Three-dimensional formation–containment control of underactuated AUVs with heterogeneous uncertain dynamics and system constraints
This paper investigates the formation–containment (FC) control problem of networked underactuated autonomous underwater vehicles (AUVs) in three-dimensional space. The multi-AUV system under consideration has directed topology, heterogeneous uncertain dynamics and system constraints. To achieve the...
Saved in:
Published in | Ocean engineering Vol. 238; p. 109661 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-8018 1873-5258 |
DOI | 10.1016/j.oceaneng.2021.109661 |
Cover
Loading…
Abstract | This paper investigates the formation–containment (FC) control problem of networked underactuated autonomous underwater vehicles (AUVs) in three-dimensional space. The multi-AUV system under consideration has directed topology, heterogeneous uncertain dynamics and system constraints. To achieve the leaders’ formation and followers’ containment, a two-layer control framework is adopted to decouple the FC problem into two subproblems: reference trajectory generation and trajectory tracking. In the upper layer, a distributed estimator is designed for each AUV to generate a reference trajectory in accordance with the FC objective. Subsequently, a model-free trajectory tracking strategy is developed in the lower layer, where adaptive neural networks combined with an auxiliary compensator are involved not only to approximate the heterogeneous system dynamics, but also to preserve the velocity and input constraints simultaneously. Input-to-state stability is employed to analyze the asymptotic stability of the closed-loop system. Finally, comparative simulations are carried out to illustrate the effectiveness and robustness of the proposed two-layer control protocol.
•3D formation–containment control problem of underactuated AUVs is studied.•Heterogeneous uncertain dynamics and system constraints are considered.•A two-layer control scheme is adopted to address FC problem.•A distributed estimator is designed to generate the target trajectory.•A compound controller is developed to track the generated trajectory. |
---|---|
AbstractList | This paper investigates the formation–containment (FC) control problem of networked underactuated autonomous underwater vehicles (AUVs) in three-dimensional space. The multi-AUV system under consideration has directed topology, heterogeneous uncertain dynamics and system constraints. To achieve the leaders’ formation and followers’ containment, a two-layer control framework is adopted to decouple the FC problem into two subproblems: reference trajectory generation and trajectory tracking. In the upper layer, a distributed estimator is designed for each AUV to generate a reference trajectory in accordance with the FC objective. Subsequently, a model-free trajectory tracking strategy is developed in the lower layer, where adaptive neural networks combined with an auxiliary compensator are involved not only to approximate the heterogeneous system dynamics, but also to preserve the velocity and input constraints simultaneously. Input-to-state stability is employed to analyze the asymptotic stability of the closed-loop system. Finally, comparative simulations are carried out to illustrate the effectiveness and robustness of the proposed two-layer control protocol.
•3D formation–containment control problem of underactuated AUVs is studied.•Heterogeneous uncertain dynamics and system constraints are considered.•A two-layer control scheme is adopted to address FC problem.•A distributed estimator is designed to generate the target trajectory.•A compound controller is developed to track the generated trajectory. |
ArticleNumber | 109661 |
Author | Tian, Xinyu Zhang, Yuwei Wang, Xingjian Wang, Shaoping |
Author_xml | – sequence: 1 givenname: Yuwei surname: Zhang fullname: Zhang, Yuwei organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Xingjian surname: Wang fullname: Wang, Xingjian email: wangxj@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China – sequence: 3 givenname: Shaoping surname: Wang fullname: Wang, Shaoping organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China – sequence: 4 givenname: Xinyu surname: Tian fullname: Tian, Xinyu organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China |
BookMark | eNqFkM1KAzEQx4NUsK2-guQFtuajm27AgyJ-QcGLeg0xmbQp3USSVOnNg2_gG_ok7lq9ePE0w8z8_jC_ERqEGAChY0omlFBxsppEAzpAWEwYYbQbSiHoHhrSZsarmtXNAA0JYbJqCG0O0CjnFSFECMKH6P1-mQAq61sI2ceg19jF1OrS9Z9vHyaGon3olgX3fYprHB3eBAtJm7LRBSw-f3jM-NWXJV5CgRQXECBucndlIPU4ttugW28y1sHivM0F2j4ul9RtSz5E-06vMxz91DF6uLq8v7ip5nfXtxfn88pwyko1pYLMXEOlJNoapp-kJXJGZ1w23DVOC-CNE5rVzHApuCZTbRmRjJu6dkZyPkZil2tSzDmBU8_JtzptFSWqd6lW6tel6l2qncsOPP0DGl--HfUfrP_Hz3Y4dM-9eEgqGw-dHesTmKJs9P9FfAFRgZux |
CitedBy_id | crossref_primary_10_3390_jmse10060712 crossref_primary_10_1109_TIM_2022_3186056 crossref_primary_10_3390_aerospace9090510 crossref_primary_10_1016_j_oceaneng_2022_113242 crossref_primary_10_1016_j_oceaneng_2022_111500 crossref_primary_10_1109_TSMC_2023_3275182 crossref_primary_10_1016_j_oceaneng_2022_113521 crossref_primary_10_1002_acs_3585 crossref_primary_10_1007_s11071_024_10530_0 crossref_primary_10_3390_jmse10070920 crossref_primary_10_1016_j_jfranklin_2024_107063 crossref_primary_10_1016_j_ifacol_2022_11_257 crossref_primary_10_3390_jmse12091643 crossref_primary_10_1002_rnc_7242 crossref_primary_10_1016_j_oceaneng_2022_112924 crossref_primary_10_1177_09596518221137940 crossref_primary_10_1002_rob_22343 crossref_primary_10_1016_j_oceaneng_2023_114524 crossref_primary_10_1016_j_oceaneng_2023_115359 crossref_primary_10_1016_j_oceaneng_2022_112187 crossref_primary_10_2139_ssrn_4070226 crossref_primary_10_1016_j_oceaneng_2022_112566 crossref_primary_10_1109_TSMC_2023_3312268 crossref_primary_10_3390_drones7020124 crossref_primary_10_1016_j_oceaneng_2023_115054 crossref_primary_10_1016_j_oceaneng_2023_115210 crossref_primary_10_3390_a17120543 crossref_primary_10_1016_j_oceaneng_2024_119323 crossref_primary_10_1016_j_ins_2022_10_007 crossref_primary_10_1016_j_isatra_2022_11_014 crossref_primary_10_1016_j_ins_2024_120313 |
Cites_doi | 10.1016/j.oceaneng.2014.12.016 10.1109/TSMC.2017.2697447 10.1016/j.apor.2019.101971 10.1109/TCYB.2016.2554621 10.1049/iet-cta.2018.6242 10.1016/j.oceaneng.2019.106309 10.1016/j.automatica.2010.09.005 10.1016/j.oceaneng.2018.08.020 10.1016/j.apor.2018.10.024 10.1109/JOE.2016.2569218 10.1016/j.oceaneng.2020.107328 10.1016/j.oceaneng.2019.01.025 10.1016/j.oceaneng.2015.06.014 10.1049/iet-its.2019.0347 10.1016/j.oceaneng.2010.07.006 10.1016/j.jfranklin.2015.05.008 10.1016/j.oceaneng.2020.107150 10.1016/j.isatra.2016.12.005 10.1002/rnc.4919 10.1016/j.oceaneng.2017.10.001 10.1016/j.jfranklin.2018.11.029 10.1109/TMECH.2017.2660528 10.1016/j.oceaneng.2019.106341 10.1109/TCYB.2017.2786318 10.1109/TIE.2018.2856180 10.1016/j.isatra.2018.10.019 10.1109/TII.2018.2848290 10.1109/TCST.2013.2262768 10.1016/j.neucom.2016.02.041 10.1016/j.automatica.2018.03.020 10.1109/TIE.2018.2885726 10.1016/j.isatra.2020.01.017 10.1016/j.neucom.2016.09.001 10.1016/j.sysconle.2010.06.002 10.1109/TSMC.2016.2645699 10.1016/j.oceaneng.2019.03.061 10.1016/j.ins.2015.04.025 10.1109/MRA.2014.2385561 10.1109/TASE.2018.2792327 10.1016/j.oceaneng.2019.106516 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2021.109661 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2021_109661 S0029801821010362 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c312t-41607f81990adc2ab9d097173983f8fa6e38f6a252c3963a04ad20923c55fc933 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 02:14:47 EDT 2025 Thu Apr 24 22:51:06 EDT 2025 Fri Feb 23 02:43:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Uncertainty Formation–containment control System constraints Autonomous underwater vehicle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-41607f81990adc2ab9d097173983f8fa6e38f6a252c3963a04ad20923c55fc933 |
ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2021_109661 crossref_citationtrail_10_1016_j_oceaneng_2021_109661 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2021_109661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cui, Ge, How, Choo (b4) 2010; 37 Yu, Xiang, Lapierre, Zhang (b46) 2017; 146 Cui, Yang, Li, Sharma (b5) 2017; 47 Xia, Xu, Li, Xu, Xiang (b43) 2019; 174 Yu, Xiao, Dong, Li, Ren (b47) 2019; 13 Liu, Wang, Peng (b19) 2016; 42 Dong, Hua, Zhou, Ren, Zhong (b7) 2018; 16 Han, Dong, Li, Ren (b10) 2016; 218 Jawhar, Mohamed, Al-Jaroodi, Zhang (b12) 2018; 15 Peng, Wang, Han (b26) 2018; 66 Zhang, Marani, Smith, Choi (b50) 2015; 22 Breivik, M., Fossen, T.I., 2005. Guidance-based path following for autonomous underwater vehicles. In: Proceedings of MTS/IEEE OCEANS, pp. 2807–2814. Peng, Wang (b25) 2017; 48 Miao, Wang, Zhao, Li, Tomovic (b22) 2017; 67 Yuan, Licht, He (b48) 2017 Qi (b29) 2015; 104 Dong, Li, Ren, Zhong (b8) 2015; 352 Li, Zhang, He, Li, Ge (b14) 2018; 49 Fossen (b9) 2011 Peng, Wang, Wang (b28) 2018; 66 Shi, Shen, Fang, Li (b32) 2017; 22 Sontag (b36) 2008 Meng, Ren, You (b21) 2010; 46 Park (b24) 2015; 96 Slotine, Li (b35) 1991 Millán, Orihuela, Jurado, Rubio (b23) 2013; 22 He, Yin, Sun (b11) 2016; 47 Wang, Liu, Xiao, Shen (b38) 2018; 93 Rout, Cui, Yan (b31) 2020 Lu, Zhang, Sun, Zhang (b20) 2018; 167 Liang, Qu, Hou, Li, Zhang (b15) 2020; 205 Chen, Li, Xiao, Guo (b3) 2019; 86 Liang, Qu, Wang, Zhang, Li (b17) 2019; 14 Su, Huang (b37) 2011; 57 Wang, Wang, Wei, Zhang (b39) 2019; 180 Qin, Chen, Sun, Chen (b30) 2019; 189 Liu, Hou, Wang (b18) 2019 Do, Pan (b6) 2009 Shojaei (b33) 2016; 194 Zhang, Liu, Luo, Yang (b49) 2019; 189 Peng, Wang, Shi, Wang, Wang (b27) 2015; 316 Xu, Li, Luo, You, Duan (b44) 2019; 356 Zhang, Wang, Wang, Miao (b51) 2020; 101 Silva, Souza, Pimenta (b34) 2020; 30 Wang, Wang, Wei, Zhang (b40) 2020; 201 Yang, Yu, Yan (b45) 2019; 82 Liang, Qu, Wang, Li, Zhang (b16) 2019; 191 Khalil (b13) 2015 Wang, Wang, Wei, Zhang (b41) 2020; 94 Cao, Ren, Meng (b2) 2010; 59 Wei, Shen, Shi (b42) 2019 Wang (10.1016/j.oceaneng.2021.109661_b39) 2019; 180 Rout (10.1016/j.oceaneng.2021.109661_b31) 2020 Jawhar (10.1016/j.oceaneng.2021.109661_b12) 2018; 15 Shi (10.1016/j.oceaneng.2021.109661_b32) 2017; 22 Miao (10.1016/j.oceaneng.2021.109661_b22) 2017; 67 Park (10.1016/j.oceaneng.2021.109661_b24) 2015; 96 Qin (10.1016/j.oceaneng.2021.109661_b30) 2019; 189 Zhang (10.1016/j.oceaneng.2021.109661_b51) 2020; 101 Su (10.1016/j.oceaneng.2021.109661_b37) 2011; 57 Xia (10.1016/j.oceaneng.2021.109661_b43) 2019; 174 Sontag (10.1016/j.oceaneng.2021.109661_b36) 2008 Yang (10.1016/j.oceaneng.2021.109661_b45) 2019; 82 Peng (10.1016/j.oceaneng.2021.109661_b28) 2018; 66 Han (10.1016/j.oceaneng.2021.109661_b10) 2016; 218 Liu (10.1016/j.oceaneng.2021.109661_b19) 2016; 42 Meng (10.1016/j.oceaneng.2021.109661_b21) 2010; 46 Millán (10.1016/j.oceaneng.2021.109661_b23) 2013; 22 Liang (10.1016/j.oceaneng.2021.109661_b15) 2020; 205 Cui (10.1016/j.oceaneng.2021.109661_b5) 2017; 47 Silva (10.1016/j.oceaneng.2021.109661_b34) 2020; 30 Lu (10.1016/j.oceaneng.2021.109661_b20) 2018; 167 Shojaei (10.1016/j.oceaneng.2021.109661_b33) 2016; 194 Yuan (10.1016/j.oceaneng.2021.109661_b48) 2017 Fossen (10.1016/j.oceaneng.2021.109661_b9) 2011 10.1016/j.oceaneng.2021.109661_b1 Cao (10.1016/j.oceaneng.2021.109661_b2) 2010; 59 Liu (10.1016/j.oceaneng.2021.109661_b18) 2019 Qi (10.1016/j.oceaneng.2021.109661_b29) 2015; 104 Wang (10.1016/j.oceaneng.2021.109661_b38) 2018; 93 Dong (10.1016/j.oceaneng.2021.109661_b7) 2018; 16 He (10.1016/j.oceaneng.2021.109661_b11) 2016; 47 Zhang (10.1016/j.oceaneng.2021.109661_b50) 2015; 22 Liang (10.1016/j.oceaneng.2021.109661_b17) 2019; 14 Yu (10.1016/j.oceaneng.2021.109661_b46) 2017; 146 Wang (10.1016/j.oceaneng.2021.109661_b41) 2020; 94 Cui (10.1016/j.oceaneng.2021.109661_b4) 2010; 37 Do (10.1016/j.oceaneng.2021.109661_b6) 2009 Khalil (10.1016/j.oceaneng.2021.109661_b13) 2015 Yu (10.1016/j.oceaneng.2021.109661_b47) 2019; 13 Zhang (10.1016/j.oceaneng.2021.109661_b49) 2019; 189 Wang (10.1016/j.oceaneng.2021.109661_b40) 2020; 201 Chen (10.1016/j.oceaneng.2021.109661_b3) 2019; 86 Li (10.1016/j.oceaneng.2021.109661_b14) 2018; 49 Xu (10.1016/j.oceaneng.2021.109661_b44) 2019; 356 Peng (10.1016/j.oceaneng.2021.109661_b25) 2017; 48 Slotine (10.1016/j.oceaneng.2021.109661_b35) 1991 Peng (10.1016/j.oceaneng.2021.109661_b26) 2018; 66 Wei (10.1016/j.oceaneng.2021.109661_b42) 2019 Dong (10.1016/j.oceaneng.2021.109661_b8) 2015; 352 Liang (10.1016/j.oceaneng.2021.109661_b16) 2019; 191 Peng (10.1016/j.oceaneng.2021.109661_b27) 2015; 316 |
References_xml | – volume: 42 start-page: 477 year: 2016 end-page: 487 ident: b19 article-title: ESO-Based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation publication-title: IEEE J. Ocean. Eng. – volume: 22 start-page: 14 year: 2015 end-page: 122 ident: b50 article-title: Future trends in marine robotics publication-title: IEEE Robot. Autom. Mag. – year: 2015 ident: b13 article-title: Nonlinear Control – volume: 13 start-page: 2894 year: 2019 end-page: 2905 ident: b47 article-title: Practical formation-containment tracking for multiple autonomous surface vessels system publication-title: IET Control Theory Appl. – volume: 57 start-page: 1062 year: 2011 end-page: 1066 ident: b37 article-title: Cooperative output regulation of linear multi-agent systems publication-title: IEEE Trans. Automat. Control – start-page: 1 year: 2017 end-page: 15 ident: b48 article-title: Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics publication-title: IEEE Trans. Cybern. – volume: 316 start-page: 163 year: 2015 end-page: 179 ident: b27 article-title: Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders publication-title: Inform. Sci. – volume: 201 year: 2020 ident: b40 article-title: Filter-backstepping based neural adaptive formation control of leader-following multiple AUVs in three dimensional space publication-title: Ocean Eng. – volume: 22 start-page: 1121 year: 2017 end-page: 1131 ident: b32 article-title: Advanced control in marine mechatronic systems: A survey publication-title: IEEE ASME Trans. Mechatron. – reference: Breivik, M., Fossen, T.I., 2005. Guidance-based path following for autonomous underwater vehicles. In: Proceedings of MTS/IEEE OCEANS, pp. 2807–2814. – volume: 47 start-page: 1019 year: 2017 end-page: 1029 ident: b5 article-title: Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning publication-title: IEEE Trans. Syst. Man Cybern. – volume: 94 year: 2020 ident: b41 article-title: Sliding mode based neural adaptive formation control of underactuated AUVs with leader-follower strategy publication-title: Appl. Ocean Res. – volume: 194 start-page: 372 year: 2016 end-page: 384 ident: b33 article-title: Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators publication-title: Neurocomputing – year: 2019 ident: b42 article-title: Distributed Lyapunov-based model predictive formation tracking control for autonomous underwater vehicles subject to disturbances publication-title: IEEE Trans. Syst. Man Cybern. – volume: 96 start-page: 1 year: 2015 end-page: 7 ident: b24 article-title: Adaptive formation control of underactuated autonomous underwater vehicles publication-title: Ocean Eng. – volume: 37 start-page: 1491 year: 2010 end-page: 1502 ident: b4 article-title: Leader–follower formation control of underactuated autonomous underwater vehicles publication-title: Ocean Eng. – volume: 191 year: 2019 ident: b16 article-title: Swarm control with collision avoidance for multiple underactuated surface vehicles publication-title: Ocean Eng. – volume: 66 start-page: 3627 year: 2018 end-page: 3635 ident: b28 article-title: Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation publication-title: IEEE Trans. Ind. Electron. – volume: 49 start-page: 675 year: 2018 end-page: 687 ident: b14 article-title: Two-layer distributed formation-containment control of multiple Euler–Lagrange systems by output feedback publication-title: IEEE Trans. Cybern. – volume: 66 start-page: 8724 year: 2018 end-page: 8732 ident: b26 article-title: Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization publication-title: IEEE Trans. Ind. Electron. – volume: 174 start-page: 14 year: 2019 end-page: 30 ident: b43 article-title: Improved line-of-sight trajectory tracking control of under-actuated AUV subjects to ocean currents and input saturation publication-title: Ocean Eng. – volume: 48 start-page: 535 year: 2017 end-page: 544 ident: b25 article-title: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks publication-title: IEEE Trans. Syst. Man Cybern. – volume: 356 start-page: 2172 year: 2019 end-page: 2197 ident: b44 article-title: Two-layer distributed hybrid affine formation control of networked Euler–Lagrange systems publication-title: J. Frankl. Inst. Eng. Appl. Math. – volume: 104 start-page: 680 year: 2015 end-page: 685 ident: b29 article-title: Spatial target path following control based on Nussbaum gain method for underactuated underwater vehicle publication-title: Ocean Eng. – volume: 189 year: 2019 ident: b30 article-title: Distributed finite-time fault-tolerant containment control for multiple ocean Bottom Flying node systems with error constraints publication-title: Ocean Eng. – start-page: 163 year: 2008 end-page: 220 ident: b36 article-title: Input to state stability: Basic concepts and results publication-title: Nonlinear and Optimal Control Theory – volume: 14 start-page: 364 year: 2019 end-page: 370 ident: b17 article-title: Three-dimensional trajectory tracking of an underactuated AUV based on fuzzy dynamic surface control publication-title: IET Intell. Transp. Syst. – volume: 180 start-page: 175 year: 2019 end-page: 186 ident: b39 article-title: Command filter based adaptive neural trajectory tracking control of an underactuated underwater vehicle in three-dimensional space publication-title: Ocean Eng. – volume: 16 start-page: 229 year: 2018 end-page: 240 ident: b7 article-title: Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems publication-title: IEEE Trans. Autom. Sci. Eng. – year: 2011 ident: b9 article-title: Handbook of Marine Craft Hydrodynamics and Motion Control – volume: 82 start-page: 109 year: 2019 end-page: 116 ident: b45 article-title: Formation control of multiple underwater vehicles subject to communication faults and uncertainties publication-title: Appl. Ocean Res. – volume: 15 start-page: 1329 year: 2018 end-page: 1340 ident: b12 article-title: An architecture for using autonomous underwater vehicles in wireless sensor networks for underwater pipeline monitoring publication-title: IEEE Trans. Ind. Inf. – volume: 47 start-page: 1641 year: 2016 end-page: 1651 ident: b11 article-title: Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function publication-title: IEEE Trans. Cybern. – year: 2019 ident: b18 article-title: Formation-containment control of multiple underactuated surface vessels with sampling communication via hierarchical sliding mode approach publication-title: ISA Trans. – volume: 59 start-page: 522 year: 2010 end-page: 529 ident: b2 article-title: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking publication-title: Systems Control Lett. – volume: 218 start-page: 439 year: 2016 end-page: 447 ident: b10 article-title: Formation-containment control for second-order multi-agent systems with time-varying delays publication-title: Neurocomputing – volume: 22 start-page: 770 year: 2013 end-page: 777 ident: b23 article-title: Formation control of autonomous underwater vehicles subject to communication delays publication-title: IEEE Trans. Control Syst. Technol. – volume: 146 start-page: 457 year: 2017 end-page: 467 ident: b46 article-title: Nonlinear guidance and fuzzy control for three-dimensional path following of an underactuated autonomous underwater vehicle publication-title: Ocean Eng. – volume: 189 year: 2019 ident: b49 article-title: MPC-Based 3-D trajectory tracking for an autonomous underwater vehicle with constraints in complex ocean environments publication-title: Ocean Eng. – volume: 205 year: 2020 ident: b15 article-title: Distributed coordinated tracking control of multiple unmanned surface vehicles under complex marine environments publication-title: Ocean Eng. – volume: 352 start-page: 3564 year: 2015 end-page: 3584 ident: b8 article-title: Formation-containment control for high-order linear time-invariant multi-agent systems with time delays publication-title: J. Frankl. Inst.-Eng. Appl. Math. – volume: 86 start-page: 87 year: 2019 end-page: 97 ident: b3 article-title: Formation-containment control of networked Euler–Lagrange systems: An event-triggered framework publication-title: ISA Trans. – volume: 167 start-page: 36 year: 2018 end-page: 44 ident: b20 article-title: Adaptive cooperative formation control of autonomous surface vessels with uncertain dynamics and external disturbances publication-title: Ocean Eng. – volume: 67 start-page: 107 year: 2017 end-page: 130 ident: b22 article-title: Spatial curvilinear path following control of underactuated AUV with multiple uncertainties publication-title: ISA Trans. – volume: 93 start-page: 26 year: 2018 end-page: 32 ident: b38 article-title: Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control publication-title: Automatica – year: 1991 ident: b35 article-title: Applied Nonlinear Control, vol. 199 – volume: 101 start-page: 189 year: 2020 end-page: 203 ident: b51 article-title: DO-LPV-Based robust 3D path following control of underactuated autonomous underwater vehicle with multiple uncertainties publication-title: ISA Trans. – volume: 46 start-page: 2092 year: 2010 end-page: 2099 ident: b21 article-title: Distributed finite-time attitude containment control for multiple rigid bodies publication-title: Automatica – volume: 30 start-page: 2999 year: 2020 end-page: 3022 ident: b34 article-title: Distributed formation-containment control with Euler-Lagrange systems subject to input saturation and communication delays publication-title: Internat. J. Robust Nonlinear Control – year: 2009 ident: b6 article-title: Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems – year: 2020 ident: b31 article-title: Sideslip-compensated guidance-based adaptive neural control of marine surface vessels publication-title: IEEE Trans. Cybern. – volume: 96 start-page: 1 year: 2015 ident: 10.1016/j.oceaneng.2021.109661_b24 article-title: Adaptive formation control of underactuated autonomous underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.12.016 – volume: 48 start-page: 535 year: 2017 ident: 10.1016/j.oceaneng.2021.109661_b25 article-title: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.2017.2697447 – volume: 94 issn: 0141-1187 year: 2020 ident: 10.1016/j.oceaneng.2021.109661_b41 article-title: Sliding mode based neural adaptive formation control of underactuated AUVs with leader-follower strategy publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2019.101971 – volume: 47 start-page: 1641 year: 2016 ident: 10.1016/j.oceaneng.2021.109661_b11 article-title: Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2554621 – year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b42 article-title: Distributed Lyapunov-based model predictive formation tracking control for autonomous underwater vehicles subject to disturbances publication-title: IEEE Trans. Syst. Man Cybern. – volume: 13 start-page: 2894 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b47 article-title: Practical formation-containment tracking for multiple autonomous surface vessels system publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2018.6242 – volume: 189 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b49 article-title: MPC-Based 3-D trajectory tracking for an autonomous underwater vehicle with constraints in complex ocean environments publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106309 – volume: 46 start-page: 2092 year: 2010 ident: 10.1016/j.oceaneng.2021.109661_b21 article-title: Distributed finite-time attitude containment control for multiple rigid bodies publication-title: Automatica doi: 10.1016/j.automatica.2010.09.005 – volume: 167 start-page: 36 year: 2018 ident: 10.1016/j.oceaneng.2021.109661_b20 article-title: Adaptive cooperative formation control of autonomous surface vessels with uncertain dynamics and external disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.08.020 – volume: 82 start-page: 109 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b45 article-title: Formation control of multiple underwater vehicles subject to communication faults and uncertainties publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.10.024 – volume: 42 start-page: 477 year: 2016 ident: 10.1016/j.oceaneng.2021.109661_b19 article-title: ESO-Based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2016.2569218 – year: 2009 ident: 10.1016/j.oceaneng.2021.109661_b6 – volume: 205 year: 2020 ident: 10.1016/j.oceaneng.2021.109661_b15 article-title: Distributed coordinated tracking control of multiple unmanned surface vehicles under complex marine environments publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107328 – volume: 174 start-page: 14 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b43 article-title: Improved line-of-sight trajectory tracking control of under-actuated AUV subjects to ocean currents and input saturation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.01.025 – volume: 104 start-page: 680 year: 2015 ident: 10.1016/j.oceaneng.2021.109661_b29 article-title: Spatial target path following control based on Nussbaum gain method for underactuated underwater vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.06.014 – start-page: 163 year: 2008 ident: 10.1016/j.oceaneng.2021.109661_b36 article-title: Input to state stability: Basic concepts and results – volume: 14 start-page: 364 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b17 article-title: Three-dimensional trajectory tracking of an underactuated AUV based on fuzzy dynamic surface control publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2019.0347 – volume: 37 start-page: 1491 year: 2010 ident: 10.1016/j.oceaneng.2021.109661_b4 article-title: Leader–follower formation control of underactuated autonomous underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2010.07.006 – volume: 352 start-page: 3564 year: 2015 ident: 10.1016/j.oceaneng.2021.109661_b8 article-title: Formation-containment control for high-order linear time-invariant multi-agent systems with time delays publication-title: J. Frankl. Inst.-Eng. Appl. Math. doi: 10.1016/j.jfranklin.2015.05.008 – year: 2020 ident: 10.1016/j.oceaneng.2021.109661_b31 article-title: Sideslip-compensated guidance-based adaptive neural control of marine surface vessels publication-title: IEEE Trans. Cybern. – volume: 201 year: 2020 ident: 10.1016/j.oceaneng.2021.109661_b40 article-title: Filter-backstepping based neural adaptive formation control of leader-following multiple AUVs in three dimensional space publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107150 – volume: 67 start-page: 107 year: 2017 ident: 10.1016/j.oceaneng.2021.109661_b22 article-title: Spatial curvilinear path following control of underactuated AUV with multiple uncertainties publication-title: ISA Trans. doi: 10.1016/j.isatra.2016.12.005 – volume: 30 start-page: 2999 year: 2020 ident: 10.1016/j.oceaneng.2021.109661_b34 article-title: Distributed formation-containment control with Euler-Lagrange systems subject to input saturation and communication delays publication-title: Internat. J. Robust Nonlinear Control doi: 10.1002/rnc.4919 – volume: 146 start-page: 457 year: 2017 ident: 10.1016/j.oceaneng.2021.109661_b46 article-title: Nonlinear guidance and fuzzy control for three-dimensional path following of an underactuated autonomous underwater vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.10.001 – volume: 356 start-page: 2172 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b44 article-title: Two-layer distributed hybrid affine formation control of networked Euler–Lagrange systems publication-title: J. Frankl. Inst. Eng. Appl. Math. doi: 10.1016/j.jfranklin.2018.11.029 – year: 2015 ident: 10.1016/j.oceaneng.2021.109661_b13 – start-page: 1 year: 2017 ident: 10.1016/j.oceaneng.2021.109661_b48 article-title: Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics publication-title: IEEE Trans. Cybern. – volume: 22 start-page: 1121 year: 2017 ident: 10.1016/j.oceaneng.2021.109661_b32 article-title: Advanced control in marine mechatronic systems: A survey publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2017.2660528 – volume: 189 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b30 article-title: Distributed finite-time fault-tolerant containment control for multiple ocean Bottom Flying node systems with error constraints publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106341 – volume: 49 start-page: 675 year: 2018 ident: 10.1016/j.oceaneng.2021.109661_b14 article-title: Two-layer distributed formation-containment control of multiple Euler–Lagrange systems by output feedback publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2786318 – volume: 66 start-page: 3627 year: 2018 ident: 10.1016/j.oceaneng.2021.109661_b28 article-title: Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2856180 – volume: 86 start-page: 87 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b3 article-title: Formation-containment control of networked Euler–Lagrange systems: An event-triggered framework publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.10.019 – volume: 15 start-page: 1329 year: 2018 ident: 10.1016/j.oceaneng.2021.109661_b12 article-title: An architecture for using autonomous underwater vehicles in wireless sensor networks for underwater pipeline monitoring publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2848290 – year: 2011 ident: 10.1016/j.oceaneng.2021.109661_b9 – volume: 22 start-page: 770 year: 2013 ident: 10.1016/j.oceaneng.2021.109661_b23 article-title: Formation control of autonomous underwater vehicles subject to communication delays publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2262768 – volume: 194 start-page: 372 year: 2016 ident: 10.1016/j.oceaneng.2021.109661_b33 article-title: Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.041 – volume: 93 start-page: 26 year: 2018 ident: 10.1016/j.oceaneng.2021.109661_b38 article-title: Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control publication-title: Automatica doi: 10.1016/j.automatica.2018.03.020 – volume: 66 start-page: 8724 year: 2018 ident: 10.1016/j.oceaneng.2021.109661_b26 article-title: Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2885726 – volume: 101 start-page: 189 year: 2020 ident: 10.1016/j.oceaneng.2021.109661_b51 article-title: DO-LPV-Based robust 3D path following control of underactuated autonomous underwater vehicle with multiple uncertainties publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.01.017 – volume: 218 start-page: 439 year: 2016 ident: 10.1016/j.oceaneng.2021.109661_b10 article-title: Formation-containment control for second-order multi-agent systems with time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.001 – volume: 59 start-page: 522 year: 2010 ident: 10.1016/j.oceaneng.2021.109661_b2 article-title: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2010.06.002 – volume: 47 start-page: 1019 year: 2017 ident: 10.1016/j.oceaneng.2021.109661_b5 article-title: Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.2016.2645699 – volume: 57 start-page: 1062 year: 2011 ident: 10.1016/j.oceaneng.2021.109661_b37 article-title: Cooperative output regulation of linear multi-agent systems publication-title: IEEE Trans. Automat. Control – year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b18 article-title: Formation-containment control of multiple underactuated surface vessels with sampling communication via hierarchical sliding mode approach publication-title: ISA Trans. – volume: 180 start-page: 175 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b39 article-title: Command filter based adaptive neural trajectory tracking control of an underactuated underwater vehicle in three-dimensional space publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.03.061 – volume: 316 start-page: 163 year: 2015 ident: 10.1016/j.oceaneng.2021.109661_b27 article-title: Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.04.025 – year: 1991 ident: 10.1016/j.oceaneng.2021.109661_b35 – volume: 22 start-page: 14 year: 2015 ident: 10.1016/j.oceaneng.2021.109661_b50 article-title: Future trends in marine robotics publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2014.2385561 – volume: 16 start-page: 229 year: 2018 ident: 10.1016/j.oceaneng.2021.109661_b7 article-title: Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2018.2792327 – ident: 10.1016/j.oceaneng.2021.109661_b1 – volume: 191 year: 2019 ident: 10.1016/j.oceaneng.2021.109661_b16 article-title: Swarm control with collision avoidance for multiple underactuated surface vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106516 |
SSID | ssj0006603 |
Score | 2.4846444 |
Snippet | This paper investigates the formation–containment (FC) control problem of networked underactuated autonomous underwater vehicles (AUVs) in three-dimensional... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109661 |
SubjectTerms | Autonomous underwater vehicle Formation–containment control System constraints Uncertainty |
Title | Three-dimensional formation–containment control of underactuated AUVs with heterogeneous uncertain dynamics and system constraints |
URI | https://dx.doi.org/10.1016/j.oceaneng.2021.109661 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYqWAAJQQFR_uSBNW1ix048VhVVAVGWFnWLHDvmRyipSLsiBt6AN-RJ8DVOKRISA2Mi38nyXe7O0XffIXQea0o0odTTsU-9MA0jTypuvMikkTIkDsyC8eZmyAfj8GrCJg3Uq3thAFbpYn8V0xfR2r3puNPsTB8foceXCBtfY3tpCVwcDsMIvLz9-g3z4NynNcwDVq90CT-1bYqQeZbf23siCYBZifPg9wS1knT6O2jbVYu4W21oFzWyvIk2VzgEm2jrFrQ74uk99D6yxsk8DaT9FeEGXvYnfr59ADLdIQCwQ6njwmDoJIN2qbmtPDXuju9KDD9o8QOAZQrrY1kxL-0qVQEIsK7m2JdY5hpXZNCgrlwMnJiV-2jcvxj1Bp6btOApGpCZFwLNnLHFgfClVkSmQgO3VERFTE1sJM9obLgkjChqv1jph1IT39aGijGjBKUHaC0v8uwQYSgIWZSqmEoeMqtUMGEUpZHQRijFWojVx5soR0MOm3tOarzZU1KbJQGzJJVZWqizlJtWRBx_SojaeskPl0pstvhD9ugfssdoA54gwQXsBK3NXubZqa1cZunZwjXP0Hr38now_AJba_ID |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtswDCaK9NBtQNFmG9auPzr06sWWLNk6BkWLpG3SSzLkZsiStbUonGJO7jv0DfqGfZKJkRykQIEedrVNQhApkjI-fgQ4yw2jhjIWmTxmUVqmWaS0sFFmy0xbmid2xXgzGovBNL2a8dkWnLe9MAirDLHfx_RVtA5PemE3e493d9jjS6WLr7m7tCQ-Dm8jOxXvwHZ_eD0YrwOyEDFrkR4osNEofP_DZQlVV_Uvd1WkCZIrCZG8naM28s7lHuyGgpH0_Zr2Yauqu_Bxg0awC59uUXvgnv4MTxNnnyoyyNvvOTfIukXx5e8zgtMDCIAEoDqZW4LNZNgxtXTFpyH96c-G4D9a8hvxMnPnZtV82bivtMcQEONH2TdE1YZ4PmhU16xmTiyaLzC9vJicD6IwbCHSLKGLKEWmOevqAxkro6kqpUF6qYzJnNncKlGx3ApFOdXMHVoVp8rQ2JWHmnOrJWNfoVPP6-obEKwJeVbqnCmRcqdUcmk1Y5k0VmrND4C321vowESOi3soWsjZfdGapUCzFN4sB9Bbyz16Lo53JWRrveKVVxUuYbwje_gfsqewM5iMboqb4fj6O3zAN5jvEn4EncWfZXXsCplFeRIc9R-dSfS0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+formation%E2%80%93containment+control+of+underactuated+AUVs+with+heterogeneous+uncertain+dynamics+and+system+constraints&rft.jtitle=Ocean+engineering&rft.au=Zhang%2C+Yuwei&rft.au=Wang%2C+Xingjian&rft.au=Wang%2C+Shaoping&rft.au=Tian%2C+Xinyu&rft.date=2021-10-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=238&rft_id=info:doi/10.1016%2Fj.oceaneng.2021.109661&rft.externalDocID=S0029801821010362 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |