine- and accumulation-mode particle properties in clean and polluted urban environments
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 5785
  year: 2007
  end-page: 5802
  ident: bib7
  article-title: Size distributions of non-volatile particle residuals (D-p < 800 nm) at a rural site in Germany and relation to air mass origin
  publication-title: Atmos. Chem. Phys.
– volume: 125
  start-page: 69
  year: 2016
  end-page: 77
  ident: bib63
  article-title: Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance
  publication-title: Atmos. Environ.
– volume: 16
  start-page: 1123
  year: 2016
  end-page: 1138
  ident: bib45
  article-title: Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime
  publication-title: Atmos. Chem. Phys.
– volume: 693
  year: 2019
  ident: bib34
  article-title: Variations in submicron aerosol liquid water content and the contribution of chemical components during heavy aerosol pollution episodes in winter in Beijing
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 2591
  year: 2020
  end-page: 2601
  ident: bib50
  article-title: Wintertime new particle formation and its contribution to cloud condensation nuclei in the Northeastern United States
  publication-title: Atmos. Chem. Phys.
– volume: 18
  start-page: 16419
  year: 2018
  end-page: 16437
  ident: bib3
  article-title: The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014
  publication-title: Atmos. Chem. Phys.
– volume: 15
  start-page: 11999
  year: 2015
  end-page: 12009
  ident: bib13
  article-title: Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment
  publication-title: Atmos. Chem. Phys.
– volume: 69
  start-page: 47
  year: 2012
  end-page: 66
  ident: bib2
  article-title: Seasonal variation of water-soluble inorganic components in aerosol size-segregated at the puy de Dome station (1,465 m a.s.l.), France
  publication-title: J. Atmos. Chem.
– volume: 32
  start-page: 26
  year: 2018
  end-page: 37
  ident: bib33
  article-title: Comparison of submicron particles at a rural and an urban site in the NorthNorth China plain during the december 2016 heavy pollution episodes
  publication-title: Journal of Meteorological Research
– volume: 88
  start-page: 308
  year: 2014
  end-page: 319
  ident: bib23
  article-title: Measurements of submicron aerosols at the California-Mexico border during the Cal-Mex 2010 field campaign
  publication-title: Atmos. Environ.
– volume: 18
  start-page: 6907
  year: 2018
  end-page: 6921
  ident: bib31
  article-title: Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing
  publication-title: Atmos. Chem. Phys.
– volume: 147
  start-page: 224
  year: 2016
  end-page: 233
  ident: bib21
  article-title: Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain
  publication-title: Atmos. Environ.
– volume: 60
  start-page: 432
  year: 2008
  end-page: 469
  ident: bib37
  article-title: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review
  publication-title: Tellus B
– volume: 178
  start-page: 66
  year: 2018
  end-page: 72
  ident: bib30
  article-title: Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens
  publication-title: Atmos. Environ.
– volume: 25
  start-page: 2435
  year: 1991
  end-page: 2442
  ident: bib40
  article-title: Aerosols, clouds and radiation
  publication-title: Atmos. Environ., Part A
– volume: 54
  start-page: 1344
  year: 2020
  end-page: 1352
  ident: bib58
  article-title: Significant changes in chemistry of fine particles in wintertime beijing from 2007 to 2017: impact of clean air actions
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 295
  year: 1998
  end-page: 308
  ident: bib5
  article-title: An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition
  publication-title: Aust. Meteorol. Mag.
– volume: 122
  start-page: 11
  year: 2017
  ident: bib53
  article-title: Uncertainty in predicting CCN activity of aged and primary aerosols
  publication-title: J. Geophys. Res. Atmos.
– volume: 213
  start-page: 349
  year: 2019
  end-page: 358
  ident: bib1
  article-title: Size-resolved hygroscopicity of ambient submicron particles in a suburban atmosphere
  publication-title: Atmos. Environ.
– volume: 45
  start-page: 318
  year: 2011
  end-page: 325
  ident: bib28
  article-title: Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: implications of high acidity for water-soluble organic carbon (WSOC)
  publication-title: Atmos. Environ.
– volume: 20
  start-page: 915
  year: 2020
  end-page: 929
  ident: bib9
  article-title: Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions
  publication-title: Atmos. Chem. Phys.
– volume: 12
  start-page: 779
  year: 2012
  end-page: 799
  ident: bib56
  article-title: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols
  publication-title: Atmos. Chem. Phys.
– volume: 14
  start-page: 13423
  year: 2014
  end-page: 13437
  ident: bib51
  article-title: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC(3)Exp campaign: implications for cloud condensation nuclei parameterization
  publication-title: Atmos. Chem. Phys.
– volume: 326
  start-page: 1525
  year: 2009
  end-page: 1529
  ident: bib61
  article-title: Evolution of Organic Aerosols in the Atmosphere
  publication-title: Science
– volume: 64
  start-page: 263
  year: 2013
  end-page: 269
  ident: bib48
  article-title: Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign
  publication-title: Atmos. Environ.
– volume: 578
  start-page: 307
  year: 2017
  end-page: 316
  ident: bib47
  article-title: Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 3249
  year: 2007
  end-page: 3259
  ident: bib25
  article-title: Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia
  publication-title: Atmos. Chem. Phys.
– volume: 169
  start-page: 160
  year: 2016
  end-page: 170
  ident: bib15
  article-title: Comparison of aerosol hygroscopicity and mixing state between winter and summer seasons in Pearl River Delta region, China
  publication-title: Atmos. Res.
– volume: 17
  start-page: 11779
  year: 2017
  end-page: 11801
  ident: bib39
  article-title: CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions
  publication-title: Atmos. Chem. Phys.
– volume: 113
  start-page: 1066
  year: 2009
  end-page: 1074
  ident: bib18
  article-title: Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid
  publication-title: J. Phys. Chem. A
– volume: 40
  start-page: 134
  year: 2009
  end-page: 151
  ident: bib62
  article-title: Inversion of tandem differential mobility analyser (TDMA) measurements
  publication-title: J. Aerosol Sci.
– volume: 13
  start-page: 5049
  year: 2013
  end-page: 5062
  ident: bib22
  article-title: Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006
  publication-title: Atmos. Chem. Phys.
– volume: 20
  start-page: 3777
  year: 2020
  end-page: 3791
  ident: bib46
  article-title: Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses
  publication-title: Atmos. Chem. Phys.
– volume: 32
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib59
  article-title: Chemical components, variation, and source identification of PM1 during the heavy air pollution episodes in beijing in december 2016
  publication-title: Journal of Meteorological Research
– volume: 123
  start-page: 9703
  year: 2018
  end-page: 9723
  ident: bib4
  article-title: Hygroscopicity of organic aerosols and their contributions to CCN concentrations over a midlatitude forest in Japan
  publication-title: J. Geophys. Res. Atmos.
– volume: 1–18
  year: 2017
  ident: bib8
  article-title: Wintertime hygroscopicity and volatility of ambient urban aerosol particles
  publication-title: Atmos. Chem. Phys.
– volume: 14
  start-page: 9537
  year: 2014
  end-page: 9554
  ident: bib12
  article-title: Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dome (1465ma.s.l.)
  publication-title: France, Atmospheric Chemistry and Physics
– volume: 77
  start-page: 817
  year: 2013
  end-page: 826
  ident: bib38
  article-title: An observational study of the hygroscopic properties of aerosols over the Pearl River Delta region
  publication-title: Atmos. Environ.
– volume: 124
  start-page: 14102
  year: 2019
  end-page: 14113
  ident: bib52
  article-title: Significantly enhanced aerosol CCN activity and number concentrations by nucleation-initiated haze events: a case study in urban beijing
  publication-title: J. Geophys. Res. Atmos.
– volume: 113
  start-page: 127
  year: 2015
  end-page: 134
  ident: bib26
  article-title: Measurement of cloud condensation nuclei (CCN) and CCN closure at Mt. Huang based on hygroscopic growth factors and aerosol number-size distribution
  publication-title: Atmos. Environ.
– volume: 7
  start-page: 1961
  year: 2007
  end-page: 1971
  ident: bib29
  article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
  publication-title: Atmos. Chem. Phys.
– volume: 121
  start-page: 7215
  year: 2016
  end-page: 7234
  ident: bib27
  article-title: Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer
  publication-title: J. Geophys. Res. Atmos.
– volume: 70
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib16
  article-title: The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere
  publication-title: Tellus Ser. B Chem. Phys. Meteorol.
– volume: 6
  start-page: 410
  year: 2020
  end-page: 424
  ident: bib20
  article-title: A review on laboratory studies and field measurements of atmospheric organic aerosol hygroscopicity and its parameterization based on oxidation levels
  publication-title: Current Pollution Reports
– volume: 123
  start-page: 9703
  issue: 17
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib4
  article-title: Hygroscopicity of organic aerosols and their contributions to CCN concentrations over a midlatitude forest in Japan
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2017JD027292
– volume: 22
  start-page: 4599
  issue: 7
  year: 2022
  ident: 10.1016/j.atmosenv.2023.119728_bib35
  article-title: Measurement report: on the difference in aerosol hygroscopicity between high and low relative humidity conditions in the North China Plain
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-22-4599-2022
– volume: 113
  start-page: 127
  year: 2015
  ident: 10.1016/j.atmosenv.2023.119728_bib26
  article-title: Measurement of cloud condensation nuclei (CCN) and CCN closure at Mt. Huang based on hygroscopic growth factors and aerosol number-size distribution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.05.006
– volume: 12
  start-page: 779
  issue: 2
  year: 2012
  ident: 10.1016/j.atmosenv.2023.119728_bib56
  article-title: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-12-779-2012
– volume: 121
  start-page: 1955
  issue: 4
  year: 2016
  ident: 10.1016/j.atmosenv.2023.119728_bib14
  article-title: Chemical composition, sources, and aging process of submicron aerosols in Beijing: contrast between summer and winter
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD024020
– volume: 70
  start-page: 1
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib16
  article-title: The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere
  publication-title: Tellus Ser. B Chem. Phys. Meteorol.
  doi: 10.1080/16000889.2018.1513291
– volume: 153
  start-page: 217
  year: 2017
  ident: 10.1016/j.atmosenv.2023.119728_bib19
  article-title: Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.01.034
– volume: 88
  start-page: 308
  year: 2014
  ident: 10.1016/j.atmosenv.2023.119728_bib23
  article-title: Measurements of submicron aerosols at the California-Mexico border during the Cal-Mex 2010 field campaign
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.08.062
– volume: 15
  start-page: 11999
  issue: 20
  year: 2015
  ident: 10.1016/j.atmosenv.2023.119728_bib13
  article-title: Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-11999-2015
– volume: 62
  start-page: 1885
  issue: 12
  year: 2019
  ident: 10.1016/j.atmosenv.2023.119728_bib57
  article-title: The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-019-9343-3
– volume: 12
  start-page: 272
  issue: 2
  year: 2021
  ident: 10.1016/j.atmosenv.2023.119728_bib55
  article-title: The dominant mechanism of the explosive rise of PM2.5 after significant pollution emissions reduction in Beijing from 2017 to the COVID-19 pandemic in 2020
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2020.11.008
– volume: 32
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib59
  article-title: Chemical components, variation, and source identification of PM1 during the heavy air pollution episodes in beijing in december 2016
  publication-title: Journal of Meteorological Research
  doi: 10.1007/s13351-018-7051-8
– volume: 46
  start-page: 10918
  issue: 19
  year: 2019
  ident: 10.1016/j.atmosenv.2023.119728_bib41
  article-title: Distinct ultrafine- and accumulation-mode particle properties in clean and polluted urban environments
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL084047
– volume: 326
  start-page: 1525
  issue: 5959
  year: 2009
  ident: 10.1016/j.atmosenv.2023.119728_bib61
  article-title: Evolution of Organic Aerosols in the Atmosphere
  publication-title: Science
  doi: 10.1126/science.1180353
– year: 2016
  ident: 10.1016/j.atmosenv.2023.119728_bib32
– volume: 40
  start-page: 134
  issue: 2
  year: 2009
  ident: 10.1016/j.atmosenv.2023.119728_bib62
  article-title: Inversion of tandem differential mobility analyser (TDMA) measurements
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2008.07.013
– volume: 7
  start-page: 1961
  issue: 8
  year: 2007
  ident: 10.1016/j.atmosenv.2023.119728_bib29
  article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-7-1961-2007
– volume: 125
  start-page: 69
  year: 2016
  ident: 10.1016/j.atmosenv.2023.119728_bib63
  article-title: Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.11.003
– volume: 7
  start-page: 5785
  issue: 22
  year: 2007
  ident: 10.1016/j.atmosenv.2023.119728_bib7
  article-title: Size distributions of non-volatile particle residuals (D-p < 800 nm) at a rural site in Germany and relation to air mass origin
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-7-5785-2007
– volume: 18
  start-page: 247
  issue: 1
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib60
  article-title: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-247-2018
– volume: 578
  start-page: 307
  year: 2017
  ident: 10.1016/j.atmosenv.2023.119728_bib47
  article-title: Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.10.149
– volume: 16
  start-page: 1123
  issue: 2
  year: 2016
  ident: 10.1016/j.atmosenv.2023.119728_bib45
  article-title: Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-1123-2016
– volume: 24
  start-page: 938
  issue: 8
  year: 2009
  ident: 10.1016/j.atmosenv.2023.119728_bib44
  article-title: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2009.01.004
– volume: 54
  start-page: 1344
  issue: 3
  year: 2020
  ident: 10.1016/j.atmosenv.2023.119728_bib58
  article-title: Significant changes in chemistry of fine particles in wintertime beijing from 2007 to 2017: impact of clean air actions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b04678
– volume: 7
  start-page: 3249
  issue: 12
  year: 2007
  ident: 10.1016/j.atmosenv.2023.119728_bib25
  article-title: Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-7-3249-2007
– volume: 77
  start-page: 817
  year: 2013
  ident: 10.1016/j.atmosenv.2023.119728_bib38
  article-title: An observational study of the hygroscopic properties of aerosols over the Pearl River Delta region
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.05.049
– volume: 25
  start-page: 2435
  issue: 11
  year: 1991
  ident: 10.1016/j.atmosenv.2023.119728_bib40
  article-title: Aerosols, clouds and radiation
  publication-title: Atmos. Environ., Part A
  doi: 10.1016/0960-1686(91)90159-5
– volume: 20
  start-page: 3777
  issue: 6
  year: 2020
  ident: 10.1016/j.atmosenv.2023.119728_bib46
  article-title: Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-3777-2020
– volume: 13
  start-page: 5049
  issue: 9
  year: 2013
  ident: 10.1016/j.atmosenv.2023.119728_bib22
  article-title: Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-13-5049-2013
– volume: 60
  start-page: 432
  issue: 3
  year: 2008
  ident: 10.1016/j.atmosenv.2023.119728_bib37
  article-title: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review
  publication-title: Tellus B
  doi: 10.1111/j.1600-0889.2008.00350.x
– start-page: 704
  year: 2020
  ident: 10.1016/j.atmosenv.2023.119728_bib24
  article-title: Wintertime hygroscopic growth factors (HGFs) of accumulation mode particles and their linkage to chemical composition in a heavily polluted urban atmosphere of Kanpur at the Centre of IGP, India: impact of ambient relative humidity
  publication-title: Sci. Total Environ.
– volume: 32
  start-page: 26
  issue: 1
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib33
  article-title: Comparison of submicron particles at a rural and an urban site in the NorthNorth China plain during the december 2016 heavy pollution episodes
  publication-title: Journal of Meteorological Research
  doi: 10.1007/s13351-018-7060-7
– volume: 20
  start-page: 2591
  issue: 4
  year: 2020
  ident: 10.1016/j.atmosenv.2023.119728_bib50
  article-title: Wintertime new particle formation and its contribution to cloud condensation nuclei in the Northeastern United States
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-2591-2020
– volume: 124
  start-page: 544
  year: 2023
  ident: 10.1016/j.atmosenv.2023.119728_bib54
  article-title: Atmospheric particle hygroscopicity and the influence by oxidation state of organic aerosols in urban Beijing
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2021.11.019
– volume: 147
  start-page: 224
  year: 2016
  ident: 10.1016/j.atmosenv.2023.119728_bib21
  article-title: Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.10.013
– volume: 178
  start-page: 66
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib30
  article-title: Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.01.004
– volume: 14
  start-page: 9537
  issue: 18
  year: 2014
  ident: 10.1016/j.atmosenv.2023.119728_bib12
  article-title: Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dome (1465ma.s.l.)
  publication-title: France, Atmospheric Chemistry and Physics
  doi: 10.5194/acp-14-9537-2014
– volume: 6
  start-page: 410
  issue: 4
  year: 2020
  ident: 10.1016/j.atmosenv.2023.119728_bib20
  article-title: A review on laboratory studies and field measurements of atmospheric organic aerosol hygroscopicity and its parameterization based on oxidation levels
  publication-title: Current Pollution Reports
  doi: 10.1007/s40726-020-00164-2
– volume: 47
  start-page: 295
  issue: 4
  year: 1998
  ident: 10.1016/j.atmosenv.2023.119728_bib5
  article-title: An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition
  publication-title: Aust. Meteorol. Mag.
– volume: 194
  start-page: 188
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib43
  article-title: Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.09.041
– volume: 1–18
  year: 2017
  ident: 10.1016/j.atmosenv.2023.119728_bib8
  article-title: Wintertime hygroscopicity and volatility of ambient urban aerosol particles
  publication-title: Atmos. Chem. Phys.
– volume: 20
  start-page: 915
  issue: 2
  year: 2020
  ident: 10.1016/j.atmosenv.2023.119728_bib9
  article-title: Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-915-2020
– volume: 64
  start-page: 263
  year: 2013
  ident: 10.1016/j.atmosenv.2023.119728_bib48
  article-title: Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.09.064
– volume: 693
  year: 2019
  ident: 10.1016/j.atmosenv.2023.119728_bib34
  article-title: Variations in submicron aerosol liquid water content and the contribution of chemical components during heavy aerosol pollution episodes in winter in Beijing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.327
– volume: 175
  start-page: 184
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib42
  article-title: Statistical analysis and parameterization of the hygroscopic growth of the sub-micrometer urban background aerosol in Beijing
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.12.003
– volume: 119
  start-page: 9864
  issue: 16
  year: 2014
  ident: 10.1016/j.atmosenv.2023.119728_bib49
  article-title: Simultaneous HTDMA and HR-ToF-AMS measurements at the HKUST supersite in Hong Kong in 2011
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2013JD021146
– volume: 18
  start-page: 6907
  issue: 9
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib31
  article-title: Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-6907-2018
– volume: 17
  start-page: 11779
  issue: 19
  year: 2017
  ident: 10.1016/j.atmosenv.2023.119728_bib39
  article-title: CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-11779-2017
– volume: 169
  start-page: 160
  year: 2016
  ident: 10.1016/j.atmosenv.2023.119728_bib15
  article-title: Comparison of aerosol hygroscopicity and mixing state between winter and summer seasons in Pearl River Delta region, China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.09.031
– volume: 18
  start-page: 16419
  issue: 22
  year: 2018
  ident: 10.1016/j.atmosenv.2023.119728_bib3
  article-title: The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-16419-2018
– volume: 213
  start-page: 349
  year: 2019
  ident: 10.1016/j.atmosenv.2023.119728_bib1
  article-title: Size-resolved hygroscopicity of ambient submicron particles in a suburban atmosphere
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.05.065
– volume: 122
  start-page: 11
  issue: 21
  year: 2017
  ident: 10.1016/j.atmosenv.2023.119728_bib53
  article-title: Uncertainty in predicting CCN activity of aged and primary aerosols
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2017JD027058
– volume: 121
  start-page: 7215
  issue: 12
  year: 2016
  ident: 10.1016/j.atmosenv.2023.119728_bib27
  article-title: Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD024636
– volume: 69
  start-page: 47
  issue: 1
  year: 2012
  ident: 10.1016/j.atmosenv.2023.119728_bib2
  article-title: Seasonal variation of water-soluble inorganic components in aerosol size-segregated at the puy de Dome station (1,465 m a.s.l.), France
  publication-title: J. Atmos. Chem.
  doi: 10.1007/s10874-012-9229-2
– volume: 45
  start-page: 318
  issue: 2
  year: 2011
  ident: 10.1016/j.atmosenv.2023.119728_bib28
  article-title: Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: implications of high acidity for water-soluble organic carbon (WSOC)
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.10.021
– volume: 14
  start-page: 13423
  issue: 24
  year: 2014
  ident: 10.1016/j.atmosenv.2023.119728_bib51
  article-title: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC(3)Exp campaign: implications for cloud condensation nuclei parameterization
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-13423-2014
– volume: 113
  start-page: 1066
  issue: 6
  year: 2009
  ident: 10.1016/j.atmosenv.2023.119728_bib18
  article-title: Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp807531n
– volume: 124
  start-page: 14102
  issue: 24
  year: 2019
  ident: 10.1016/j.atmosenv.2023.119728_bib52
  article-title: Significantly enhanced aerosol CCN activity and number concentrations by nucleation-initiated haze events: a case study in urban beijing
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2019JD031457
SSID ssj0003797
Score 2.4744751
Snippet Hygroscopicity is a key parameter for characterizing the ability of particles to be activated as cloud-condensation nuclei (CCN). In this study, we present a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119728
SubjectTerms Chemical composition
Cloud-condensation nucleus
H-TDMA
Heavy polluted episode
North China Plain
Particle hygroscopicity
Title Seasonal variation of particle hygroscopicity and its impact on cloud-condensation nucleus activation in the Beijing urban area
URI https://dx.doi.org/10.1016/j.atmosenv.2023.119728
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELYQNFAgHod4a4prs0tiO-uUgEB7dzoaDokusp0xZAXJah9INPDXGccJLNJJFJRJZiTHnzPz2ZkHYz91MsDCiixKjFWRkAoj5QxGKFCTx0eZNZ3n_l6lwxvx-1beLrHzLhfGh1W2tj_Y9MZat3f67Wz2x2XZv449d-C-9EBDBJoMdjHwq7z38hHmwQehwQoJR156IUt4RIg81lOsnnq-iXivacGl_u-gFpzO5QZbb9kinIYBbbIlrLbY2kINwS22c_GRqkai7bc63Wav16gbng1PtB9uAIDawbh9O7h_vvOVLOtxaYmJg64KKGdTCGmTQML2oZ4XEe2XyTSFmB-ofPXj-RR8NkQ4y4WyAuKQcIbliMYD84nRFWiioj_YzeXFv_Nh1LZbiCyPk5n_H0zQKCek4ZrHhKBVmU5OUuVibrhNJHcDZ-MUjVCpKqQPqZH8xDl6YJTiO2y5qivcZRA7p0WBMlEuFVmKNK9GSG6lStMEUe0x2c1xbtta5L4lxkPeBZ2N8g6b3GOTB2z2WP9dbxyqcXypkXUQ5p_WVU4u4wvd_W_oHrBVfxWCyg7Z8mwyxyOiLzNz3KzPY7Zy-uvP8OoNiiLzfg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFRSqlhbwAY7ZbfzIOgcOBVpt6ePSVuot2I4NWbXJqtkt6gV-FH-QcezQRULqAfUaZ6LRfM7M52QeAG8VHdnS8Dyh2siEC2kT6bRNLLcKI74VeTd57ug4G5_xz-fifAl-9bUwPq0y-v7g0ztvHa8MozWH06oanqSeOzDfeqAjAmnMrDywN9_x3Na-3_-EIL-jdG_39OM4iaMFEsNSOvP_PlEN6bjQTLEUtTUyV3Q7ky5lmhkqmBs5k2ZWc5nJUvj0EcG2ncMFLSXD5z6AhxzdhR-bMPhxm1fCRmGiC2qXePUWypInuAUum9bW1wM_tXzQzfyS_46IC1Fu7ymsRHpKdoIFnsGSrVfhyULTwlVY272tjcNbo3Non8PPE6s6Yk-u8QDeIU4aR6bRnOTbzVffOrOZVgapP1F1SapZS0KdJsGbzUUzLxM8oKMvDElGpPbtluct8eUX4eMxqWqCpJV8sNUE9SHzK61qopD7voCzewFhDZbrprbrQFLnFC-toNJlPM8s2lUjOEbILKPWyg0QvY0LE5uf-xkcF0Wf5TYpemwKj00RsNmA4R-5aWj_cadE3kNY_LWRC4xRd8i-_A_ZN_BofHp0WBzuHx9swmO_EjLatmB5djW3r5A7zfTrbq8S-HLfL8dv8AAt4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal+variation+of+particle+hygroscopicity+and+its+impact+on+cloud-condensation+nucleus+activation+in+the+Beijing+urban+area&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Zhang%2C+Sinan&rft.au=Shen%2C+Xiaojing&rft.au=Sun%2C+Junying&rft.au=Che%2C+Huizheng&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=1352-2310&rft.eissn=1873-2844&rft.volume=302&rft_id=info:doi/10.1016%2Fj.atmosenv.2023.119728&rft.externalDocID=S1352231023001541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon