Seasonal variation of particle hygroscopicity and its impact on cloud-condensation nucleus activation in the Beijing urban area
Hygroscopicity is a key parameter for characterizing the ability of particles to be activated as cloud-condensation nuclei (CCN). In this study, we present a 10-month size-resolved measurement of the hygroscopicity of particles with diameters of 50, 100 and 200 nm in the Beijing urban area using a H...
Saved in:
Published in | Atmospheric environment (1994) Vol. 302; p. 119728 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hygroscopicity is a key parameter for characterizing the ability of particles to be activated as cloud-condensation nuclei (CCN). In this study, we present a 10-month size-resolved measurement of the hygroscopicity of particles with diameters of 50, 100 and 200 nm in the Beijing urban area using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). Compared with that in other studies conducted in China, the hygroscopicity parameter (κ) in this study was relatively higher than that in the Pearl River Delta region but lower than that in the Yangtze River Delta region. As the mass fraction of inorganic matter (especially nitrate) increased, the particles became more hygroscopic during spring and summer, as influenced by the chemical composition. Polluted southerly air masses also enhanced particle hygroscopicity. The CCN concentration was calculated based on κ-Köhler theory, with a moderate supersaturation of 0.4%. The critical diameter of particles as potential CCNs was smaller in spring than that in the other seasons. The critical diameters of aerosols in autumn, winter and spring were 142, 123 and 114 nm, respectively, with calculated CCN concentrations of 1683, 1909 and 1765 cm−3, respectively. Activation ratios, calculated as CCN divided by condensation nuclei (CN), were 0.13, 0.15 and 0.18 in autumn, spring and summer, respectively. During episodes of heavy pollution, the CCN concentration highly depended on the particle mass loading, as the accumulation mode dominated the particle number size distribution and the chemical composition was quasi-homogeneous. However, under other conditions, both particle size and chemical composition were important. This study revealed the relationship between particle hygroscopicity, CCN and air pollution level, and it will be useful for evaluating the environmental and climatic effects of aerosols.
•10-month size-resolved particle hygroscopicity was measured in urban Beijing.•Increased mass fraction of nitrate strengthened particle hygroscopicity.•CCN concentration highly depended on particle mass loading under heavy pollution. |
---|---|
AbstractList | Hygroscopicity is a key parameter for characterizing the ability of particles to be activated as cloud-condensation nuclei (CCN). In this study, we present a 10-month size-resolved measurement of the hygroscopicity of particles with diameters of 50, 100 and 200 nm in the Beijing urban area using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). Compared with that in other studies conducted in China, the hygroscopicity parameter (κ) in this study was relatively higher than that in the Pearl River Delta region but lower than that in the Yangtze River Delta region. As the mass fraction of inorganic matter (especially nitrate) increased, the particles became more hygroscopic during spring and summer, as influenced by the chemical composition. Polluted southerly air masses also enhanced particle hygroscopicity. The CCN concentration was calculated based on κ-Köhler theory, with a moderate supersaturation of 0.4%. The critical diameter of particles as potential CCNs was smaller in spring than that in the other seasons. The critical diameters of aerosols in autumn, winter and spring were 142, 123 and 114 nm, respectively, with calculated CCN concentrations of 1683, 1909 and 1765 cm−3, respectively. Activation ratios, calculated as CCN divided by condensation nuclei (CN), were 0.13, 0.15 and 0.18 in autumn, spring and summer, respectively. During episodes of heavy pollution, the CCN concentration highly depended on the particle mass loading, as the accumulation mode dominated the particle number size distribution and the chemical composition was quasi-homogeneous. However, under other conditions, both particle size and chemical composition were important. This study revealed the relationship between particle hygroscopicity, CCN and air pollution level, and it will be useful for evaluating the environmental and climatic effects of aerosols.
•10-month size-resolved particle hygroscopicity was measured in urban Beijing.•Increased mass fraction of nitrate strengthened particle hygroscopicity.•CCN concentration highly depended on particle mass loading under heavy pollution. |
ArticleNumber | 119728 |
Author | Zhang, Sinan Hu, Xinyao Lu, Jiayuan Che, Huizheng Yu, Aoyuan Zhong, Junting Wang, Jialing Liu, Quan Xia, Can Shen, Xiaojing Sun, Junying Zhang, Yangmei Zhang, Xiaoye Liu, Shuo |
Author_xml | – sequence: 1 givenname: Sinan surname: Zhang fullname: Zhang, Sinan organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 2 givenname: Xiaojing orcidid: 0000-0002-3001-2905 surname: Shen fullname: Shen, Xiaojing email: shenxj@cma.gov.cn organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 3 givenname: Junying orcidid: 0000-0003-1064-9017 surname: Sun fullname: Sun, Junying email: jysun@cma.gov.cn organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 4 givenname: Huizheng orcidid: 0000-0002-9458-3387 surname: Che fullname: Che, Huizheng organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 5 givenname: Yangmei surname: Zhang fullname: Zhang, Yangmei organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 6 givenname: Quan surname: Liu fullname: Liu, Quan organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 7 givenname: Can surname: Xia fullname: Xia, Can organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 8 givenname: Xinyao surname: Hu fullname: Hu, Xinyao organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 9 givenname: Junting surname: Zhong fullname: Zhong, Junting organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 10 givenname: Jialing surname: Wang fullname: Wang, Jialing organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 11 givenname: Shuo surname: Liu fullname: Liu, Shuo organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 12 givenname: Jiayuan surname: Lu fullname: Lu, Jiayuan organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 13 givenname: Aoyuan surname: Yu fullname: Yu, Aoyuan organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China – sequence: 14 givenname: Xiaoye surname: Zhang fullname: Zhang, Xiaoye organization: State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China |
BookMark | eNqFkE1PGzEQhq0KpIbAX0D-A5v6Yz-8Ug9toxaQkDgAZ8vrHcNEGzuynUg59a9juuXCJacZzbzPaN73gpz54IGQa85WnPH222Zl8jYk8IeVYEKuOO87ob6QBVedrISq67PSy0ZUQnL2lVyktGGMya7vFuTvI5gUvJnowUQ0GYOnwdGdiRntBPT1-BJDsmGHFvORGj9SzInidmdspkVsp7AfKxv8CD7NvN8Xcp9oUeBhHqGn-RXoL8AN-he6j4Px1EQwl-TcmSnB1f-6JM9_fj-tb6v7h5u79c_7ykouclXzHppeuboZpJF8tLVVvRGsVY7LQVrRSNc5y1sYatWqsWG1kI1kzpXFoJRcku_zXVvspAhOFz__fsvR4KQ50-9h6o3-CFO_h6nnMAvefsJ3EbcmHk-DP2YQirkDQtTJIngLI0awWY8BT514A5dDmIw |
CitedBy_id | crossref_primary_10_5194_acp_23_8241_2023 crossref_primary_10_1080_10095020_2024_2447445 crossref_primary_10_5194_acp_23_14271_2023 crossref_primary_10_1088_1402_4896_ad75d4 crossref_primary_10_1016_j_scitotenv_2024_173650 crossref_primary_10_5194_acp_25_3389_2025 crossref_primary_10_1016_j_atmosenv_2025_121129 |
Cites_doi | 10.1029/2017JD027292 10.5194/acp-22-4599-2022 10.1016/j.atmosenv.2015.05.006 10.5194/acp-12-779-2012 10.1002/2015JD024020 10.1080/16000889.2018.1513291 10.1016/j.atmosenv.2017.01.034 10.1016/j.atmosenv.2013.08.062 10.5194/acp-15-11999-2015 10.1007/s11430-019-9343-3 10.1016/j.apr.2020.11.008 10.1007/s13351-018-7051-8 10.1029/2019GL084047 10.1126/science.1180353 10.1016/j.jaerosci.2008.07.013 10.5194/acp-7-1961-2007 10.1016/j.atmosenv.2015.11.003 10.5194/acp-7-5785-2007 10.5194/acp-18-247-2018 10.1016/j.scitotenv.2016.10.149 10.5194/acp-16-1123-2016 10.1016/j.envsoft.2009.01.004 10.1021/acs.est.9b04678 10.5194/acp-7-3249-2007 10.1016/j.atmosenv.2013.05.049 10.1016/0960-1686(91)90159-5 10.5194/acp-20-3777-2020 10.5194/acp-13-5049-2013 10.1111/j.1600-0889.2008.00350.x 10.1007/s13351-018-7060-7 10.5194/acp-20-2591-2020 10.1016/j.jes.2021.11.019 10.1016/j.atmosenv.2016.10.013 10.1016/j.atmosenv.2018.01.004 10.5194/acp-14-9537-2014 10.1007/s40726-020-00164-2 10.1016/j.atmosenv.2018.09.041 10.5194/acp-20-915-2020 10.1016/j.atmosenv.2012.09.064 10.1016/j.scitotenv.2019.07.327 10.1016/j.atmosenv.2017.12.003 10.1002/2013JD021146 10.5194/acp-18-6907-2018 10.5194/acp-17-11779-2017 10.1016/j.atmosres.2015.09.031 10.5194/acp-18-16419-2018 10.1016/j.atmosenv.2019.05.065 10.1002/2017JD027058 10.1002/2015JD024636 10.1007/s10874-012-9229-2 10.1016/j.atmosenv.2010.10.021 10.5194/acp-14-13423-2014 10.1021/jp807531n 10.1029/2019JD031457 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.atmosenv.2023.119728 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1873-2844 |
ExternalDocumentID | 10_1016_j_atmosenv_2023_119728 S1352231023001541 |
GroupedDBID | --- --K --M -DZ -~X ..I .DC .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SEN SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE ~02 ~G- .HR 186 3O- 53G AAFWJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ R2- RIG SEP SSH T9H VH1 WUQ |
ID | FETCH-LOGICAL-c312t-419e598f45b3a31dc4c89a2068f13b3c253f7fc16eb4868d50423530ff53fb883 |
IEDL.DBID | .~1 |
ISSN | 1352-2310 |
IngestDate | Thu Apr 24 23:09:00 EDT 2025 Tue Jul 01 03:39:03 EDT 2025 Fri Feb 23 02:37:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Particle hygroscopicity Cloud-condensation nucleus Chemical composition Heavy polluted episode H-TDMA North China Plain |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-419e598f45b3a31dc4c89a2068f13b3c253f7fc16eb4868d50423530ff53fb883 |
ORCID | 0000-0003-1064-9017 0000-0002-3001-2905 0000-0002-9458-3387 |
ParticipantIDs | crossref_citationtrail_10_1016_j_atmosenv_2023_119728 crossref_primary_10_1016_j_atmosenv_2023_119728 elsevier_sciencedirect_doi_10_1016_j_atmosenv_2023_119728 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 2023-06-00 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Atmospheric environment (1994) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Draxler, Hess (bib5) 1998; 47 Liu, Jing, Peng, Tong, Wang, Ge (bib63) 2016; 125 Miao, Zhang, Li, Qin, Xu, Yuan, Gao (bib26) 2015; 113 Wang, Shen, Sun, Zhang, Wang, Zhang, Wang, Xia, Qi, Zhong (bib43) 2018; 194 Zhang, Vu, Sun, He, Shen, Lin, Zhang, Zhong, Gao, Wang, Fu, Ma, Li, Shi (bib58) 2020; 54 Jung, Yoon, Kang, Gim, Lee, Strom, Krejci, Tunved (bib16) 2018; 70 Pathak, Wang, Ho, Lee (bib28) 2011; 45 Fan, Liu, Zhang, Chen, Collins, Xu, Jin, Ren, Wang, Wu, Li, Sun, Li (bib9) 2020; 20 Yan, Fu, Jing, Peng, Boreddy, Yang, Wei, Sun, Wang, Ge (bib47) 2017; 578 Kuang, Zhao, Tao, Bian, Ma (bib21) 2016; 147 Ye, Tang, Yin, Chen, Ma, Kong, Yang, Gao, Geng (bib48) 2013; 64 Engler, Rose, Wehner, Wiedensohler, Brueggemann, Gnauk, Spindler, Tuch, Birmili (bib7) 2007; 7 Yu, Luo, Nair, Schwab, Sherman, Zhang (bib50) 2020; 20 Zhang, Wang, Zhang, Shen, Sun, Wu, Zhang, Che (bib59) 2018; 32 Yeung, Lee, Li, Chan (bib49) 2014; 119 Jimenez, Canagaratna, Donahue, Prevot, Zhang, Kroll, DeCarlo, Allan, Coe, Ng, Aiken, Docherty, Ulbrich, Grieshop, Robinson, Duplissy, Smith, Wilson, Lanz, Hueglin, Sun, Tian, Laaksonen, Raatikainen, Rautiainen, Vaattovaara, Ehn, Kulmala, Tomlinson, Collins, Cubison, Dunlea, Huffman, Onasch, Alfarra, Williams, Bower, Kondo, Schneider, Drewnick, Borrmann, Weimer, Demerjian, Salcedo, Cottrell, Griffin, Takami, Miyoshi, Hatakeyama, Shimono, Sun, Zhang, Dzepina, Kimmel, Sueper, Jayne, Herndon, Trimborn, Williams, Wood, Middlebrook, Kolb, Baltensperger, Worsnop (bib61) 2009; 326 Ren, Zhang, Wang, Collins, Fan, Jin, Xu, Sun, Cribb, Li (bib31) 2018; 18 Lance, Raatikainen, Onasch, Worsnop, Yu, Alexander, Stolzenburg, McMurry, Smith, Nenes (bib22) 2013; 13 Levy, Zhang, Zheng, Tan, Wang, Molina, Takahama, Russell, Li (bib23) 2014; 88 Thalman, de Sa, Palm, Barbosa, Pohlker, Alexander, Brito, Carbone, Castillo, Day, Kuang, Manzi, Ng, Sedlacek, Souza, Springston, Watson, Pohlker, Poschl, Andreae, Artaxo, Jimenez, Martin, Wang (bib39) 2017; 17 Cai, Tan, Chan, Qin, Xu, Li, Schurman, Liu, Zhao (bib3) 2018; 18 Alonso-Blanco, Gomez-Moreno, Artinano (bib1) 2019; 213 Psichoudaki, Nenes, Florou, Kaltsonoudis, Pandis (bib30) 2018; 178 Mandariya, Tripathi, Gupta, Mishra (bib24) 2020 Seinfeld, Pandis (bib32) 2016 Wang, Zhang, Draxler (bib44) 2009; 24 Gysel, McFiggans, Coe (bib62) 2009; 40 Zhang, Wang, Peng, Ren, Collins, Zhang, Sun, Yang, Li (bib53) 2017; 122 Shen, Sun, Zhang, Zhang, Zhong, Wang, Wang, Xia (bib34) 2019; 693 Khalizov, Xue, Wang, Zheng, Zhang (bib18) 2009; 113 Massling, Leinert, Wiedensohler, Covert (bib25) 2007; 7 Wu, Zheng, Shang, Du, Wu, Zeng, Wiedensohler, Hu (bib45) 2016; 16 Zhang, Che, Gong, Wang, Wang, Yang (bib55) 2021; 12 Zhang, Xu, Ding, Liu, Zhang, Wang, Zhong (bib57) 2019; 62 Wang, Li, Zhang, Jin, Xu, Fan, Wu, Zhang, Sun, Wang, Cribb, Hu (bib41) 2019; 46 Wang, Wu, Ma, Wu, Zeng, Zhao, Wiedensohler (bib42) 2018; 175 Deng, Kagami, Ogawa, Kawana, Nakayama, Kubodera, Adachi, Hussein, Miyazaki, Mochida (bib4) 2018; 123 Twomey (bib40) 1991; 25 Zhong, Zhang, Dong, Wang, Liu, Wang, Zhang, Che (bib60) 2018; 18 Petters, Kreidenweis (bib29) 2007; 7 Jiang, Tan, Tang, Cai, Yin, Li, Liu, Xu, Chan, Deng, Wu (bib15) 2016; 169 Shi, Hong, Ma, Luo, He, Xu, Tan, Wang, Tao, Zhou, Han, Peng, Xie, Zhou, Xu, Sun, Cheng, Su (bib35) 2022; 22 Shen, Sun, Zhang, Zhang, Wang, Tan, Wang, Zhang, Qi, Che, Zhang, Zhong, Zhao, Ren (bib33) 2018; 32 Zhang, Ren, Fan, Chen, Xu, Sun, Zhang, Liu, Jiang, Jin, Wu, Li, Cribb, Li (bib52) 2019; 124 Zhang, Wang, Niu, Zhang, Gong, Zhang, Sun (bib56) 2012; 12 Kim, Park, Yum, Park, Song, Shin, Ahn, Kwak, Kim, Bae, Lee (bib19) 2017; 153 Kuang, Xu, Tao, Ma, Zhao, Shao (bib20) 2020; 6 Xu, Ovadnevaite, Fossum, Lin, Ce Burnis (bib46) 2020; 20 Hu, Hu, Hu, Jimenez, Yuan, Chen, Wang, Wu, Chen, Wang, Peng, Zeng, Shao (bib14) 2016; 121 Zhang, Shen, Sun, Zhang, Zhang, Xia, Hu, Zhong, Wang, Liu (bib54) 2023; 124 Enroth, Mikkilä, Németh, Kulmala, Salma (bib8) 2017; 1–18 Hong, Kim, Nieminen, Duplissy, Ehn, Aijala, Hao, Nie, Sarnela, Prisle, Kulmala, Virtanen, Petaja, Kerminen (bib13) 2015; 15 Bourcier, Sellegri, Chausse, Pichon, Laj (bib2) 2012; 69 Holmgren, Sellegri, Hervo, Rose, Freney, Villani, Laj (bib12) 2014; 14 Ogawa, Setoguchi, Kawana, Nakayama, Ikeda, Sawada, Matsumi, Mochida (bib27) 2016; 121 Zhang, Li, Li, Sun, Li, Zhao, Wang, Sun, Liu, Li, Li, Ren, Fan (bib51) 2014; 14 Tan, Yin, Gu, Li, Chan, Xu, Deng, Wan (bib38) 2013; 77 Swietlicki, Hansson, Hämeri, Svenningsson, Massling, McFiggans, McMurry, Petäjä, Tunved, Gysel (bib37) 2008; 60 Lance (10.1016/j.atmosenv.2023.119728_bib22) 2013; 13 Khalizov (10.1016/j.atmosenv.2023.119728_bib18) 2009; 113 Shen (10.1016/j.atmosenv.2023.119728_bib34) 2019; 693 Enroth (10.1016/j.atmosenv.2023.119728_bib8) 2017; 1–18 Zhang (10.1016/j.atmosenv.2023.119728_bib58) 2020; 54 Shi (10.1016/j.atmosenv.2023.119728_bib35) 2022; 22 Zhong (10.1016/j.atmosenv.2023.119728_bib60) 2018; 18 Seinfeld (10.1016/j.atmosenv.2023.119728_bib32) 2016 Liu (10.1016/j.atmosenv.2023.119728_bib63) 2016; 125 Ren (10.1016/j.atmosenv.2023.119728_bib31) 2018; 18 Holmgren (10.1016/j.atmosenv.2023.119728_bib12) 2014; 14 Kuang (10.1016/j.atmosenv.2023.119728_bib20) 2020; 6 Xu (10.1016/j.atmosenv.2023.119728_bib46) 2020; 20 Miao (10.1016/j.atmosenv.2023.119728_bib26) 2015; 113 Ogawa (10.1016/j.atmosenv.2023.119728_bib27) 2016; 121 Tan (10.1016/j.atmosenv.2023.119728_bib38) 2013; 77 Zhang (10.1016/j.atmosenv.2023.119728_bib52) 2019; 124 Alonso-Blanco (10.1016/j.atmosenv.2023.119728_bib1) 2019; 213 Zhang (10.1016/j.atmosenv.2023.119728_bib51) 2014; 14 Yu (10.1016/j.atmosenv.2023.119728_bib50) 2020; 20 Hu (10.1016/j.atmosenv.2023.119728_bib14) 2016; 121 Zhang (10.1016/j.atmosenv.2023.119728_bib55) 2021; 12 Ye (10.1016/j.atmosenv.2023.119728_bib48) 2013; 64 Deng (10.1016/j.atmosenv.2023.119728_bib4) 2018; 123 Mandariya (10.1016/j.atmosenv.2023.119728_bib24) 2020 Levy (10.1016/j.atmosenv.2023.119728_bib23) 2014; 88 Zhang (10.1016/j.atmosenv.2023.119728_bib59) 2018; 32 Thalman (10.1016/j.atmosenv.2023.119728_bib39) 2017; 17 Pathak (10.1016/j.atmosenv.2023.119728_bib28) 2011; 45 Zhang (10.1016/j.atmosenv.2023.119728_bib56) 2012; 12 Bourcier (10.1016/j.atmosenv.2023.119728_bib2) 2012; 69 Jimenez (10.1016/j.atmosenv.2023.119728_bib61) 2009; 326 Zhang (10.1016/j.atmosenv.2023.119728_bib53) 2017; 122 Engler (10.1016/j.atmosenv.2023.119728_bib7) 2007; 7 Wang (10.1016/j.atmosenv.2023.119728_bib43) 2018; 194 Zhang (10.1016/j.atmosenv.2023.119728_bib54) 2023; 124 Psichoudaki (10.1016/j.atmosenv.2023.119728_bib30) 2018; 178 Kuang (10.1016/j.atmosenv.2023.119728_bib21) 2016; 147 Yeung (10.1016/j.atmosenv.2023.119728_bib49) 2014; 119 Twomey (10.1016/j.atmosenv.2023.119728_bib40) 1991; 25 Hong (10.1016/j.atmosenv.2023.119728_bib13) 2015; 15 Yan (10.1016/j.atmosenv.2023.119728_bib47) 2017; 578 Cai (10.1016/j.atmosenv.2023.119728_bib3) 2018; 18 Kim (10.1016/j.atmosenv.2023.119728_bib19) 2017; 153 Draxler (10.1016/j.atmosenv.2023.119728_bib5) 1998; 47 Gysel (10.1016/j.atmosenv.2023.119728_bib62) 2009; 40 Wang (10.1016/j.atmosenv.2023.119728_bib42) 2018; 175 Massling (10.1016/j.atmosenv.2023.119728_bib25) 2007; 7 Wu (10.1016/j.atmosenv.2023.119728_bib45) 2016; 16 Fan (10.1016/j.atmosenv.2023.119728_bib9) 2020; 20 Zhang (10.1016/j.atmosenv.2023.119728_bib57) 2019; 62 Wang (10.1016/j.atmosenv.2023.119728_bib44) 2009; 24 Jiang (10.1016/j.atmosenv.2023.119728_bib15) 2016; 169 Petters (10.1016/j.atmosenv.2023.119728_bib29) 2007; 7 Wang (10.1016/j.atmosenv.2023.119728_bib41) 2019; 46 Shen (10.1016/j.atmosenv.2023.119728_bib33) 2018; 32 Jung (10.1016/j.atmosenv.2023.119728_bib16) 2018; 70 Swietlicki (10.1016/j.atmosenv.2023.119728_bib37) 2008; 60 |
References_xml | – volume: 62 start-page: 1885 year: 2019 end-page: 1902 ident: bib57 article-title: The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China publication-title: Sci. China Earth Sci. – volume: 18 start-page: 247 year: 2018 end-page: 258 ident: bib60 article-title: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016 publication-title: Atmos. Chem. Phys. – volume: 24 start-page: 938 year: 2009 end-page: 939 ident: bib44 article-title: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data publication-title: Environ. Model. Software – volume: 175 start-page: 184 year: 2018 end-page: 191 ident: bib42 article-title: Statistical analysis and parameterization of the hygroscopic growth of the sub-micrometer urban background aerosol in Beijing publication-title: Atmos. Environ. – volume: 121 start-page: 1955 year: 2016 end-page: 1977 ident: bib14 article-title: Chemical composition, sources, and aging process of submicron aerosols in Beijing: contrast between summer and winter publication-title: J. Geophys. Res. Atmos. – volume: 153 start-page: 217 year: 2017 end-page: 232 ident: bib19 article-title: Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign publication-title: Atmos. Environ. – volume: 119 start-page: 9864 year: 2014 end-page: 9883 ident: bib49 article-title: Simultaneous HTDMA and HR-ToF-AMS measurements at the HKUST supersite in Hong Kong in 2011 publication-title: J. Geophys. Res. Atmos. – volume: 124 start-page: 544 year: 2023 end-page: 556 ident: bib54 article-title: Atmospheric particle hygroscopicity and the influence by oxidation state of organic aerosols in urban Beijing publication-title: J. Environ. Sci. – volume: 12 start-page: 272 year: 2021 end-page: 281 ident: bib55 article-title: The dominant mechanism of the explosive rise of PM2.5 after significant pollution emissions reduction in Beijing from 2017 to the COVID-19 pandemic in 2020 publication-title: Atmos. Pollut. Res. – volume: 194 start-page: 188 year: 2018 end-page: 197 ident: bib43 article-title: Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016 publication-title: Atmos. Environ. – year: 2016 ident: bib32 article-title: Atmospheric Chemistry and Physics: from Air Pollution to Climate Change – start-page: 704 year: 2020 ident: bib24 article-title: Wintertime hygroscopic growth factors (HGFs) of accumulation mode particles and their linkage to chemical composition in a heavily polluted urban atmosphere of Kanpur at the Centre of IGP, India: impact of ambient relative humidity publication-title: Sci. Total Environ. – volume: 22 start-page: 4599 year: 2022 end-page: 4613 ident: bib35 article-title: Measurement report: on the difference in aerosol hygroscopicity between high and low relative humidity conditions in the North China Plain publication-title: Atmos. Chem. Phys. – volume: 46 start-page: 10918 year: 2019 end-page: 10925 ident: bib41 article-title: Distinct ultrafine- and accumulation-mode particle properties in clean and polluted urban environments publication-title: Geophys. Res. Lett. – volume: 7 start-page: 5785 year: 2007 end-page: 5802 ident: bib7 article-title: Size distributions of non-volatile particle residuals (D-p < 800 nm) at a rural site in Germany and relation to air mass origin publication-title: Atmos. Chem. Phys. – volume: 125 start-page: 69 year: 2016 end-page: 77 ident: bib63 article-title: Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance publication-title: Atmos. Environ. – volume: 16 start-page: 1123 year: 2016 end-page: 1138 ident: bib45 article-title: Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime publication-title: Atmos. Chem. Phys. – volume: 693 year: 2019 ident: bib34 article-title: Variations in submicron aerosol liquid water content and the contribution of chemical components during heavy aerosol pollution episodes in winter in Beijing publication-title: Sci. Total Environ. – volume: 20 start-page: 2591 year: 2020 end-page: 2601 ident: bib50 article-title: Wintertime new particle formation and its contribution to cloud condensation nuclei in the Northeastern United States publication-title: Atmos. Chem. Phys. – volume: 18 start-page: 16419 year: 2018 end-page: 16437 ident: bib3 article-title: The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014 publication-title: Atmos. Chem. Phys. – volume: 15 start-page: 11999 year: 2015 end-page: 12009 ident: bib13 article-title: Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment publication-title: Atmos. Chem. Phys. – volume: 69 start-page: 47 year: 2012 end-page: 66 ident: bib2 article-title: Seasonal variation of water-soluble inorganic components in aerosol size-segregated at the puy de Dome station (1,465 m a.s.l.), France publication-title: J. Atmos. Chem. – volume: 32 start-page: 26 year: 2018 end-page: 37 ident: bib33 article-title: Comparison of submicron particles at a rural and an urban site in the NorthNorth China plain during the december 2016 heavy pollution episodes publication-title: Journal of Meteorological Research – volume: 88 start-page: 308 year: 2014 end-page: 319 ident: bib23 article-title: Measurements of submicron aerosols at the California-Mexico border during the Cal-Mex 2010 field campaign publication-title: Atmos. Environ. – volume: 18 start-page: 6907 year: 2018 end-page: 6921 ident: bib31 article-title: Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing publication-title: Atmos. Chem. Phys. – volume: 147 start-page: 224 year: 2016 end-page: 233 ident: bib21 article-title: Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain publication-title: Atmos. Environ. – volume: 60 start-page: 432 year: 2008 end-page: 469 ident: bib37 article-title: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review publication-title: Tellus B – volume: 178 start-page: 66 year: 2018 end-page: 72 ident: bib30 article-title: Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens publication-title: Atmos. Environ. – volume: 25 start-page: 2435 year: 1991 end-page: 2442 ident: bib40 article-title: Aerosols, clouds and radiation publication-title: Atmos. Environ., Part A – volume: 54 start-page: 1344 year: 2020 end-page: 1352 ident: bib58 article-title: Significant changes in chemistry of fine particles in wintertime beijing from 2007 to 2017: impact of clean air actions publication-title: Environ. Sci. Technol. – volume: 47 start-page: 295 year: 1998 end-page: 308 ident: bib5 article-title: An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition publication-title: Aust. Meteorol. Mag. – volume: 122 start-page: 11 year: 2017 ident: bib53 article-title: Uncertainty in predicting CCN activity of aged and primary aerosols publication-title: J. Geophys. Res. Atmos. – volume: 213 start-page: 349 year: 2019 end-page: 358 ident: bib1 article-title: Size-resolved hygroscopicity of ambient submicron particles in a suburban atmosphere publication-title: Atmos. Environ. – volume: 45 start-page: 318 year: 2011 end-page: 325 ident: bib28 article-title: Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: implications of high acidity for water-soluble organic carbon (WSOC) publication-title: Atmos. Environ. – volume: 20 start-page: 915 year: 2020 end-page: 929 ident: bib9 article-title: Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions publication-title: Atmos. Chem. Phys. – volume: 12 start-page: 779 year: 2012 end-page: 799 ident: bib56 article-title: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols publication-title: Atmos. Chem. Phys. – volume: 14 start-page: 13423 year: 2014 end-page: 13437 ident: bib51 article-title: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC(3)Exp campaign: implications for cloud condensation nuclei parameterization publication-title: Atmos. Chem. Phys. – volume: 326 start-page: 1525 year: 2009 end-page: 1529 ident: bib61 article-title: Evolution of Organic Aerosols in the Atmosphere publication-title: Science – volume: 64 start-page: 263 year: 2013 end-page: 269 ident: bib48 article-title: Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign publication-title: Atmos. Environ. – volume: 578 start-page: 307 year: 2017 end-page: 316 ident: bib47 article-title: Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea publication-title: Sci. Total Environ. – volume: 7 start-page: 3249 year: 2007 end-page: 3259 ident: bib25 article-title: Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia publication-title: Atmos. Chem. Phys. – volume: 169 start-page: 160 year: 2016 end-page: 170 ident: bib15 article-title: Comparison of aerosol hygroscopicity and mixing state between winter and summer seasons in Pearl River Delta region, China publication-title: Atmos. Res. – volume: 17 start-page: 11779 year: 2017 end-page: 11801 ident: bib39 article-title: CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions publication-title: Atmos. Chem. Phys. – volume: 113 start-page: 1066 year: 2009 end-page: 1074 ident: bib18 article-title: Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid publication-title: J. Phys. Chem. A – volume: 40 start-page: 134 year: 2009 end-page: 151 ident: bib62 article-title: Inversion of tandem differential mobility analyser (TDMA) measurements publication-title: J. Aerosol Sci. – volume: 13 start-page: 5049 year: 2013 end-page: 5062 ident: bib22 article-title: Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006 publication-title: Atmos. Chem. Phys. – volume: 20 start-page: 3777 year: 2020 end-page: 3791 ident: bib46 article-title: Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses publication-title: Atmos. Chem. Phys. – volume: 32 start-page: 1 year: 2018 end-page: 13 ident: bib59 article-title: Chemical components, variation, and source identification of PM1 during the heavy air pollution episodes in beijing in december 2016 publication-title: Journal of Meteorological Research – volume: 123 start-page: 9703 year: 2018 end-page: 9723 ident: bib4 article-title: Hygroscopicity of organic aerosols and their contributions to CCN concentrations over a midlatitude forest in Japan publication-title: J. Geophys. Res. Atmos. – volume: 1–18 year: 2017 ident: bib8 article-title: Wintertime hygroscopicity and volatility of ambient urban aerosol particles publication-title: Atmos. Chem. Phys. – volume: 14 start-page: 9537 year: 2014 end-page: 9554 ident: bib12 article-title: Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dome (1465ma.s.l.) publication-title: France, Atmospheric Chemistry and Physics – volume: 77 start-page: 817 year: 2013 end-page: 826 ident: bib38 article-title: An observational study of the hygroscopic properties of aerosols over the Pearl River Delta region publication-title: Atmos. Environ. – volume: 124 start-page: 14102 year: 2019 end-page: 14113 ident: bib52 article-title: Significantly enhanced aerosol CCN activity and number concentrations by nucleation-initiated haze events: a case study in urban beijing publication-title: J. Geophys. Res. Atmos. – volume: 113 start-page: 127 year: 2015 end-page: 134 ident: bib26 article-title: Measurement of cloud condensation nuclei (CCN) and CCN closure at Mt. Huang based on hygroscopic growth factors and aerosol number-size distribution publication-title: Atmos. Environ. – volume: 7 start-page: 1961 year: 2007 end-page: 1971 ident: bib29 article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity publication-title: Atmos. Chem. Phys. – volume: 121 start-page: 7215 year: 2016 end-page: 7234 ident: bib27 article-title: Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer publication-title: J. Geophys. Res. Atmos. – volume: 70 start-page: 1 year: 2018 end-page: 13 ident: bib16 article-title: The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere publication-title: Tellus Ser. B Chem. Phys. Meteorol. – volume: 6 start-page: 410 year: 2020 end-page: 424 ident: bib20 article-title: A review on laboratory studies and field measurements of atmospheric organic aerosol hygroscopicity and its parameterization based on oxidation levels publication-title: Current Pollution Reports – volume: 123 start-page: 9703 issue: 17 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib4 article-title: Hygroscopicity of organic aerosols and their contributions to CCN concentrations over a midlatitude forest in Japan publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2017JD027292 – volume: 22 start-page: 4599 issue: 7 year: 2022 ident: 10.1016/j.atmosenv.2023.119728_bib35 article-title: Measurement report: on the difference in aerosol hygroscopicity between high and low relative humidity conditions in the North China Plain publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-22-4599-2022 – volume: 113 start-page: 127 year: 2015 ident: 10.1016/j.atmosenv.2023.119728_bib26 article-title: Measurement of cloud condensation nuclei (CCN) and CCN closure at Mt. Huang based on hygroscopic growth factors and aerosol number-size distribution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.05.006 – volume: 12 start-page: 779 issue: 2 year: 2012 ident: 10.1016/j.atmosenv.2023.119728_bib56 article-title: Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-779-2012 – volume: 121 start-page: 1955 issue: 4 year: 2016 ident: 10.1016/j.atmosenv.2023.119728_bib14 article-title: Chemical composition, sources, and aging process of submicron aerosols in Beijing: contrast between summer and winter publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD024020 – volume: 70 start-page: 1 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib16 article-title: The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere publication-title: Tellus Ser. B Chem. Phys. Meteorol. doi: 10.1080/16000889.2018.1513291 – volume: 153 start-page: 217 year: 2017 ident: 10.1016/j.atmosenv.2023.119728_bib19 article-title: Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.01.034 – volume: 88 start-page: 308 year: 2014 ident: 10.1016/j.atmosenv.2023.119728_bib23 article-title: Measurements of submicron aerosols at the California-Mexico border during the Cal-Mex 2010 field campaign publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.08.062 – volume: 15 start-page: 11999 issue: 20 year: 2015 ident: 10.1016/j.atmosenv.2023.119728_bib13 article-title: Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-11999-2015 – volume: 62 start-page: 1885 issue: 12 year: 2019 ident: 10.1016/j.atmosenv.2023.119728_bib57 article-title: The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-019-9343-3 – volume: 12 start-page: 272 issue: 2 year: 2021 ident: 10.1016/j.atmosenv.2023.119728_bib55 article-title: The dominant mechanism of the explosive rise of PM2.5 after significant pollution emissions reduction in Beijing from 2017 to the COVID-19 pandemic in 2020 publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2020.11.008 – volume: 32 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib59 article-title: Chemical components, variation, and source identification of PM1 during the heavy air pollution episodes in beijing in december 2016 publication-title: Journal of Meteorological Research doi: 10.1007/s13351-018-7051-8 – volume: 46 start-page: 10918 issue: 19 year: 2019 ident: 10.1016/j.atmosenv.2023.119728_bib41 article-title: Distinct ultrafine- and accumulation-mode particle properties in clean and polluted urban environments publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL084047 – volume: 326 start-page: 1525 issue: 5959 year: 2009 ident: 10.1016/j.atmosenv.2023.119728_bib61 article-title: Evolution of Organic Aerosols in the Atmosphere publication-title: Science doi: 10.1126/science.1180353 – year: 2016 ident: 10.1016/j.atmosenv.2023.119728_bib32 – volume: 40 start-page: 134 issue: 2 year: 2009 ident: 10.1016/j.atmosenv.2023.119728_bib62 article-title: Inversion of tandem differential mobility analyser (TDMA) measurements publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2008.07.013 – volume: 7 start-page: 1961 issue: 8 year: 2007 ident: 10.1016/j.atmosenv.2023.119728_bib29 article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-1961-2007 – volume: 125 start-page: 69 year: 2016 ident: 10.1016/j.atmosenv.2023.119728_bib63 article-title: Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.11.003 – volume: 7 start-page: 5785 issue: 22 year: 2007 ident: 10.1016/j.atmosenv.2023.119728_bib7 article-title: Size distributions of non-volatile particle residuals (D-p < 800 nm) at a rural site in Germany and relation to air mass origin publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-5785-2007 – volume: 18 start-page: 247 issue: 1 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib60 article-title: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-247-2018 – volume: 578 start-page: 307 year: 2017 ident: 10.1016/j.atmosenv.2023.119728_bib47 article-title: Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.10.149 – volume: 16 start-page: 1123 issue: 2 year: 2016 ident: 10.1016/j.atmosenv.2023.119728_bib45 article-title: Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-1123-2016 – volume: 24 start-page: 938 issue: 8 year: 2009 ident: 10.1016/j.atmosenv.2023.119728_bib44 article-title: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2009.01.004 – volume: 54 start-page: 1344 issue: 3 year: 2020 ident: 10.1016/j.atmosenv.2023.119728_bib58 article-title: Significant changes in chemistry of fine particles in wintertime beijing from 2007 to 2017: impact of clean air actions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b04678 – volume: 7 start-page: 3249 issue: 12 year: 2007 ident: 10.1016/j.atmosenv.2023.119728_bib25 article-title: Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-3249-2007 – volume: 77 start-page: 817 year: 2013 ident: 10.1016/j.atmosenv.2023.119728_bib38 article-title: An observational study of the hygroscopic properties of aerosols over the Pearl River Delta region publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.05.049 – volume: 25 start-page: 2435 issue: 11 year: 1991 ident: 10.1016/j.atmosenv.2023.119728_bib40 article-title: Aerosols, clouds and radiation publication-title: Atmos. Environ., Part A doi: 10.1016/0960-1686(91)90159-5 – volume: 20 start-page: 3777 issue: 6 year: 2020 ident: 10.1016/j.atmosenv.2023.119728_bib46 article-title: Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-3777-2020 – volume: 13 start-page: 5049 issue: 9 year: 2013 ident: 10.1016/j.atmosenv.2023.119728_bib22 article-title: Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-5049-2013 – volume: 60 start-page: 432 issue: 3 year: 2008 ident: 10.1016/j.atmosenv.2023.119728_bib37 article-title: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review publication-title: Tellus B doi: 10.1111/j.1600-0889.2008.00350.x – start-page: 704 year: 2020 ident: 10.1016/j.atmosenv.2023.119728_bib24 article-title: Wintertime hygroscopic growth factors (HGFs) of accumulation mode particles and their linkage to chemical composition in a heavily polluted urban atmosphere of Kanpur at the Centre of IGP, India: impact of ambient relative humidity publication-title: Sci. Total Environ. – volume: 32 start-page: 26 issue: 1 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib33 article-title: Comparison of submicron particles at a rural and an urban site in the NorthNorth China plain during the december 2016 heavy pollution episodes publication-title: Journal of Meteorological Research doi: 10.1007/s13351-018-7060-7 – volume: 20 start-page: 2591 issue: 4 year: 2020 ident: 10.1016/j.atmosenv.2023.119728_bib50 article-title: Wintertime new particle formation and its contribution to cloud condensation nuclei in the Northeastern United States publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-2591-2020 – volume: 124 start-page: 544 year: 2023 ident: 10.1016/j.atmosenv.2023.119728_bib54 article-title: Atmospheric particle hygroscopicity and the influence by oxidation state of organic aerosols in urban Beijing publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2021.11.019 – volume: 147 start-page: 224 year: 2016 ident: 10.1016/j.atmosenv.2023.119728_bib21 article-title: Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.10.013 – volume: 178 start-page: 66 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib30 article-title: Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.01.004 – volume: 14 start-page: 9537 issue: 18 year: 2014 ident: 10.1016/j.atmosenv.2023.119728_bib12 article-title: Hygroscopic properties and mixing state of aerosol measured at the high-altitude site Puy de Dome (1465ma.s.l.) publication-title: France, Atmospheric Chemistry and Physics doi: 10.5194/acp-14-9537-2014 – volume: 6 start-page: 410 issue: 4 year: 2020 ident: 10.1016/j.atmosenv.2023.119728_bib20 article-title: A review on laboratory studies and field measurements of atmospheric organic aerosol hygroscopicity and its parameterization based on oxidation levels publication-title: Current Pollution Reports doi: 10.1007/s40726-020-00164-2 – volume: 47 start-page: 295 issue: 4 year: 1998 ident: 10.1016/j.atmosenv.2023.119728_bib5 article-title: An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition publication-title: Aust. Meteorol. Mag. – volume: 194 start-page: 188 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib43 article-title: Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.09.041 – volume: 1–18 year: 2017 ident: 10.1016/j.atmosenv.2023.119728_bib8 article-title: Wintertime hygroscopicity and volatility of ambient urban aerosol particles publication-title: Atmos. Chem. Phys. – volume: 20 start-page: 915 issue: 2 year: 2020 ident: 10.1016/j.atmosenv.2023.119728_bib9 article-title: Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-915-2020 – volume: 64 start-page: 263 year: 2013 ident: 10.1016/j.atmosenv.2023.119728_bib48 article-title: Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.09.064 – volume: 693 year: 2019 ident: 10.1016/j.atmosenv.2023.119728_bib34 article-title: Variations in submicron aerosol liquid water content and the contribution of chemical components during heavy aerosol pollution episodes in winter in Beijing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.327 – volume: 175 start-page: 184 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib42 article-title: Statistical analysis and parameterization of the hygroscopic growth of the sub-micrometer urban background aerosol in Beijing publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.12.003 – volume: 119 start-page: 9864 issue: 16 year: 2014 ident: 10.1016/j.atmosenv.2023.119728_bib49 article-title: Simultaneous HTDMA and HR-ToF-AMS measurements at the HKUST supersite in Hong Kong in 2011 publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2013JD021146 – volume: 18 start-page: 6907 issue: 9 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib31 article-title: Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-6907-2018 – volume: 17 start-page: 11779 issue: 19 year: 2017 ident: 10.1016/j.atmosenv.2023.119728_bib39 article-title: CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-11779-2017 – volume: 169 start-page: 160 year: 2016 ident: 10.1016/j.atmosenv.2023.119728_bib15 article-title: Comparison of aerosol hygroscopicity and mixing state between winter and summer seasons in Pearl River Delta region, China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.09.031 – volume: 18 start-page: 16419 issue: 22 year: 2018 ident: 10.1016/j.atmosenv.2023.119728_bib3 article-title: The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-16419-2018 – volume: 213 start-page: 349 year: 2019 ident: 10.1016/j.atmosenv.2023.119728_bib1 article-title: Size-resolved hygroscopicity of ambient submicron particles in a suburban atmosphere publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.05.065 – volume: 122 start-page: 11 issue: 21 year: 2017 ident: 10.1016/j.atmosenv.2023.119728_bib53 article-title: Uncertainty in predicting CCN activity of aged and primary aerosols publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2017JD027058 – volume: 121 start-page: 7215 issue: 12 year: 2016 ident: 10.1016/j.atmosenv.2023.119728_bib27 article-title: Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD024636 – volume: 69 start-page: 47 issue: 1 year: 2012 ident: 10.1016/j.atmosenv.2023.119728_bib2 article-title: Seasonal variation of water-soluble inorganic components in aerosol size-segregated at the puy de Dome station (1,465 m a.s.l.), France publication-title: J. Atmos. Chem. doi: 10.1007/s10874-012-9229-2 – volume: 45 start-page: 318 issue: 2 year: 2011 ident: 10.1016/j.atmosenv.2023.119728_bib28 article-title: Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: implications of high acidity for water-soluble organic carbon (WSOC) publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.10.021 – volume: 14 start-page: 13423 issue: 24 year: 2014 ident: 10.1016/j.atmosenv.2023.119728_bib51 article-title: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC(3)Exp campaign: implications for cloud condensation nuclei parameterization publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-13423-2014 – volume: 113 start-page: 1066 issue: 6 year: 2009 ident: 10.1016/j.atmosenv.2023.119728_bib18 article-title: Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid publication-title: J. Phys. Chem. A doi: 10.1021/jp807531n – volume: 124 start-page: 14102 issue: 24 year: 2019 ident: 10.1016/j.atmosenv.2023.119728_bib52 article-title: Significantly enhanced aerosol CCN activity and number concentrations by nucleation-initiated haze events: a case study in urban beijing publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2019JD031457 |
SSID | ssj0003797 |
Score | 2.4744751 |
Snippet | Hygroscopicity is a key parameter for characterizing the ability of particles to be activated as cloud-condensation nuclei (CCN). In this study, we present a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119728 |
SubjectTerms | Chemical composition Cloud-condensation nucleus H-TDMA Heavy polluted episode North China Plain Particle hygroscopicity |
Title | Seasonal variation of particle hygroscopicity and its impact on cloud-condensation nucleus activation in the Beijing urban area |
URI | https://dx.doi.org/10.1016/j.atmosenv.2023.119728 |
Volume | 302 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELYQNFAgHod4a4prs0tiO-uUgEB7dzoaDokusp0xZAXJah9INPDXGccJLNJJFJRJZiTHnzPz2ZkHYz91MsDCiixKjFWRkAoj5QxGKFCTx0eZNZ3n_l6lwxvx-1beLrHzLhfGh1W2tj_Y9MZat3f67Wz2x2XZv449d-C-9EBDBJoMdjHwq7z38hHmwQehwQoJR156IUt4RIg81lOsnnq-iXivacGl_u-gFpzO5QZbb9kinIYBbbIlrLbY2kINwS22c_GRqkai7bc63Wav16gbng1PtB9uAIDawbh9O7h_vvOVLOtxaYmJg64KKGdTCGmTQML2oZ4XEe2XyTSFmB-ofPXj-RR8NkQ4y4WyAuKQcIbliMYD84nRFWiioj_YzeXFv_Nh1LZbiCyPk5n_H0zQKCek4ZrHhKBVmU5OUuVibrhNJHcDZ-MUjVCpKqQPqZH8xDl6YJTiO2y5qivcZRA7p0WBMlEuFVmKNK9GSG6lStMEUe0x2c1xbtta5L4lxkPeBZ2N8g6b3GOTB2z2WP9dbxyqcXypkXUQ5p_WVU4u4wvd_W_oHrBVfxWCyg7Z8mwyxyOiLzNz3KzPY7Zy-uvP8OoNiiLzfg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFRSqlhbwAY7ZbfzIOgcOBVpt6ePSVuot2I4NWbXJqtkt6gV-FH-QcezQRULqAfUaZ6LRfM7M52QeAG8VHdnS8Dyh2siEC2kT6bRNLLcKI74VeTd57ug4G5_xz-fifAl-9bUwPq0y-v7g0ztvHa8MozWH06oanqSeOzDfeqAjAmnMrDywN9_x3Na-3_-EIL-jdG_39OM4iaMFEsNSOvP_PlEN6bjQTLEUtTUyV3Q7ky5lmhkqmBs5k2ZWc5nJUvj0EcG2ncMFLSXD5z6AhxzdhR-bMPhxm1fCRmGiC2qXePUWypInuAUum9bW1wM_tXzQzfyS_46IC1Fu7ymsRHpKdoIFnsGSrVfhyULTwlVY272tjcNbo3Non8PPE6s6Yk-u8QDeIU4aR6bRnOTbzVffOrOZVgapP1F1SapZS0KdJsGbzUUzLxM8oKMvDElGpPbtluct8eUX4eMxqWqCpJV8sNUE9SHzK61qopD7voCzewFhDZbrprbrQFLnFC-toNJlPM8s2lUjOEbILKPWyg0QvY0LE5uf-xkcF0Wf5TYpemwKj00RsNmA4R-5aWj_cadE3kNY_LWRC4xRd8i-_A_ZN_BofHp0WBzuHx9swmO_EjLatmB5djW3r5A7zfTrbq8S-HLfL8dv8AAt4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seasonal+variation+of+particle+hygroscopicity+and+its+impact+on+cloud-condensation+nucleus+activation+in+the+Beijing+urban+area&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Zhang%2C+Sinan&rft.au=Shen%2C+Xiaojing&rft.au=Sun%2C+Junying&rft.au=Che%2C+Huizheng&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=1352-2310&rft.eissn=1873-2844&rft.volume=302&rft_id=info:doi/10.1016%2Fj.atmosenv.2023.119728&rft.externalDocID=S1352231023001541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |